TWI828169B - 磁控濺射組件、磁控濺射設備及磁控濺射方法 - Google Patents

磁控濺射組件、磁控濺射設備及磁控濺射方法 Download PDF

Info

Publication number
TWI828169B
TWI828169B TW111120111A TW111120111A TWI828169B TW I828169 B TWI828169 B TW I828169B TW 111120111 A TW111120111 A TW 111120111A TW 111120111 A TW111120111 A TW 111120111A TW I828169 B TWI828169 B TW I828169B
Authority
TW
Taiwan
Prior art keywords
magnetron sputtering
magnetic pole
magnetic poles
curve
polarity
Prior art date
Application number
TW111120111A
Other languages
English (en)
Other versions
TW202300680A (zh
Inventor
羅建恆
楊帆
耿宏偉
李慶明
Original Assignee
大陸商北京北方華創微電子裝備有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京北方華創微電子裝備有限公司 filed Critical 大陸商北京北方華創微電子裝備有限公司
Publication of TW202300680A publication Critical patent/TW202300680A/zh
Application granted granted Critical
Publication of TWI828169B publication Critical patent/TWI828169B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一種磁控濺射組件,包括可旋轉的磁控管,磁控管包括多個磁極,多個磁極在平行於靶材表面的平面上的正投影沿多條互相嵌套的螺旋狀曲線依次排列,沿任一螺旋狀曲線排列的多個磁極的極性與沿相鄰的螺旋狀曲線排列的多個磁極的極性相反,且沿任一螺旋狀曲線排列的多個磁極中位於曲線中心的至少一個磁極的極性與其他磁極的極性相反。本發明提供的技術方案提高了磁控管旋轉產生的磁場的場強分佈均勻性,進而提高了磁控濺射反應中薄膜沉積速率的均勻性。本發明還提供一種磁控濺射設備和磁控濺射方法。

