JP2017516914A - 光波分離格子および光波分離格子を形成する方法 - Google Patents

光波分離格子および光波分離格子を形成する方法 Download PDF

Info

Publication number
JP2017516914A
JP2017516914A JP2016561631A JP2016561631A JP2017516914A JP 2017516914 A JP2017516914 A JP 2017516914A JP 2016561631 A JP2016561631 A JP 2016561631A JP 2016561631 A JP2016561631 A JP 2016561631A JP 2017516914 A JP2017516914 A JP 2017516914A
Authority
JP
Japan
Prior art keywords
layer
vapor deposition
substrate
physical vapor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016561631A
Other languages
English (en)
Other versions
JP2017516914A5 (ja
Inventor
ダニエル リー ディール
ダニエル リー ディール
ヨン ツァオ
ヨン ツァオ
ミンウェイ ヂュー
ミンウェイ ヂュー
タイ−チョウ パポ チェン
タイ−チョウ パポ チェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2017516914A publication Critical patent/JP2017516914A/ja
Publication of JP2017516914A5 publication Critical patent/JP2017516914A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

光波分離格子および形成方法が本明細書に提供される。いくつかの実施形態では、光波分離格子は、式ROXNYを有する第1の層であって、第1の屈折率を有する第1の層と、第1の層とは異なり、第1の層の上に配置され、式R’OXNYを有する第2の層であって、第2の層が第1の屈折率とは異なる第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つである、第2の層とを含む。いくつかの実施形態では、光波分離格子を形成する方法は、所定の所望の屈折率を有する第1の層を物理的気相堆積プロセスによって基板の上に堆積させるステップと、第1の層とは異なる第2の層を第1の層の上に堆積させるステップであって、第2の層が第1の屈折率とは異なる所定の第2の屈折率を有するステップとを含む。【選択図】図1

