JP2018020920A - アカガネイトの製造方法 - Google Patents

アカガネイトの製造方法 Download PDF

Info

Publication number
JP2018020920A
JP2018020920A JP2016151915A JP2016151915A JP2018020920A JP 2018020920 A JP2018020920 A JP 2018020920A JP 2016151915 A JP2016151915 A JP 2016151915A JP 2016151915 A JP2016151915 A JP 2016151915A JP 2018020920 A JP2018020920 A JP 2018020920A
Authority
JP
Japan
Prior art keywords
akaganate
akaganeate
aqueous solution
akaganeite
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016151915A
Other languages
English (en)
Inventor
光博 隅倉
Mitsuhiro Sumikura
光博 隅倉
田▲崎▼ 雅晴
Masaharu Tazaki
雅晴 田▲崎▼
啓輔 小島
Keisuke Kojima
啓輔 小島
光男 毛利
Mitsuo Mori
光男 毛利
和彦 設樂
Kazuhiko Shidara
和彦 設樂
誠一 石鍋
Seiichi Ishinabe
誠一 石鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2016151915A priority Critical patent/JP2018020920A/ja
Publication of JP2018020920A publication Critical patent/JP2018020920A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

【課題】アカガネイトを簡便に高収率で合成することが可能なアカガネイトの製造方法を提供する。【解決手段】[1]塩化鉄(III)と、アルカリ金属の炭酸水素塩、炭酸塩及び水酸化物塩、並びに、アルカリ土類金属の炭酸水素塩、炭酸塩及び水酸化物塩から選ばれる1種以上の塩(S)と、を水に溶解させ、得られた水溶液中でアカガネイトを生成し、そのアカガネイトを含む第一反応液を得る第一工程、を有することを特徴とするアカガネイトの製造方法。[2]前記第一工程は、前記水溶液のpHを7未満とすることにより、アカガネイトを生成することを特徴とする請求項1に記載のアカガネイトの製造方法。[3]前記第一工程は、塩化鉄(III)によって生成されるFe3+と、前記1種以上の塩(S)によって生成されるOH−とのモル比が、1:1〜1:3となる工程であることを特徴とする[1]又は[2]に記載のアカガネイトの製造方法。【選択図】図1

