JP2017514755A - 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機 - Google Patents

個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機 Download PDF

Info

Publication number
JP2017514755A
JP2017514755A JP2017509607A JP2017509607A JP2017514755A JP 2017514755 A JP2017514755 A JP 2017514755A JP 2017509607 A JP2017509607 A JP 2017509607A JP 2017509607 A JP2017509607 A JP 2017509607A JP 2017514755 A JP2017514755 A JP 2017514755A
Authority
JP
Japan
Prior art keywords
rotor
electric aircraft
autopilot
aircraft
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017509607A
Other languages
English (en)
Other versions
JP2017514755A5 (ja
JP6567652B2 (ja
Inventor
モリソン、ブライアン、ディー.
Original Assignee
アラカイ テクノロジーズ コーポレーション
アラカイ テクノロジーズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アラカイ テクノロジーズ コーポレーション, アラカイ テクノロジーズ コーポレーション filed Critical アラカイ テクノロジーズ コーポレーション
Publication of JP2017514755A publication Critical patent/JP2017514755A/ja
Publication of JP2017514755A5 publication Critical patent/JP2017514755A5/ja
Application granted granted Critical
Publication of JP6567652B2 publication Critical patent/JP6567652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64D27/026
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/32Supply or distribution of electrical power generated by fuel cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0055Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements
    • G05D1/0077Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements using redundant signals or controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D2041/005Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

全電気式低排出またはゼロ排出のリフトおよび推進システム、ナビゲーションおよびガイダンスのための、統合化された「空のハイウェイ」アビオニクスシステム、オペレータに「ドライブバイワイヤ」スタイルの方向制御を提供するための、タブレットに基づく動作コマンドまたはミッション計画システム、並びに交通認識、気象の表示、および衝突回避を提供するための自動搭載能力を有する、フルスケールの垂直離着陸式有人または無人航空機のための方法および装置。プログラムされた三重冗長デジタルオートパイロットコンピュータによる自動コンピュータ監視は、ピッチ、バンク、ヨー、およびエレベーションを生成するために各モーターコントローラおよびモーターを制御し、一方で、同時に、制御の喪失または車両安定性の喪失につながり得る潜在的に有害な行為をパイロットが不用意に行うことから保護するために、パイロットが命令することができる飛行レジームを制限する。モーター制御コマンドを通知するために状態測定の結果を使用することによって、本方法およびシステムは、車両の動作の簡単さ、信頼性、および安全性に寄与する。