Description

磁控濺射組件、磁控濺射設備及磁控濺射方法
本發明涉及半導體製程設備領域,具體地,涉及一種磁控濺射組件、一種包括該磁控濺射組件的磁控濺射設備和一種應用於該磁控濺射設備的磁控濺射方法。
近年來,隨著超大規模集成電路技術迅速發展,電路中電子器件的特徵尺寸不斷縮小、器件密度不斷增大,金屬化互連所帶來的RC遲滯(RC Delay,即電阻(R)、電容(C)引起的信號延遲)已經成為阻礙超高密度集成電路效能及速度的關鍵因素,減少RC遲滯成為近年來半導體行業的主攻方向。在集成電路製造中,金屬線通常嵌入在具有低介電常數的層間電介質(ILD,interlevel dielectric)材料之中,在大馬士革互連製程中,蝕刻停止層通常沉積在單獨的ILD層和金屬線上,其用於在集成電路(IC)製造製程的圖案化製作過程中,保護位於這些膜層下面的材料在圖案化期間不被蝕刻,同時蝕刻停止層通常不會被完全去除,並且作為較厚的ILD層之間的薄膜保留在最終製造的半導體器件中。鋁的氧化物(AlO x)因其優異的蝕刻選擇性、良好的絕緣性以及合適的介電常數而被應用在10納米以下技術代的先進制程中,AlO x材質的蝕刻停止層能夠在不引起金屬層氧化的同時減小金屬線之間的串擾並降低RC延遲、保護底層多孔的低K材料(絕緣材料)。
製備AlO x薄膜通常採用PVD(Physical Vapor Deposition,物理氣相沉積)製程中的磁控濺射技術,與CVD(Chemical Vapor Deposition,化學氣相沉積)製程相比,磁控濺射技術具有薄膜均勻性好、低雜質、高密度等優勢。10納米以下技術代對於薄膜整體性能要求更加嚴苛,對生長薄膜的厚度不均勻度要求小於2%,同時需保證薄膜的組分均勻,以確保後續濕法刻蝕的均勻性,避免發生滲透現象,提高晶圓的產品良率。
然而,傳統PVD方法在採用鋁靶與氧氣通過反應濺射製備非導電氧化物薄膜時,磁場和反應氣體分佈不均勻,難以達到10納米以下技術代對鋁的氧化物薄膜的厚度均勻性要求。因此,如何提供一種能夠提高磁控濺射技術製備薄膜的均勻性的磁控濺射設備結構,成為本領域亟待解決的技術問題。
本發明旨在提供一種磁控濺射組件、一種磁控濺射設備和一種磁控濺射方法,該磁控濺射組件能夠提高磁控濺射反應中薄膜沉積速率的均勻性、提高晶圓的產品良率。
為實現上述目的,作為本發明的一個方面,提供一種半導體製程設備中的磁控濺射組件,包括可旋轉的磁控管,該磁控管包括多個磁極,多個該磁極在平行於靶材表面的平面上的正投影沿多條互相嵌套的螺旋狀曲線依次排列,沿任一螺旋狀曲線排列的多個磁極的極性與沿相鄰的螺旋狀曲線排列的多個磁極的極性相反,且沿任一螺旋狀曲線排列的多個磁極中位於該螺旋狀曲線中心的至少一個磁極的極性與其他磁極的極性相反。
可選地,該磁控濺射組件包括第一磁極組和第二磁極組,該第一磁極組中的多個該磁極在平行於靶材表面的平面上的正投影沿第一螺旋狀曲線依次排列,該第二磁極組中的多個該磁極在平行於靶材表面的平面上的正投影沿第二螺旋狀曲線依次排列,該第一螺旋狀曲線套設在該第二螺旋狀曲線中,該第一磁極組中多個該磁極的極性與該第二磁極組中多個該磁極的極性相反,且該第一磁極組中位於該第一螺旋狀曲線中心的至少一個磁極的極性與該第一磁極組中其它磁極的極性相反,該第二磁極組中位於該第二螺旋狀曲線中心的至少一個磁極的極性與該第二磁極組中其它磁極的極性相反。
可選地,該第一螺旋狀曲線包括沿遠離該磁控管的旋轉中心的方向依次連接的第一子曲線和第二子曲線,該第二螺旋狀曲線包括沿遠離該磁控管的旋轉中心的方向依次連接的第三子曲線、第四子曲線、第五子曲線,該第一子曲線的形狀與該第三子曲線的形狀一致,且該第一子曲線與該第三子曲線關於該磁控管的旋轉中心對稱設置;該第一螺旋狀曲線環繞設置在該第三子曲線的外側,該第五子曲線環繞設置在該第一螺旋狀曲線的外側,該第四子曲線繞過該第二子曲線的自由端,且該第四子曲線的兩端分別連接該第三子曲線和該第五子曲線。
可選地,該第一子曲線、該第二子曲線、該第三子曲線和該第五子曲線在平行於靶材表面的平面上沿順時針方向螺旋延伸,該第四子曲線在平行於靶材表面的平面上沿逆時針方向螺旋延伸。
可選地,該第一磁極組中位於該第一螺旋狀曲線中心的磁極的極性為南極,該第一磁極組中其它磁極的極性為北極,該第二磁極組中位於該第二螺旋狀曲線中心的磁極的極性為北極,該第二磁極組中其它磁極的極性為南極。
可選的,該磁控濺射組件還包括固定盤和旋轉驅動機構,其中,該磁控管設置於該固定盤上,該旋轉驅動機構與該固定盤連接,用於驅動該固定盤繞該固定盤的軸線旋轉。
作為本發明的第二個方面,提供一種磁控濺射設備,包括製程腔室和設置在該製程腔室上的磁控濺射組件,該磁控濺射組件用於向該製程腔室中施加磁場,該磁控濺射組件為前面所述的磁控濺射組件。
作為本發明的第三個方面,提供一種磁控濺射方法,應用於如前面所述的磁控濺射設備,包括:第一製程步驟,向該製程腔室中通入氧化濺射氣體;第二製程步驟,將該氧化濺射氣體激發為等離子體,同時控制該磁控濺射組件向該製程腔室中施加磁場,進行磁控濺射,生成氧化物薄膜;第三製程步驟,向該製程腔室中通入還原氣體,以降低該氧化物薄膜邊緣的氧含量。