Description

本開示の実施形態は、一般に、光波分離格子および光波分離格子を形成する方法に関する。
CMOSイメージセンサ内で使用されるカラーフィルタは、典型的には、レジスト型材料から作られており、赤色、緑色、青色、および白色を分解することが可能である。RGBピクセルが、Bayerパターンなどのパターンで配置される。フィルタを通過する光の強度は、画像の有限領域(ピクセル)内で光の本当の色に近似することができ、これによってカラー画像を電子的に作成することができる。レジスト材料は、光の色を正確に分解するために、特定の厚さを必要とする。ピクセルがXY方向に縮小するにつれて、カラーフィルタを含むフォトダイオードの上の構造では、クロストークを最小にし、量子効率を改善するために、Z方向の厚さを縮小させる必要がある。しかし、カラーフィルタのレジストは、厚さのスケーラビリティの限界に到達している。したがって、カラーフィルタを作製する新しい方法が求められている。
したがって、本発明者らは、改善された光波分離格子および光波分離格子を形成する方法を開発した。
光波分離格子および光波分離格子を形成する方法が本明細書に提供される。いくつかの実施形態では、光波分離格子は、式ROXYを有する第1の層であって、第1の屈折率を有する第1の層と、第1の層とは異なり、第1の層の上に配置され、式R’OXYを有する第2の層であって、第2の層が第1の屈折率とは異なる第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つである、第2の層とを含む。
いくつかの実施形態では、物理的気相堆積(PVD)チャンバ内に配置された基板の上に光波分離格子を形成する方法は、(a)式ROXYを有する第1の層を物理的気相堆積プロセスによって基板の上に堆積させるステップであって、第1の層が所定の第1の屈折率を有するステップと、(b)第1の層とは異なり、式R’OXYを有する第2の層を物理的気相堆積プロセスによって第1の層の上に堆積させるステップであって、第2の層が第1の屈折率とは異なる所定の第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つであるステップとを含む。
いくつかの実施形態では、カラーフィルタを形成する方法は、(a)所定の第1の屈折率を有する第1の層を物理的気相堆積プロセスによって基板の上に堆積させるステップであって、第1の層が式ROXYを有するステップと、(b)式R’OXYを有する第2の層を第1の層の上に堆積させるステップであって、第2の層が第1の屈折率とは異なる所定の第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つであるステップと、(c)(a)−(b)を繰り返して、複数の交互の第1および第2の層を有するスタックを形成するステップと、(d)スタックを横切って第1の層または第2の層の1つを複数の変動する厚さにエッチングするステップであって、各厚さが異なる波長の光をフィルタリングするステップと、(e)(a)−(b)を繰り返して、光波分離格子を所望の厚さに形成するステップとを含む。
本開示の他のさらなる実施形態は、以下に記載する。
上記で簡単に要約し、以下でより詳細に論じる本開示の実施形態は、添付の図面に示す本開示の例示的な実施形態を参照することによって理解することができる。しかし、本開示は他の等しく有効な実施形態も許容しうるため、添付の図面は本開示の典型的な実施形態のみを示しており、したがって範囲を限定すると見なされるべきではない。
本開示のいくつかの実施形態による光波分離格子を形成する方法の流れ図である。 本開示のいくつかの実施形態による光波分離格子の製造段階を示す図である。 本開示のいくつかの実施形態による光波分離格子の製造段階を示す図である。 本開示のいくつかの実施形態による光波分離格子の製造段階を示す図である。 本開示のいくつかの実施形態による光波分離格子の製造段階を示す図である。 本開示のいくつかの実施形態による光波分離格子の製造段階を示す図である。 本開示のいくつかの実施形態による本開示の部分を実行するのに適したクラスタツールを示す図である。 本開示のいくつかの実施形態による物理的気相堆積(PVD)チャンバの概略横断面図である。 本開示のいくつかの実施形態による例示的なCMOSイメージセンサの上に形成された例示的なカラーフィルタを示す図である。
理解を容易にするために、可能な場合、同一の参照番号を使用して、図に共通の同一の要素を指す。これらの図は、原寸に比例して描かれておらず、見やすいように簡略化されていることがある。一実施形態の要素および特徴は、さらなる記載がなくても他の実施形態内に有益に組み込むことができる。
改善された光波分離格子および光波分離格子を形成する方法が本明細書に開示される。いくつかの実施形態では、ここで形成される光波分離格子は、相補型金属酸化膜半導体(CMOS)イメージセンサ上で使用することができるなど、たとえばカラーフィルタを含む異なるデバイス構造上で使用することができる。いくつかの実施形態では、本明細書に記載する光波分離格子は、有利には、格子を形成するために必要とされるステップの数を低減させる方法を使用して形成することができ、その結果、改善された製品スループットが得られる。いくつかの実施形態では、光波分離格子を形成する本発明の方法は、有利には、プロセスステップの数が低減されるため、プロセススループットを増大させながら光波分離格子の製造を容易にすることができる。いくつかの実施形態では、本発明の方法は、有利には、汚染の問題を低減させることができ、格子特性、たとえば屈折率値のより精密な調節を可能にすることができる。本明細書に開示する方法および構造を介して、他の利益を実現することもできる。
図1は、本開示のいくつかの実施形態による光波分離格子を形成する方法100を示す。この方法について、図2A〜Eに示す光波分離格子の製造段階に応じて以下に説明する。
いくつかの実施形態では、方法100は、物理的気相堆積(PVD)チャンバ、たとえば図4に記載のPVDチャンバ内で実行することができる。図4は、本開示のいくつかの実施形態による物理的気相堆積チャンバ(プロセスチャンバ400)の概略横断面図を示す。本明細書に記載する方法100を実行するのに適したPVDチャンバの例には、ALPS(登録商標)PlusおよびSIP ENCORE(登録商標)PVDならびにImpulse(商標)PVD処理チャンバが含まれる。これらはすべて、カリフォルニア州サンタクララのApplied Materials,Inc.から市販されている。本明細書に開示する本発明の方法を実行するために使用することができる例示的な処理システムは、ENDURA(登録商標)処理システムラインを含むことができる。こちらもカリフォルニア州サンタクララのApplied Materials,Inc.から市販されている。他の製造者からのものを含む他のプロセスチャンバも、本明細書に提供する教示に関連して適切に使用することができる。
方法100は102から始まり、102で、図2Aに示すように、所定の所望の屈折率を有する第1の層202が、物理的気相堆積プロセスによって基板200の上に堆積される。次に、104で、図2Bに示すように、第2の層204が第1の層202の上に堆積される。第2の層204は、第1の屈折率とは異なる所定の第2の屈折率を有する。
基板200は、シリコン基板、第III−V化合物基板、シリコンゲルマニウム(SiGe)基板、エピ基板、シリコンオンインシュレータ(SOI)基板、液晶ディスプレイ(LCD)、プラズマディスプレイ、エレクトロルミネセンス(EL)ランプディスプレイなどのディスプレイ基板、発光ダイオード(LED)基板、太陽電池アレイ、ソーラーパネルなど、任意の適した基板とすることができる。いくつかの実施形態では、基板200は、ドープされたまたはドープされていない多結晶シリコンウエハ、ドープされたまたはドープされていないシリコンウエハ、パターン化されたまたはパターン化されていないウエハなど、半導体ウエハ(たとえば、200mm、300mmなどのシリコンウエハ)とすることができる。
いくつかの実施形態では、基板200は、部分的に形成された画像ピクセルとすることができ、画像ピクセルは、たとえば、シリコン基板の上に形成されたフォトダイオードと、フォトダイオードの上に形成され、信号をCMOSトランジスタへ経路指定するために使用される相互接続層と、フォトダイオードの上に形成され、トランジスタを汚染から絶縁するために使用される絶縁層などの追加の層とを有する。