Description

本出願は、双方の出願に共通の全ての主題について、2014年5月1日に出願された同時係属の米国仮出願第61/987,009号に対する優先権、およびその利益を主張するものである。上記仮出願の開示は、参照によりその全体が本明細書に組み込まれる。
本発明は、フルスケールのハイブリッド電気駆動式(低排出または無排出)マルチローター航空機の設計、実現、および動作を目的とする。搭載型燃料電池および/またはモーター/発電機駆動式ハイブリッド電気マルチローター航空機に特有であるが排他的ではない用途が見出され、モーター発電機、燃料電池、または他の搭載型電力源が、燃料を電力に変換し、この電力が、次いで、複数の電気モーターを動作させるために使用される。本発明は、縮小スケールまたはモデルの航空機に対して設計されたものではなく、飛行価値を維持するために必要である搭乗客および随意のオペレータの信頼性および安全性に必要な、独特の能力、特徴、冗長性、安全性、および他の特徴を有する。マルチローター航空機は、リモートコマンドまたは予めプログラムされたルートのいずれかに従ってUAVまたはドローンモードでその目的地まで動作させることができ、または、典型的な自動車運転免許に相当する技能を有するオペレータが飛行させるときには、オペレータモードで動作させることができる。
縮小スケールのマルチローター航空機(あるときには、マルチコプターと呼ばれる)は、新しいものではないが、人間の乗客を運搬するといった厳しい条件または要件を意図しない縮小スケールのモデルであり、また、大部分が玩具として、または動作が無線制御リモコンによって制御されている状態での限られた持続時間の監視若しくは航空写真ミッション用に使用される。全部ではないとしても殆どが、バッテリ駆動である。例えば、以下の特許文献1は、特に縮小スケールのマルチコプターに関するものであるが、FAAが認定する乗客運搬を実現するために必要な安全性、構造的特徴、または冗長性特徴に対処していないだけでなく、フォールトトレランスおよび状態変数の解析を伴う実用的な乗客運搬車両を実現するためのいかなるシステムにも対処しておらず、また、搭載して運搬する燃料からそれ自体の電力を発生させるいかなる方法にも対処していない。安全かつ確実に人間の乗客を運搬することができるフルスケールの航空機を提供するための、および米国および外国の空域内で動作するための動力学および健全性の要件は、以前の縮小スケールのモデルの要件と大幅に異なる。
したがって、フルスケールのマルチコプターの実現が説明され、これは、とりわけ、人間の乗客が搭乗した状態での、通勤用、レクレーション用、都市間輸送用、産業用、またはセキュリティ用の用途、および監視用途が見出され、高い信頼性、安全性、簡単さ、および冗長な制御特徴を有する最先端の技術のモーターおよび電子部品、並びにコンピュータ技術に基づき、(単純に、電気化学バッテリに予め貯蔵されたエネルギーを消費することとは対照的に)それ自体の電力を発生させる搭載能力を有し、先進のアビオニクスおよび航空管制技法と結び付けられる。
今日では、多数の人々の移動は、飛行機によって起こる。500マイル以上の目的地の場合、飛行機は、歴史的に最も高速な移動モードであり、また、乗客マイルあたりの負傷に関して最も安全である。しかしながら、米国内には、約200のハブアンドスポークの空港だけしか存在せず、人口の大部分が空港から30分以上離れた場所に存在する。更に、米国全体を通して、5,300を超える小規模で管制塔のある地域空港、および19,000の限定的な管制塔を有する、または管制塔を全く有しない離着陸場があり、97%を超える人口が離着陸場から15〜30分以内の場所に存在する。これまで数多く述べられてきたように、これは、殆ど活用されていない能力である。
21世紀では、3次元空域におけるより分散した非集中型の移動を可能にするために、進化しつつある航空宇宙システム(NAS)の先進技術を適用する機会を利用することができ、既存のハブアンドスポークの空港システムの制約、および2次元の州間および通勤高速道路システムの密集を解消する。
ボストン、ヒューストン、ロサンゼルスなどの数多くの大都市、および他の主要な大都市圏は、大動脈が既に容量一杯であるか、または容量を超えた状態であり、また、住宅および既存の企業が拡張または更なる建設に対する深刻な障害をもたらし、実質的に、通勤交通によって事実上麻痺状態である。NASAは、「Life After Airliners」という一連のプレゼンテーション(以下の非特許文献1および非特許文献2)において、およびNASAのBruce Holmes博士は、個人用航空車両(PAV)の階層的な統合に基づき、短距離の航空移動性を提供するために、オンデマンドの、分解された、分散した、ポイントツーポイントの、および拡張可能な様式で動作する、航空産業の将来に対する事例を作成した(以下の非特許文献3を参照)。かかるシステムは、今日の集中し、集約したハブアンドスポークシステムではなく、21世紀の統合された空域、自動化、および技術に大きく依存する。この階層的なビジョンにおいて第1の、または最も下の層は、小型の個人用航空移動車両または航空機であり、地上輸送の渋滞または高い能力の空港の利用可能性によって制限されることなく、人々がある地点から任意のある地点まで効率的かつ簡単に移動することを可能にする。重要な用件としては、地域に対する騒音の影響を低減または排除すること、車両の自動化、レーダー非装備の空間および管制塔のない場所における動作、推進するための環境保全技術、安全性および信頼性の向上、並びに航空宇宙システム(NAS)または外国の相当物内での統合された動作のための中間航路手順およびシステムが挙げられる。NASAが挙げた最終的な目標は、自動化された自己動作の航空機、および都市間輸送のための炭化水素駆動でない航空機を含む。NASAは、やがて、将来旅行するマイル数のうちの最高45%が個人用航空車両によるものになると予測している。
この発明は、NASAによって確立されたコアビジョンの一部に対処し、本明細書でマルチローター航空機と称されるクリーン燃料の電気マルチローター車両、若しくはeコプター、またはオンデマンドの広域分散させたポイントツーエニイポイントの21世紀の航空移動システムの一部としての航空移動車両の概念および設計を文書化する。車両の動作は、連邦航空局によって識別されるようなクラスEまたはクラスG空域での有視界飛行方式(VFR)の下で動作するときに、簡単で、多くのオペレータが興味を示すものであり、したがって、大部分の通勤状況において、航空交通管制塔とのいかなる無線対話も必要としない。
米国特許出願公開第2012/0083945号公報
Life After Airliners VI、EAA AirVenture 2003、Oshkosh,WI.2003年8月3日 Life After Airliners VII、EAA AirVenture 2004、Oshkosh,WI.2004年7月30日 Small Aircraft Transportation System−A Vision for 21st Century Transportation Alternatives, Dr.Bruce J.Holmes,NASA Langley Research Center.2002
本発明は、軽量機体を有するフルスケールの垂直離着陸用有人または無人航空機に関するものであり、該航空機は、LPG、CNG、または水素などの燃料から電気を発生させるためのシステムと、軽量マルチローター上部トラスまたはフレーム構造に載置される電気リフトおよび推進システムと、各々がプロペラまたはローターを駆動するACまたはDCブラシレス電気モーターの逆回転対と、ナビゲーション用の統合された「空のハイウェイ」アビオニクスシステムと、モーターを管理し、車両安定性を維持するための冗長オートパイロットシステムと、ルートを予め計画する能力をオペレータに提供し、オートパイロットを介して、またはタブレットコンピュータの運動を通してスラスト、ピッチ、ロール、およびヨーを直接制御して目的まで飛行するシステムを有する、タブレットコンピュータに基づくミッション計画および車両制御システムと、交通および状況の認識、気象の表示、および衝突回避警告を提供するためのADSBまたはADSBのような能力とを含む。電力は、電圧および電流を発生させるための1つ以上の搭載型モーター発電機、または電圧および電流を発生させるための搭載型燃料電池、電気の発生を監視および制御する電子部品、および各モーターへの命令された電圧および電流を制御し、その性能(とりわけ、結果として生じるRPM、電流、トルク、および温度などのメトリクスを含むことができる)を測定するためのモーターコントローラによって提供される。マルチローター電気航空機として、本車両は、標準的な「固定翼」、または「ヘリコプター」、または「軽飛行機」のカテゴリに分類されず、連邦航空局および外国の規制当局と協同して設けられる新しい分類スキームが必要になり得る。
本車両は、尾部ローターを有さず、また、リフトが、ローターとも称される、直接接続された複数対の逆回転プロペラを駆動する、複数対の小型電気モーターによって提供される。モーターの各対上での逆回転プロペラの使用は、そうしなければ回転慣性によって発生されるトルクを相殺する。プログラムされた冗長デジタルオートパイロットコンピュータによる自動コンピュータモニタリングは、ピッチ、バンク、ヨー、およびエレベーションを制御し、一方で、搭載型慣性センサを同時に使用して、車両の安定性を維持し、また、パイロットまたはルート計画ソフトウェアが命令することができる飛行レジームを制限して、不慮の急なバンク若しくはピッチから、または制御不能につながり得る他の潜在的に危険な行為から車両を保護する。車両状態に関する感知したパラメータ値は、推奨される車両動作パラメータを超えそうなときを検出するために使用される。モーター制御コマンドを通知するために車両状態測定からのフィードバックを使用することによって、および複数の冗長オートパイロットコンピュータの中で投票することによって、本方法およびシステムは、車両の動作の簡単さ、安定性、信頼性、および安全性に寄与する。
このクラスの車両の数多くの用途の中には、オペレータがより複雑な従来の航空機またはヘリコプターに必要である操縦スキルのレベルを有することを必要としない、通勤、地域交通、エアタクシー、およびレクリエーションを含む、次世代の個人輸送がある。この進化は、個人用航空車両(PAV)または航空移動車両(AMV)と称される。本車両はまた、法執行機関、国境警備、軍事監視、緊急支援物資(災害復旧)、および商業ユーザに対して有用になる、空中監視、セキュリティおよび調査、警備、および供給品送達のための自立または有人の応用例も有する。
本車両には、冗長オートパイロットコンピュータが装備され、オペレータによる(スロットルおよびジョイスティックコマンドを模倣するようにタブレットコンピュータの動作を使用した)制御入力を受け付け、そして、電気モーターコントローラへのコマンド、場所、地形、および「空のハイウェイ」を提供するための先進のアビオニクスおよびGPS装置、並びに一時的ユーザであっても短期のデモンストレーション飛行の後にシステムを習得することを可能にする、簡単でゲームのような制御システムへのコマンドを管理する。タブレットコンピュータは、オペレータにルートを予め計画する能力を与えるために、および、オートパイロットを介して、またはタブレットコンピュータ自体の運動を通してスラスト、ピッチ、ロール、およびヨーを手動で制御して目的地まで飛行するシステムを有するために、ミッション計画および車両制御システム能力を提供する。制御入力は、代替的に、ユーザ選好に応じて、垂直リフト(プロペラRPM)制御のためのスロットル、並びにピッチ(ノーズの上/下傾斜角度)およびバンク(左または右への傾斜角度)制御のためのジョイスティック、またはピッチ、バンク、およびスラストを単一の制御要素に組み合わせる3軸ジョイスティックを使用して行うことができる。モーター管理コンピュータは、オペレータまたはオートパイロットの指示によって制御入力を測定し、これを、既知の性能テーブルに従って、個々の電気モーターのコントローラへのコマンドに変換し、次いで、該コマンドに対するモーターの反応を監督し、そして、車両の動作を所望のエンベロープ内に維持することを確実にするために、車両の状態データ(ピッチ、バンク、ヨー、ピッチレート、バンクレート、ヨーレート、垂直加速度、横加速度、縦加速度、GPS速度、垂直速度、飛行速度、および他の因子)を監視する。
本発明の下の説明は、添付図面を参照する。
本発明を実践するための装置を示すブロック線図である。 システム全体に関する冗長モーター管理コンピュータおよび投票の重要な特徴を詳述する、詳細なブロック図である。 フォールトトレラント、三重冗長投票制御、および通信手段を中心とした、より詳細なブロック図である。 3つのオートパイロットコンピュータからの複数の(典型的には、モーターあたり1つに、任意の他のサーボシステム毎に各1つを加えたもの)コマンドストリーム出力を投票して、各オートパイロットの内部健全性および状態のシステムの知識を使用して、単一の組の複数のコマンドストリームを生成する、1つの方法を例示する図である。 1つの例示的な実施形態に従って本発明を例示するフローチャートである。 図1のシステムの「空のハイウェイ」動作に必要なデータを提示するために使用される、あるタイプのサードパーティのディスプレイ表現の一実施例を示す図である。 経由地点を実現するためにGPS座標および高度を使用して、起点と目的地との間の車両のルートを計画し、ルートおよびミッションを説明するデータをオートパイロットコンピュータに提供し、次いで、許可されたときに該ミッションを実現するために使用される、ミッション制御タブレットコンピュータの一実施例を示す図である。 本発明のシステムの様々な制御インターフェース構成要素の電気的およびシステム接続性を示す図である。 本発明のシステムの様々なモーター制御構成要素の電気的およびシステム接続性を示す図である。 本発明の一実施形態による航空機のビューを示す図である。 図10の航空機のトラス構造の代替のビューを示す図である。
全体的な理解を提供するために、以下、ある特定の実例となる実施形態を説明する。しかしながら、当業者には、本明細書で説明されるシステムおよび方法が、他の適切な応用例のためのシステムおよび方法を提供するように適合され得ること、および修正され得ること、並びに、本明細書で説明されるシステムおよび方法の範囲から逸脱することなく、他の追加および修正が行われ得ることが理解されるであろう。
別途指定されない限り、例示される実施形態は、ある特定の実施形態の様々な詳細の例示的な特徴を提供するものとして理解することができ、したがって、別途指定されない限り、実例の特徴、構成要素、モジュール、および/または態様は、別様には、開示されるシステムまたは方法から逸脱することなく、組み合わせること、分離させること、交換すること、および/または再配設することができる。
図1は、本発明の教示を実行するために用いることができる1つのタイプのシステムをブロック図の形式で描写する。ここで、この1人または2人用の個人用航空車両(PAV)または無人航空車両(UAV)は、プライマリ飛行ディスプレイなどの搭載型装置12、自動従属監視B(ADSB)送信機/受信機14、典型的に12内に組み込まれるグローバルポジショニングシステム(GPS)受信機、燃料計16、対気速度および垂直速度を算出するための大気データコンピュータ38、ミッション制御タブレットコンピュータ36、およびミッション計画ソフトウェア34、並びに冗長飛行コンピュータ(オートパイロットコンピュータ32とも称される)を含み、これらの全ては、航空機の動作および位置を監視するか、またはエンジンおよび発電機セット、並びに燃料システムを監視および制御し、また、ディスプレイの提示を提供し、該提示は、高度、姿勢、対地速度、位置、局所地形、推奨される飛行経路、気象データ、残りの燃料および飛行時間、モーターの電圧および電流の状態、意図する目的地、並びに良好で安全な飛行に必要な他の情報などの、システムの動作および航空機の状態データの種々の態様を表す。エンジンおよび発電機セットは、電気を発生させるために水素駆動式燃料電池サブシステムと容易に置き換えることができ、該燃料電池サブシステムは、貯蔵された水素と圧縮空気とを組み合わせて、水と熱だけの副産物を伴って電気を発生させ、それによって、エンジンおよび発電機セットまたは燃料電池18を形成する。エンジンおよび発電機セットまたは燃料電池18はまた、エンジンおよび発電機セットまたは燃料電池18の効率および/または性能を最適にするために、燃料ポンプおよび冷却システム44、並びにエンジンスーパーチャージャー46も含むことができる。当業者によって認識されるように、エンジンおよび発電機セットはまた、バッテリサブシステムと置き換えることもでき、該バッテリシステムは、高電圧バッテリアレイ、バッテリ監視および充電器サブシステムで構成されるが、かかる構成は、燃料電池に基づくものではない。この開示は、電力発生システム並びに貯蔵エネルギーバッテリシステムのどちらの種類にも対処することを意図する。例示の目的で、本説明は、燃料電池の形態の発電の燃料電池を中心とする。