可選地,該氧化濺射氣體包括氧氣,該還原氣體包括氫氣。
可選地,在該第三製程步驟中,該製程腔室中的壓力大於等於50mTorr,且小於等於500mTorr。
可選地,循環執行該第一製程步驟、該第二製程步驟和該第三製程步驟,至該氧化物薄膜的厚度達到預設的目標厚度。
在本發明實施例提供的磁控濺射組件和磁控濺射設備中,多個磁極在平行於靶材表面的平面上的正投影沿多條螺旋狀曲線依次排列,且沿任一螺旋狀曲線排列的磁極的極性與沿相鄰螺旋狀曲線排列的磁極的極性相反,這種沿螺旋狀曲線排列的方式可以使同極性的磁極不論在中心區域或邊緣區域,均為單列排布,提高了磁控管旋轉產生的磁場的場強分佈均勻性,並且,沿同一螺旋狀曲線排列的磁極中位於螺旋狀曲線中心的至少一個磁極的極性與同一曲線上其他磁極的極性相反,保證了磁控管中心區域磁場的場強分佈均勻性,進而提高了磁控濺射反應中薄膜沉積速率的均勻性以及最終得到薄膜的厚度均勻性,提高了晶圓的產品良率。
並且,在本發明提供的磁控濺射方法中,氧化濺射氣體與靶材反應生成靶材材料的氧化物後,第三製程步驟中通入的還原氣體能夠與化合物中的氧元素進行反應,從而消耗該化合物中的氧元素含量,使氧原子在薄膜內的分佈發生改變,提高薄膜組分的均勻性,進而提高晶圓上的芯片器件的產品良率。
以下揭露提供用於實施本揭露之不同構件之許多不同實施例或實例。下文描述組件及配置之特定實例以簡化本揭露。當然,此等僅為實例且非意欲限制。舉例而言,在以下描述中之一第一構件形成於一第二構件上方或上可包含其中該第一構件及該第二構件經形成為直接接觸之實施例,且亦可包含其中額外構件可形成在該第一構件與該第二構件之間,使得該第一構件及該第二構件可不直接接觸之實施例。另外,本揭露可在各個實例中重複參考數字及/或字母。此重複出於簡化及清楚之目的且本身不指示所論述之各個實施例及/或組態之間的關係。
此外,為便於描述,諸如「下面」、「下方」、「下」、「上方」、「上」及類似者之空間相對術語可在本文中用於描述一個元件或構件與另一(些)元件或構件之關係,如圖中圖解說明。空間相對術語意欲涵蓋除在圖中描繪之定向以外之使用或操作中之裝置之不同定向。設備可以其他方式定向(旋轉90度或按其他定向)且因此可同樣解釋本文中使用之空間相對描述詞。
儘管陳述本揭露之寬泛範疇之數值範圍及參數係近似值,然儘可能精確地報告特定實例中陳述之數值。然而,任何數值固有地含有必然由於見於各自測試量測中之標準偏差所致之某些誤差。再者,如本文中使用,術語「大約」通常意謂在一給定值或範圍之10%、5%、1%或0.5%內。替代地,術語「大約」意謂在由此項技術之一般技術者考量時處於平均值之一可接受標準誤差內。除在操作/工作實例中以外,或除非以其他方式明確指定,否則諸如針對本文中揭露之材料之數量、時間之持續時間、溫度、操作條件、數量之比率及其類似者之全部數值範圍、數量、值及百分比應被理解為在全部例項中由術語「大約」修飾。相應地,除非相反地指示,否則本揭露及隨附發明申請專利範圍中陳述之數值參數係可根據需要變化之近似值。至少,應至少鑑於所報告有效數位之數目且藉由應用普通捨入技術解釋各數值參數。範圍可在本文中表達為從一個端點至另一端點或在兩個端點之間。本文中揭露之全部範圍包含端點,除非另有指定。
圖1示出了一種用於常規PVD濺射製程的磁控濺射設備,該設備包括製程腔室1,該製程腔室1的腔體呈圓環狀,且在製程腔室1中設置有用於承載晶圓的承載盤5(具有加熱和/或冷卻功能)。真空泵系統2可對製程腔室1進行抽氣,使製程腔室1的內部達到高於10-6Torr的本底真空度。氣體源4可通過流量計3向製程腔室1提供濺射所需的製程氣體(如氬氣、氧氣等)。靶材6(可以是金屬也可以是金屬化合物)設置在製程腔室1的頂部,且在靶材6的上方設置有上密封腔7,該上密封腔7的材質為絕緣材料(例如G10材料),上密封腔7的底部與靶材6密封連接,上密封腔7中充滿了去離子水8。
在進行濺射反應時,脈衝直流(DC)電源施加功率至靶材6,使其相對於接地的腔體具有負偏壓,以使製程氣體(如氬氣、氧氣等)電離放電而產生等離子體,並將帶正電的離子吸引至負偏壓的靶材6。當離子的能量足夠高時,會使金屬原子逸出靶材表面並沉積在晶圓上。靶材6背部的磁控管9包括具有相反極性的內外磁極。馬達12驅動磁控管9轉動,從而在製程腔室1的圓周的各個角度上產生均勻磁場,通過磁場大幅度提高濺射沉積速率,實現均勻、高效地沉積金屬氧化物薄膜。
