JP2017228654A - 光半導体装置の製造方法及び光半導体装置 - Google Patents

光半導体装置の製造方法及び光半導体装置 Download PDF

Info

Publication number
JP2017228654A
JP2017228654A JP2016123812A JP2016123812A JP2017228654A JP 2017228654 A JP2017228654 A JP 2017228654A JP 2016123812 A JP2016123812 A JP 2016123812A JP 2016123812 A JP2016123812 A JP 2016123812A JP 2017228654 A JP2017228654 A JP 2017228654A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
layer
optical semiconductor
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016123812A
Other languages
English (en)
Inventor
敏生 東
Toshio Higashi
敏生 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2016123812A priority Critical patent/JP2017228654A/ja
Publication of JP2017228654A publication Critical patent/JP2017228654A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】単一波長性の悪化を抑制すること。【解決手段】一方の端面から他方の端面に向かって延在して半導体基板上に設けられた活性層と、活性層に電流を注入する電極パッドと、を含む第1発光素子と、一方の端面から他方の端面に向かって延在して半導体基板上に設けられた活性層と、活性層に電流を注入する電極パッドと、を含む第2発光素子と、が集積された光半導体素子を備える光半導体装置の製造方法において、第1発光素子と第2発光素子をそれぞれ一方の端面で発光させ、第1発光素子と第2発光素子の波長を測定することで、第1発光素子又は第2発光素子のいずれか一方の発光素子を選択する工程と、光半導体素子をパッケージに搭載する工程と、前記一方の発光素子の電極をワイヤ配線によって電源に接続する工程と、を含む、光半導体装置の製造方法。【選択図】図19

Description

本発明は、光半導体装置の製造方法及び光半導体装置に関する。
基板上に回折格子と活性層とを含むメサを形成し、メサ周辺を埋め込み層で埋め込んだ半導体レーザが知られている(例えば、特許文献1)。
特開平5−29703号公報
回折格子が設けられ且つ一方の端面に高反射膜が、他方の端面に低反射膜が設けられた光半導体素子では、高反射膜側における回折格子の位相のずれにより、単一モード発振が妨げられて、単一波長性が悪化してしまうことがある。
そこで、単一波長性の悪化を抑制することを目的とする。
本願発明は、一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、が集積された光半導体素子を備える光半導体装置の製造方法において、前記第1発光素子と前記第2発光素子をそれぞれ前記一方の端面で発光させ、前記第1発光素子と前記第2発光素子のそれぞれの波長を測定することで、前記第1発光素子又は前記第2発光素子のうちのいずれか一方の発光素子を選択する工程と、前記光半導体素子をパッケージに搭載する工程と、前記一方の発光素子の電極をワイヤ配線によって電源に接続する工程と、を含む、光半導体装置の製造方法である。
本願発明は、一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記第1発光素子と集積され、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、を有する光半導体素子と、前記光半導体素子が搭載されるパッケージと、前記第1電極と前記第2電極のいずれか一方のみを電源に接続するワイヤ配線と、を備える、光半導体装置である。
本願発明によれば、単一波長性の悪化を抑制することができる。