Description

本発明は、酸化鉄鉱物であるアカガネイトの製造方法に関する。より詳しくは、水溶液中に含まれる陰イオンの吸着に有用な酸化鉄鉱物であるアカガネイトの製造方法に関する。
化学事業所や工事現場の排水にはセレン、ヒ素、クロム等のオキソ酸イオンが含まれることがある。これらの陰イオンは溶解性が高く、従来の一般的な排水処理に使用される硫酸バンド(硫酸アルミニウム)、PAC(ポリ塩化アルミニウム)等の無機凝集剤や、高分子ポリマーを含む有機凝集剤によって沈殿して除去することは困難である。そこで、特許文献1では、シュベルトマナイト[組成式:Fe(OH)8−2x(SO;1≦x≦1.75]と呼ばれる酸化鉄鉱物にセレン、ヒ素、クロムを吸着させる方法が提案されている。
特開2005−95732号公報
本発明者らが鋭意検討したところ、特許文献1に記載のシュベルトマナイトは硫酸イオンを本来的に含んでいるため、目的の陰イオンが充分に吸着するためには硫酸イオンを置換する必要があると考えられた。また、硫酸イオンの結合力は比較的強いため、目的の陰イオンがシュベルトマナイトに吸着する効率は必ずしも高いとはいえないことを見出した。
そこで、本発明者らはより優れた吸着効率を示す鉱物を種々検討したところ、アカガネイト(赤金鉱)(Akaganeite)が有用であることを見出した。しかしながら、アカガネイトを工業的な規模で収率良く合成する方法が未だ知られていないという問題があった。
本発明は、アカガネイトを簡便に高収率で合成することが可能なアカガネイトの製造方法を提供する。
[1] 塩化鉄(III)と、アルカリ金属の炭酸水素塩、炭酸塩及び水酸化物塩、並びに、アルカリ土類金属の炭酸水素塩、炭酸塩及び水酸化物塩から選ばれる1種以上の塩(S)と、を水に溶解させ、得られた水溶液中でアカガネイトを生成し、そのアカガネイトを含む第一反応液を得る第一工程、を有することを特徴とするアカガネイトの製造方法。
[2] 前記第一工程は、前記水溶液のpHを7未満とすることにより、アカガネイトを生成することを特徴とする[1]に記載のアカガネイトの製造方法。
[3] 前記第一工程は、塩化鉄(III)によって生成されるFe3+と、前記1種以上の塩(S)によって生成されるOHとのモル比が、1:1〜1:3となる工程であることを特徴とする[1]又は[2]に記載のアカガネイトの製造方法。
[4] 前記第一工程は、前記水溶液のpHを4未満とすることにより、アカガネイトを生成する工程であり、次いで、前記第一反応液のpHをpH4以上〜pH6以下に調整することにより、アカガネイトを凝集させて、アカガネイトを回収する第二工程を有することを特徴とする[1]〜[3]の何れか一項に記載のアカガネイトの製造方法。
本発明のアカガネイトの製造方法によれば、簡便に収率良くアカガネイトを製造することができる。
3種の酸化鉄鉱物におけるセレン酸イオンの吸着等温線である。 アカガネイトのトンネル構造を表す模式図である。 アカガネイトにおいて、硫酸イオンの吸着に伴って塩化物イオンの脱離が起こることを示す実験結果である。 酸化鉄鉱物合成時のpHと、得られた酸化鉄鉱物に対するセレン酸イオンの吸着力との関係を示す実験結果である。
《アカガネイトの製造方法》
[第一工程]
本発明の第一態様のアカガネイトの製造方法は、塩化鉄(III)と、アルカリ金属の炭酸水素塩、炭酸塩及び水酸化物塩、並びに、アルカリ土類金属の炭酸水素塩、炭酸塩及び水酸化物塩から選ばれる1種以上の塩(S)と、を水に溶解させ、得られた水溶液中でアカガネイトを生成し、そのアカガネイトを含む第一反応液を得る第一工程、を有する。
塩化鉄(III)と前記1種以上の塩(S)を水中に溶解させることにより、水溶液中で電離したイオン同士が自然に反応してアカガネイトが生成される。より詳しくは、前記1種以上の塩(S)を水中に溶解させると水酸化物イオンが生成される。この水酸化物イオンと鉄イオンが、塩化物イオンが多く溶存する酸性水溶液中で反応することにより、アカガネイトが生成される。
アカガネイトを高収率で合成する観点から、前記1種以上の塩(S)は水に易溶性であることが好ましく、例えば、下記のカチオンを含む塩が好ましい。
前記アルカリ金属は周期表の第1族元素であり、ナトリウム、カリウムが好ましい。
前記アルカリ土類金属は周期表の第2族元素であり、マグネシウム、カルシウム、バリウムが好ましい。
アカガネイトの生成反応を促進するために、前記水溶液を例えば40〜100℃程度に加熱してもよい。
第一工程は、前記水溶液のpHを7未満とすることにより、アカガネイトを生成することが好ましい。前記水溶液のpHは、7未満が好ましく、4未満がより好ましく、1〜3がさらに好ましい。
pH7未満であると、塩化物イオン存在下においてアカガネイトが容易に生成される。