車両状態(ピッチ、バンク、対気速度、垂直速度、および高度)は、
a)オペレータによって、a1)入力デバイスとしてミッション制御タブレットコンピュータ36を使用する物理的動作およびコマンド、またはa2)ミッション制御タブレット36およびミッション計画ソフトウェア34を使用して選択され、予めプログラムされた、予め計画されたミッションルートのいずれかを使用して、または
b)ミッション制御タブレットコンピュータ36およびミッション計画ソフトウェア34を使用して選択され、予めプログラムされた、予め計画されたミッションルートを使用するUAVモードで、
命令される。
いずれの事例においても、ミッション制御タブレットコンピュータ36は、シリアルデータリンクを通じて(この実施例では、例えば10〜30ミリ秒の「フレーム」内に含まれる、1.0〜2.0ミリ秒の間で変動するパルス幅によって表される、指定されたコマンド情報を搬送するサーボ制御パルスの一連の繰り返しを使用して)、オートパイロットコンピュータ32および投票者42に、指定されたルートまたは位置コマンドセットを伝送する。コマンドデータの複数の「チャネル」は、各「フレーム」内に含めることができ、各最大パルス幅が、次のチャネルのパルスを開始することができる前には、いかなる出力もされない(典型的には、ゼロボルトまたは論理ゼロの)期間を有しなければならないという唯一の注意を伴う。このようにして、コマンド情報の複数のチャネルは、各フレーム内で単一のシリアルパルスのストリーム上へと多重化される。フレーム内の各パルスのパラメータは、最小パルス幅、最大パルス幅、および周期的繰り返しレートを有するものである。モーターのRPMは、制御ワイヤに印加されるパルスの持続時間によって決定される。モーターのRPMは、信号のデューティサイクルまたは繰り返しレートによってではなく、指定されたパルスの持続時間によって決定されることに留意されたい。オートパイロットは、20ms毎にパルスを確認するものと予期することができるが、これは、システム要件によってより短く、またはより長くなり得る。フレーム内の各チャネルのパルスの幅は、対応するモーターの回転がどのくらい速いのかを決定する。例えば、1.2ms未満のパルスは何でも、「モーターオフ」または0(ゼロ)RPMとして予めプログラムすることができ、1.2ms〜最高2.0msの範囲のパルス幅は、20%のRPM〜100%のRPMまでモーターに比例的に命令することになる。モーターの物理的制約が制御されていると仮定すると、パルス幅と結果として生じるモーターRPMとの間の厳密な関係は、各システムのプログラミングの関数となる。
次いで、各オートパイロットの受信機は、ソフトウェアアルゴリズムを使用して、タブレットコンピュータまたは代替の制御手段からのチャネルコマンドに関連する、受信したチャネルパルス(この実施例では、ピッチ、バンク、およびヨー、並びにrpmなどの制御入力を表す1組のパルス幅)を必要な出力に変換し、複数の(この実施例では、6つの)モーターコントローラ24、モーター、およびプロペラ29を制御して、命令された車両の動作を達成する。コマンドは、送信機と受信機との間で、直接有線によって、またはセキュアなRF(無線)信号を通じて伝送することができる。オートパイロットはまた、ピッチ、バンク、ヨー、加速度などの他の車両状態情報を測定し、車両の安定性を維持する役割も果たす。
オートパイロットと複数のモーターコントローラ24との間のコマンドインターフェースは、装置セットによって異なり、また、可変DC電圧、可変抵抗、CAN若しくは他のシリアルネットワークコマンド、RS−232若しくは他のシリアルデータコマンド、またはPWM(パルス幅変調)シリアルパルスストリーム、または当業者に明らかな他のインターフェース規格などの、各モーターコントローラ24に対する信号オプションを必要とする。オートパイロットコンピュータ32内で動作する制御アルゴリズムは、必要な状態分析、比較を行い、個々のモーターコントローラ24に対して、結果として生じるコマンドを発生させ、そして、結果として生じる車両状態および安定性を監視する。投票手段42は、3つのオートパイロットコンピュータ32のうちのどの2つが同意しているのかを決定し、投票動作を自動的に行って、適切なオートパイロットコンピュータ32の出力をモーターコントローラ24に接続する。
代替の制御の実施形態において、命令された車両の動作およびエンジンrpmコマンドはまた、1対のジョイスティックおよび無線制御の航空機を制御するために使用されるものに類似するスロットルによって、更には、従来のサイドアームコントローラおよび自動車のフットペダルに類似するスロットルによって組み込むこともでき、ジョイスティック/サイドアームコントローラおよびスロットルは、命令された動作を示す示度(電位差計、ホール効果センサ、または回転式可変差動変圧器(RVDT)とすることができる)を提供し、該示度は、次いで、適切なメッセージフォーマットに翻訳し、オートパイロットコンピュータ32に伝送することができ、それによって、複数のモーターおよびプロペラ29を制御するためにしようすることができる。サイドアームコントローラまたはジョイスティックはまた、左右および前後の動作を行うことができる「ステアリングホイール」または制御ヨークに組み込むこともでき、2軸ジョイスティックまたは制御ヨークは、ピッチコマンド(上昇または下降)およびバンクコマンド(左側上昇または左側下降)を示す、独立した2組の単一または二重の冗長可変電圧または電位差計の設定を提供する。
複数のモーターおよびプロペラ29のモーターは、好ましい実施形態において、ブラシレス同期3相ACまたはDCモーターであり、航空機のモーターとして動作することができ、空冷式若しくは水冷式、またはその両方である。
システム動作の全体を通して、車両の制御および動作は、認められた耐空性基準に対して人間の生命を保護するために必要とされる安全性、信頼性、性能、および冗長手段とともに行われる。
車両を動作させるための電気エネルギーは、エンジン発電機セットまたは燃料電池18から導出され、高電流ダイオードまたは電界効果トランジスタ(FET)20および回路遮断器902(図9に更に詳細に示す)を通して、モーターコントローラ24に電圧および電流を提供する。高電流接触器904は、自動車のイグニッションスイッチに類似する車両キースイッチ40の制御の下で、係合および係合解除され、電圧をスターター/発電機26に印加して、エンジン発電機を始動し、電気電力を生成する。例えば、高電流接触器904は、基本的に、車両キースイッチ40によって制御され、電流がスターター/発電機26に流れることを可能にする、大型真空リレーである。本発明の例示的な一実施形態によれば、スターター/発電機26はまた、航空機のアビオニックシステムにも電力を供給する。モーターコントローラ24は、それぞれが個々に必要な電圧および電流を管理して、各モーターおよびプロペラの組み合わせ28によって生成される所望のRPMおよびトルク(集合的にスラスト)を達成する。1車両あたりのモーターコントローラ24およびモーター/プロペラの組み合わせ28の数は、車両のアーキテクチャ、所望のペイロード(重量)、燃料容量、電気モーターのサイズ、重量、および電力、並びに車両の構造に応じて、少なくは6つ、多くは16以上である。好都合には、複数の独立したモーターコントローラ24およびモーターを有するマルチローター車両を実現することは、電流の需要がより少ないより小型のモーターの使用を可能にし、よって、燃料電池は、十分な飛行時間を達成しながら、機能的な航空車両に対する総重量で、必要な電圧および電流を生成することができる。
エンジンおよび発電機セットまたは燃料電池18は、搭載型燃料貯蔵部22によって供給される。起点で、目的地で、または沿道の給油ステーションでマルチローター航空機のタンクに燃料を補給する能力は、車両の有用性および通勤する市民にはなくてはならないものである。好都合には、モーターのエネルギー源を置き換えるために、燃料貯蔵タンクに燃料を補給する能力は、従来の全電気式車両(例えばバッテリ動作の車両)によって必要とされるダウンタイムを低減させる。変形例としては、圧縮天然ガス(CNG)、液化石油ガス(LPG)、航空ガソリン(典型的な航空燃料)、および/または水素(燃料電池バージョン用)によって動作するものが挙げられる。当業者によって認識されるように、エンジンおよび発電機セット18は、LPG、CNG、または航空ガソリン燃料によって駆動することができ、または燃料電池18は、水素によって駆動することができる。故に、エンジンおよび発電機セットまたは燃料電池18は、燃料から電気を作り出して、マルチローター航空機のモーターに電力を提供することができる。好都合には、エンジンおよび発電機セットまたは燃料電池18の使用は、バッテリよりも重量効果が大きく、また、既存のLiイオンバッテリよりも大きいエネルギー密度を貯蔵し、それによって、モーターがリフトを生成するために必要とする作業を低減させる。加えて、水素燃料電池、LPG、CNG、または航空ガソリンの使用は、燃料を消費したときの低減された重量により、モーターが必要とする作業量を低減させる。
全電気式マルチローター車両の性質のため、エンジンおよび発電機セットまたは燃料電池18の代わりに、搭載型高電圧のバッテリおよび再充電サブシステムを担持することも可能であり、搭載型バッテリの再充電を容易にするために外部レセプタクルを有する。いくつかの事例では、長持続時間の無人空中監視、セキュリティ、または他の用途のために、電気的およびデータテザーの終端において車両を動作させることが望ましくなる場合もある。この状況において、電力は、テザーケーブルを介して補充または提供され、制御情報は、本明細書で説明される搭載型システムによって、または地上のコントローラによって動作される双方向性の有線若しくはブロードバンド、または無線若しくはRFネットワークによって提供することができる。
車両のアビオニクス12、14、16、32、34、36、38を動作させ、照明をサポートする電力は、a)エンジンおよび発電機セットまたは燃料電池18によって駆動され、電力をアビオニクスバッテリ27に提供する定電圧スターター発電機26、またはb)エネルギーをアビオニクスバッテリ27に提供するDC−DC変換器、のいずれかによって提供される。DC−DC変換器を使用する場合は、エンジンおよび発電機セットまたは燃料電池18によって生成される高電圧から電力を引き出し、この実施形態では典型的に300VDC〜600VDCの高電圧を、いずれかが典型的に小型航空機システムで使用される電圧である、24Vまたは28Vいずれかの規格にダウンコンバートする。ナビゲーション、ストロボ、および着陸灯は、26および27から電力を引き出し、米国および外国の空域規則の下で、夜間の安全性および動作のための必要な航空機照明を提供する。システム全体の一部としてこれらの補助照明デバイスを制御するために、適切な回路遮断器902およびスイッチ手段が提供される。
複数のモーターおよびプロペラ29のための複数対のモーターは、オートパイロット制御の下で、僅かに異なる量のスラストを生成するために、異なるRPM設定で動作するように命令され、したがって、安定した飛行姿勢を維持するために、オートパイロットの6軸慣性センサからの位置フィードバックを使用して、ピッチモーメント、またはバンクモーメント、またはヨーモーメント、または高度の変化を、またはそれらを全て同時に、航空機に与える。センサデータは、各オートパイロットによって読み出されて、その物理的動作および動作のレートを評価し、次いで、3つ全ての次元における命令された動作と比較して、どのような新しい動作コマンドが必要であるのかを評価する。
当然、全ての航空機が、アビオニクス、計装またはコントローラ、またはモーターの同じ混合物用いるというわけではなく、いくつかの航空機は、この混合物と異なる、またはこの混合物に加えて、装置を含む。例えば、このサイズの全般的な航空機において慣習的な通信または他の小型の補助アビオニクスに望ましくなり得る無線通信は示されていない。混合物がどのようなものであっても、いくつかの組の装置は、オペレータから入力コマンドを受け付け、それらの入力コマンドを複数対の逆回転モーターおよびプロペラ29と異なるスラスト量に翻訳し、したがって、電気モーターを使用する航空機のピッチ、バンク、ヨー、および垂直動作を生成する。アビオニクス、計装、および航空機の現在のおよび意図する場所の表示と組み合わせたときに、この1組の装置は、オペレータが航空機をその意図する目的地まで容易かつ安全に動作させ、案内することを可能にする。
オートパイロットコンピュータ32は、マイクロプロセッサに基づく回路に組み込まれ、また、航空機のデータバス、マルチチャネルサーボコントローラ(入力)35および37、並びにモーターコントローラ(出力)24と通信し、安定性を維持するように慣性および姿勢の測定を行うために必要とされる、様々なインターフェース回路を含む。これは、図2において更に詳述される。加えて、オートパイロットコンピュータ32はまた、後の分析または再生のために、航空機の位置、航空機の状態データ、速度、ピッチ角、バンク角、スラスト、並びに航空機の位置および性能の取り込みに典型的な他のパラメータを、自動的に記録または報告するように構成することもできる。これらの要件を達成するために、該オートパイロットは、組込型航空データコンピュータ(ADC)および組込型慣性測定センサを含むが、これらのデータはまた、小型で別個の独立型ユニットから導出することもできる。オートパイロットは、シングルまたはデュアルコントローラとして動作させることができるが、信頼性および安全性の目的で、好ましい実施形態は、三重冗長オートパイロットを使用し、ユニットは、1つ以上のネットワーク(信頼性および有効性のために、2つが好ましい)を使用して、協同的な関係で情報、決定、および意図するコマンドを共有する。許容可能な保護帯域の重大な不合意の場合、および3つのユニットが存在すると仮定した場合は、2−out−of−3投票がモーターコントローラ24によって実施されるコマンドを決定し、適切なコマンドが自動的に選択されて、モーターコントローラ24に伝送される。オペレータには、典型的に、飛行中のコントローラの不合意が通知されないが、結果は、ユニットを飛行後の更なる診断をスケジュールすることができるようにログを取ることができる。
ミッション制御タブレットコンピュータ36は、典型的に、二重冗長の実現形態であり、各ミッション制御タブレットコンピュータ36は、同じハードウェアおよびソフトウェア、およびユニットを「プライマリ」または「バックアップ」として指定する画面ボタンを含む。プライマリユニットは、それが故障しない限りは、全ての事例において使用され、それによって、オートパイロットがプライマリの故障を検出したときに、オペレータ(存在する場合)は、タッチアイコンを通して「バックアップ」ユニットを選択しなければならないか、または自動フェイルオーバーがバックアップユニットを選択する。正式な予めプログラムされたルートを伴わずに動作するときに、ミッション制御タブレットコンピュータ36は、その内部動作センサを使用して、オペレータの意図を評価し、所望の動作コマンドをオートパイロットに伝送する。UAVモードにおいて、または有人の自動モードにおいて、ミッション計画ソフトウェア34は、飛行前に、航空機が飛行するためのルート、目的地、および高度プロファイルを指定するために使用され、その飛行のための飛行計画を形成する。飛行計画は、プライマリのミッション制御タブレットコンピュータ36に入力された場合に、対応するオートパイロットに自動的に送信され、オートパイロットは、それら自体とバックアップミッション制御タブレットコンピュータ36との間で飛行計画の詳細を自動的にクロスフィルし、よって、各オートパイロットコンピュータ32およびミッション制御タブレットコンピュータ36は、同じミッションコマンドおよび意図するルートを担持する。プライマリタブレットが故障した場合に、バックアップタブレットは、既に同じ飛行の詳細を含んでおり、オペレータアクションまたは自動フェイルオーバーのいずれかによって選択されると、飛行の制御を担う。