図1は実施例1に係る光半導体素子の平面図である。 図2Aは実施例1に係る光半導体素子の一方の端面側の側面図である。 図2Bは実施例1に係る光半導体素子の他方の端面側の側面図である。 図3Aは図1のA−A間の断面図である。 図3Bは図1のB−B間の断面図である。 図4は図1のC−C間の断面図である。 図5は回折格子層を説明するための平面図である。 図6Aは実施例1に係る光半導体素子の製造方法を示す平面図(その1)である。 図6Bは実施例1に係る光半導体素子の製造方法を示す平面図(その2)である。 図6Cは実施例1に係る光半導体素子の製造方法を示す平面図(その3)である。 図7Aは実施例1に係る光半導体素子の製造方法を示す断面図(その1)である。 図7Bは実施例1に係る光半導体素子の製造方法を示す断面図(その2)である。 図7Cは実施例1に係る光半導体素子の製造方法を示す断面図(その3)である。 図8Aは実施例1に係る光半導体素子の製造方法を示す断面図(その4)である。 図8Bは実施例1に係る光半導体素子の製造方法を示す断面図(その5)である。 図9は実施例1に係る光半導体素子の製造方法を示す断面図(その6)である。 図10Aは比較例1に係る光半導体素子の平面図である。 図10Bは図10AのA−A間の断面図である。 図11は実施例1に係る光半導体素子の検査方法を示すフローチャートである。 図12Aは回折格子層の他の例を説明するための平面図(その1)である。 図12Bは回折格子層の他の例を説明するための平面図(その2)である。 図12Cは回折格子層の他の例を説明するための平面図(その3)である。 図13は3つの発光素子を備える光半導体素子の平面図である。 図14は実施例2に係る光半導体素子の平面図である。 図15Aは図14のA−A間の断面図である。 図15Bは図14のB−B間の断面図である。 図16は実施例3に係る光半導体素子の平面図である。 図17Aは図16のA−A間の断面図である。 図17Bは図16のB−B間の断面図である。 図18は実施例4に係る光半導体装置を示す平面図である。 図19は実施例4に係る光半導体装置の製造方法を示すフローチャートである。
[本願発明の実施形態の説明]
最初に、本願発明の実施形態の内容を列記して説明する。
本願発明は、一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、が集積された光半導体素子を備える光半導体装置の製造方法において、前記第1発光素子と前記第2発光素子をそれぞれ前記一方の端面で発光させ、前記第1発光素子と前記第2発光素子のそれぞれの波長を測定することで、前記第1発光素子又は前記第2発光素子のうちのいずれか一方の発光素子を選択する工程と、前記光半導体素子をパッケージに搭載する工程と、前記一方の発光素子の電極をワイヤ配線によって電源に接続する工程と、を含む、光半導体装置の製造方法である。一方の発光素子の電極を電源に接続することで、第1発光素子及び第2発光素子のうちの単一波長性の良好な方を選択することが可能となり、単一波長性の悪化を抑制することができる。
前記第1発光素子又は前記第2発光素子のうちの他方の発光素子の電極を他のワイヤ配線によってグランドに接続する工程と、をさらに含んでもよい。これにより、レーザ光を出力しない方の発光素子が容量成分になることを抑制することができる。
本願発明は、一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記第1発光素子と集積され、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、を有する光半導体素子と、前記光半導体素子が搭載されるパッケージと、前記第1電極と前記第2電極のいずれか一方のみを電源に接続するワイヤ配線と、を備える、光半導体装置である。第1電極と第2電極のいずれか一方のみが電源に接続することで、第1発光素子及び第2発光素子のうちの単一波長性の良好な方を選択することが可能となり、単一波長性の悪化を抑制することができる。
[本願発明の実施形態の詳細]
本願発明の実施形態に係る光半導体装置の製造方法及び光半導体装置の具体例を、以下に図面を参照しつつ説明する。なお、本願発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、本願発明の効果がある限りにおいて他の成分が含まれていてもよい。
図1は、実施例1に係る光半導体素子500の平面図である。図2Aは、実施例1に係る光半導体素子500の端面11側の側面図、図2Bは、端面12側の側面図である。実施例1に係る光半導体素子500は、分布帰還型半導体レーザであり、所定波長のレーザ光を出力する。図1から図2Bのように、実施例1の光半導体素子500は、第1発光素子20、第2発光素子30、端面11に設けられた高反射(High Reflection)膜HR、及び端面12に設けられた低反射(Anti Reflection)膜AR、を備える。
図3Aは、図1のA−A間の断面図、図3Bは、図1のB−B間の断面図である。図4は、図1のC−C間の断面図である。図3A及び図4のように、第1発光素子20は、n側電極13、半導体基板10、回折格子層21、n型クラッド層22、活性層23、p型クラッド層24、コンタクト層25、及びp側電極26を備える。
半導体基板10は、例えば5.0×1017/cm〜4.0×1019/cmの濃度のn型不純物を含むn型InPからなる。一例として、1.0×1018/cmのSn(錫)がドープされたn型InPからなる。n側電極13は、半導体基板10の下面に設けられている。n側電極13は、導電性材料からなり、例えばAuGe(金ゲルマニウム)とAu(金)の積層体が用いられる。n側電極13は、半導体基板10とオーミック接触をなしている。