圖2示出了一種現有的磁控濺射設備中磁控管形狀,其磁極分佈如圖3所示(圖3中實心圓點與空心圓點分別表示兩種極性,例如,實心圓點表示南極,空心圓點表示北極),該磁控管的內圈磁極為南極(S極),外圈磁極為北極(N極)。由於在內圈磁極和外圈磁極的中心區域附近磁極為雙列排布,這使得旋轉產生的磁場中心區域磁場強度大、邊緣磁場強度小,從而造成中心區域的離子轟擊能量高、邊緣區域離子轟擊能量低,薄膜中心區域相對於邊緣區域沉積速率更快、薄膜中心厚度更大,進而降低了膜層表面膜厚的均勻性。具體地,如圖3所示,靶材表面上具有灰白相間的腐蝕軌道,其中,半徑58mm-75mm、半徑120mm-150mm、半徑210mm-222mm之間的環帶狀區域為輕腐蝕軌道,即圖3中灰色陰影部分區域,半徑0mm-58mm、半徑75mm-120mm、半徑150mm-210mm之間的環帶狀區域為重腐蝕軌道,即,圖3中白色部分區域。
為解決上述技術問題,提高磁控濺射反應製備薄膜的厚度均勻性,作為本發明的一個方面,提供一種磁控濺射組件,包括可旋轉的磁控管,本發明實施例對用於驅動磁控管旋轉的結構沒有特別的限制,例如,可以將磁控管固定於固定盤上;旋轉驅動機構與固定盤連接,用於驅動固定盤繞固定盤的軸線旋轉,該軸線即為磁控管的旋轉中心。
如圖4和圖5所示,該磁控管包括多個磁極(圖4和圖5中實心圓點圖案與空心圓點圖案分別表示兩種極性的磁極在平行於靶材表面的平面上的正投影),多個磁極在平行於靶材表面的平面上的正投影沿互相嵌套的螺旋狀曲線依次排列,且沿任一螺旋狀曲線排列的多個磁極的極性與沿相鄰的螺旋狀曲線排列的多個磁極的極性相反,且沿任一螺旋狀曲線排列的多個磁極中位於該螺旋狀曲線中心的至少一個磁極的極性與其他磁極的極性相反。
在本發明中,多個磁極在平行於靶材表面的平面上的正投影沿多條螺旋狀曲線依次排列,且沿任一螺旋狀曲線排列的磁極的極性與沿相鄰螺旋狀曲線排列的磁極的極性相反,這種沿螺旋狀曲線排列的方式可以使同極性的磁極不論在中心區域或邊緣區域,均為單列排布(即,不會出現兩列相同極性的磁極同向並排延伸的情況),提高了磁控管旋轉產生的磁場的場強分佈均勻性,並且,沿同一螺旋狀曲線排列的磁極中位於螺旋狀曲線中心的至少一個磁極的極性與同一曲線上其他磁極的極性相反,保證了磁控管中心區域磁場的場強分佈均勻性,進而提高了磁控濺射反應中薄膜沉積速率的均勻性以及最終得到薄膜的厚度均勻性,提高了晶圓的產品良率。
作為本發明的一種可選實施方式,如圖4至圖6所示,磁控濺射組件包括第一磁極組和第二磁極組,第一磁極組中的多個磁極在平行於靶材表面的平面上的正投影沿第一螺旋狀曲線100依次排列,第二磁極組中的多個磁極在平行於靶材表面的平面上的正投影沿第二螺旋狀曲線200依次排列,第一螺旋狀曲線100套設在第二螺旋狀曲線200中,第一磁極組中多個磁極的極性與第二磁極組中多個磁極的極性相反,且第一磁極組中位於第一螺旋狀曲線100中心的至少一個磁極的極性與第一磁極組中其它磁極的極性相反,第二磁極組中位於第二螺旋狀曲線200中心的至少一個磁極的極性與第二磁極組中其它磁極的極性相反。
本發明實施例對第一螺旋狀曲線100與第二螺旋狀曲線200之間如何互相嵌套不作具體限定,只要保證第一磁極組與第二磁極組均勻分佈,且不會出現單一磁極組的磁極雙排分佈即可,例如,作為本發明的一種可選實施方式,如圖4至圖6所示,第一螺旋狀曲線100包括沿遠離磁控管的旋轉中心的方向(即,由螺旋狀曲線的內圈向外圈)依次連接的第一子曲線110和第二子曲線120,第二螺旋狀曲線200包括沿遠離磁控管的旋轉中心的方向(即,由螺旋狀曲線的內圈向外圈)依次連接的第三子曲線210、第四子曲線220、第五子曲線230,第一子曲線110的形狀與第三子曲線210的形狀一致,且第一子曲線110與第三子曲線210關於磁控管的旋轉中心對稱設置;第一螺旋狀曲線100環繞設置在第三子曲線210的外側,第五子曲線230環繞設置在第一螺旋狀曲線100的外側,第四子曲線220繞過第二子曲線120的自由端120a(即,未與第一子曲線110連接的一端),且第四子曲線220的兩端分別連接第三子曲線210和第五子曲線230。
在本發明實施例中,第一螺旋狀曲線100(包括依次連接的第一子曲線110和第二子曲線120)、第三子曲線210和第五子曲線230均為螺旋線或近似螺旋線,且三者旋轉方向相同,第四子曲線220將第三子曲線210與第五子曲線230平滑過渡連接。第一磁極組對應的第一螺旋狀曲線100環繞設置在第二磁極組對應的第三子曲線210的外側,而第二磁極組對應的第五子曲線230環繞設置在第一螺旋狀曲線100的外側,從而在任意位置相同極性的多個磁極均為單排設置,進而通過單列排布提高了磁控管旋轉產生的磁場的場強分佈均勻性。
本發明實施例對第一螺旋狀曲線100、第三子曲線210和第五子曲線230環繞固定盤的中心延伸的角度不做具體限定,例如,可選地,如圖5、圖6所示,第一螺旋狀曲線100和第五子曲線230環繞磁控管的旋轉中心一周,第三子曲線210環繞磁控管的旋轉中心半周。即,第一螺旋狀曲線100的兩端、第三子曲線210位於外側的一端以及第五子曲線230的兩端位於磁控管的旋轉中心的同一側,第三子曲線210的兩端分別位於磁控管的旋轉中心的相對兩側。
本發明實施例對第一螺旋狀曲線100和第二螺旋狀曲線200在固定盤上的螺旋延伸方向不做具體限定,例如,可選地,如圖4至圖6所示,第一子曲線110、第二子曲線120、第三子曲線210和第五子曲線230在平行於靶材表面的平面上(例如俯視方向)沿順時針方向螺旋延伸,第四子曲線220在平行於靶材表面的平面上(例如俯視方向)沿逆時針方向螺旋延伸。