pH4未満であると、特にpH3以下であると、塩化物イオン存在下において高収率でアカガネイトを生成することができる。なお、pH4〜6でもアカガネイトは容易に形成されるが、このpH範囲であると、生成しつつあるアカガネイト同士が凝集して未反応の塩化鉄(III)又は塩(S)が取り込まれる場合がある。一方、pHがアルカリ性であると、異なる構造の酸化鉄鉱物(例えば、ゲータイト、スクメタイト等)が生成される可能性が高い。
アカガネイトを生成する際の前記水溶液のpHの調整は、塩化鉄(III)及び前記1種以上の塩(S)のうち少なくとも一方を前記水に添加する前に行ってもよいし、両方を前記水に溶解した後で行ってもよい。ただし、両方を溶解した前記水溶液のpHがアルカリ性の状態で放置すると、アカガネイト以外の酸化鉄鉱物が生成される恐れがある。したがって、前記両方を溶解した後で速やかに、或いは前記少なくとも一方を溶解する前又は溶解中に、前記水溶液のpHを酸性に調整し、酸性のpHを維持することが好ましい。
前記水溶液のpHを調整して維持する方法は、塩酸を滴下する方法が好ましい。塩酸を用いればアカガネイトの生成に有用な塩化物イオン以外の余計な陰イオン(例えば硫酸イオン等)を前記水溶液に投入することを防ぎ、その余計な陰イオンがアカガネイトに吸着することを防止できる。また、水酸化ナトリウムを用いて前記水溶液のpHを調整して維持することも好ましい。
前記水溶液を調製する際に溶解する塩化鉄(III)の量は特に限定されず、例えば0.01〜3モル/Lとすることができる。同様に、前記水溶液を調製する際に溶解する前記1種以上の塩(S)の合計量は特に限定されず、例えば0.01〜3モル/Lとすることができる。
前記水溶液を調製する際に、塩化鉄(III)と前記1種以上の塩(S)を溶解させる順序は特に限定されないが、水溶液のpHを酸性に維持するために、塩化鉄(III)を先に溶解することが望ましい。
第一工程の前記水溶液中において、塩化鉄(III)によって生成されるFe3+と、前記1種以上の塩(S)によって生成されるOHとのモル比は、1:1〜1:3であることが好ましく、1:1.5〜1:2.5であることがより好ましく、1:1.8〜1:2.2であることがさらに好ましい。理論的には、1:2のモル比が最も好ましい。
上記モル比が1:2に近い上記範囲であると、前記水溶液中のFe3+が有する正電荷量と、OHが有する負電荷量とがアカガネイトの生成に適したバランスとなり、塩化鉄(III)に由来するFe3+のほとんど全てを反応で消費して、アカガネイトを容易に高い収率で生成させることができる。
具体的には、例えば、0.1モルの炭酸水素ナトリウムを溶解させた1Lの水溶液中において、炭酸のみかけの(二酸化炭素との平衡の影響を受けた)酸解離定数pKa=6.3を考慮して、溶液pHがpKaよりも1以上低い、pH5.3以下である場合、水溶液中に生成する水酸化物イオン濃度(炭酸分子濃度)は0.09〜0.1モル/L程度と考えられる。これに基づき、塩化鉄(III)の濃度は、0.09〜0.1モル/Lの1/3〜1倍の濃度が好ましく、1/2〜1倍の濃度がより好ましい。
また、例えば、0.1モルの炭酸ナトリウムを溶解させた1Lの水溶液中において、炭酸の酸解離定数pKa=10.3及び上記みかけの酸解離定数pKa=6.3を考慮して、溶液pHが5.3以下において、水溶液中に生成する水酸化物イオン濃度(炭酸分子濃度)は0.18〜0.2モル/L程度と考えられる。これに基づき、塩化鉄(III)の濃度は、0.18〜0.2モル/Lの1/3〜1倍の濃度が好ましく、1/2〜1倍の濃度がより好ましい。
また、例えば、0.1モルの水酸化ナトリウムを溶解させた1Lの水溶液中において、その酸解離定数pKa=13を考慮して、溶液pHが7以下の酸性域において、水溶液中に生成する水酸化物イオン濃度はほぼ0.1モル/Lと考えられる。これに基づき、塩化鉄(III)の濃度は、0.1モル/Lの1/3〜1倍の濃度が好ましく、1/2〜1倍の濃度がより好ましい。
何れの炭酸水素塩、炭酸塩、水酸化物塩を用いる場合にも、当該塩のpKaよりも当該水溶液のpHが1以上低ければ、溶解した塩のモル濃度の0.9〜2倍程度の水酸化物イオンが生成する。よって、塩化鉄(III)は、上記のpH域において、溶解した前記1種以上の塩(S)のモル濃度の約0.3〜2倍(生成する水酸化物イオン濃度の1/3〜1倍)の濃度で溶解することが好ましく、0.45〜1倍(生成する水酸化物イオン濃度の1/2倍)の濃度で溶解することがより好ましい。
また、上記を総合的に考慮して、第一工程の前記水溶液において、塩化鉄(III)と前記1種以上の塩(S)とのモル比は2:1〜1:3であることが好ましい。
上記モル比の範囲であると、前記水溶液中のFe3+とOHの電荷バランスが良好となり、アカガネイトを容易に高い収率で生成させることができる。
[第二工程]
前記第一工程においてアカガネイトを生成し、次いで、第一工程で得た第一反応液のpHを4以上〜pH6以下に調整することにより、アカガネイト同士を凝集させて、アカガネイトを回収する第二工程を行うことが好ましい。