回折格子層21は、半導体基板10上に設けられている。回折格子層21は、例えばアンドープのInGaAsPからなる。回折格子層21は回折格子21aを構成する。回折格子21aの周期は、光半導体素子500が出力するレーザ光の波長に応じた周期になっている。
n型クラッド層22は、回折格子層21を覆い且つ回折格子層21の間の隙間に埋め込まれて、半導体基板10上に設けられている。n型クラッド層22は、例えば1.0×1018/cmのSi(シリコン)がドープされたn型InPからなる。
活性層23は、n型クラッド層22上に設けられている。活性層23は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p側電極26とn側電極13との間に順方向電流が供給されると、活性層23では、n型クラッド層22及びp型クラッド層24から注入されたキャリアが再結合することで光が発生する。
回折格子層21、n型クラッド層22、及び活性層23は、メサストライプ27の構造をしている。p型クラッド層24は、メサストライプ27を覆って設けられている。p型クラッド層24は、例えば1.0×1018/cmのZn(亜鉛)がドープされたp型InPからなる。n型クラッド層22及びp型クラッド層24の屈折率は、活性層23よりも小さくなっている。これにより、n型クラッド層22及びp型クラッド層24は、活性層23で発生した光を閉じ込める機能を有する。
メサストライプ27の斜め上側であってp型クラッド層24内にn型ブロック層28が設けられている。n型ブロック層28は、例えば1.0×1019/cmのS(硫黄)がドープされたn型InPからなる。
コンタクト層25は、p型クラッド層24上に設けられている。コンタクト層25は、p型クラッド層24よりもバンドギャップの小さい材料からなり、例えば1.2×1019/cmのZn(亜鉛)がドープされたp型InGaAsからなる。
メサストライプ27の上方の領域を除くコンタクト層25上に保護膜14が設けられている。保護膜14は、絶縁膜からなり、例えば酸化シリコン(SiO)膜からなる。p側電極26は、コンタクト層25の露出領域及び保護膜14を覆って設けられている。p側電極26は、導電性材料からなり、例えばTi(チタン)とPt(白金)とAu(金)の積層体からなる。p側電極26はコンタクト層25とオーミック接触をなしている。図1のように、p側電極26に電気的に接続された電極パッド29が設けられている。
図3B及び図4のように、第2発光素子30は、n側電極13、半導体基板10、回折格子層31、n型クラッド層32、活性層33、p型クラッド層34、コンタクト層35、及びp側電極36を備える。半導体基板10及びn側電極13は、第1発光素子20と共通である。すなわち、1つの半導体基板10上に第1発光素子20と第2発光素子30とが集積されていて、1つの半導体基板10の下面に1つのn側電極13が設けられている。
回折格子層31は、半導体基板10上に設けられている。回折格子層31は、例えば第1発光素子20の回折格子層21と同じ材料且つ同じ組成からなる。すなわち、回折格子層31は、例えばアンドープのInGaAsPからなる。回折格子層31は回折格子31aを構成する。回折格子31aの周期は、光半導体素子500が出力するレーザ光の波長に応じた周期になっている。すなわち、回折格子31aの周期は、第1発光素子20の回折格子21aの周期と同じである。言い換えると、回折格子層31の間隔は、第1発光素子20の回折格子層21の間隔と同じである。
n型クラッド層32は、回折格子層31を覆い且つ回折格子層31の間の隙間に埋め込まれて、半導体基板10上に設けられている。n型クラッド層32は、例えば第1発光素子20のn型クラッド層22と同じ材料且つ同じ組成からなる。すなわち、n型クラッド層32は、例えば1.0×1018/cmのSiがドープされたn型InPからなる。
活性層33は、n型クラッド層32上に設けられている。活性層33は、例えば第1発光素子20の活性層23と同じ材料且つ同じ組成からなる。すなわち、活性層33は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p側電極36とn側電極13との間に順方向電流が供給されると、活性層33では、n型クラッド層32及びp型クラッド層34から注入されたキャリアが再結合することで光が発生する。
回折格子層31、n型クラッド層32、及び活性層33は、メサストライプ37の構造をしている。p型クラッド層34は、メサストライプ37を覆って設けられている。p型クラッド層34は、例えば第1発光素子20のp型クラッド層24と同じ材料且つ同じ組成からなる。すなわち、p型クラッド層34は、例えば1.0×1018/cmのZnがドープされたp型InPからなる。n型クラッド層32及びp型クラッド層34の屈折率は、活性層33よりも小さくなっている。これにより、n型クラッド層32及びp型クラッド層34は、活性層33で発生した光を閉じ込める機能を有する。