いくつかの実施形態では、第1の層202は、式ROXYを有することができ、ここでxおよびyは、0%〜100%の濃度で変動することができる。いくつかの実施形態では、第2の層204は、式R’OXYを有することができ、ここでxおよびyは、0%〜100%の濃度で変動することができる。いくつかの実施形態では、RおよびR’は、金属または誘電体材料、たとえばシリコン(Si)、チタン(Ti)、アルミニウム(Al)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、または銅(Cu)とすることができる。いくつかの実施形態では、第1の層202は、炭素および/または水素を含むことができ、その結果、式ROXYCZ:HWが得られ、ここでw、x、y、およびzは、0%〜100%の濃度で変動することができる。同様に、いくつかの実施形態では、第2の層204は、炭素および/または水素を含むことができ、その結果、式R’OXYCZ:HWが得られ、ここでw、x、y、およびzは、0%〜100%の濃度で変動することができる。第1の層202および第2の層204は、たとえば異なる割合の材料を含有することによって異なり、その結果、異なる屈折率が得られる。いくつかの実施形態では、RおよびR’は同じ材料である。たとえば、いくつかの実施形態では、第1の層202は、SiOXY、AlOX、AlN、NiOX、TiOXの1つとすることができ、第2の層204は、SiOXY、AlOX、AlN、NiOX、TiOXの別の1つとすることができる。いくつかの実施形態では、第1の層202および第2の層204はそれぞれ、約10nm〜約120nmの厚さを有することができる。
いくつかの実施形態では、第1の層202および第2の層204は、図4に関して後述するプロセスチャンバ400などの適したプロセスチャンバ内に、物理的気相堆積プロセスによって堆積される。プロセスチャンバ400は、プロセスチャンバ内に配置されたターゲット(たとえば、ターゲット406)を有することができ、ターゲットは、基板200の上に堆積させるべきソース材料を含む。たとえば、いくつかの実施形態では、ターゲット406は、金属または誘電体材料、たとえばシリコン(Si)、チタン(Ti)、アルミニウム(Al)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、または銅(Cu)を含むことができる。
いくつかの実施形態では、第1の層202を堆積させるステップは、ターゲット406からの材料と反応するプロセスガスをプロセスチャンバに提供するステップを含むことができる。いくつかの実施形態では、第2の層204を堆積させるステップもまた、ターゲット406からの材料と反応するプロセスガスをプロセスチャンバに提供するステップを含むことができる。いくつかの実施形態では、プロセスガスは、酸素含有ガス、窒素含有ガス、炭素含有ガス、または水素含有ガスの1つまたは複数を含むことができる。たとえば、いくつかの実施形態では、プロセスガスは、O2、O3、N2、NH3、H2、CO、CO2、もしくはCH4の1つもしくは複数、またはこれらの組合せを含むことができる。この反応により、ターゲットは、ターゲット表面上にターゲット材料および反応性ガスの薄い化合物層を形成し、次いでこの層はターゲット表面からスパッタリングされて、基板200の方へ向けられる。
いくつかの実施形態では、プロセスガスはまた、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、ネオン(Ne)、キセノン(Xe)などの不活性ガスを含むことができる。プロセスガスは、ターゲットから材料をスパッタリングするのに適した任意の流量で提供することができる。たとえば、プロセスガスは、約1sccm〜約500sccmの流量で提供することができる。いくつかの実施形態では、ターゲットからの材料のスパッタリングを容易にするために、プロセスガスからプラズマを形成することができる。そのような実施形態では、DCもしくはパルスDCまたはRF電力の少なくとも1つなど、任意の適した量の電力をターゲットに印加して、プロセスガスに点火し、プラズマを維持することができる。たとえば、プロセスガスに点火してプラズマを維持するには、約50ワット〜約50,000ワットのDCまたはRF電力をターゲットに印加することができる。
いくつかの実施形態では、光波分離格子を製造するのに必要とされるプロセスステップの数を低減させ、汚染の問題を低減させ、格子特性のより精密な調節、たとえば屈折率の制御を可能にすることによって、プロセススループットの増大を容易にするために、ENDURA(登録商標)処理システムラインなど、複数のPVDプロセスチャンバをクラスタツールに結合することができる。たとえば、いくつかの実施形態では、第1の層202および第2の層204は、同じターゲット材料および異なるプロセスガス組成物を利用して、単一のPVDチャンバ内で堆積させることができる。たとえば、第1の層202は、シリコンターゲットと、酸素およびアルゴンを含むプロセスガスとを利用することができ、その結果、酸化ケイ素の第1の層が得られ、第2の層204は、シリコンターゲットと、窒素およびアルゴンを含むプロセスガスとを利用することができ、その結果、窒化ケイ素の第2の層が得られる。
いくつかの実施形態では、第1の層202および第2の層204は、異なるPVDチャンバ内で、同じ材料のターゲットおよび異なるプロセスガス組成物を利用して堆積させることができ(たとえば、第1のPVDチャンバは、シリコンターゲットと、酸素およびアルゴンを含むプロセスガスとを使用し、第2のPVDチャンバは、シリコンターゲットと、窒素およびアルゴンを含むプロセスガスとを使用する)、または異なるターゲット材料および異なるプロセスガス組成物を利用して堆積させることができ(たとえば、第1のPVDチャンバは、シリコンターゲットと、酸素およびアルゴンを含むプロセスガスとを使用し、第2のPVDチャンバは、チタンターゲットと、窒素およびアルゴンを含むプロセスガスとを使用する)、または異なるターゲット材料および同じプロセスガス条件を利用して堆積させることができる(たとえば、第1のPVDチャンバは、シリコンターゲットと、酸素およびアルゴンを含むプロセスガスとを使用し、第2のPVDチャンバは、チタンターゲットと、酸素およびアルゴンを含むプロセスガスとを使用する)。
いくつかの実施形態では、第1の層202は、所定の所望の第1の屈折率を有することができ、第2の層204は、第1の屈折率とは異なる所定の所望の第2の屈折率を有することができる。第1の屈折率および第2の屈折率は、堆積プロセスパラメータに基づくことができる。たとえば、いくつかの実施形態では、第1の層および第2の層の屈折率は、プロセスガスの組成物、チャンバ圧力、およびチャンバ温度などのプロセスパラメータを制御することによって、所望の値に調節することができる。たとえば、いくつかの実施形態では、プロセスチャンバは、約0.5ミリトル〜約300ミリトルの圧力で維持することができる。加えて、いくつかの実施形態では、プロセスチャンバは、約摂氏−20度〜約摂氏500度の温度で維持することができる。
いくつかの実施形態では、ステップ102および104を繰り返して、図2Cに示すように、交互の第1および第2の層のスタックを形成することができる。いくつかの実施形態では、第1の層202または第2の層204の1つは、スタックの部分を横切って複数の変動する厚さにエッチングされ、各厚さが異なる波長の光を識別する。層のスタック内に存在する厚さが多ければ多いほど、分解することができる波長もより多くなり、撮影されている対象の分光性質に関してより多くの情報を得ることができる。たとえば、いくつかの実施形態では、図2Dおよび図2Eに示すように、第1の層202または第2の層204の1つは、スタックの第1の部分で第1の厚さに、スタックの第2の部分で第2の厚さに、スタックの第3の部分で第3の厚さにエッチングされ、第1の厚さは第2の厚さより小さく、第2の厚さは第3の厚さより小さい。エッチング後、ステップ102および104を繰り返して、光波分離格子を所望の厚さに形成することができる。いくつかの実施形態では、エッチング後に堆積される追加の層のステップカバレッジは、チャンバ圧力および基板バイアスなどの堆積パラメータを調整することによって制御することができる。
本明細書に記載する方法は、独立型の構成で実行することができ、または図3に関して後述するクラスタツール、たとえば一体型ツール(すなわち、クラスタツール300)の一部として提供することができる個々のプロセスチャンバ内で実行することができる。クラスタツール300は、少なくとも1つの物理的気相堆積(PVD)チャンバ(後述するような、プロセスチャンバ400)を特徴として有する。一体型のクラスタツール300の例には、カリフォルニア州サンタクララのApplied Materials,Inc.から入手可能なENDURA(登録商標)一体型ツールが含まれる。本明細書に記載する方法は、適したプロセスチャンバが結合された、または他の適したプロセスチャンバ内に位置する、他のクラスタツールを使用して実行することができる。たとえば、いくつかの実施形態では、上記で論じた本発明の方法は、有利には、処理ステップ間の真空破壊が制限されまたはゼロになるように、一体型ツール内で実行することができる。たとえば、真空破壊が低減されることで、層または基板の他の部分間の汚染を制限または防止することができる。
クラスタツール300は、クラスタツール300との間で基板を移送する1つまたは複数のロードロックチャンバ306A、306Bを含むことができる。典型的には、クラスタツール300は真空下にあるため、ロードロックチャンバ306A、306Bは、クラスタツール300内へ導入される基板を「ポンプダウン」することができる。第1のロボット310が、ロードロックチャンバ306A、306Bと、第1の組の1つまたは複数の基板処理チャンバ312、314、316、318(4つを示す)との間で、基板を移送することができる。各基板処理チャンバ312、314、316、318は、原子層堆積(ALD)、化学気相堆積(CVD)、前洗浄、熱プロセス/ガス抜き、配向、および他の基板プロセスに加えて、本明細書に記載する物理的気相堆積プロセスを含むいくつかの基板処理動作を実行するように装備することができる。