ここで上記反応液のpHを4以上〜pH6以下に調整する方法としては、反応液に前記1種以上の塩(S)を追加して添加する方法が好ましい。前記1種以上の塩(S)を用いることにより、余計な陰イオン(例えば硫酸イオン等)が反応液に混入してアカガネイトに吸着することを防止できる。
第二工程は、凝集を妨げない温度範囲で、例えば10〜40℃で行うことが好ましい。
(反応時間の目安)
第一工程におけるアカガネイトの生成反応の終了は、前記水溶液(第一反応液)が暗褐色から赤褐色に変化したことを目安にして経験的に判断することができる。また、第二工程においてアカガネイト同士が凝集すると、前記第一反応液の粘性が上昇するので、粘性の程度を凝集の程度として判断することができる。
通常、各工程に要する所要時間の目安は以下の通りである。
第一工程の反応開始後、その反応が一段落するまでに要する時間は10〜25℃において例えば3〜5分程度である。次いで、第二工程で塩(S)を添加し、pHを調整してアカガネイトが凝集するまでに要する時間は10〜25℃において例えば5〜10分程度である。
アカガネイトを回収する方法としては、例えば、公知の沈殿法、濾過法等が挙げられる。アカガネイトを予め凝集させておくと、回収が容易になるので好ましい。
回収したアカガネイトは、乾燥して使用時まで保存することができる。
濾過により得た乾燥後のアカガネイトの形態は、通常は粘土状の塊であり、乳鉢等で粉砕して粉末状にすることができる。
本発明のアカガネイトの製造方法によれば、塩化鉄(III)として投入した鉄イオンの全てがアカガネイトになった場合の収率をモル基準で100%であるとした場合、例えば収率90〜99%でアカガネイトを回収して得ることができる。
以上で説明した製造方法によって得たアカガネイト(赤金鉱)(Akaganeite)は、化学組成β−Fe3+(O(OH,Cl))で表される酸化鉄鉱物である。その結晶系は単斜晶系で、空間群I2/m、単位格子:a=10.600,b=3.0339,c=10.513,β=90.24°という結晶学的データが学術論文“Post J E, Buchwald V F, American Mineralogist, 76 (1991) p.272-277, Crystal structure refinement of akaganeite”に記載されている。この論文で明らかにされたアカガネイトの結晶構造には塩化物イオンを保持するトンネル構造が存在し、そのトンネルの壁から中心に向けて水酸基が差し出されていることも記載されている。
図2は、上記トンネル構造を模式的に表した図である。図中、灰色丸は酸素原子を表し、白色丸は水素原子を表し、八面体の中央の丸は鉄原子を表し、トンネル内の黒色丸は、塩化物イオン及び水素イオンが同じ占有率(50:50)で存在することを示す。
以上の製造方法で得たアカガネイトは、水溶液中の陰イオンを吸着する吸着剤としての用途に好適である。以下、陰イオン吸着方法の一例を説明する。
《陰イオン吸着方法》
陰イオン吸着方法の第一実施形態は、無機化合物の陰イオンを含む溶液(以下、処理対象液と呼ぶことがある。)をアカガネイトに接触させることにより、前記陰イオンを前記アカガネイトに吸着させる方法である。
前記無機化合物としては、例えば、セレン、ヒ素、クロム、フッ素、硫黄、リン等の無機元素を含む無機化合物が挙げられる。具体的には、例えば、セレン、ヒ素、クロムのオキソ酸、フッ化水素酸(フッ酸)、硫酸、リン酸等が挙げられる。
前記無機化合物としては、アカガネイトに高い吸着力を示す観点から、オキソ酸が好ましく、前記無機元素を含む、1価又は2価の無機オキソ酸がより好ましい。
ここで、オキソ酸とは、1つの無機原子に水酸基(−OH)及びオキソ基(=O)が結合しており、且つその水酸基のプロトンが脱離し得る無機化合物である。オキソ酸は水中では前記プロトンが脱離したオキソ酸イオンとなり得る。
前記オキソ酸としては、アカガネイトに高い吸着力を示す観点から、セレンのオキソ酸が好ましく、セレンのオキソ酸イオンとしては、セレン酸イオン(SeO 2−)、セレン酸水素イオン(HSeO )、亜セレン酸イオン(SeO 2−)、亜セレン酸水素イオン(HSeO )が挙げられる。
処理対象液に含まれる無機化合物の陰イオンは1種類であってもよいし、2種類以上であってもよい。
処理対象液にアカガネイトを接触させる方法は特に限定されず、例えば、処理対象液にアカガネイトの粉末を投入して撹拌する方法、保持部材に保持されたアカガネイトに処理対象液を掛けて流す方法等が挙げられる。
本実施形態においては、処理対象液をアカガネイトに接触させると、処理対象液に含まれる陰イオンがアカガネイトの上記トンネル構造にトラップされて吸着すると考えられる。この吸着によってトンネル構造に予め存在する塩化物イオンが前記陰イオンに置換されて脱離する(試験例2参照)。