本發明實施例對第一磁極組和第二磁極組中磁極的極性不做具體限定,例如,可選地,第一磁極組中位於第一螺旋狀曲線100中心的至少一個磁極的極性為南極(即圖中實心圓圖案所示),第一磁極組中其它磁極的極性為北極(即圖中圓環圖案所示),第二磁極組中位於第一螺旋狀曲線100中心的至少一個磁極的極性為北極,第二磁極組中其它磁極的極性為南極。
本發明實施例提供的磁控濺射組件中磁控管的磁場分佈與現有磁控管相比,其對應靶材濺射下來的離子在晶圓中心區域的能量分佈更加均勻,效果對比如圖8所示(橫軸表示晶圓半徑(由-R至+R,例如晶圓半徑為150mm時,則橫軸為-150mm至+150mm),縱軸表示磁場強度)。
採用本發明實施例提供的磁控濺射組件向靶材提供磁場時,靶材進行濺射反應後表面形成的腐蝕軌道如圖4至圖7所示,靶材表面上具有灰白相間的腐蝕軌道,其中,半徑35mm-50mm、半徑95mm-115mm、半徑140mm-150mm之間的環帶狀區域為輕腐蝕軌道,即圖7中灰色陰影部分區域,半徑0mm-35mm、半徑50mm-95mm、半徑115mm-140mm之間的環帶狀區域為重腐蝕軌道,即,圖7中白色部分區域。本發明實施例提供的磁控濺射組件改變了靶材表面的磁場強度分佈,改變了靶材表面的腐蝕軌道分佈,從而改變了成膜過程中的離子分佈和能量分佈,改變了薄膜的厚度分佈趨勢,提高了磁控濺射反應中薄膜膜厚分佈的均勻性。
作為本發明的第二個方面,提供一種磁控濺射設備,包括製程腔室和設置在製程腔室上方的磁控濺射組件,磁控濺射組件用於向製程腔室中施加磁場,其中,該磁控濺射組件為本發明實施例提供的磁控濺射組件。
在本發明提供的磁控濺射設備中,多個磁極在平行於靶材表面的平面上的正投影沿多條螺旋狀曲線依次排列,且沿任一螺旋狀曲線排列的磁極的極性與沿相鄰螺旋狀曲線排列的磁極的極性相反,這種沿螺旋狀曲線排列的方式可以使同極性的磁極不論在中心區域或邊緣區域,均為單列排布,提高了磁控管旋轉產生的磁場的場強分佈均勻性,並且,沿同一螺旋狀曲線排列的磁極中位於螺旋狀曲線中心的至少一個磁極的極性與同一曲線上其他磁極的極性相反,保證了磁控管中心區域磁場的場強分佈均勻性,進而提高了磁控濺射反應中薄膜沉積速率的均勻性以及最終得到薄膜的厚度均勻性,提高了晶圓的產品良率。
作為本發明的第三個方面,提供一種磁控濺射方法,應用于本發明實施例提供的磁控濺射設備,如圖13所示,該方法包括:
第一製程步驟S1,向製程腔室中通入氧化濺射氣體;
第二製程步驟S2,將氧化濺射氣體激發為等離子體,同時控制磁控濺射組件向製程腔室中施加磁場,進行磁控濺射,生成氧化物薄膜;
第三製程步驟S3,向製程腔室中通入還原氣體,以降低氧化物薄膜邊緣的氧含量。
本發明提供的磁控濺射方法通過本發明實施例提供的磁控濺射設備實現,該磁控濺射設備中,多個磁極在平行於靶材表面的平面上的正投影沿多條螺旋狀曲線依次排列,且沿任一螺旋狀曲線排列的磁極的極性與沿相鄰螺旋狀曲線排列的磁極的極性相反,這種沿螺旋狀曲線排列的方式可以使同極性的磁極不論在中心區域或邊緣區域,均為單列排布,提高了磁控管旋轉產生的磁場的場強分佈均勻性,並且,沿同一螺旋狀曲線排列的磁極中位於螺旋狀曲線中心的至少一個磁極的極性與同一曲線上其他磁極的極性相反,保證了磁控管中心區域磁場的場強分佈均勻性,進而提高了磁控濺射反應中薄膜沉積速率的均勻性以及最終得到薄膜的厚度均勻性,提高了晶圓的產品良率。
並且,在本發明提供的磁控濺射方法中,氧化濺射氣體與靶材反應生成靶材材料的氧化物後,第三製程步驟S3中通入的還原氣體能夠與化合物中的氧元素進行反應,從而消耗該化合物中的氧元素含量,使氧原子在薄膜內的分佈發生改變,提高薄膜組分的均勻性(在物理氣相沉積製程設備中,製程腔室普遍為邊緣進氣,步驟S3中還原氣體與邊緣區域的氧化物發生反應的速率高於與中心區域的氧化物發生反應的速率,從而進一步降低邊緣區域與中心區域的氧含量差異,提高氧含量均勻性),提高晶圓上的芯片器件的產品良率。
在本發明的一些實施例中,如,需形成超過10納米厚度的氧化物薄膜時,可以循環執行第一製程步驟S1、第二製程步驟S2和第三製程步驟S3,直至氧化物薄膜的厚度達到預設的目標厚度。
作為本發明的一種可選實施方式,氧化濺射氣體可以包括氧氣,還原氣體包括氫氣。在氧化濺射氣體氧化金屬靶材生成靶材金屬的金屬氧化物後,例如,在氧氣氧化鋁靶材生成鋁的氧化物(AlO X)後,維持腔室製程壓力及承載盤溫度狀態,並向製程腔室中通入氫氣,利用氫氣的還原性使薄膜內的氧原子分佈發生改變,實現二次氧化,降低薄膜邊緣的氧含量,提高薄膜組分的均勻性。
在本發明的一些實施例中,氧化濺射氣體還可以包括惰性氣體,如,氧化濺射氣體可以包括氧氣與氬氣(Ar)。