第1のロボット310はまた、1つまたは複数の中間移送チャンバ322、324との間で基板を移送することができる。中間移送チャンバ322、324は、超高真空条件を維持しながらクラスタツール300内で基板を移送することを可能にするために使用することができる。第2のロボット330が、中間移送チャンバ322、324と、第2の組の1つまたは複数の基板処理チャンバ332、334、336、338との間で、基板を移送することができる。基板処理チャンバ312、314、316、318と同様に、基板処理チャンバ332、334、336、338は、たとえば原子層堆積(ALD)、化学気相堆積(CVD)、前洗浄、熱プロセス/ガス抜き、および配向に加えて、本明細書に記載する物理的気相堆積プロセスを含む様々な基板処理動作を実行するように装備することができる。基板処理チャンバ312、314、316、318、332、334、336、338はいずれも、クラスタツール300によって特定のプロセスを実行するために必要でない場合はクラスタツール300から取り除くことができる。
図4は、本開示のいくつかの実施形態による前述の方法の少なくとも一部分を実行するのに適した物理的気相堆積(PVD)プロセスチャンバ(プロセスチャンバ400)の概略横断面図を示す。プロセスチャンバ400は、基板404を受け取るための基板支持体402と、ターゲット406などのスパッタリング源とを収容する。基板支持体402は、チャンバ壁(図示の通り)とすることができる接地された筐体(たとえば、チャンバ壁408)、または接地されたシールド(ターゲット406より上でプロセスチャンバ400の少なくともいくつかの部分を覆う接地シールド440を示す。いくつかの実施形態では、接地シールド440は、基板支持体402も同様に密閉するようにターゲットより下へ延ばすこともできる。)内に配置することができる。
いくつかの実施形態では、プロセスチャンバは、RFおよび/またはDCエネルギーをターゲット406に結合する供給構造を含む。供給構造の第1の端部は、RF電源418および/またはDCもしくはパルスDC電源420に結合することができ、RF電源418および/またはDCもしくはパルスDC電源420は、RFおよび/またはDCもしくはパルスDCエネルギーをターゲット406に提供するためにそれぞれ利用することができる。いくつかの実施形態では、複数の適した周波数でRFエネルギーを提供するために、複数(すなわち、2つ以上)のRF電源を提供することができる。
いくつかの実施形態では、ターゲット406からシリコンなどの誘電体材料をスパッタリングするとき、表面は電荷を蓄積し、これはアーク発生およびアーク発生源からの粒子の排出または終了につながる。パルスDCエネルギーの使用は、スパッタリングのための負から一掃または電荷スクラビングのための正へのターゲットの高速のスイッチングを可能にする(誘電体表面上のすべての電荷を中性化する)。ターゲット406は、DCスパッタリング中はプラズマ回路のカソードとして働き、電荷スクラビング中はアノードとして働く。
供給構造の第2の端部は、ソース分散板422に結合することができる。ソース分散板は、ソース分散板422を通って配置された孔424を含み、孔424は、供給構造の中心開口と位置合わせされる。ソース分散板422は、供給構造からのRFおよびDCエネルギーを伝えるのに適した導電性材料から製造することができる。
ソース分散板422は、導電性部材425を介してターゲット406に結合することができる。導電性部材425は、ソース分散板422の周辺エッジ近傍でソース分散板422のターゲット側表面428に結合された第1の端部426を有する管状部材とすることができる。導電性部材425は、ターゲット406の周辺エッジ近傍でターゲット406のソース分散板側表面432(またはターゲット406のバッキング板446)に結合された第2の端部430をさらに含む。
導電性部材425の内向きの壁、ソース分散板422のターゲット側表面428、およびターゲット406のソース分散板側表面432によって、空胴434を画定することができる。空胴434は、ソース分散板422の孔424を介して本体の中心開口415に結合される。空胴434および本体の中心開口415を利用して、回転可能なマグネトロンアセンブリ436の1つまたは複数の部分を少なくとも部分的に収納することができる。いくつかの実施形態では、空胴は、水(H2O)などの冷却流体で少なくとも部分的に充填することができる。
プロセスチャンバ400のリッドの外面を覆うために、接地シールド440を設けることができる。接地シールド440は、たとえばチャンバ本体の接地接続を介して、接地に結合することができる。接地シールド440は、供給構造が接地シールド440を通過してソース分散板422に結合されることを可能にするために、中心開口を有する。接地シールド440は、アルミニウム、銅などの任意の適した導電性材料を含むことができる。接地シールド440と、ソース分散板422、導電性部材425、およびターゲット406(および/またはバッキング板446)の外面との間には、RFおよびDCエネルギーが接地へ直接経路指定されるのを防止するために、絶縁間隙439が設けられる。絶縁間隙は、空気またはセラミック、プラスチックなどの何らかの他の適した誘電体材料で充填することができる。
ソース分散板422と接地シールド440との間には、RFおよびDCエネルギーが接地へ直接経路指定されるのを防止するために、絶縁板438を配置することができる。絶縁板438は、供給構造が絶縁板438を通過してソース分散板422に結合されることを可能にするために、中心開口を有する。絶縁板438は、セラミック、プラスチックなどの適した誘電体材料を含むことができる。別法として、絶縁板438の代わりに空隙を設けることができる。絶縁板の代わりに空隙が設けられる実施形態では、接地シールド440は、接地シールド440上に載置されるあらゆる構成要素を支持するのに十分なほど構造上堅固なものとすることができる。
ターゲット406は、誘電体アイソレータ444によって接地された導電性アルミニウムアダプタ442上に支持することができる。ターゲット406は、金属または金属酸化物など、スパッタリング中に基板404上に堆積させるべき材料を含む。いくつかの実施形態では、バッキング板446は、ターゲット406のソース分散板側表面432に結合することができる。バッキング板446は、バッキング板446を介してRFおよびDC電力をターゲット406に結合することができるように、銅−亜鉛、銅−クロム、銅−モリブデン、またはターゲットと同じ材料などの導電性材料を含むことができる。別法として、バッキング板446は、非導電性とすることができ、ターゲット406のソース分散板側表面432を導電性部材425の第2の端部430に結合するために、電気フィードスルーなどの導電性要素(図示せず)を含むことができる。バッキング板446は、たとえば、ターゲット406の構造上の安定性を改善するために含むことができる。
基板支持体402は、ターゲット406の主面の方を向いている材料受け取り表面を有し、ターゲット406の主面に対向する定位置でスパッタ被覆されるように基板404を支持する。基板支持体402は、ターゲット406の主面に対向するほぼ平面の位置で基板を支持する。基板支持体402は、本明細書に開示する処理に起因するいかなる湾曲または変形した位置でも基板を確実に支持するように構成される。化学気相堆積(CVD)、熱処理などのために構成されたプロセスチャンバなど、異なるプロセスチャンバの構成では、処理中に基板を加熱および/または冷却するために、類似のまたは異なる構成の熱制御システムを使用することができる。
いくつかの実施形態では、基板支持体402は、プロセスチャンバ400を処理する下部部分内のロードロックバルブ(図示せず)を通って基板404を基板支持体402上へ移送し、その後、堆積または処理位置へ持ち上げることを可能にするように、チャンバ壁408に接続されたベローズ450を通って垂直方向に可動とすることができる。ガス源454から質量流量コントローラ456を通ってプロセスチャンバ400の下部部分内へ、1つまたは複数の処理ガスを供給することができる。プロセスチャンバ400の内部を排気し、プロセスチャンバ400内で所望の圧力を維持することを容易にするために、排気口458を設けて、バルブ460を介してポンプ(図示せず)に結合することができる。
基板404上に負のDCバイアスを誘起するために、RFバイアス電源462を基板支持体402に結合することができる。加えて、いくつかの実施形態では、負のDC自己バイアスが、処理中に基板404上に生じることができる。さらに、第2のRFバイアス電源463を基板支持体402に結合することができ、RFバイアス電源462で使用するために上記で論じた周波数のいずれかを提供することができる。他の適用分野では、基板支持体402は、接地することができ、または電気的に浮動のままとすることができる。たとえば、RFバイアス電力が所望されない適用分野で基板404にかかる電圧を調整するために、容量チューナ464を基板支持ペデスタルに結合することができる。