複数のモーターおよびプロペラ29のモーター制御のために、各高電流コントローラから同期ACまたはDCブラシレスモーター用の各モーターに接続する、3つの相がある。3つの相のうちの任意の2つの位置を逆転させることで、モーターを逆方向に回転させる。代替として、モーターコントローラ24内のソフトウェア設定があり、これは、同じ効果を可能にするが、反対方向に回転する指定されたモーターはまた、逆転したピッチを伴うプロペラも有しなければならない(これらは、あるときには、左手対右手ピッチ、またはプラー(正常)対プッシャ(逆転)ピッチのプロペラと称される)ので、ハードワイヤすることが好ましく、それによって、複数のモーターおよびプロペラ29を形成する。逆回転する対でモーターを動作させることは、そうしなければ車両を回転させようとする、回転トルクを相殺する。
例示される実施形態において、簡単に説明される動作分析および制御アルゴリズムは、搭載型オートパイロットコンピュータ32によって行われ、飛行経路および他の有用なデータが、デュアルアビオニクスディスプレイ12に提示される。様々な本発明の態様は、分業によって実践することができ、位置および制御命令の一部または全部は、基本的に、航空機の外部で、地上装置で、ブロードバンド若しくは802.11Wi−Fiネットワーク、または航空機と地上装置との間の無線周波数(RF)データリンクを使用することによって行うことができる。
図1の実例となる実施形態の場合、空のハイウェイのディスプレイの表現は、例えば、表示画面の深部に見えなくなるように見えるウィケットまたはゴールポストを含むことができ、それによって、航空機がどこに飛行しようとしているのかを示す。最も効果的であるあらゆる様式でこのまたは他の情報および/または警告をオペレータに伝えるために、ディスプレイのグラフィックスおよび地形表現の他の組み合わせ、並びに可聴信号を使用することができる。例えば、グラフィカルな描写または可聴メッセージの組み合わせを使用して、航空機が、ある特定の所定の「巡航ルート」または「意図する状況」から逸脱するように求められていることを示すことができ、一方で、モーター管理コンピュータは、それらの意図する状況に違反しないように調整する。下の説明で分かるように、「巡航ルート」または「意図する状況」内で航空機を動作させることは、航空機およびオペレータを安全な飛行からの意図しない逸脱または離脱から保護するという目的にかなう。「空のハイウェイ」を提示する目的は、オペレータが、自分の目的地を選択し、次いで、入力デバイスとしてタブレットコンピュータを使用して、目的地までの所定の経路に沿って車両を駆動または案内することを可能にする。
ADSB能力と連結されるアビオニクス表示システムの組み合わせは、マルチローター航空機が、他の近隣の航空機から放送データを受信し、それによってマルチローター航空機が他の航空機との近接遭遇を回避することができるようにすること、自分の航空機の位置データを放送して、他の協働する航空機との近接遭遇を回避すること、パイロットに表示し、マルチローター航空機内のアビオニクス表示システムによって使用するための気象データを受信すること、航空交通コントローラとの相互作用または通信の要件を殆どまたは全く伴わずに、マルチローター航空機の動作を可能にすること、航空宇宙システムの下で、自分の航空機の状態、協働する航空機の状態、および利用できる飛行経路動力学に基づいて、飛行経路の最適化のための算出を行い、したがって、起点から目的地までの最適なまたはほぼ最適な飛行経路を達成することを、を可能にする。
図3は、定性判断プロセスを行うために実施される投票プロセスを示す線図である。このリアルタイムシステムにはいかなる唯一の簡潔な「正しい答え」もないので、オートパイロットコンピュータ32は、代わりに、飛行計画をクロスフィルすることによって飛行計画データおよび飛行を動作させるための所望のパラメータを共有し、各々が、現在の航空機状態および各ノードの健全性を定義する、それ自体の状態空間変数を測定する。各ノードは、(上述の実施態様では、シリアルPWMフォーマットで)1組のモーター制御出力を独立に生成し、各ノードは、それ自体の内部の健全性状態を評価する。次いで、健全性状態評価の結果を使用して、どのオートパイロットが複数のモーターおよびプロペラ29のモーターを実際に管理するのかを選択する。
投票プロセスは、以下のルールによってガイドされる。
各オートパイロットノード(AP)32は、ブロック304で、各メッセージの開始時に、その内部の健全性が良好であるときに「ノードOK」をアサートする。メッセージは、各更新期間に起こり、AP間の共有通信を提供する。
・各APは、内部の故障を検出した場合に、または内部のウォッチドッグ・タイマーが期限切れになった(APの故障を示す)場合に、またはバックグラウンドの自己診断に失敗した場合に、「ノードOK」をアサート解除する。
・各APの「ノードOK」信号は、1ショットウォッチドッグ・タイマーを再トリガーするために、1時間間隔あたり少なくとも1回パルスしなければならない(ブロック306)。
・APの健全性ビットがパルスしない場合、ウォッチドッグ・タイマーがタイムアウトし、APは、無効であるとみなされる。
・各APは、二重冗長マルチ送信機バス310を通じて、他の2つのAPに接続する。これは、CANネットワーク、またはRS−422/423シリアルネットワーク、またはイーサネット(登録商標)ネットワーク、または複数のノードが通信することを可能にする類似する手段とすることができる。
・APは、どれがコックピットのプライマリタブレットと通信しているのかに基づいて、どれがプライマリAPであるのかを決定する。
・プライマリAPは、プライマリタブレットから飛行計画データまたは飛行コマンドを受信する。
・次いで、APは、二重冗長ネットワーク310を使用して、AP自体の間で飛行計画データおよび経由地点データをクロスフィルする。これは、各オートパイロット(AP)が、あたかもタブレットからミッションまたはコマンドパラメータを受信したかのように、それらを知っていることを保証する。
・コックピットにおいて、バックアップタブレットは、そのクロスフィルしたAPから飛行計画データまたは飛行コマンドのコピーを受信する。
・次いで、各APは、許容可能な許容度または保護帯域範囲の範囲内で、プライマリAPが作動していることを確実にするために、航空機状態対命令された状態を監視する。結果は、二重冗長ネットワーク310を使用してAP間で共有される。
・この実施形態において、モーター出力コマンドは、PWMモーター制御シリアル信号を使用して発行される。他の実施形態も説明されているが、ここでは詳細に取り扱わない。各APからの出力は、各モーターコントローラ24に提示される前に、投票者312を通過する。
・APが健全性ビットをアサート解除するか、またはそのウォッチドッグ・タイマーの再トリガーに失敗した場合、APは、無効とみなされ、投票者312は、異なるAPを自動的に選択して、投票テーブルに基づいて飛行を制御する。
・新しいAPは、上述のように、車両状態の制御を担い、投票者312にモーターコマンドを発行する。
・各APは、その相手のAPの健全性状態の状態テーブルを維持する。APが通信に失敗した場合は、動作不能としてログが取られる。残りのAPは、それらの状態テーブルを更新し、失敗した、または失敗しているAPからそれ以上入力を受け付けないか、または予期しない。
・定性分析も、現在命令していないAPによって監視される。
・各APは、それ自体の状態テーブルに加えて、2つの他の状態テーブルおよび許容可能な偏差テーブルを維持する。
・ネットワークマスターは、周期的レートで他のAPに新しいフレームを発行し、次いで、その最新の状態データを公表する。
・各APは、メッセージフレームを確認した後にプログラマブル遅延の範囲内で他のAPにその結果を公表するか、または無効であることを宣言しなければならない。
・プログラマブル遅延の後にメッセージフレームを受信しなかった場合、ノード2は、ネットワークの主たる役割を担い、メッセージをノード1に送信して、その主たる役割を終了する。
冗長通信システムは、システムが、システム動作または安全性のいかなる低下も伴わずに、単一故障を切り抜けることを可能にするために提供されることに留意されたい。
マルチウェイアナログスイッチ312は、1.OK、2.OK、および3.OKといった状態を監視し、それらの3つの信号を使用して、どのシリアル信号セット302が、モーター制御メッセージを制御ノードとモーターコントローラ24との間で渡すことができるようにすることを可能にするのかを決定する。このモーターコントローラ24のシリアルバスは、好ましい実施形態において、PWMパルストレインの典型であるが、RS−232、CAN、または類似する通信手段などの他のシリアル通信を使用することができる。好ましい実施形態では、PWMパルストレインが用いられ、各チャネルのPWMパルスの幅は、モーターコントローラ24が達成しなければならないRPMのパーセントを指定するために使用される。これは、制御ノードが、ネットワーク上の各モーターコントローラ24にコマンドを発行することを可能にする。図4は、本技法の一実施形態の投票および信号スイッチング機構に関する追加的な詳細を提供する。
図5は、本発明のいくつかの実施形態が用いることができる、測定−分析−調整−制御手法を簡略化した形態で描写するフローチャートである。システムは、出力メッセージを介して制御APによって開始されたときに、周期系フレームの「チック」毎に周期的にルーチン400に入る。これが起こる周波数は、感知されているパラメータおよび車両の飛行動力学に対して適切であるように選択され、いくつかの事例において、該周波数は、異なる測定に対して異なり得る。しかし、簡潔にするために、周波数は、全ての測定に対して同じであり、我々は、具体的にするために、おおよそ、1秒あたりまたは25ミリ秒毎に40回のオーバーサンプリング周波数を適用している。
図5のブロック402が示すように、システムは、最初に、プロペラRPM、モーター電圧、モーター電流、および(利用できる場合は)温度を含む、複数のモーターおよびプロペラ29の各モーターの性能を示す様々なセンサ出力の測定を行う。このシステムにおいて、かかる測定値データは、各モーターコントローラ24のシリアルデータバスを通して容易にアクセスすることができ、例示される実施形態は、この様式で取得することができる様々な利用できる測定パラメータの中で選択する。
このように取り込まれたモーターデータによって、システムは、ブロック404にあるように、様々な分析を行い、該分析は、各モーターのスラスト、並びに車両リフトおよび姿勢への寄与を算出するために使用することができる。次いで、ブロック406で、オペレータによってタブレットスロットルコマンドまたはスロットルレバーがどこに位置付けられたのかを検出することによって、スロットルコマンドを測定し、以前のサンプルからの命令されたスラストの任意の変化に注目する。
ブロック408で、引き出された電圧、電流、および推定される残りの燃料を測定する。このデータは、次いで、進行中の旅行またはミッションに対する残りの飛行持続時間の分析の一部として使用され、そして、オペレータが利用できるようする。
図5のブロック410が示すように、オートパイロットコンピュータ32は、他の組み込み型慣性センサおよび(随意に)大気データセンサ含む他の搭載型センサからの代表的な航空機の測定値群、並びに組込型GPS受信機からデータを受信することによって導出されるGPSデータを収集する。かかる測定値としては、航空速度、垂直速度、圧力高度、GPS高度、GPS緯度およびGPS経度、外気温度(OAT)、ピッチ角、バンク角、ヨー角、ピッチレート、バンクレート、ヨーレート、縦加速度、横加速度、並びに垂直加速度が挙げられる。
パラメータのいくつかについては、システムが測定値と比較する所定の限度がある。これらは、値自体に対する限度、および/または最後の示度以来の、または過去のいくつかの示度の平均からの変化の量における限度とすることができる。
次いで、ブロック412で、オペレータによってタブレットが2軸(ピッチ−バンク)空間においてどこに位置付けられているのかを検出することによって、タブレット飛行コントローラコマンドを測定し、以前のサンプルからの命令されたピッチ−バンク位置の任意の変化に注目する。予め計画された(UAV)モードで動作する場合は、ブロック412で、以前にオートパイロットにロードした予め計画されたミッションの次の必要とされる工程を評価する。
次いで、ブロック414で、車両状態データおよびオペレータからの命令されたデータの全てを一致させ、所望の動作に適応するために必要な、モーターコントローラ24の意図するマトリックスの調整を算出する。次いで、ブロック416で、バックグラウンドの健全性状態試験を実行し、ブロック418にコマンドマトリックスを渡す。バックグラウンドの健全性状態試験に失敗した場合は、ブロック416で、エラーを報告し、投票者312の出力状態ビットを無効にする。試験自体を行うことができない場合は、投票者312の出力状態ビット(複数可)がパルスを中止し、外部ウォッチドックが、そのコントローラの故障を宣言し、外部投票者312のアクションを通して、別のコントローラが引き継ぐことを可能にする。
次に、ブロック418で、意図するコマンドマトリックスを検査し、意図するアクションが航空機の安全マージンの範囲内であるかどうかを評価する。例えば、モーターコントローラ3が、ある特定の電流を出力するように命令されている場合、その電流は、この航空機に対する承認された性能メトリクスの範囲内である。そうでない場合は、ブロック420で、モーターコントローラ24のコマンドマトリックスに対して調整を行い、車両の性能が調整または抑制されたことを示す指示をディスプレイに提供する。
同様に、ブロック422で、意図するコマンドマトリックスを検査し、電気システムおよび燃料タンクが、マージンを伴い、かつミッションの全体的な成功を損なわずにミッションを達成するための十分な電力を含んでいるかどうかを評価する。例えば、全てのモーターコントローラ24が、より高い電流を出力して高度を上昇させるように命令されている場合、その電流を利用することができ、また、ミッションの全体的な成功を損なわずにミッションを行うことができる。そうでない場合は、ブロック424で、モーターコントローラ24のコマンドマトリックスに対して調整を行い、車両の性能が調整または抑制されたことを示す指示をディスプレイに提供する。
次いで、ブロック424で、他のオートパイロットノードにそのアクションおよび状態を示すためのネットワークメッセージを発行する。
次いで、ブロック426で、モーターコントローラ24にコマンドを発行し、そして、正確性に対するそれらの応答を監視する。
次いで、ブロック428で、利用できる航空機性能および状態データの全てを取り込み、典型的にはフラッシュメモリデバイスまたは他の形態の永続的なデータ記憶装置である不揮発性データ記憶デバイスに、更新サンプルを記憶する時間であるかどうかを決定する。典型的に、サンプルは、1秒あたり1回記憶されるので、システムは、100ミリ秒毎のサンプル機会で記憶動作を行う必要はない。
次いで、ブロック430で、オペレータのディスプレイに任意の必要な更新を提供し、シーケンス全体を繰り返すときに、次のチックを待つ状態に戻る。
次いで、飛行を完了したときに、オペレータまたはオペレータのメンテナンス整備士は、記憶したデータを利用し、該データを様々な提示フォーマットで表示または再生する。1つの手法では、搭載型ディスプレイ装置が、そのようにプログラムされたコンピュータの形態をとり、よって、記録されたデータを獲得し、様々なパラメータに対して適切な表示のスタイルを決定し、データをレビューまたは再生(シミュレーション)するために選択するビューのリストをユーザに提供し、それらのビューに従ってデータを表示する。しかしながら、例示される実施形態は、表示を提供するために地上の装置に依存しないが、これはまた、非搭載型若しくは地上のディスプレイによって、またはリモートサーバシステムによって達成することもできる。システムは、搭載型装置(データサーバ)がウェブページを準備し、提供する、いわゆるクライアントサーバ手法を利用することによってそのように行い、地上のディスプレイ装置は、所望のユーザインターフェースを提供するために、標準的なウェブブラウザクライアントだけしか必要としない。