精製水にアカガネイトを添加すると、その精製水のpHは酸性に傾く。したがって、処理対象液にアカガネイトを投入した場合にも、処理対象液のpHが低くなる傾向がある。
処理対象液にアカガネイトを添加し、目的の陰イオンをアカガネイトに吸着させる際の処理中の処理対象液(アカガネイト分散液)のpHは、2以上9以下が好ましく、3以上7以下がより好ましく、4以上6以下がさらに好ましい。
処理中の処理対象液のpHが9以下であると、アカガネイトの分解を防止し、アカガネイトによる目的の陰イオンの吸着力を高めることができる。
処理中の処理対象液のpHが低いほど、アカガネイトの前記トンネル構造の中心を向く水酸基に結合するプロトンが増える。これにより前記トンネル構造内が負電荷を帯びることを抑制し、前記トンネル構造内に目的の陰イオンをより容易に吸着させることができる。したがって、目的の陰イオンの吸着力を高める観点から、処理中の処理対象液のpHは、pH2〜5が好ましく、pH2〜4がより好ましく、pH2〜3がさらに好ましい。
処理中の処理対象液のpHが4以上6以下であると、アカガネイト同士が凝集し易くなり、アカガネイトの回収が容易になる観点から好ましい。
処理対象液のpHを調整する方法は特に限定されず、例えば、塩酸、水酸化ナトリウム、後述する1種以上の塩(S)を添加する方法が挙げられる。
処理対象液とアカガネイトを接触させる際の処理対象液の温度は特に限定されず、例えば、4〜60℃が好ましく、15〜50℃がより好ましく、30〜40℃がさらに好ましい。
上記温度範囲であると、アカガネイトによる目的の陰イオンの吸着力を高めることができる。上記温度範囲の下限値以上であると、処理対象液中における目的の陰イオンの拡散速度が高まり、アカガネイトに接触して吸着する効率がより高められる。上記温度範囲の上限値以下であると、一度吸着した陰イオンがアカガネイトから脱離することをより低減することができる。
処理対象液に含まれる目的の陰イオンの含有量に対して、この処理対象液に接触するアカガネイトの量は特に限定されず、予備実験を行って経験的に目的の陰イオンを充分に吸着できることを確認した量に設定すればよい。
通常、アカガネイトの添加量を多くすれば、吸着可能な陰イオンの量も多くなり、例えば、アカガネイトによる無機オキソ酸イオンの吸着量として0.3〜0.5mol/kgが挙げられる。
処理対象液にアカガネイトの粉末を投入して撹拌する吸着方法を採用した場合には、前記陰イオンを吸着したアカガネイトを処理対象液から回収することができる。
処理対象液からアカガネイトの粉末を回収する方法としては、例えば、沈殿法、濾過法等が挙げられる。沈殿法としては、例えば、処理対象液を静置して沈殿させる方法、処理対象液に硫酸バンド、PAC、高分子ポリマー凝集剤等を添加して凝集させて沈殿させる方法、処理対象液のpHを4〜6に調整してアカガネイト同士を凝集させる方法等が挙げられる。
アカガネイトの粉末をカラムに充填し、このカラムに目的の陰イオンを含む処理対象液を流入させる吸着方法も採用することができる。この場合、アカガネイトが目的の陰イオンを吸着し、目的の陰イオンが除去された処理対象液をカラムから流出させて得ることができる。
以上の陰イオン吸着方法において、例えば以下の陰イオン吸着体を使用することができる。
《陰イオン吸着体》
陰イオン吸着体の第一実施形態は、無機化合物の陰イオンを吸着する吸着剤の主要な成分としてアカガネイトを有する。ここで「主要な成分」とは、吸着剤の各成分間における目的の陰イオンの吸着量を比較した場合、最も吸着量の多い成分ということを意味する。前記吸着体は、前記吸着剤を保持する保持部材をさらに有していてもよい。
吸着剤としてのアカガネイトの形状は、例えば、粉末状、礫状、塊状、板状等の取り扱いが容易な形状を採用できる。化学的に合成して得られた粉末状のアカガネイトはそのまま吸着剤として使用してもよいし、この粉末を結着させてより大きな形状に成形してもよい。粉末状のアカガネイトを結着する方法としては、例えば、炭素粒子を高分子ポリマーによって結着して多孔質体(例えば、電極、消臭剤)を形成する場合に使用される公知の方法を採用することができる。また、押し固めたり、焼結したりして得た塊をそのまま使用してもよいし、その塊を適当な大きさに砕いたり切断したりして成形してもよい。これらの形状のアカガネイトを水などの溶媒に分散させたアカガネイト懸濁液を吸着剤とすることもできる。
前記保持部材としては、内部にアカガネイトを入れて保持する容器、カラム(筒)、笊、網等が挙げられる。また、表面にアカガネイトを固定することが可能な保持部材も採用でき、例えば、板材の表面にアカガネイトを固定した形態が挙げられる。
[実施例1]
(アカガネイトの合成)
0.2mol/Lの塩化鉄(III)水溶液1Lに、0.4mol/Lの水酸化ナトリウム1Lを添加して、5分間穏やかに撹拌しながら、約pH2の水溶液(Fe3+:OH=約1:2)中でアカガネイトを生成した。次いで、生成したアカガネイトが含まれた懸濁液に、水酸化ナトリウムをさらに添加し、pH4〜5に調整し、5分間穏やかに撹拌しながら、アカガネイト同士を凝集させた。凝集したアカガネイトを濾過で回収し、乾燥した粘土状のアカガネイトの塊を得た。この塊を乳鉢で砕いて粉体としたアカガネイトを以下の実験に用いた。