為適應不同種類氧化物薄膜的製程需求,優選地,還原氣體也可以為混合氣體,例如,還原氣體可以包括氫氣與氧氣,在第三製程步驟S3中,可針對不同種類的氧化物薄膜,通過調節氫氣與氧氣之間的組份比例改變還原氣體的還原能力,從而對薄膜邊緣的還原反應速率進行精確控制。
本發明實施例對各製程步驟中製程腔室內部的壓力不作具體限定,例如,作為本發明的一種可選實施方式,在第一製程步驟S1中,製程腔室中的壓力為3~20mTorr;在第三製程步驟S3中,製程腔室內的壓力大於等於50mTorr,且小於等於500mTorr(優選為200mTorr)。
本發明實施例通過製程方法的協同優化,提高了整個薄膜的性能和製程穩定性。如圖9所示,採用本發明實施例提供的磁控濺射組件向靶材提供磁場時,靶材進行濺射反應後形成的膜層中心區域的厚度降低,這樣的厚度分佈輪廓更有利於提高中心區域在後續濕法刻蝕製程中的製程速率(圖10所示為採用沉積得到的薄膜再進行濕法刻蝕後得到的膜層的厚度分佈情況)。
如圖11所示,採用本發明實施例提供的磁控濺射方案進行濺射反應獲得的薄膜厚度的不均勻度小於2%,如圖12所示,經後續濕法蝕刻得到膜層的厚度不均勻度小於3%,膜層成分的均勻性等關鍵製程指標也得到了極大的改善,此外,由於磁控濺射反應中靶材各處的腐蝕速率更加均勻,靶材的壽命也得到了提高,本發明實施例提供的磁控濺射方案可以將靶材壽命從700千瓦時提升至2000千瓦時,降低了磁控濺射反應的製程成本,提高了設備的整體性能。
為便於本領域技術人員理解,本發明還提供上述製程步驟的一種具體實施例:
第一步(第一製程步驟S1),控制承載盤升降至製程位置,通入O2(或Ar與O2的混合氣體),O2的流量為0~500sccm(優選為50~200sccm,Ar流量為0 ~500sccm,優選為0~200sccm),使製程腔室中的壓力維持在3~20mTorr。
第二步(第二製程步驟S2),保持製程腔室中的壓力不變,控制磁控濺射組件向製程腔室中的靶材提供磁場,同時控制直流電源(DC)向靶材提供直流電壓,利用等離子體對靶材表面進行轟擊產生的鋁原子和氧原子在晶圓表面反應形成AlO x薄膜(直流功率為0~20000W,優選為1000~10000W)。
第三步(第三製程步驟S3),繼續通入H2(或O2與H2的混合氣體),製程腔室內的壓力維持在50-500mTorr(優選為200mTorr),製程過程中承載盤處於高溫狀態,利用H2使薄膜內的氧原子分佈發生改變。
需要說明的是,本發明實施例提供的磁控濺射方案不僅適用于形成AlO x薄膜的製程,也適用於製備其他材料薄膜的磁控濺射反應,例如,二氧化鈦(TiO2)、二氧化矽(SiO2)、鉿的氧化物(HfO)、鉭的氧化物(TaO)、氮氧化鈦(TiON)、氮氧化矽(SiON)、氮氧化鉿(HfON)、氮氧化鉭(TaON)等。
前述內容概括數項實施例之特徵,使得熟習此項技術者可更佳地理解本揭露之態樣。熟習此項技術者應瞭解,其等可容易地使用本揭露作為用於設計或修改用於實行本文中介紹之實施例之相同目的及/或達成相同優點之其他製程及結構之一基礎。熟習此項技術者亦應瞭解,此等等效構造不背離本揭露之精神及範疇,且其等可在不背離本揭露之精神及範疇之情況下在本文中作出各種改變、置換及更改。
1:製程腔室 2:真空泵系統 3:流量計 4:氣體源 5:承載盤 6:靶材 7:上密封 8:去離子水 9:磁控管 12:馬達 100:第一螺旋狀曲線 120a:第二子曲線的自由端 110:第一子曲線 120:第二子曲線 200:第二螺旋狀曲線 210:第三子曲線 220:第四子曲線 230:第五子曲線
當結合附圖閱讀時,從以下詳細描述最佳理解本揭露之態樣。應注意,根據產業中之標準實踐,各種構件未按比例繪製。事實上,為了論述的清楚起見可任意增大或減小各種構件之尺寸。 圖1是一種現有的磁控濺射設備的結構示意圖; 圖2是一種現有的磁控濺射設備中磁控管的形狀示意圖; 圖3是現有的磁控濺射設備中磁控管的磁極分佈情況示意圖; 圖4是本發明實施例提供的磁控濺射組件中磁控管的磁極分佈情況示意圖; 圖5是本發明實施例提供的磁控濺射組件中磁控管的磁極分佈情況示意圖; 圖6是本發明實施例提供的磁控濺射組件中磁控管的磁極分佈情況示意圖; 圖7是本發明實施例提供的磁控濺射組件對應的靶材上的腐蝕軌道示意圖; 圖8是本發明實施例提供的磁控濺射設備進行磁控濺射反應時靶材表面磁場場強分佈情況與現有技術的對比示意圖; 圖9是本發明實施例提供的磁控濺射設備進行磁控濺射反應得到薄膜厚度分佈情況與現有技術的對比示意圖; 圖10是本發明實施例提供的磁控濺射設備進行磁控濺射反應得到薄膜進行濕法刻蝕後的厚度分佈情況與現有技術的對比示意圖; 圖11是本發明實施例提供的磁控濺射設備以及現有的磁控濺射設備中進行多次磁控濺射反應時所得到薄膜厚度的不均勻度與靶材損耗時間之間的對應關係示意圖; 圖12是本發明實施例提供的磁控濺射設備以及現有的磁控濺射設備中進行多次磁控濺射反應時所得到薄膜進行濕法刻蝕後厚度的不均勻度與靶材損耗時間之間的對應關係示意圖; 圖13是本發明實施例提供的磁控濺射方法的流程示意圖。