図6は、気象データ(下半分)および空のハイウェイのデータ(上半分)を示すために提供することができる、ある種類のディスプレイの提示502を描写する。また、車両のGPS対気速度(左上の垂直バー)およびGPS高度(右上の垂直バー)も示される。また、航空機がどこにいるのか、どのように動作しているのか、およびどこに向かっているのか、といった総合的な3次元表現をオペレータに提示するために、磁気首方位、バンク、およびピッチも表示される。画面の下部分に沿ったタッチ式ボタン行から、他の画面を選択することができる。ディスプレイの提示504は、類似しているが、「ウィケット」を加えて、飛行経路に沿ってパイロットを案内する。画面の下半分は、搭載した電力の量によって車両が容易に到達することができる、近隣の着陸地点を示す。この表示は、抽象的に、「タブレット」コンピュータ、最も確実にはApple iPad(登録商標)にインストールされ、動作する、ソフトウェアパッケージである。同一のディスプレイソフトウェアを実行している2つの同一のiPad(登録商標)を使用することは、ユーザが、いくつかの異なるディスプレイの提示を構成すること、更には、一方のディスプレイが飛行中に故障した場合でも完全な表示能力を有することを可能にする。これは、車両の全体的な安全性および信頼性を高める。
ブラウザに基づく通信モードを提供することに加えて、搭載型システムはまた、記憶されたデータを他の方法で読み出すことも可能にする。例えば、搭載型記憶装置はまた、ウェブサーバインターフェースを使用して検査および/またはダウンロードすることもできる。典型的には、必ずしもそうではないが、搭載型記憶装置は、標準的な技法を用いることによって容易に読み出される、コンマ区切りまたは他の簡単なファイルフォーマットのデータを含む。
メモリデバイスは、典型的に、数千時間−場合により航空機の全サービス履歴−にわたってデータを記憶するのに十分な容量を有し、よって、メンテナンス要員は、地上のディスプレイを用いて、直前の飛行に関するデータだけでなく、任意の異常を強調表示する指示とともに、最近の5つの飛行の、過去10飛行時間の、最後のオーバーホール以来の全てのデータ、最後の200時間、またはサービス履歴全体に関するデータを示すことができる。
マルチローター車両の動作および制御を監視するための本発明の手法は、測定、分析、表示、並びに調整することができるモーターおよびコントローラ品目の予測を行うための、並びに命令された動作が安全で車両の能力の範囲内であるかどうかを算出するための、その搭載型装置と連結され、この新しい航空機の設計の安全性および有用性を大幅に高めることができ、また、初心者のオペレータが車両の通常の動作限界から外れて動作させようとする可能性を低減させることができる。したがって、当技術分野における大きな進歩になる。同様に、三重冗長オートパイロットを通して、予め計画されたミッションパラメータの下で車両を動作させる能力は、この新しい航空機設計の安全性および有用性を大幅に高め、また、可能な最大限までオペレータまたはペイロードを保護する。よって、この設計は、モーター、コントローラ、またはオートパイロット若しくはタブレットの任意の単一故障を、自動的に管理し、回避して、車両の安全な継続動作および着陸を確実にする。
図7は、ミッション制御タブレットコンピュータ36を示す。このタブレットおよびそのソフトウェアは、オペレータが、タブレットをチルトさせることによってマルチコプターの動作を案内し、制御すること、およびタッチスライダーを使用してスロットル設定を調整することを可能にする。ソフトウェアは、上で説明される三重冗長オートパイロットソフトウェアと協働して、プライマリまたはバックアップとして動作させることができる。
図8は、制御インターフェース800の構成要素の電気接続性を示し、該構成要素としては、プライマリ飛行ディスプレイ12、自動従属監視B(ADSB)送信機/受信機14、対気速度および垂直速度を算出するための大気データコンピュータ38、ミッション制御タブレットコンピュータ36、および冗長オートパイロットコンピュータ32、ナビゲーション/ストロボ用コントローラ802、着陸灯用コントローラ804、および室内用コントローラ808が挙げられる。当業者によって認識されるように、コントローラ802、804、および808は、それぞれ、ナビゲーションストロボ/テールストロボライト810、着陸灯812、および室内灯814を制御する。図8を続けると、制御インターフェース800構成要素はまた、コントローラを介して8つのモーターコントローラ24に連結される、冗長飛行コンピュータ(例えば、オートパイロットコンピュータ32)も含む。本発明の例示的な一実施形態によれば、ミッション制御タブレットコンピュータ36は、シリアルデータリンク816を使用して、オートパイロットコンピュータ12にルートまたは位置コマンドセットを通信することができる。オートパイロットコンピュータ12は、ルートまたは位置コマンドセットに基づいて、投票者42に1つ以上のモーターコマンドを制御信号として渡すことができる。当業者によって認識されるように、オートパイロットコンピュータ32は、投票プロセス中に、冗長通信ネットワーク818を通じて通信することができる。その後に、投票者42は、本明細書で論じられるように、投票プロセスに基づいて、モーターコントローラ24にどの信号を伝送するのかを決定することができる。
図9は、マルチローター航空機のための電気接続性および燃料システム900を示す。電気接続性は、(複数のモーターおよびプロペラ29のうちの)6つのモーターおよびプロペラの組み合わせ28、並びにモーターおよびプロペラの組み合わせに電力を供給するために必要な電気的構成要素を含む。高電流接触器904は、車両キースイッチ40の制御下で係合および係合解除され、電圧をスターター/発電機26に印加して、エンジンおよび発電機セットまたは燃料電池18を始動する。本発明の例示的な一実施形態によれば、点火後に、エンジンおよび発電機セットまたは燃料電池18(例えば、1つ以上の水素駆動式燃料電池または炭素を燃料とするモーター)が電気を作り出して、(複数のモーターおよびプロペラ29のうちの)6つのモーターおよびプロペラの組み合わせ28に電力を供給する。電力分配および回路遮断器902のサブシステムは、発生させた電気電圧および電流の、エンジンおよび発電機セットまたは燃料電池18から複数のモーターコントローラ24への分配を監視し、制御する。当業者によって認識されるように、回路遮断器は、モーターコントローラ24の各々を、負荷または短絡によって生じる損傷から保護するように設計される。加えて、電気接続性および燃料システム900は、ダイオードまたはFET20を含み、各電気源および電気メインバスと、エンジンおよび発電機セットまたは燃料電池18との間の絶縁を提供する。ダイオードまたはFET20はまた、それらが2つの源からの電流をともに電気メインバスにダイオードORするという点で、フェイルセーフ回路の一部でもある。例えば、エンジンおよび発電機セットまたは燃料電池18の対のうちの1つが故障した場合、ダイオードまたはFET20は、現在唯一残っている電流源によって提供される電流を、全てのモーターコントローラ24に等しく共有し、分配することを可能にする。かかる事象は、明らかにシステム故障を構成し、それに応じて、オートパイロットコンピュータ32は、できる限り早く航空機を安全に着陸させる。好都合には、ダイオードまたはFET20は、残りの電流を共有することによって、システムがそのモーターの半分を失わないようにする。加えて、ダイオードまたはFET20はまた、個別にも有効にされるので、1つのモーターが故障した、または劣化した場合に、(複数のモーターおよびプロペラ29のうちの)適切なモーターおよびプロペラの組み合わせ28(逆回転対)が無効になる。例えば、ダイオードまたはFET20は、(複数のモーターおよびプロペラ29のうちの)適切なモーターおよびプロペラの組み合わせ28に対する有効な電流を無効にして、その対のスイッチをオフにし、アンバランスなスラストを回避する。本発明の例示的な一実施形態によれば、(複数のモーターおよびプロペラ29のうちの)6つのモーターおよびプロペラの組み合わせ28は、それぞれがモーターおよびプロペラを含み、また、モーターコントローラ24に接続され、6つのモーターおよびプロペラの組み合わせの6つのモーターの独立した運動を制御する。当業者によって認識されるように、電気接続性および燃料システム900は、6つ、8つ、10個、12個、14個、16個、またはそれ以上の独立したモーターコントローラ24並びにモーターおよびプロペラの組み合わせ28を使用して実現することができる。
図9を続けると、電気接続性および燃料システム900はまた、冗長バッテリモジュールシステム並びにDC充電システムの構成要素も描写する。電気接続性および燃料システム900は、燃料貯蔵装置22と、アビオニクスバッテリ27と、燃料ポンプおよび冷却システム44と、エンジンスーパーチャージャー46と、スターター/オルタネータとを含む。エンジンおよび発電機セットまたは燃料電池18は、搭載型燃料貯蔵装置22によって供給され、また、燃料を使用して、モーターおよびプロペラの組み合わせ28の電力源を生成する。当業者によって認識されるように、エンジンおよび発電機セットまたは燃料電池18は、1つ以上の水素駆動式燃料電池または炭素を燃料とするモーターを含むことができ、各エンジンは、圧縮天然ガス(CNG)、液化石油ガス(LPG)、または航空用標準燃料(航空ガソリン)を燃料とすることができ、各燃料電池は、水素または他の適切なガス燃料によって駆動される。
図10は、トラスシステム1010および航空機本体1020を含む、本発明の一実施形態による航空機1000を示し、図11は、図10に示される航空機本体1020のフレームに連結したときのトラスシステム1010を拡大した状態の、航空機1000の別のビューを示す。本発明の例示的な一実施形態によれば、複数の電気モーター24がトラスシステム1010によって支持され、航空機が上昇するときに、トラスシステム1010が航空機自体を(浮遊した状態で)支持する。
本明細書で説明される方法および装置は、特定の航空機、またはハードウェア、またはソフトウェア構成に限定されるものではなく、また、数多くの航空機または動作環境における適用性を見出すことができる。例えば、本明細書で説明されるアルゴリズムは、ハードウェア、またはソフトウェア、またはハードウェアおよびソフトウェアの組み合わせで実現することができる。本方法および装置は、1つ以上のコンピュータプログラムで実現することができ、コンピュータプログラムは、1つ以上のプロセッサ実行可能命令を含むものと理解することができる。コンピュータプログラム(複数可)は、1つ以上のプログラマブルプロセッサ上で実行することができ、また、プロセッサ、1つ以上の入力デバイス、および/または1つ以上の出力デバイスによって読み出し可能な1つ以上の記憶媒体(揮発性および不揮発性メモリおよび/または記憶要素を含む)に記憶することができる。したがって、プロセッサは、1つ以上の入力デバイスにアクセスして入力データを取得することができ、また、1つ以上の出力デバイスにアクセスして出力データを通信することができる。入力および/または出力デバイスは、ミッション制御タブレットコンピュータ32、ミッション計画ソフトウェア34のプログラム、スロットルペダル、スロットルアーム、サイドアームコントローラ、ヨーク若しくは制御ホイール、または本明細書で提供されるようにプロセッサがアクセスすることができる他の動作指示デバイス、のうちの1つ以上を含むことができ、かかる上述した実施例は、網羅的なものではなく、また、例示のためのものであり、限定するためのものではない。
コンピュータプログラム(複数可)は、好ましくは、コンピュータシステムと通信するために、1つ以上の高レベルの手続き型言語またはオブジェクト指向プログラミング言語を使用して実現されるが、所望であれば、プログラム(複数可)は、アセンブリ言語または機械語で実現することができる。言語は、コンパイルまたは解釈することができる。
したがって、本明細書で提供されるように、プロセッサ(複数可)は、いくつかの実施形態において、ネットワーク化された環境または通信環境において独立に動作させることができる3つの同じデバイスに組み込むことができ、ネットワークとしては、例えば、イーサネット(登録商標)などのローカルエリアネットワーク(LAN)、またはRS232若しくはCANなどのシリアルネットワークを挙げることができる。ネットワーク(複数可)は、有線、無線RF、若しくはブロードバンド、またはそれらの組み合わせとすることができ、また、異なるプロセッサ間の通信を容易にするために、1つ以上の通信プロトコルを使用することができる。プロセッサは、分散処理用に構成することができ、また、いくつかの実施形態では、必要に応じて、クライアントサーバモデルを利用することができる。故に、本方法およびシステムは、必要なアルゴリズムを行い、適切な車両コマンドを決定するために、複数のプロセッサおよび/またはプロセッサデバイスを利用することができ、3つのユニット実現された場合、3つのユニットは、取るべきアクションについて2−out−of−3コンセンサスに到達するようにそれらの間で投票することができる。当業者によって認識されるように、投票はまた、別の数のユニット(例えば、1つ、2つ、3つ、4つ、5つ、6つなど)を使用して実行することもできる。例えば、投票は、偶数のユニットが合意しなかったときに起こり得る任意の結束を分解するために、他のシステム状態情報を使用することができ、したがって、システムを、動作に対して許容可能なレベルの安全性を提供するコンセンサスに到達させる。
空のハイウェイの提示を表示するためのプロセッサ(複数可)と統合するデバイス(複数可)またはコンピュータシステムとしては、例えば、ディスプレイを有するパーソナルコンピュータ、ワークステーション(例えば、Sun、HP)、iPad(登録商標)などのパーソナルデジタルアシスタント(PDA)若しくはタブレット、または本明細書で提供されるように動作することができるプロセッサ(複数可)と通信することができる別のデバイスが挙げられる。故に、本明細書で提供されるデバイスは、網羅的なものではなく、また、例示のためのものであり、限定するためのものではない。
「プロセッサ」(a processor)または「プロセッサ」(the processor)という記述は、独立型および/または分散型環境(複数可)において通信することができる1つ以上のプロセッサを含むものと理解することができ、したがって、有線または無線通信を介して他のプロセッサと通信するように構成することができ、かかる1つ以上のプロセッサは、類似するまたは異なるデバイスとすることができる1つ以上のプロセッサ制御のデバイス上で動作するように構成することができる。更に、メモリという記述は、別途指定されない限り、1つ以上のプロセッサ読み出し可能なおよびアクセス可能なメモリ要素および/または構成要素を含むことができ、これらは、プロセッサ制御デバイスの内部のものとすること、プロセッサ制御デバイスの外部のものとすることができ、また、様々な通信プロトコルを使用して有線または無線ネットワークを介してアクセスすることができ、また、別途指定されない限り、外部メモリデバイスおよび内部メモリデバイスの組み合わせを含むように配設することができ、かかるメモリは、用途に基づいて、連続したものとすること、および/または分割したものとすることができる。
ネットワークという記述は、別途提供されない限り、1つ以上のネットワーク、イントラネット、および/またはインターネットを含むことができる。
本方法および装置は、それらの具体的な実施形態に関して説明されているが、それらは、そのように限定されるものではない。例えば、本方法および装置は、6つ、8つ、10個、12個、14個、16個、またはそれ以上の独立したモーターコントローラ24およびモーターを有する様々なマルチローター車両に適用することができ、したがって、異なる量のリフト、したがって、ペイロードおよび動作能力を提供する。システムは、オペレータの制御の下で動作させることができ、または地上からのネットワーク若しくはデータリンクを介して動作させることができる。車両は、単に搭載型バッテリ貯蔵容量だけで動作させることができ、または搭載型電動発電機若しくは他の再充電源によって容量を増大させることができ、更には、航空機にエネルギーを提供する目的で、テザーまたはアンビリカルケーブルの端部で動作させることもできる。明らかに、数多くの修正および変更が、上記の教示に照らして明らかになり、本明細書で説明され、例示される部品の詳細、材料、および配設における数多くの追加的な変更を当業者によって行うことができる。