いくつかの実施形態では、有利には、堆積プロセスの異なる段階中に基板404にバイアスを供給することができる。バイアス電力は、電源(たとえば、RFバイアス電源462)から基板支持体402内のバイアス電極480に提供することができ、その結果、堆積プロセスの1つまたは複数の段階中にプラズマ内に形成されたイオンにより、基板404に衝撃が与えられる。衝撃プロセスは、基板の表面の上にプラズマを形成し、次いで基板または基板が載置されている基板支持体にバイアスをかけることによって実行することができ、その結果、プラズマ内のイオン化ガス原子(たとえば、イオン化プロセスガス)が、基板の表面に衝撃を与える。バイアス電極480にバイアスをかけるステップは、基板404の表面の平滑性または基板404の表面の疎水性の少なくとも1つを調整するために使用することができる。いくつかのプロセス例では、バイアスは、堆積プロセスが実行された後に基板に印加される。別法として、いくつかのプロセス例では、バイアスは、堆積プロセス中に印加される。したがって、堆積プロセス中ずっと基板バイアスが維持されるとき、衝撃原子は、基板の表面に見られる堆積材料に運動エネルギーを加える。たとえば、約50ワット〜約1100ワットのエネルギーを使用して、基板404に対してイオンにバイアスをかけ、平滑な高密度の膜を形成することができる。バイアスが大きければ大きいほど、より大きいエネルギーを有するイオンを基板表面へ駆動する。基板に対するイオンのバイアスが強ければ強いほど、堆積する第1の層202および第2の層204の表面がより高密度かつ平滑になる。衝撃プロセスを使用して、堆積する第1の層202および第2の層204の表面を平滑にすることができ、その結果、表面には、小さい隆起または窪みなどの粗さまたは肉眼で見える特徴がほとんどなくなる。
ターゲット406の裏面(たとえば、ソース分散板側表面432)近傍に、回転可能なマグネトロンアセンブリ436を位置決めすることができる。回転可能なマグネトロンアセンブリ436は、底板468によって支持された複数の磁石466を含む。底板468は、図4に示すように、プロセスチャンバ400および基板404の中心軸と一致する回転シャフト470に接続される。回転シャフト470の上端部には、マグネトロンアセンブリ436の回転を駆動するために、モータ472を結合することができる。磁石466は、プロセスチャンバ400内でターゲット406の表面付近にターゲット406の表面に略平行の磁場を生じさせて電子を閉じ込め、局所的なプラズマ密度を増大させ、それによりスパッタリング率を増大させる。磁石466は、プロセスチャンバ400の頂部の周りに電磁場を生じさせ、磁石466は回転して電磁場を回転させ、ターゲット406をより均一にスパッタリングするように、プロセスのプラズマ密度に影響を与える。
いくつかの実施形態では、プロセスチャンバ400は、アダプタ442の突起476に接続されたプロセスキットシールド474をさらに含むことができる。アダプタ442は、チャンバ壁408に密封および接地される。概して、プロセスキットシールド474は、アダプタ442の壁およびチャンバ壁408に沿って下向きに基板支持体402の上面まで延び、上向きに戻ってから、基板支持体402の上面に到達する(たとえば、底部にU字形部分484を形成する)。別法として、プロセスキットシールドの最も下の部分は、U字形部分484である必要はなく、任意の適した形状を有することができる。基板支持体402が下部ローディング位置にあるとき、プロセスキットシールド474の上向きに延びるリップ488の上に、カバーリング486が載置される。基板支持体402が上部堆積位置にあるときは、基板支持体402をスパッタ堆積から保護するために、カバーリング486は基板支持体402の外周上に載置される。いくつかの実施形態では、プロセスキットシールド474にかかる電圧を調整するために、プロセスキットシールド474に容量チューナ461を結合することができる。たとえば、容量チューナ461を利用して、イオン流をプロセスキットシールド474の方へ誘導することができ、かつ/または容量チューナ464と組み合わせて、イオン流のエネルギーおよび方向を制御することができる。
いくつかの実施形態では、基板支持体402とターゲット406との間に磁場を選択的に提供するために、プロセスチャンバ400の周りに磁石490を配置することができる。たとえば、図4に示すように、磁石490は、チャンバ壁408の外側の周りで、処理位置にあるときの基板支持体402よりすぐ上の領域内に配置することができる。いくつかの実施形態では、磁石490は、追加または別法として、アダプタ442近傍などの他の位置に配置することもできる。磁石490は、電磁石とすることができ、電磁石によって生成される磁場の大きさを制御するように電源(図示せず)に結合することができる。
プロセスチャンバ400の様々な構成要素には、それらの動作を制御するために、コントローラ410を設けて結合することができる。コントローラ410は、中央処理装置(CPU)412、メモリ414、およびサポート回路416を含む。コントローラ410は、プロセスチャンバ400を直接制御することができ、または特定のプロセスチャンバおよび/もしくはサポートシステム構成要素に付随するコンピュータ(もしくはコントローラ)を介して制御することができる。コントローラ410は、様々なチャンバおよびサブプロセッサを制御するために工業的な環境で使用することができる任意の形の汎用コンピュータプロセッサの1つとすることができる。コントローラ410のメモリまたはコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、フロッピーディスク、ハードディスク、光記憶媒体(たとえば、コンパクトディスクもしくはデジタルビデオディスク)、フラッシュドライブ、またはローカルもしくは遠隔の任意の他の形のデジタルストレージなど、容易に入手可能なメモリの1つまたは複数とすることができる。サポート回路416は、従来の方法でプロセッサをサポートするようにCPU412に結合される。サポート回路は、キャッシュ、電力供給、クロック回路、入出力回路、およびサブシステムなどを含む。本明細書に記載する本発明の方法は、本明細書に記載する方法でプロセスチャンバ400の動作を制御するために実行しまたは呼び出すことができるソフトウェアルーチンとして、メモリ414内に記憶することができる。ソフトウェアルーチンはまた、CPU412によって制御されているハードウェアから遠隔に位置する第2のCPU(図示せず)によって記憶および/または実行することもできる。
いくつかの実施形態では、本明細書に記載する方法および装置は、イメージセンサの形で使用することができる。従来のイメージセンサを2つのステップで形成することができる。たとえば、従来のCMOSトランジスタ製造技法を使用してイメージセンサが最初に製造される第1のステップ、ならびに上記に開示した方法および装置を使用してカラーフィルタが形成される第2のステップがある。図5は、例示的な裏面照射CMOSイメージセンサ500の上に形成された例示的なカラーフィルタ502を示す。本明細書に記載する方法および装置はまた、表面照射CMOSイメージセンサの形で使用することができる。例示的なイメージセンサ500は、上記の適した材料の基板506、たとえばシリコン基板を備える。いくつかの実施形態では、光を電気信号に変換するためのフォトダイオード層508が、基板506内に製造される。いくつかの実施形態では、イメージセンサ500は、フォトダイオード層508からの信号を経路指定する相互接続層510をさらに備える。イメージセンサ500は、相互接続層510に接触するために、たとえば銅またはタングステンから形成された適したビア514をさらに備えることができる。いくつかの実施形態では、相互接続層510近傍に、相互接続層510を外部汚染から絶縁するパッシベーション層512、たとえば窒化ケイ素層が位置する。いくつかの実施形態では、カラーフィルタ502の上にマイクロレンズ層504を形成することができる。マイクロレンズ層504は、入射光をフォトダイオード層508上へ集束させるために使用される。いくつかの実施形態では、マイクロレンズ層504は、特有のフォトダイオード508A、508B、508Cに関連する個々のマイクロレンズ504A、504B、504Cからなることができる。
いくつかの実施形態では、マイクロレンズ層504およびカラーフィルタ502は、単一の層とすることができる。いくつかの実施形態では、上記のようにカラーフィルタ502を形成した後、カラーフィルタ502の頂面に方向性エッチングを施し、マイクロレンズとしての使用に適した湾曲した頂面を提供することができる。エッチングプロセスは、上記のように、式ROXYもしくはR’OXYまたは式ROXYZ:HWもしくはR’OXYZ:HWを有する層をエッチングするのに適したプラズマエッチングプロセスとすることができる。いくつかの実施形態では、カラーフィルタ502は、アニールされると表面が湾曲する材料から形成することができる。
上記は本開示の実施形態を対象とするが、本開示の基本的な範囲から逸脱することなく、本開示の他のさらなる実施形態を考案することができる。