Claims (9)

  1. 一種半導體製程設備中的磁控濺射組件,包括可旋轉的一磁控管,其中,該磁控管包括多個磁極,多個該磁極在平行於一靶材表面的平面上的一正投影沿多條互相嵌套的螺旋狀曲線依次排列,沿任一螺旋狀曲線排列的多個磁極的極性與沿相鄰的螺旋狀曲線排列的多個磁極的極性相反,且沿任一螺旋狀曲線排列的多個磁極中位於該螺旋狀曲線中心的至少一個磁極的極性與其他磁極的極性相反,其中該多個磁極的每一者與該磁控管的旋轉中軸線不接觸。
  2. 如請求項1所述的磁控濺射組件,其中,該磁控濺射組件包括一第一磁極組和一第二磁極組,該第一磁極組中的多個該磁極在平行於該靶材表面的平面上的該正投影一沿第一螺旋狀曲線依次排列,該第二磁極組中的多個該磁極在平行於該靶材表面的平面上的該正投影沿一第二螺旋狀曲線依次排列;該第一螺旋狀曲線套設在該第二螺旋狀曲線中,該第一磁極組中多個該磁極的極性與該第二磁極組中多個該磁極的極性相反,且該第一磁極組中位於該第一螺旋狀曲線中心的至少一個磁極的極性與該第一磁極組中其它磁極的極性相反,該第二磁極組中位於該第二螺旋狀曲線中心的至少一個磁極的極性與該第二磁極組中其它磁極的極性相反。
  3. 如請求項2所述的磁控濺射組件,其中,該第一磁極組中位於該第一螺旋狀曲線中心的至少一個磁極的極性為南極,該第一磁極組中其它磁極 的極性為北極,該第二磁極組中位於該第二螺旋狀曲線中心的至少一個磁極的極性為北極,該第二磁極組中其它磁極的極性為南極。
  4. 如請求項2所述的磁控濺射組件,其中,該磁控濺射組件還包括一固定盤和一旋轉驅動機構,其中,該磁控管設置於該固定盤上,該旋轉驅動機構與該固定盤連接,用於驅動該固定盤繞該固定盤的軸線旋轉。
  5. 一種磁控濺射設備,包括一製程腔室和設置在該製程腔室上的磁控濺射組件,該磁控濺射組件用於向該製程腔室中施加磁場,其中,該磁控濺射組件為請求項1至4中任意一項所述的磁控濺射組件。
  6. 一種磁控濺射方法,應用於如請求項5所述的磁控濺射設備,其中,該磁控濺射方法包括:一第一製程步驟,向該製程腔室中通入一氧化濺射氣體;一第二製程步驟,將該氧化濺射氣體激發為一等離子體,同時控制該磁控濺射組件向該製程腔室中施加磁場,進行磁控濺射,生成一氧化物薄膜;一第三製程步驟,向該製程腔室中通入一還原氣體,以降低該氧化物薄膜邊緣的氧含量。
  7. 如請求項6所述的磁控濺射方法,其中,該氧化濺射氣體包括氧氣,該還原氣體包括氫氣。
  8. 如請求項6所述的磁控濺射方法,其中,在該第三製程步驟中,該製程腔室中的壓力大於等於50mTorr,且小於等於500mTorr。
  9. 如請求項6所述的磁控濺射方法,循環執行該第一製程步驟、該第二製程步驟和該第三製程步驟,直至該氧化物薄膜的厚度達到預設的目標厚度。
TW111120111A 2021-06-21 2022-05-30 磁控濺射組件、磁控濺射設備及磁控濺射方法 TWI828169B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110684599.5 2021-06-21
CN202110684599.5A CN113699495B (zh) 2021-06-21 2021-06-21 磁控溅射组件、磁控溅射设备及磁控溅射方法