Claims (22)

  1. 1人以上の人間の乗員およびペイロードを輸送するようにサイズと寸法が決定され、そして、構成される、フルスケールのマルチローター全電気式航空機システムであって、
    前記1人以上の人間の乗員およびペイロードとともに総車両重量を支持することができる構造を有する、マルチローター機体胴体と、
    前記マルチローター機体胴体に接続される軽量マルチローター上部トラス構造と、
    前記軽量マルチローター上部トラス構造に取り付けられる複数のモーターおよびプロペラアセンブリであって、各々が、複数対の逆回転プロペラブレードを備え、複数のモーターコントローラによって制御される、複数のモーターおよびプロペラアセンブリと、
    水素燃料電池システムまたはモーター発電機システムの少なくとも一方を備える電力発生システムであって、
    前記水素燃料電池システムは、水素貯蔵タンク、複数の燃料電池サブシステム、前記複数の燃料電池サブシステムに圧縮空気を供給する1つ以上の空気駆動式ターボチャージャー、および前記複数のモーターコントローラに電圧および電流を供給する複数の燃料電池、を備え、前記水素貯蔵タンクからの水素と圧縮空気とを組み合わせて、電圧および電流を発生させ、
    前記モーター発電機システムは、燃料貯蔵タンク、1つ以上の炭化水素燃料のモーター、および前記マルチローターのモーターコントローラに電流を供給するための複数のモーター駆動高電圧発電機、を備える、電力発生システムと、
    前記発生させた電圧の前記複数のモーターコントローラおよびアビオニクスシステムへの分配を自律的に監視し、制御する、電力分配および回路遮断器サブシステムと、を備え、
    前記複数のモーターコントローラが、1つ以上のオートパイロット制御ユニットによって命令され、前記1つ以上のオートパイロット制御ユニットが、前記複数のモーターおよびプロペラアセンブリの各々に対する前記命令された電圧およびトルクまたは電流を制御し、前記複数のモーターおよびプロペラアセンブリの各々での1分あたりの回転数(RPM)および生成された前記トルクまたは消費された前記電流を追跡する、
    フルスケールのマルチローター全電気式航空機システム。
  2. 前記複数のモーターおよびプロペラアセンブリのための電力源が、各電気源および電気メインバスと、1つ以上の水素駆動式燃料電池または炭化水素を燃料とするモーターとの間にダイオードまたは電界効果トランジスタ(FET)の絶縁を有する、前記1つ以上の水素駆動式燃料電池または炭化水素を燃料とするモーターを更に備え、各エンジンが、圧縮天然ガス(CNG)、液化石油ガス(LPG)、または航空用標準燃料(航空ガソリン)を燃料とすることができ、各燃料電池が、水素または他の適切なガス燃料によって駆動される、請求項1に記載のフルスケールのマルチローター全電気式航空機システム。
  3. 前記電力発生システムからの電力が必要とされないときに、前記複数のモーターおよびプロペラアセンブリから前記電力発生システムを分離する、高電流接触器に接続される、オン/オフキーと、
    前記電力発生システムの性能メトリクスの状態に関する情報をオペレータに表示する、ミッション表示システムと、
    前記複数のモーターおよびプロペラアセンブリを無効および有効にする手段を提供する、モーター有効化安全スイッチと、
    航空機システムの給油を可能にするために電気駆動式車両のインフラストラクチャに適合可能である、外部給油コネクタと、
    タッチタブレットコンピュータまたはアビオニクス表示システム上で動作するアプリケーションソフトウェアを備える、デュアル表示システムと、
    前記1つ以上のオートパイロット制御ユニットに対する有線または無線(RF)接続を有する、前記タッチタブレットコンピュータまたは前記アビオニクス表示システム上で動作する前記アプリケーションソフトウェアを備える、デュアル・ミッション・コントローラ・タブレットコンピュータと、
    前記アプリケーションソフトウェアに前記マルチローター全電気式航空機システムへの/からの衝突回避、交通、気象情報を提供する、無線接続された、または有線接続された放送型自動従属監視(ADSB)ユニットと、
    シリアルRS232、コントローラエリアネットワーク(CAN)、イーサネット(登録商標)、アナログ電圧入力、アナログ電圧出力、モーター制御用のパルス幅変調出力、組込型または独立型大気データコンピュータ能力、組込型または独立型慣性測定値能力、および1つ以上のクロス通信チャネルまたはネットワーク、のうちの少なくとも1つを備えるシングルボードコンピュータおよび入力/出力インターフェースを備える、1つ以上のオートパイロット制御ユニットと、
    局所電流の貯蔵を提供するために、24Vまたは28Vのバッテリによって、前記マルチローター全電気式航空機システムの一次電圧の少なくとも一部分を、アビオニクスおよび非モーターの目的で24Vまたは28Vいずれかの規格にダウンシフトするように構成される、DC−DC変換器またはスターター/オルタネータと、
    命令されたスラストを示す可変電圧または電位差計の設定を提供する、ミッションソフトウェアを動作させるタブレットコンピュータ、またはスロットル若しくはフット制御ペダルと、
    ピッチコマンドおよびバンクコマンドを示す独立した2組の可変電圧または電位差計の設定を提供する、ミッションソフトウェアを動作させるタブレットコンピュータ、または2軸ジョイスティック若しくは制御ヨークと、
    シリアルラインを通じて複数のコマンドデータのチャネルをタブレットから前記1つ以上のオートパイロット制御ユニットに渡すような方法で、サーボ制御を使用して、ピッチ、ロール、ヨー、スロットル、および他の所望の情報を前記シリアルラインに組み合わせる手段であって、制御情報が、周期的レートで繰り返す複数のフレームにパッケージされる、組み合わせる手段と、を更に備え、
    前記1つ以上のオートパイロット制御ユニットが、前記複数のモーターコントローラの各々へのコマンドを発生させ、車両の安定性を管理し、維持し、そして、フィードバックを監視する、制御アルゴリズムを動作させる、請求項1または請求項2に記載のフルスケールのマルチローター全電気式航空機システム。
  4. 前記マルチローター全電気式航空機システムのための前記アビオニクス表示システムが、ADSBシステムを備え、前記ADSBシステムが、
    近隣の航空機から放送データを受信し、
    前記近隣の航空機との衝突を回避するために、前記1つ以上のオートパイロット制御ユニットに所望の状態情報を伝送し、
    前記近隣の航空機との前記衝突を回避するために、前記1つ以上のオートパイロット制御ユニットが、コマンドに対するアクションを決定し、
    前記近隣の航空機に位置情報を提供して潜在的な衝突を回避するために、前記近隣の航空機に前記マルチローター全電気式航空機システムの位置データを放送し、
    気象データを受信し、アビオニクス表示システムに前記気象データを表示し、
    航空交通コントローラとのいかなる相互作用または通信の要件も伴わずに、前記マルチローター全電気式航空機システムの動作を可能し、そして、
    航空宇宙システムまたは他の国における同等のシステムの下で、前記マルチローター全電気式航空機の状態、前記近隣の航空機の状態、および利用できる飛行経路動力学に基づいて、飛行経路最適化および衝突回避のための算出を行うように動作可能である、請求項3に記載のフルスケールのマルチローター全電気式航空機システム。
  5. 所定の航空機性能限界の範囲内で複数のマルチローター全電気式航空機システムを動作させるために、前記複数のモーターおよびプロペラアセンブリを制御することを更に含む、請求項1から請求項4の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  6. 前記マルチローター全電気式航空機システムを支持する前記マルチローター機体胴体に接続される、着陸スキッドまたは車輪を更に備える、請求項1から請求項5の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  7. 前記マルチローター全電気式航空機システムが、認められたFAAの耐空性基準に対して、人間の生命を保護するために必要な安全性、信頼性、性能、および冗長手段の範囲内で制御される、請求項1から請求項6の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  8. 前記複数のモーターコントローラが、最高100kWのピーク性能の最小限度とすることができる高電圧、高電流の空冷式または液冷式コントローラである、請求項1から請求項7の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  9. 前記複数のモーターおよびプロペラアセンブリが、パンケーキ型の軸方向磁束ブラシレス同期三相ACまたはDCブラシレス電気モーターを備える、請求項1から請求項8の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  10. 前記複数のモーターおよびプロペラアセンブリが、航空機モーターである、請求項9に記載のフルスケールのマルチローター全電気式航空機システム。
  11. 前記複数のモーターコントローラおよびプロペラアセンブリが、主に垂直方向にリフトまたはスラスト力を提供する、請求項9に記載のフルスケールのマルチローター全電気式航空機システム。
  12. 安定化され、かつ制御されたロータリー航空機の動作のために尾部ローターが必要でないような方法で、前記マルチローター全電気式航空機システムに対していかなる正味トルクも生成しないように、複数対のプロペラが逆回転の様式で動作する、請求項9に記載のフルスケールのマルチローター全電気式航空機システム。
  13. 複数対の前記複数のモーターおよびプロペラアセンブリが、コンピュータ制御の下で僅かに異なる量のスラストを生成するために、異なるRPMまたはトルク設定で動作することができ、それによって、飛行安定性を維持するために、搭載型の慣性、大気、グローバルポジショニングシステム(GPS)、および磁気センサからの位置フィードバックを使用して、ピッチモーメント、またはバンクモーメント、またはヨーモーメント、または高度の変化を、またはそれらの組み合わせを同時に、前記マルチローター全電気式航空機システムに与える、請求項12に記載のフルスケールのマルチローター全電気式航空機システム。
  14. 前記マルチローター全電気式航空機システムが、自律的に動作可能であり、位置および制御命令の一部または全部が、前記マルチローター全電気式航空機システムと地上装置との間でブロードバンド若しくは802.11Wi−Fiネットワークまたは無線周波数(RF)の双方向性データリンクを使用することによって、前記マルチローター全電気式航空機システムの外部で行われる、請求項1から請求項13の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  15. 前記マルチローター全電気式航空機システムが、自律的に動作可能であり、位置および制御命令の一部または全部が、前記マルチローター全電気式航空機システムが飛行するためのルート、目的地、および高度プロファイルを指定するためのミッション計画ソフトウェアを使用して、人間が関与することなくその飛行を行うための飛行計画を形成することによって、前記マルチローター全電気式航空機システムの内部で行われる、請求項1から請求項13の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  16. 前記電力発生システムが、飛行中ではない間に定期的な充電を必要とする、前記マルチローター機体胴体のモジュール式エンクロージャ内に載置される複数の高電流バッテリセルを更に備え、該複数の高電流バッテリセルが、
    前記複数の高電流バッテリセルのバッテリ電圧、電流、充電、および状態を監視するように構成される、バッテリ管理システムと、
    J1772規格に従う自動車用の電気車両再充電ステーションに適合可能である、再充電システムと、を備え、
    前記複数の高電流バッテリセルが、起点で、目的地で、または沿道のEV充電ステーションでマルチローター航空機のバッテリを再充電するように構成され、
    前記複数の高電流バッテリセルが、電力ケーブルによって「繋がれている」ときに、有人または無人のローカル監視モードで前記マルチローター全電気式航空機システムを動作させるように構成され、
    前記電力発生システムが、DC−DC変換器またはスターター−オルタネータを通して搭載型アビオニクスを駆動するために、前記マルチローター全電気式航空機システムの主発生電力の一部分を使用し、それによって、前記搭載型アビオニクスを駆動するバッテリの別個の充電器および充電ポートに対する必要性を多少なりとも解消する、請求項1から請求項15の何れか一項に記載のフルスケールのマルチローター全電気式航空機システム。
  17. マルチローター全電気式航空機の先進のフォールトトレラント制御を実施するための方法であって、
    冗長ネットワークを通じて通信する少なくとも1つの有効なオートパイロットコンピューティングデバイスによって、二重冗長パイロット制御タブレットからルートまたは位置コマンドセットを受信することと、
    複数のモーターコントローラを制御するために、前記少なくとも1つの有効なオートパイロットコンピューティングデバイスのうちの各利用できる有効なオートパイロットコンピューティングデバイスによって、前記受信したルートまたは位置コマンドセットを出力コマンドに翻訳することであって、前記複数のモーターコントローラの各々に対して前記出力コマンドを発生させるために、制御アルゴリズムを使用することを含む、翻訳することと、
    前記少なくとも3つのオートパイロットコンピューティングデバイスの各々によって、前記複数のモーターコントローラに伝送される前記出力コマンドに投票することであって、前記利用できる有効なオートパイロットコンピューティングデバイスの前記出力コマンドの大多数のうちのどれが同意しているのかを決定することを含む、投票することと、
    前記出力コマンドの決定した大多数の投票を前記複数のモーターコントローラに自動的に伝送することと、
    を含む、方法。
  18. 前記方法が、
    近隣の航空機から放送データを受信するステップと、
    前記近隣の航空機との衝突を回避するために、前記利用できる有効なオートパイロットコンピューティングデバイスに新しい出力コマンドを伝送するステップと、
    前記近隣の航空機に前記マルチローター全電気式航空機の位置データを放送するステップと、
    気象データを受信し、前記マルチローター全電気式航空機内のアビオニクス表示システムに気象データを表示するステップと、
    航空交通コントローラとの相互作用または通信を必要とすることなく、前記マルチローター全電気式航空機の動作を可能にするステップと、
    航空宇宙システム下で、前記マルチローター全電気式航空機の状態、前記近隣の航空機の状態、および利用できる飛行経路動力学に基づいて、飛行経路最適化および衝突回避のための算出を行うステップと、を更に含む、請求項17に記載の方法。
  19. マルチローター全電気式航空機を動作させるための自動化された航空管制およびミッション計画のための方法であって、
    タブレットコンピューティングデバイスから、前記タブレットコンピューティングデバイスによって検出される物理的な運動およびコマンド、または前記タブレットコンピューティングデバイスに予めプログラムされた予め計画されたミッションルートのうちの少なくとも1つを含む、ルートまたは位置コマンドセットを受信する、複数のオートパイロットコンピューティングデバイスを備え、
    前記複数のオートパイロットコンピューティングデバイスが、マルチローター全電気式航空機のリアルタイム状態情報を測定および/または受信することと、
    前記複数のオートパイロットコンピューティングデバイスが、前記マルチローター全電気式航空機の複数のモーターコントローラを制御するために、前記受信したルートまたは位置コマンドセットおよび前記リアルタイム状態情報を出力に翻訳することと、
    前記複数のオートパイロットコンピューティングデバイスが、前記複数のモーターコントローラに前記出力を伝送することと、
    前記複数のオートパイロットコンピューティングデバイスが、更新されたマルチローター全電気式航空機のリアルタイム状態情報を測定および/または受信することと、
    前記複数のオートパイロットコンピューティングデバイスが、前記更新されたリアルタイム状態情報に基づいて、前記マルチローター全電気式航空機の安定性を維持するために、新しいルートまたは位置コマンドセットが必要であるかどうかを自動的に評価することと、
    前記複数のオートパイロットコンピューティングデバイスが、前記複数のモーターコントローラに新しいルートまたは位置コマンドセットを伝送することと、
    を含む、方法。
  20. 前記タブレットコンピューティングデバイスおよび前記複数のオートパイロットコンピューティングデバイスのコマンドの下で、前記マルチローター全電気式航空機の指定された高度を維持することと、
    前記タブレットコンピューティングデバイスおよび前記複数のオートパイロットコンピューティングデバイスのコマンドの下で、前記マルチローター全電気式航空機の高度を上昇または降下させることと、
    前記タブレットコンピューティングデバイスおよび前記複数のオートパイロットコンピューティングデバイスのコマンドの下で、前記マルチローター全電気式航空機のピッチ、バンク、およびヨー角を維持することと、
    前記タブレットコンピューティングデバイスおよび前記複数のオートパイロットコンピューティングデバイスのコマンドの下で、前記ピッチ、バンクおよび、ヨー角を独立に増加または減少させることと、
    オペレータが、ディスプレイの提示に従うことによって、指定した起点から目的地までのルートで飛行することを可能にすることと、
    前記オペレータまたは無人の車両が、予めプログラムされたミッションプロファイルに従うことによって、予めプログラムされた起点から目的地までのルートおよびエレベーションプロファイルで飛行することを可能にすることと、
    前記指定した起点から目的地までの、または前記予めプログラムされた起点から目的地までの飛行を行うための、利用できる飛行経路動力学の十分な電力残量を保証するために、利用できる電気および燃料容量を監視することと、
    前記複数のオートパイロットコンピューティングデバイス内でモーター制御アルゴリズムを行うことと、を更に含む、請求項19に記載の方法。
  21. 前記リアルタイム状態情報が、前記新しいルートまたは位置コマンドセットが必要であるかどうかを評価するために、3つ全ての次元において命令された動作と比較される前記複数のオートパイロットコンピューティングデバイスの各々によって、センサデータを読み出し、物理的動作および動作レートを評価することとを更に含む、請求項20に記載の方法。
  22. 前記複数のオートパイロットコンピューティングデバイスが、複数のオートパイロットコンピューティングデバイスを備え、また、前記モーター制御アルゴリズムを行うための多数決に到達するために投票ノード技法を用い、それによって、前記マルチローター全電気式航空機の信頼性および安全性要件を達成し、フォールトトレランスを向上させる、請求項20または請求項21に記載の方法。
JP2017509607A 2014-05-01 2015-04-29 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機 Active JP6567652B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461987009P 2014-05-01 2014-05-01
US61/987,009 2014-05-01
PCT/US2015/028345 WO2015168320A1 (en) 2014-05-01 2015-04-29 Clean fuel electric multirotor aircraft for personal air transportation and manned or unmanned operation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019140879A Division JP6844811B2 (ja) 2014-05-01 2019-07-31 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機