Claims (15)

  1. 式ROXYを有する第1の層であって、第1の屈折率を有する第1の層と、
    前記第1の層とは異なり、該第1の層の上に配置され、式R’OXYを有する第2の層であって、前記第2の層が前記第1の屈折率とは異なる第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つである、第2の層と
    を備える光波分離格子。
  2. xおよびyはそれぞれ、0%〜100%の濃度で変動することができる、請求項1に記載の光波分離格子。
  3. RおよびR’はそれぞれ、シリコン(Si)、チタン(Ti)、アルミニウム(Al)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、または銅(Cu)の1つである、請求項1に記載の光波分離格子。
  4. 複数の交互の第1および第2の層をさらに備える、請求項1に記載の光波分離格子。
  5. 前記第1の層および第2の層はそれぞれ、約10nm〜約120nmの厚さを有する、請求項4に記載の光波分離格子。
  6. 前記第1の層および前記第2の層は、炭素または水素の少なくとも1つをさらに含む、請求項1から5までのいずれか1項に記載の光波分離格子。
  7. 物理的気相堆積(PVD)チャンバ内に配置された基板の上に光波分離格子を形成する方法であって、
    (a)式ROXYを有する第1の層を物理的気相堆積プロセスによって基板の上に堆積させるステップであって、前記第1の層が所定の第1の屈折率を有するステップと、
    (b)前記第1の層とは異なり、式R’OXYを有する第2の層を物理的気相堆積プロセスによって前記第1の層の上に堆積させるステップであって、前記第2の層が前記第1の屈折率とは異なる所定の第2の屈折率を有し、RおよびR’がそれぞれ金属または誘電体材料の1つであるステップとを含む方法。
  8. 前記第1の層および前記第2の層は、単一の物理的気相堆積プロセスチャンバ内で堆積される、請求項7に記載の方法。
  9. 前記第1の層は、第1の物理的気相堆積プロセスチャンバ内で堆積され、前記第2の層は、第2の物理的気相堆積プロセスチャンバ内で堆積され、前記第1の物理的気相堆積プロセスチャンバおよび前記第2の物理的気相堆積プロセスチャンバは、クラスタツールに結合される、請求項7に記載の方法。
  10. 前記第1の物理的気相堆積プロセスチャンバおよび第2の物理的気相堆積プロセスチャンバはそれぞれ、シリコン(Si)、チタン(Ti)、アルミニウム(Al)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、タングステン(W)、ジルコニウム(Zr)、または銅(Cu)の1つから構成されたターゲットを備える、請求項9に記載の方法。
  11. 前記第1の層または前記第2の層を堆積させる少なくとも1つのステップが、前記チャンバ内へプロセスガスを流すステップをさらに含み、前記プロセスガスは、酸素含有ガス、窒素含有ガス、炭素含有ガス、または水素含有ガスの1つまたは複数を含む、請求項7から10までのいずれか1項に記載の方法。
  12. 前記第1の層または前記第2の層を堆積させる少なくとも1つのステップは、前記チャンバ内へプロセスガスを流すステップをさらに含み、
    前記基板の表面の上にプラズマを生成して、前記プロセスガスをイオン化するステップと、
    前記チャンバの一部分に結合された電極にバイアスをかけて、前記イオン化プロセスガスが前記基板の前記表面に衝撃を与えるようにするステップとをさらに含む、請求項7から10までのいずれか1項に記載の方法。
  13. 前記電極にバイアスをかけるステップが、前記基板の前記表面の平滑性または疎水性の少なくとも1つを制御するために使用される、請求項12に記載の方法。
  14. (a)−(b)を繰り返して、複数の交互の第1および第2の層を有するスタックを形成するステップと、
    前記スタックを横切って前記第1の層または前記第2の層の1つを複数の変動する厚さにエッチングするステップであって、各厚さが異なる波長の光をフィルタリングするステップと、
    その後、(a)−(b)を繰り返して、前記光波分離格子を所望の厚さに形成するステップと
    をさらに含む、請求項7から10までのいずれか1項に記載の方法。
  15. 前記第1の層および第2の層はそれぞれ、約10nm〜約120nmの厚さを有する、請求項7から10までのいずれか1項に記載の方法。
JP2016561631A 2014-04-11 2015-03-24 光波分離格子および光波分離格子を形成する方法 Pending JP2017516914A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461978803P 2014-04-11 2014-04-11
US61/978,803 2014-04-11
US14/291,712 2014-05-30
US14/291,712 US9746678B2 (en) 2014-04-11 2014-05-30 Light wave separation lattices and methods of forming light wave separation lattices
PCT/US2015/022119 WO2015156991A1 (en) 2014-04-11 2015-03-24 Light wave separation lattices and methods of forming light wave separation lattices