塩化鉄(III)として投入した鉄イオンの全てがアカガネイトになった場合の収率をモル基準で100%であるとした場合、収率95%でアカガネイトを回収して得た。
合成したアカガネイトをXRDで分析したところ、アカガネイトを示すピークが確認された。
[試験例1]
セレンを10mg/L含むセレン酸ナトリウム水溶液(pH9)を調製した。上記合成で得たアカガネイトを用いて、以下の実験手順を行った。
(1)セレン酸イオンを含む上記水溶液に、上記で合成したアカガネイトを、0.015、0.025、0.05、0.1、0.2、0.5、1.0(単位:w/w%)の各濃度で添加した。pH6に調整した上記水溶液を20℃で1時間撹拌した後に、アカガネイトを沈殿させ、上澄み液を回収し、セレン酸イオン濃度をJIS K0102:2013年の「67.セレンの水素化合物発生ICP発光分光分析法」によって測定した。
(2)セレン酸イオンを含む上記水溶液に、グリーンラストを、0.15w/w%〜1.0w/w%の重量比となるように添加した。pH6となった上記水溶液を20℃で1時間撹拌した後に、グリーンラストを沈殿させ、上澄み液を回収し、セレン酸イオン濃度を上記方法で測定した。
(3)セレン酸イオンを含む上記水溶液に、シュベルトマナイトを、0.015、0.025、0.05、0.1、0.2、0.5、1.0(単位:w/w%)の各濃度で添加した。pH6に調整した上記水溶液を20℃で1時間撹拌した後に、シュベルトマナイトを沈殿させ、上澄み液を回収し、セレン酸イオン濃度を上記方法で測定した。
上記実験によって、アカガネイト、グリーンラスト、シュベルトマナイトの各酸化鉄鉱物におけるセレン酸イオンに対する吸着等温線を得た(図1)。
図1に示す結果から、溶存セレン酸イオンの平衡濃度が環境基準(0.01 mg/L)以下になる酸化鉄鉱物は、アカガネイトだけであり、その吸着量が最も高いことが明らかである。
[試験例2]
硫酸を約1200mg/L(約12.5mmol/L)で含む水溶液(pH10)に、上記で合成したアカガネイトを、0.1、0.5、1.0、2.0、3.0(単位:w/w%)の各濃度で添加した。pHを6に調整した上記水溶液を20℃で1時間撹拌した後に、アカガネイトを沈殿させ、上澄み液を回収し、硫酸イオンと、塩化物イオンの濃度をそれぞれイオンクロマトグラフ法によって測定した。
その結果、図3のグラフに示すように、アカガネイトの添加量に比例して、水溶液中の塩化物イオン濃度が増加し、それに伴って硫酸イオン濃度が低下した。増加した塩化物イオン濃度は、低下した硫酸イオン濃度の約2倍であった。この結果は、アカガネイトから脱離した塩化物イオンの電荷量と、アカガネイトに吸着した硫酸イオンの電荷量とがほぼ同じであることを意味する。
以上の結果から、アカガネイトを構成する塩化物イオンは、別の陰イオンを吸着する際に置換されると考えられる。
[試験例3]
(アカガネイト(酸化鉄鉱物)を合成する際のpHと、吸着能力との関係)
アカガネイト(酸化鉄鉱物)を合成する際の反応液のpHを2〜10で1刻みずつ変更した後一昼夜静置し、酸化鉄鉱物を含む懸濁液を得た。
上記の合成で得た酸化鉄鉱物をXRDで分析した結果、pH2,pH3で合成した酸化鉄鉱物はアカガネイトであることを示すピークが確認された。一方、pH4以上で合成した酸化鉄鉱物は明確なピークを示さず、非結晶性の酸化鉄鉱物であった。
何れのpHで合成した場合においても、アカガネイト又はその他の酸化鉄鉱物の収率は90%以上であった。
処理対象水として別途調製した、セレンの初期濃度0.90mg/Lのセレン酸ナトリウム水溶液(pH9)に、上記で合成した各酸化鉄鉱物の懸濁液を乾物量換算で0.1w/w%で添加し、5分間穏やかに撹拌した。撹拌後、酸化鉄鉱物を除いた上澄み液のSe濃度を上記と同様に測定した。合成時のpHを変更した各酸化鉄鉱物について、サンプル数=2(N=2)で試験した。その結果を図4に示す。
図4において、「○」のプロットは上記のpH2〜3で合成したアカガネイトを吸着剤として使用したことを示し、「◇」のプロットは上記のpH4〜10で合成したその他の酸化鉄鉱物を吸着剤として使用したことを示す。
図4の結果から、合成時のpHが低いほど、セレン(セレン酸イオン)の吸着力が高いことが理解される。つまり、pH2〜3で合成されたアカガネイトは優れた陰イオン吸着力を示すことが明らかである。
以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、公知の構成の付加、省略、置換、およびその他の変更が可能である。
本発明は、セレン、ヒ素、クロム等の重金属類が含まれる汚染水を浄化する用途に広く適用できる。