Publications (2)

Publication Number Publication Date
TW202300680A TW202300680A (zh) 2023-01-01
TWI828169B true TWI828169B (zh) 2024-01-01

Family

ID=78648154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120111A TWI828169B (zh) 2021-06-21 2022-05-30 磁控濺射組件、磁控濺射設備及磁控濺射方法

Country Status (3)

Country Link
CN (1) CN113699495B (zh)
TW (1) TWI828169B (zh)
WO (1) WO2022267833A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699495B (zh) * 2021-06-21 2023-12-22 北京北方华创微电子装备有限公司 磁控溅射组件、磁控溅射设备及磁控溅射方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440282B1 (en) * 1999-07-06 2002-08-27 Applied Materials, Inc. Sputtering reactor and method of using an unbalanced magnetron
US20050217992A1 (en) * 2000-02-04 2005-10-06 Unaxis Deutschland Gmbh Magnetron sputtering source and chamber therefor
TW201425629A (zh) * 2012-12-20 2014-07-01 Ap Systems Inc 磁控管以及磁控濺射設備
TWM567264U (zh) * 2018-03-12 2018-09-21 天虹科技股份有限公司 Magnet rotating mechanism of physical vapor deposition reaction chamber

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039101C2 (de) * 1990-12-07 1998-05-28 Leybold Ag Ortsfeste Magnetron-Zerstäubungskathode für Vakuumbeschichtungsanlagen
JP3316878B2 (ja) * 1992-07-28 2002-08-19 松下電器産業株式会社 スパッタリング電極
US6306265B1 (en) * 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
CN102315064B (zh) * 2010-07-02 2014-07-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管及应用该磁控管的薄膜沉积处理设备
US20120027954A1 (en) * 2010-07-30 2012-02-02 Applied Materials, Inc. Magnet for physical vapor deposition processes to produce thin films having low resistivity and non-uniformity
CN102789941B (zh) * 2011-05-18 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管、磁控管的制造方法及物理沉积室
CN102938358B (zh) * 2011-08-15 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 磁控管、溅射腔室装置和溅射设备
CN103177916B (zh) * 2011-12-20 2015-09-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管及磁控溅射设备
JP6018757B2 (ja) * 2012-01-18 2016-11-02 東京エレクトロン株式会社 基板処理装置
KR20130118095A (ko) * 2012-04-19 2013-10-29 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
CN104810228B (zh) * 2014-01-23 2017-10-13 北京北方华创微电子装备有限公司 螺旋形磁控管及磁控溅射设备
CN107090573A (zh) * 2016-02-17 2017-08-25 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控元件和磁控溅射装置
US20190362951A1 (en) * 2018-05-25 2019-11-28 Cheng-Feng Li Pvd reactor with magnetic rotation mechanism
CN113699495B (zh) * 2021-06-21 2023-12-22 北京北方华创微电子装备有限公司 磁控溅射组件、磁控溅射设备及磁控溅射方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440282B1 (en) * 1999-07-06 2002-08-27 Applied Materials, Inc. Sputtering reactor and method of using an unbalanced magnetron
US20050217992A1 (en) * 2000-02-04 2005-10-06 Unaxis Deutschland Gmbh Magnetron sputtering source and chamber therefor
TW201425629A (zh) * 2012-12-20 2014-07-01 Ap Systems Inc 磁控管以及磁控濺射設備
TWM567264U (zh) * 2018-03-12 2018-09-21 天虹科技股份有限公司 Magnet rotating mechanism of physical vapor deposition reaction chamber

Also Published As

Publication number Publication date
TW202300680A (zh) 2023-01-01
WO2022267833A1 (zh) 2022-12-29
CN113699495B (zh) 2023-12-22
CN113699495A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
US20100133092A1 (en) Sputtering method and sputtering apparatus
TWI414617B (zh) Film forming apparatus and thin film forming method
JPH07166360A (ja) 小寸法の高密度のステップ形状を有する基体上に反応ガスプラズマから膜を付着させる方法
CN112376024B (zh) 一种氧化物薄膜的制备方法
TWI828169B (zh) 磁控濺射組件、磁控濺射設備及磁控濺射方法
US20150056816A1 (en) Semiconductor device manufacturing method and computer-readable storage medium
US9746678B2 (en) Light wave separation lattices and methods of forming light wave separation lattices
JPWO2010004890A1 (ja) 薄膜の成膜方法
WO2022217964A1 (zh) 基于铁电材料的半导体掺杂方法
TW202344703A (zh) 半導體製程設備及形成疊層薄膜結構的方法
JPH11168090A (ja) 半導体製造方法
TWI544543B (zh) A manufacturing method of a semiconductor device, and a computer recording medium
CN111139439B (zh) 一种在大面积衬底上磁控溅射制备薄膜的方法
JP3908898B2 (ja) 炭素系材料のエッチング方法
TWI297916B (zh)
JP5013053B2 (ja) タンタル酸化物膜の成膜方法
JP3615188B2 (ja) 半導体装置の製造方法
JP4350120B2 (ja) ダイヤモンドのエッチング方法
JP4359674B2 (ja) 光触媒酸化チタン膜の高速成膜方法
US20230343598A1 (en) Method For Improving Etch Rate And Critical Dimension Uniformity When Etching High Aspect Ratio Features Within A Hard Mask Layer
WO2023166987A1 (ja) ハードマスク、基板処理方法、およびハードマスクの除去方法
JP5234773B2 (ja) 酸化チタン膜の形成方法
JP2006237640A (ja) 半導体製造方法
JP2684868B2 (ja) ドライエッチング方法
KR20220137544A (ko) 에칭 방법