Publications (3)

Publication Number Publication Date
JP2017514755A true JP2017514755A (ja) 2017-06-08
JP2017514755A5 JP2017514755A5 (ja) 2019-03-07
JP6567652B2 JP6567652B2 (ja) 2019-08-28

Family

ID=54359307

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017509607A Active JP6567652B2 (ja) 2014-05-01 2015-04-29 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機
JP2019140879A Active JP6844811B2 (ja) 2014-05-01 2019-07-31 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機
JP2021021085A Active JP7024950B2 (ja) 2014-05-01 2021-02-12 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019140879A Active JP6844811B2 (ja) 2014-05-01 2019-07-31 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機
JP2021021085A Active JP7024950B2 (ja) 2014-05-01 2021-02-12 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機

Country Status (7)

Country Link
US (3) US9764822B2 (ja)
EP (2) EP3748452B1 (ja)
JP (3) JP6567652B2 (ja)
AU (2) AU2015253168B2 (ja)
CA (2) CA2947422C (ja)
HU (1) HUE049822T2 (ja)
WO (1) WO2015168320A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516598A (ja) * 2016-05-13 2019-06-20 トップ フライト テクノロジーズ, インコーポレイテッド ハイブリッド発電機システムによって給電されるデータセンタ
JP2020513122A (ja) * 2017-07-06 2020-04-30 トップ フライト テクノロジーズ, インコーポレイテッド ドローンのためのナビゲーションシステム
JP2021509096A (ja) * 2017-12-21 2021-03-18 アビエイター・アイピー・リミテッドAv8Or Ip Limited 自律型無人航空機及びその制御方法

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2947422C (en) 2014-05-01 2022-03-22 Alakai Technologies Corporation Clean fuel electric multirotor aircraft for personal air transportation and manned or unmanned operation
CN112859899A (zh) * 2014-10-31 2021-05-28 深圳市大疆创新科技有限公司 用于利用视觉标记进行监视的系统和方法
WO2016171222A1 (ja) * 2015-04-21 2016-10-27 国立大学法人 東京大学 飛行体の安全管理システム
GB2537935B (en) * 2015-05-01 2021-02-24 Intelligent Energy Ltd Aerial vehicle
US10310617B2 (en) * 2015-06-11 2019-06-04 Intel Corporation Drone controlling device and method
JP6203991B2 (ja) * 2015-08-14 2017-09-27 株式会社プロドローン 発電装置およびこれを備える無人航空機
US20170197710A1 (en) * 2015-09-07 2017-07-13 Tao Ma Passenger transport systems based on pilotless vertical takeoff and landing (vtol) aircraft
DE102015225409A1 (de) * 2015-12-16 2017-06-22 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zur Abgrenzung von Bewegungsbereichen
EP3184425B1 (en) * 2015-12-21 2018-09-12 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Multirotor aircraft
KR101757442B1 (ko) * 2016-02-22 2017-07-12 하이리움산업(주) 멀티 콥터용 연료 전지 파워팩
EP3455136B1 (en) * 2016-05-11 2020-04-29 Bombardier Inc. Method of and system for displaying an aircraft control input
US10377479B2 (en) 2016-06-03 2019-08-13 Bell Helicopter Textron Inc. Variable directional thrust for helicopter tail anti-torque system
US10703471B2 (en) 2016-06-03 2020-07-07 Bell Helicopter Textron Inc. Anti-torque control using matrix of fixed blade pitch motor modules
US10526085B2 (en) 2016-06-03 2020-01-07 Bell Textron Inc. Electric distributed propulsion anti-torque redundant power and control system
US10059446B2 (en) * 2016-06-06 2018-08-28 Traxxas Lp Ground vehicle-like control for remote control aircraft
WO2017042774A1 (en) * 2016-07-28 2017-03-16 Universidad Tecnológica De Panamá Electric generator for model-sized vehicles
US10137047B1 (en) * 2016-08-09 2018-11-27 Joseph C. DiFrancesco Automated pilotless air ambulance
US10503245B2 (en) * 2016-09-21 2019-12-10 Apple Inc. Relative intertial measurement system
WO2018057702A1 (en) * 2016-09-22 2018-03-29 Top Flight Technologies, Inc. Power generation and distribution for vehicle propulsion
RO131684A0 (ro) * 2016-09-27 2017-02-28 Liviu Grigorian Giurca Aeronave cu decolare şi aterizare pe verticală
US20200064868A1 (en) * 2016-12-06 2020-02-27 Amimon Ltd. Unmanned aerial vehicle control
CN106774291B (zh) * 2016-12-26 2020-07-31 清华大学苏州汽车研究院(吴江) 一种自动驾驶电动汽车的电控系统
EP3574447B1 (en) * 2017-01-27 2023-10-11 Gentex Corporation Image compensation for motorcycle banking
US10330571B2 (en) * 2017-03-07 2019-06-25 Alexander B. Adams Air sampling system
JP2020511350A (ja) * 2017-03-10 2020-04-16 トップ フライト テクノロジーズ, インコーポレイテッド 無人航空車両のための電力システムの冷却
GB2560904B (en) 2017-03-27 2020-06-10 Ge Aviat Systems Ltd Processor performance monitor
EP3602520A1 (en) * 2017-03-31 2020-02-05 Telefonaktiebolaget LM Ericsson (PUBL) Enhanced flight plan for unmanned traffic aircraft systems
EP3601040B1 (en) * 2017-03-31 2022-08-03 Telefonaktiebolaget LM Ericsson (PUBL) Broadcasting geolocation information in a radio frame transmitted from an unmanned aerial vehicle
US11065979B1 (en) 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
CH715770A1 (fr) * 2019-01-23 2020-07-31 H55 Sa Système d'entraînement électrique pour un avion à propulsion électrique.
US10854866B2 (en) 2019-04-08 2020-12-01 H55 Sa Power supply storage and fire management in electrically-driven aircraft
US11063323B2 (en) 2019-01-23 2021-07-13 H55 Sa Battery module for electrically-driven aircraft
US11148819B2 (en) 2019-01-23 2021-10-19 H55 Sa Battery module for electrically-driven aircraft
US10479223B2 (en) 2018-01-25 2019-11-19 H55 Sa Construction and operation of electric or hybrid aircraft
CN110799404A (zh) * 2017-04-17 2020-02-14 移动眼视力科技有限公司 包括驾驶相关系统的安全系统
US11186185B2 (en) 2017-05-31 2021-11-30 Textron Innovations Inc. Rotor brake effect by using electric distributed anti-torque generators and opposing electric motor thrust to slow a main rotor
US10584975B2 (en) * 2017-05-31 2020-03-10 Panasonic Intellectual Property Corporation Of America Information processing apparatus and information processing method
TR201708206A2 (tr) * 2017-06-04 2018-12-21 Elmaksan Elektronik Sanayi Ve Ticaret Anonim Sirketi Yakit motorlu dronlarda elektri̇k motorlari i̇le denge kontrolü
US11445510B2 (en) 2017-07-10 2022-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Optimization of radio resource allocation based on unmanned aerial vehicle flight path information
CN109383825A (zh) * 2017-08-11 2019-02-26 菜鸟智能物流控股有限公司 飞行器
JP6786458B2 (ja) * 2017-09-14 2020-11-18 株式会社東芝 モータ駆動制御装置
WO2019059889A1 (en) * 2017-09-19 2019-03-28 Sikorsky Aircraft Corporation DEVICES AND SYSTEMS FOR CONTROLLING A PORTABLE AIRCRAFT
CN107933935B (zh) * 2017-11-29 2024-02-23 深圳市科比特航空科技有限公司 无人机控制系统
CN107943089B (zh) * 2017-12-25 2020-12-15 成都纵横自动化技术股份有限公司 多规格动力系统控制分配方法及相关装置
US11203440B2 (en) * 2018-01-04 2021-12-21 Hamilton Sundstrand Corporation System for integrated engine and flight control
WO2019157207A1 (en) * 2018-02-07 2019-08-15 Aviation Communication & Surveillance Systems, Llc Systems and methods for providing an ads-b in traffic display tablet repeater system for retrofit aircraft
CN111556842B (zh) * 2018-02-28 2023-08-22 株式会社尼罗沃克 提高安全性的农业用无人机
US10940813B2 (en) 2018-05-03 2021-03-09 Hamilton Sunstrand Corporation Universal platform architecture for hybrid more electric aircraft
US10974827B2 (en) 2018-05-10 2021-04-13 Joby Aero, Inc. Electric tiltrotor aircraft
US10775784B2 (en) * 2018-06-14 2020-09-15 Wing Aviation Llc Unmanned aerial vehicle with decentralized control system
US10532815B1 (en) 2018-06-14 2020-01-14 Kitty Hawk Corporation Two vehicle transportation system
US10493863B1 (en) 2018-06-14 2019-12-03 Kitty Hawk Corporation Charge related processing for a personal transportation system with removable battery
US10703480B1 (en) * 2018-06-14 2020-07-07 Kitty Hawk Corporation Modular personal transportation system
US10710741B2 (en) 2018-07-02 2020-07-14 Joby Aero, Inc. System and method for airspeed determination
EP3853736A4 (en) 2018-09-17 2022-11-16 Joby Aero, Inc. AIRCRAFT CONTROL SYSTEM
US11720849B2 (en) * 2018-11-15 2023-08-08 Corverity Corporation Method and system for managing navigational data for autonomous vehicles
FR3088897A1 (fr) * 2018-11-26 2020-05-29 Airbus Operations (S.A.S.) Système de commande de vol d’un aéronef.
US20200331602A1 (en) 2018-12-07 2020-10-22 Joby Aero, Inc. Rotary airfoil and design method therefor
US10983534B2 (en) 2018-12-07 2021-04-20 Joby Aero, Inc. Aircraft control system and method
EP3894975A1 (en) * 2018-12-13 2021-10-20 10757969 Canada Corporation A control system for controlling unmanned aircraft systems
US10845823B2 (en) 2018-12-19 2020-11-24 Joby Aero, Inc. Vehicle navigation system
US11353870B2 (en) * 2018-12-31 2022-06-07 Baidu Usa Llc Autonomous driving computing and storage expansion device with flexible host and client configuration
EP3931094A4 (en) * 2019-03-01 2022-11-16 United Technologies Advanced Projects, Inc. POWER SUPPLY SYSTEM FOR AIRCRAFT HAVING A HYBRID-ELECTRIC PROPULSION SYSTEM
US11260988B2 (en) * 2019-03-04 2022-03-01 Honeywell International Inc. Aircraft lighting system to enable sharing of optical energy between light assemblies with passive light heads
FR3095524B1 (fr) * 2019-04-23 2021-03-19 Airbus Helicopters Procédé et système sécurisé de contrôle d’une position d’un aéronef vis-à-vis du domaine de vol autorisé.
CN116646641A (zh) 2019-04-23 2023-08-25 杰欧比飞行有限公司 电池热管理系统及方法
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
US11643965B2 (en) * 2019-05-15 2023-05-09 Pratt & Whitney Canada Corp. System and method for operating multi-engine rotorcraft
BR112021025902A2 (pt) * 2019-06-21 2022-05-17 Alakai Tech Corporation Sistema de célula de combustível leve, de alta densidade de potência, tolerante a falhas, método e aparelho para aeronave elétrica de combustível limpo
WO2021071789A1 (en) 2019-10-08 2021-04-15 Alakai Technologies Corporation Cooling plate system, method and apparatus for clean fuel electric vehicles
US11749122B1 (en) 2019-12-12 2023-09-05 Amazon Technologies, Inc. Multi-device redundant flight controller
CN110989401B (zh) * 2019-12-19 2023-04-07 中国航空工业集团公司沈阳飞机设计研究所 一种用于液冷系统试验的rvdt特性机构激励装置
US11235885B2 (en) 2019-12-20 2022-02-01 Pratt & Whitney Canada Corp. Method and system for determining a throttle position of an aircraft
US11874673B2 (en) 2020-01-27 2024-01-16 Honeywell International Inc. Integrated travel control and attitude heading reference system
FR3108311B1 (fr) * 2020-03-17 2022-02-18 Airbus Helicopters procédé de protection d’une marge de contrôle de l’attitude en lacet d’un hélicoptère hybride et un hélicoptère hybride.
US11673649B2 (en) 2020-06-05 2023-06-13 Joby Aero, Inc. Aircraft control system and method
EP4225603A1 (en) * 2020-10-05 2023-08-16 Alakai Technologies Corporation Health assessment and monitoring system and method for clean fuel electric vehicles
US11554793B2 (en) * 2020-10-26 2023-01-17 Tusimple, Inc. Vehicle safety system for autonomous vehicles
CN112327896A (zh) * 2020-10-29 2021-02-05 东北大学 旋翼容错控制方法、装置、计算机存储介质及计算机设备
DE102020131669B3 (de) 2020-11-30 2021-12-23 Daimler Ag Verfahren zur Erkennung von Fehlfunktionen in Inertialmesseinheiten
JP2024512300A (ja) * 2021-03-10 2024-03-19 アラカイ テクノロジーズ コーポレーション モバイル緊急発電及びビークル推進電力システム
US11524767B2 (en) * 2021-03-31 2022-12-13 Beta Air, Llc Methods and systems for flight control configured for use in an electric aircraft
US11952105B2 (en) * 2021-03-10 2024-04-09 BETA Technologies, Inc. System and method for flight control in electric aircraft
US20220326704A1 (en) * 2021-03-31 2022-10-13 Beta Air, Llc Methods and systems for flight control configured for use in an electric aircraft
US11682535B2 (en) 2021-03-12 2023-06-20 Essex Industries, Inc. Rocker switch
WO2022197730A1 (en) 2021-03-15 2022-09-22 Essex Industries, Inc. Five-position switch
US20220363404A1 (en) * 2021-05-14 2022-11-17 Beta Air, Llc Systems and methods for monitoring health of an electric vertical take-off and landing vehicle
US11541999B2 (en) * 2021-06-01 2023-01-03 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
US11681301B2 (en) 2021-06-29 2023-06-20 Beta Air, Llc System for a guidance interface for a vertical take-off and landing aircraft
US11449078B1 (en) * 2021-07-01 2022-09-20 Beta Air, Llc Electric aircraft with flight trajectory planning
WO2023283414A2 (en) 2021-07-09 2023-01-12 Morrison Brian D Hybrid wire-fiber data networks for electromagnetic and/or ground-noise environments, components thereof, and systems incorporating same
US11373543B1 (en) * 2021-07-12 2022-06-28 Beta Air, Llc Systems and methods for optimization of a recharging flight plan for an electric vertical takeoff and landing aircraft
US11377201B1 (en) 2021-07-23 2022-07-05 Beta Air, Llc System and method for flight control of an electric vertical takeoff and landing aircraft
US11392143B1 (en) * 2021-07-23 2022-07-19 Beta Air, Llc System and method for producing a control signal of an electric vertical take-off and landing (eVTOL) aircraft
US11435761B1 (en) * 2021-07-23 2022-09-06 Beta Air, Llc System and method for distributed flight control system for an electric vehicle
US11435762B1 (en) 2021-08-17 2022-09-06 Beta Air, Llc System and method for the autonomous transition of an electric vertical takeoff and landing aircraft
US11594138B1 (en) 2021-08-19 2023-02-28 Beta Air, Llc Systems and methods for optimizing a controlled flight plan
US11440678B1 (en) 2021-09-21 2022-09-13 Beta Air, Llc Systems and methods for fixed wing flight to vertical wing flight for landing for an aircraft
US20230139354A1 (en) * 2021-10-30 2023-05-04 Beta Air, Llc Systems and methods for hybrid autonomous control of an electric aircraft
US11710413B1 (en) 2021-12-29 2023-07-25 Beta Air, Llc System for flight plan generation of an electric vertical takeoff and landing (eVTOL) aircraft and a method for its use
UA150456U (uk) * 2021-12-31 2022-02-16 Вадим Ілліч Кушнір Безпілотна авіаційна система обприскування
CN114001919B (zh) * 2022-01-04 2022-03-15 中国空气动力研究与发展中心低速空气动力研究所 一种全尺寸倾转旋翼轴流前飞性能试验地面模拟方法
WO2023215203A1 (en) * 2022-05-04 2023-11-09 Innovative Solutions & Support, Inc. Systems and methods for implementing automated flight following options and upgrading legacy flight management systems
FR3138708A1 (fr) 2022-08-04 2024-02-09 Safran Electronics & Defense Avionique triplex haute intégrité