Claims (4)

  1. 塩化鉄(III)と、アルカリ金属の炭酸水素塩、炭酸塩及び水酸化物塩、並びに、アルカリ土類金属の炭酸水素塩、炭酸塩及び水酸化物塩から選ばれる1種以上の塩(S)と、を水に溶解させ、得られた水溶液中でアカガネイトを生成し、そのアカガネイトを含む第一反応液を得る第一工程、を有することを特徴とするアカガネイトの製造方法。
  2. 前記第一工程は、前記水溶液のpHを7未満とすることにより、アカガネイトを生成することを特徴とする請求項1に記載のアカガネイトの製造方法。
  3. 前記第一工程は、塩化鉄(III)によって生成されるFe3+と、前記1種以上の塩(S)によって生成されるOHとのモル比が、1:1〜1:3となる工程であることを特徴とする請求項1又は2に記載のアカガネイトの製造方法。
  4. 前記第一工程は、前記水溶液のpHを4未満とすることにより、アカガネイトを生成する工程であり、
    次いで、前記第一反応液のpHをpH4以上〜pH6以下に調整することにより、アカガネイトを凝集させて、アカガネイトを回収する第二工程を有することを特徴とする請求項1〜3の何れか一項に記載のアカガネイトの製造方法。
JP2016151915A 2016-08-02 2016-08-02 アカガネイトの製造方法 Pending JP2018020920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151915A JP2018020920A (ja) 2016-08-02 2016-08-02 アカガネイトの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151915A JP2018020920A (ja) 2016-08-02 2016-08-02 アカガネイトの製造方法