Publications (2)

Publication Number Publication Date
JP2017516914A true JP2017516914A (ja) 2017-06-22
JP2017516914A5 JP2017516914A5 (ja) 2018-05-17

Family

ID=54264973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016561631A Pending JP2017516914A (ja) 2014-04-11 2015-03-24 光波分離格子および光波分離格子を形成する方法

Country Status (7)

Country Link
US (2) US9746678B2 (ja)
EP (1) EP3129823A4 (ja)
JP (1) JP2017516914A (ja)
CN (1) CN106170730A (ja)
SG (2) SG10201809273VA (ja)
TW (2) TWI667501B (ja)
WO (1) WO2015156991A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666328B (zh) * 2017-04-01 2020-05-05 奇景光电股份有限公司 影像感测器
US20200003937A1 (en) * 2018-06-29 2020-01-02 Applied Materials, Inc. Using flowable cvd to gap fill micro/nano structures for optical components
WO2020211084A1 (en) * 2019-04-19 2020-10-22 Applied Materials, Inc. Methods of forming a metal containing material
US20210319989A1 (en) * 2020-04-13 2021-10-14 Applied Materials, Inc. Methods and apparatus for processing a substrate
US11935771B2 (en) 2021-02-17 2024-03-19 Applied Materials, Inc. Modular mainframe layout for supporting multiple semiconductor process modules or chambers
US11935770B2 (en) 2021-02-17 2024-03-19 Applied Materials, Inc. Modular mainframe layout for supporting multiple semiconductor process modules or chambers
US20230073011A1 (en) * 2021-09-03 2023-03-09 Applied Materials, Inc. Shutter disk for physical vapor deposition (pvd) chamber