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351194A (en) * 1993-05-14 1994-09-27 World Wide Notification Systems, Inc. Apparatus and method for closing flight plans and locating aircraft
JP2000025696A (ja) * 1998-05-15 2000-01-25 Dbb Fuel Cell Engines Gmbh 航空機の機内にあるエネルギ―供給装置
JP2002347698A (ja) * 2001-05-23 2002-12-04 Ishigaki Foods Co Ltd 垂直離着陸航空機
US20030230671A1 (en) * 2000-08-24 2003-12-18 Dunn James P. Fuel cell powered electric aircraft
WO2005072233A2 (en) * 2004-01-22 2005-08-11 Ufoz, Llc Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
US20060266881A1 (en) * 2005-01-14 2006-11-30 Hughey Electricopter Corporation Vertical takeoff and landing aircraft using a redundant array of independent rotors
JP2008534342A (ja) * 2005-03-24 2008-08-28 エアバス・ドイチュラント・ゲーエムベーハー 航空機用供給システム
US20090008499A1 (en) * 2007-02-16 2009-01-08 Donald Orval Shaw Modular flying vehicle
US20100256909A1 (en) * 2004-06-18 2010-10-07 Geneva Aerospace, Inc. Collision avoidance for vehicle control systems
JP2011037426A (ja) * 2009-08-18 2011-02-24 Honeywell Internatl Inc ダクテッド・ファン航空機を飛行させる方法およびシステム
US20110102198A1 (en) * 2008-06-26 2011-05-05 Airbus Operations (Sas) Aircraft control cabin with avionics display device
US20120083945A1 (en) * 2010-08-26 2012-04-05 John Robert Oakley Helicopter with multi-rotors and wireless capability
JP2012131484A (ja) * 2010-12-21 2012-07-12 General Electric Co <Ge> 飛行経路ベースの探知および防止
US20130020429A1 (en) * 2011-07-19 2013-01-24 Ilan Kroo Personal Aircraft
JP2013032148A (ja) * 2011-07-29 2013-02-14 Agustawestland Spa 転換式航空機
JP2013505172A (ja) * 2009-09-23 2013-02-14 エアロヴァイロンメント, インク. 航空機の電力管理装置
JP2013517986A (ja) * 2010-01-29 2013-05-20 シーメンス アクティエンゲゼルシャフト 電気駆動航空機
DE102012202698A1 (de) * 2012-02-22 2013-08-22 Syntern Gmbh Fluggerät
WO2013124300A1 (de) * 2012-02-22 2013-08-29 E-Volo Gmbh Fluggerät
JP2013203394A (ja) * 2012-03-29 2013-10-07 Boeing Co:The 輸送手段ベースステーション
JP2013545649A (ja) * 2010-09-30 2013-12-26 ゼネラル・エレクトリック・カンパニイ 航空機燃料電池システム
US20140027564A1 (en) * 2012-02-10 2014-01-30 Merlin Technology, Inc. Rotorcraft autopilot and methods
US20140097290A1 (en) * 2012-10-05 2014-04-10 Markus Leng Electrically powered aerial vehicles and flight control methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297052A (en) * 1989-10-16 1994-03-22 The Boeing Company Integrated fault-tolerant air data inertial reference system
US5106035A (en) * 1989-12-29 1992-04-21 Aurora Flight Sciences Corporation Aircraft propulsion system using air liquefaction and storage
US6314366B1 (en) 1993-05-14 2001-11-06 Tom S. Farmakis Satellite based collision avoidance system
US5833177A (en) * 1995-05-15 1998-11-10 The Boeing Company Autopilot/flight director overspeed protection system
US7209809B2 (en) * 2003-10-15 2007-04-24 The Boeing Company Method and apparatus for obtaining high integrity and availability in multi-channel systems
ATE514986T1 (de) * 2007-10-15 2011-07-15 Saab Ab Verfahren und vorrichtung zur erzeugung mindestens einer gewählten flugbahn eines fahrzeugs
GB0904875D0 (en) 2009-03-20 2009-05-06 Geola Technologies Ltd Electric vtol aircraft
WO2011106506A2 (en) * 2010-02-25 2011-09-01 Evatran Llc Method and apparatus for inductively transferring ac power between a charging unit and a vehicle
FR2962404B1 (fr) * 2010-07-08 2012-07-20 Eurocopter France Architecture electrique pour aeronef a voilure tournante a motorisation hybride
US20140157041A1 (en) * 2011-05-17 2014-06-05 Saab Ab Distributed avionics system and method for backup handling in an avionics system
EP2745180A4 (en) * 2011-08-16 2015-09-02 Unmanned Innovation Inc MODULAR FLIGHT MANAGEMENT SYSTEM INCORPORATING AN AUTOMATIC PILOT
US9143029B2 (en) 2011-12-15 2015-09-22 General Electric Company System and method for power distribution
US9618939B2 (en) * 2012-05-21 2017-04-11 E-Volo Gmbh Method for controlling an aircraft in the form of a multicopter and corresponding control system
US8825258B2 (en) * 2012-11-30 2014-09-02 Google Inc. Engaging and disengaging for autonomous driving
CA2902461C (en) * 2013-03-14 2021-04-06 Rolls-Royce Corporation Hybrid turbo electric aero-propulsion system control
US9387929B2 (en) 2013-03-15 2016-07-12 Ian Todd Gaillimore Vertical takeoff and landing (“VTOL”) aircraft
US9242728B2 (en) * 2013-08-07 2016-01-26 Alakai Technologies Corporation All-electric multirotor full-scale aircraft for commuting, personal transportation, and security/surveillance
EP2853974A1 (en) * 2013-09-26 2015-04-01 Airbus Defence and Space GmbH Method for autonomous controlling of a remote controlled aerial vehicle and corresponding system
CA2947422C (en) 2014-05-01 2022-03-22 Alakai Technologies Corporation Clean fuel electric multirotor aircraft for personal air transportation and manned or unmanned operation

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351194A (en) * 1993-05-14 1994-09-27 World Wide Notification Systems, Inc. Apparatus and method for closing flight plans and locating aircraft
JP2000025696A (ja) * 1998-05-15 2000-01-25 Dbb Fuel Cell Engines Gmbh 航空機の機内にあるエネルギ―供給装置
US20030230671A1 (en) * 2000-08-24 2003-12-18 Dunn James P. Fuel cell powered electric aircraft
JP2002347698A (ja) * 2001-05-23 2002-12-04 Ishigaki Foods Co Ltd 垂直離着陸航空機
WO2005072233A2 (en) * 2004-01-22 2005-08-11 Ufoz, Llc Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
US20100256909A1 (en) * 2004-06-18 2010-10-07 Geneva Aerospace, Inc. Collision avoidance for vehicle control systems
US20060266881A1 (en) * 2005-01-14 2006-11-30 Hughey Electricopter Corporation Vertical takeoff and landing aircraft using a redundant array of independent rotors
JP2008534342A (ja) * 2005-03-24 2008-08-28 エアバス・ドイチュラント・ゲーエムベーハー 航空機用供給システム
US20090008499A1 (en) * 2007-02-16 2009-01-08 Donald Orval Shaw Modular flying vehicle
US20110102198A1 (en) * 2008-06-26 2011-05-05 Airbus Operations (Sas) Aircraft control cabin with avionics display device
JP2011037426A (ja) * 2009-08-18 2011-02-24 Honeywell Internatl Inc ダクテッド・ファン航空機を飛行させる方法およびシステム
JP2013505172A (ja) * 2009-09-23 2013-02-14 エアロヴァイロンメント, インク. 航空機の電力管理装置
JP2013517986A (ja) * 2010-01-29 2013-05-20 シーメンス アクティエンゲゼルシャフト 電気駆動航空機
US20120083945A1 (en) * 2010-08-26 2012-04-05 John Robert Oakley Helicopter with multi-rotors and wireless capability
JP2013545649A (ja) * 2010-09-30 2013-12-26 ゼネラル・エレクトリック・カンパニイ 航空機燃料電池システム
JP2012131484A (ja) * 2010-12-21 2012-07-12 General Electric Co <Ge> 飛行経路ベースの探知および防止
US20130020429A1 (en) * 2011-07-19 2013-01-24 Ilan Kroo Personal Aircraft
JP2013032148A (ja) * 2011-07-29 2013-02-14 Agustawestland Spa 転換式航空機
US20140027564A1 (en) * 2012-02-10 2014-01-30 Merlin Technology, Inc. Rotorcraft autopilot and methods
DE102012202698A1 (de) * 2012-02-22 2013-08-22 Syntern Gmbh Fluggerät
WO2013124300A1 (de) * 2012-02-22 2013-08-29 E-Volo Gmbh Fluggerät
JP2013203394A (ja) * 2012-03-29 2013-10-07 Boeing Co:The 輸送手段ベースステーション
US20140097290A1 (en) * 2012-10-05 2014-04-10 Markus Leng Electrically powered aerial vehicles and flight control methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516598A (ja) * 2016-05-13 2019-06-20 トップ フライト テクノロジーズ, インコーポレイテッド ハイブリッド発電機システムによって給電されるデータセンタ
JP2020513122A (ja) * 2017-07-06 2020-04-30 トップ フライト テクノロジーズ, インコーポレイテッド ドローンのためのナビゲーションシステム
JP2021509096A (ja) * 2017-12-21 2021-03-18 アビエイター・アイピー・リミテッドAv8Or Ip Limited 自律型無人航空機及びその制御方法

Also Published As

Publication number Publication date
US9764822B2 (en) 2017-09-19
EP3748452A1 (en) 2020-12-09
JP6844811B2 (ja) 2021-03-17
HUE049822T2 (hu) 2020-10-28
US20160200421A1 (en) 2016-07-14
EP3137376A1 (en) 2017-03-08
JP6567652B2 (ja) 2019-08-28
JP2021091405A (ja) 2021-06-17
JP2019214370A (ja) 2019-12-19
EP3748452C0 (en) 2023-06-07
US20180001994A1 (en) 2018-01-04
CA3140006A1 (en) 2015-11-05
WO2015168320A1 (en) 2015-11-05
EP3137376B1 (en) 2020-04-22
US10370088B2 (en) 2019-08-06
US20190329868A1 (en) 2019-10-31
AU2015253168B2 (en) 2018-09-27
EP3748452B1 (en) 2023-06-07
AU2015253168A1 (en) 2016-12-15
CA2947422C (en) 2022-03-22
JP7024950B2 (ja) 2022-02-24
US11390374B2 (en) 2022-07-19
EP3137376A4 (en) 2018-04-04
AU2018208669A1 (en) 2018-08-23
AU2018208669B2 (en) 2020-01-02
CA2947422A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP7024950B2 (ja) 個人航空輸送および有人または無人動作のためのクリーン燃料の電気マルチローター航空機
US9242728B2 (en) All-electric multirotor full-scale aircraft for commuting, personal transportation, and security/surveillance
JP7432833B2 (ja) クリーン燃料電気マルチロータ飛行体のための統合マルチモード熱エネルギー伝達システム、方法および装置
US11919651B2 (en) Method of operating a lightweight high power density fault-tolerant fuel cell system for clean fuel electric aircraft
JP2017514755A5 (ja)
JP2023544421A (ja) クリーン燃料電気ビークルのためのヘルスアセスメント及びモニタリングシステム及び方法
US20220135228A1 (en) Multifunction dynamic visual display for interactive user experience

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250