Publications (1)

Publication Number Publication Date
JP2018020920A true JP2018020920A (ja) 2018-02-08

Family

ID=61165181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151915A Pending JP2018020920A (ja) 2016-08-02 2016-08-02 アカガネイトの製造方法

Country Status (1)

Country Link
JP (1) JP2018020920A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174532A (ja) * 1983-03-19 1984-10-03 Mitsui Mining & Smelting Co Ltd 含水酸化鉄の製造方法
JPH08319119A (ja) * 1995-05-19 1996-12-03 Chemi Light Kogyo Kk 微粒子粉末の高純度酸化鉄の製造方法
WO2006088083A1 (ja) * 2005-02-16 2006-08-24 Japan Science And Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
JP2009045523A (ja) * 2007-08-16 2009-03-05 National Institute Of Advanced Industrial & Technology 臭素酸イオン用吸着剤
JP2011235222A (ja) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk 次亜リン酸系イオン吸着材、次亜リン酸系イオン処理方法および次亜リン酸系イオン処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174532A (ja) * 1983-03-19 1984-10-03 Mitsui Mining & Smelting Co Ltd 含水酸化鉄の製造方法
JPH08319119A (ja) * 1995-05-19 1996-12-03 Chemi Light Kogyo Kk 微粒子粉末の高純度酸化鉄の製造方法
WO2006088083A1 (ja) * 2005-02-16 2006-08-24 Japan Science And Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
JP2009045523A (ja) * 2007-08-16 2009-03-05 National Institute Of Advanced Industrial & Technology 臭素酸イオン用吸着剤
JP2011235222A (ja) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk 次亜リン酸系イオン吸着材、次亜リン酸系イオン処理方法および次亜リン酸系イオン処理装置

Similar Documents

Publication Publication Date Title
Shen et al. Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions
Li et al. Fulvic acid anchored layered double hydroxides: A multifunctional composite adsorbent for the removal of anionic dye and toxic metal
Das et al. Adsorption of phosphate by layered double hydroxides in aqueous solutions
Xue et al. Adsorption characterization of Cu (II) from aqueous solution onto basic oxygen furnace slag
Schütz et al. Cadmium adsorption on manganese modified bentonite and bentonite–quartz sand blend
Mandal et al. Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: Equilibrium and regeneration studies
Oladoja et al. Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater
CN103861567A (zh) 羟基磷灰石/蔗渣活性炭的制备方法
JPWO2009072488A1 (ja) 陰イオン交換性層状複水酸化物の製造方法
Zhang et al. High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles
JP6448820B2 (ja) 吸着材粒子
JP6644805B2 (ja) 陰イオン吸着方法
JP2019136703A (ja) 微細なハイドロタルサイトを含有する吸着剤の製造方法
JP2014115135A (ja) 放射性Cs吸着剤及びその製造方法
JP6644804B2 (ja) 吸着材粒子及び造粒吸着材
WO2017061117A1 (ja) 吸着材分散液及び吸着方法
JP6855187B2 (ja) 陰イオン吸着方法
JP2018020920A (ja) アカガネイトの製造方法
JP2018015703A (ja) 陰イオン吸着方法及び陰イオン吸着体
JP6853629B2 (ja) 無機オキソ酸イオンの吸着方法
JP6796823B2 (ja) 水処理方法
JP6738534B2 (ja) アカガネイトの製造方法、及び陰イオン吸着方法
JP6551171B2 (ja) 安定化されたシュベルトマナイトの製造方法
JP2019076863A (ja) 陰イオン処理方法、及びアカガネイト再生方法
JP2015108606A (ja) 放射性Cs汚染水の処理方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215