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634066A (ja) * 1986-06-25 1988-01-09 Hitachi Ltd バイアススパツタ装置
JPH056986A (ja) * 1991-06-27 1993-01-14 Sharp Corp 固体撮像素子
JP2003500249A (ja) * 1999-05-20 2003-01-07 サン−ゴバン グラス フランス 反射防止、低放射率もしくは太陽光保護被覆を有する透明基体
JP2005045141A (ja) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp 固体撮像装置
JP2005101232A (ja) * 2003-09-24 2005-04-14 Tokyo Electron Ltd マイクロレンズの形成方法
WO2005069376A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co.,Ltd. 固体撮像装置、固体撮像装置の製造方法及びこれを用いたカメラ
JP2007219515A (ja) * 2006-02-13 2007-08-30 Samsung Electronics Co Ltd カラーフィルタ、カラーフィルタアレイ及びその製造方法、並びにイメージセンサー
JP2008281958A (ja) * 2007-05-14 2008-11-20 Ulvac Japan Ltd 誘電体多層膜フィルタの製造方法、及び、誘電体多層膜フィルタの製造装置
JP2009007636A (ja) * 2007-06-28 2009-01-15 Sony Corp 低屈折率膜及びその成膜方法、並びに反射防止膜
JP2009251167A (ja) * 2008-04-03 2009-10-29 Panasonic Corp 誘電体多層膜
JP2009545150A (ja) * 2006-07-25 2009-12-17 コミッサリヤ ア レネルジ アトミック 光フィルタリングマトリックス構造及び関連する画像センサ
JP2010062567A (ja) * 2008-09-05 2010-03-18 Commissariat A L'energie Atomique 光反射cmosイメージセンサ
JP2013062382A (ja) * 2011-09-13 2013-04-04 Toshiba Corp 半導体装置およびその製造方法
JP2013232646A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd センサーデバイス及びic装置
JP2014029524A (ja) * 2012-07-04 2014-02-13 Fujifilm Corp マイクロレンズの製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818849B2 (ja) * 1991-08-29 1996-02-28 日本板硝子株式会社 熱線遮蔽ガラス
TW359849B (en) * 1994-12-08 1999-06-01 Tokyo Electron Ltd Sputtering apparatus having an on board service module
US6541164B1 (en) * 1997-10-22 2003-04-01 Applied Materials, Inc. Method for etching an anti-reflective coating
US6252218B1 (en) * 1999-02-02 2001-06-26 Agilent Technologies, Inc Amorphous silicon active pixel sensor with rectangular readout layer in a hexagonal grid layout
US6506289B2 (en) * 2000-08-07 2003-01-14 Symmorphix, Inc. Planar optical devices and methods for their manufacture
US6756161B2 (en) * 2002-04-16 2004-06-29 E. I. Du Pont De Nemours And Company Ion-beam deposition process for manufacture of binary photomask blanks
US6861280B2 (en) * 2002-10-25 2005-03-01 Omnivision International Holding Ltd Image sensor having micro-lenses with integrated color filter and method of making
US6818328B2 (en) 2003-02-20 2004-11-16 Fuji Electric Co., Ltd. Color conversion filter substrate, color conversion type multicolor organic EL display having the color conversion filter substrate, and methods of manufacturing these
US7901870B1 (en) * 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
JP4510613B2 (ja) * 2004-12-28 2010-07-28 パナソニック株式会社 固体撮像装置の製造方法
US7820020B2 (en) 2005-02-03 2010-10-26 Applied Materials, Inc. Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
KR100672687B1 (ko) * 2005-06-03 2007-01-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
US7462560B2 (en) * 2005-08-11 2008-12-09 United Microelectronics Corp. Process of physical vapor depositing mirror layer with improved reflectivity
US8766385B2 (en) 2006-07-25 2014-07-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Filtering matrix structure, associated image sensor and 3D mapping device
CN101153933B (zh) * 2006-09-26 2011-08-17 奇美电子股份有限公司 彩色滤光基板及其制造方法、液晶显示面板与装置
CN101535177B (zh) * 2006-11-10 2012-06-13 住友电气工业株式会社 含有Si-O的氢化碳膜、具有该氢化碳膜的光学装置以及制备含有Si-O的氢化碳膜和光学装置的方法
KR100937654B1 (ko) * 2006-12-12 2010-01-19 동부일렉트로닉스 주식회사 이미지 센서 및 그 제조방법
CN101529282B (zh) * 2006-12-15 2011-05-18 株式会社艾迪科 滤光器
KR100823031B1 (ko) * 2006-12-21 2008-04-17 동부일렉트로닉스 주식회사 이미지 센서 제조방법
US20090032098A1 (en) * 2007-08-03 2009-02-05 Guardian Industries Corp. Photovoltaic device having multilayer antireflective layer supported by front substrate
US8893711B2 (en) * 2007-10-18 2014-11-25 Alliance For Sustainable Energy, Llc High temperature solar selective coatings
US20090201400A1 (en) * 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
US8101978B2 (en) * 2008-02-08 2012-01-24 Omnivision Technologies, Inc. Circuit and photo sensor overlap for backside illumination image sensor
JP5269454B2 (ja) * 2008-03-25 2013-08-21 株式会社東芝 固体撮像素子
US8330840B2 (en) 2009-08-06 2012-12-11 Aptina Imaging Corporation Image sensor with multilayer interference filters
KR101638183B1 (ko) 2009-08-11 2016-07-11 삼성전자주식회사 이미지 센서
US8338856B2 (en) 2010-08-10 2012-12-25 Omnivision Technologies, Inc. Backside illuminated image sensor with stressed film
FR2966976B1 (fr) * 2010-11-03 2016-07-29 Commissariat Energie Atomique Imageur monolithique multispectral visible et infrarouge
KR101942961B1 (ko) * 2011-06-17 2019-01-28 어플라이드 머티어리얼스, 인코포레이티드 핀홀 없는 유전체 박막 제조
US8906454B2 (en) * 2011-09-12 2014-12-09 Applied Materials, Inc. Methods for depositing metal-polymer composite materials atop a substrate
KR102072244B1 (ko) * 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
CN103378117B (zh) * 2012-04-25 2016-08-03 台湾积体电路制造股份有限公司 具有负电荷层的背照式图像传感器
CN102938410B (zh) * 2012-12-03 2017-06-23 上海集成电路研发中心有限公司 一种cmos图像传感器制造方法
CN103367381B (zh) * 2013-07-15 2016-12-28 格科微电子(上海)有限公司 背照式图像传感器及其制作方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634066A (ja) * 1986-06-25 1988-01-09 Hitachi Ltd バイアススパツタ装置
JPH056986A (ja) * 1991-06-27 1993-01-14 Sharp Corp 固体撮像素子
JP2003500249A (ja) * 1999-05-20 2003-01-07 サン−ゴバン グラス フランス 反射防止、低放射率もしくは太陽光保護被覆を有する透明基体
JP2005045141A (ja) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp 固体撮像装置
JP2005101232A (ja) * 2003-09-24 2005-04-14 Tokyo Electron Ltd マイクロレンズの形成方法
WO2005069376A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co.,Ltd. 固体撮像装置、固体撮像装置の製造方法及びこれを用いたカメラ
JP2007219515A (ja) * 2006-02-13 2007-08-30 Samsung Electronics Co Ltd カラーフィルタ、カラーフィルタアレイ及びその製造方法、並びにイメージセンサー
JP2009545150A (ja) * 2006-07-25 2009-12-17 コミッサリヤ ア レネルジ アトミック 光フィルタリングマトリックス構造及び関連する画像センサ
JP2008281958A (ja) * 2007-05-14 2008-11-20 Ulvac Japan Ltd 誘電体多層膜フィルタの製造方法、及び、誘電体多層膜フィルタの製造装置
JP2009007636A (ja) * 2007-06-28 2009-01-15 Sony Corp 低屈折率膜及びその成膜方法、並びに反射防止膜
JP2009251167A (ja) * 2008-04-03 2009-10-29 Panasonic Corp 誘電体多層膜
JP2010062567A (ja) * 2008-09-05 2010-03-18 Commissariat A L'energie Atomique 光反射cmosイメージセンサ
JP2013062382A (ja) * 2011-09-13 2013-04-04 Toshiba Corp 半導体装置およびその製造方法
JP2013232646A (ja) * 2012-04-27 2013-11-14 Taiwan Semiconductor Manufacturing Co Ltd センサーデバイス及びic装置
JP2014029524A (ja) * 2012-07-04 2014-02-13 Fujifilm Corp マイクロレンズの製造方法

Also Published As

Publication number Publication date
US20150293363A1 (en) 2015-10-15
SG10201809273VA (en) 2018-11-29
EP3129823A1 (en) 2017-02-15
CN106170730A (zh) 2016-11-30
US9746678B2 (en) 2017-08-29
WO2015156991A1 (en) 2015-10-15
TW201939074A (zh) 2019-10-01
EP3129823A4 (en) 2017-11-22
TWI667501B (zh) 2019-08-01
TW201602650A (zh) 2016-01-16
US20180011331A1 (en) 2018-01-11
SG11201607119UA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
JP2017516914A (ja) 光波分離格子および光波分離格子を形成する方法
US11410860B2 (en) Process chamber for etching low k and other dielectric films
US10325803B2 (en) Semiconductor wafer and method for processing a semiconductor wafer
US9633839B2 (en) Methods for depositing dielectric films via physical vapor deposition processes
US8129280B2 (en) Substrate device having a tuned work function and methods of forming thereof
US11313034B2 (en) Methods for depositing amorphous silicon layers or silicon oxycarbide layers via physical vapor deposition
US9315891B2 (en) Methods for processing a substrate using multiple substrate support positions
US9984976B2 (en) Interconnect structures and methods of formation
KR100838527B1 (ko) 상변화 기억소자 형성 방법
TWI828169B (zh) 磁控濺射組件、磁控濺射設備及磁控濺射方法
US11170998B2 (en) Method and apparatus for depositing a metal containing layer on a substrate
US9461137B1 (en) Tungsten silicide nitride films and methods of formation
US8580630B2 (en) Methods for forming a metal gate structure on a substrate
US20200203144A1 (en) Methods of cleaning an oxide layer in a film stack to eliminate arcing during downstream processing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200730