メサストライプ37の斜め上側であってp型クラッド層34内にn型ブロック層38が設けられている。n型ブロック層38は、例えば第1発光素子20のn型ブロック層28と同じ材料且つ同じ組成からなる。すなわち、n型ブロック層38は、例えば1.0×1019/cmのS(硫黄)がドープされたn型InPからなる。
コンタクト層35は、p型クラッド層34上に設けられている。コンタクト層35は、p型クラッド層34よりもバンドギャップの小さい材料からなり、例えば第1発光素子20のコンタクト層25と同じ材料且つ同じ組成からなる。すなわち、コンタクト層35は、例えば1.2×1019/cmのZnがドープされたp型InGaAsからなる。
メサストライプ37の上方の領域を除くコンタクト層35上に保護膜14が設けられている。p側電極36は、コンタクト層35の露出領域及び保護膜14を覆って設けられている。p側電極36は、導電性材料からなり、例えば第1発光素子20のp側電極26と同じ材料からなる。すなわち、p側電極36は、例えばTiとPtとAuの積層体からなる。p側電極36はコンタクト層35とオーミック接触をなしている。図1のように、p側電極36に電気的に接続された電極パッド39が設けられている。
図5は、回折格子層21、31を説明するための平面図である。なお、図5では、活性層23、33を破線で図示している。図3のように、活性層23、33は、端面11、12に直交した方向に延在している。回折格子層21、31の端面11側の面は端面11に平行となり、端面12側の面は端面12に平行となっている。回折格子層21、31は、活性層23、33が延在する方向において、互いにずれて設けられている。このため、端面11において、回折格子21aの端面位相と回折格子31aの端面位相とは互いに異なっている。
図1から図2Bのように、第1発光素子20の回折格子層21、n型クラッド層22、活性層23、p型クラッド層24、及びコンタクト層25の積層は、その両側に凹部15が形成されたメサ構造になっている。同様に、第2発光素子30の回折格子層31、n型クラッド層32、活性層33、p型クラッド層34、及びコンタクト層35の積層は、その両側に凹部15が形成されたメサ構造になっている。
高反射膜HRは、例えばその反射波長帯域において、活性層23、33の内部光をおよそ80%以上反射させる機能を有する。高反射膜HRとして、例えば窒化シリコン膜とアモルファスシリコン膜との多層膜を用いることができる。低反射膜ARは、高反射膜HRよりも反射率が低く、例えば1%以下の反射率とすることができる。低反射膜ARは、光半導体素子500の出力端面である端面12において、反射光が光半導体素子500の内部に戻ることを抑制する機能を有する。低反射膜ARの反射率が低い程、反射光が内部に戻ることを抑制できることから、低反射膜ARが形成された端面12での端面位相による波長変動の影響を低減することができる。低反射膜ARの反射率は0.1%以下であることが好ましい。低反射膜ARとして、例えば窒化シリコン膜を用いることができる。
次に、実施例1に係る光半導体素子500の製造方法について説明する。図6Aから図6Cは、実施例1に係る光半導体素子500の製造方法を示す平面図である。図7Aから図9は、実施例1に係る光半導体素子500の製造方法を示す断面図である。図7Aから図9は、図6AのA−A間に相当する箇所の断面を示している。
図6A及び図7Aのように、半導体基板10の主面上に、例えばアンドープのInGaAsPからなる回折格子層50を成長させる。回折格子層50上にレジストからなるマスク51を形成する。マスク51は、第1発光素子20が形成される領域において、回折格子層21が形成される領域の間に開口52を有し、その他の領域を覆う。また、マスク51は、第2発光素子30が形成される領域において、回折格子層31が形成される領域の間に開口52を有し、その他の領域を覆う。
図6B及び図7Bのように、マスク51をエッチングマスクとして用いて回折格子層50に対してドライエッチング処理を施し、回折格子層50に開口53を形成する。第1発光素子20が形成される領域においては、回折格子層21が形成される領域に回折格子層50が残存し、その間に開口53が形成される。第2発光素子30が形成される領域においては、回折格子層31が形成される領域に回折格子層50が残存し、その間に開口53が形成される。ドライエッチング処理として、例えばSiClを用いたRIE(Reactive Ion Etching)法を用いることができる。その後、マスク51をHF(フッ酸)などを用いて除去する。
図6C及び図7Cのように、開口53に埋め込まれるように、回折格子層50上に、例えばn型InPからなるn型クラッド層54を成長させる。n型クラッド層54上に、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造の活性層55を成長させる、活性層55上に、例えばp型InPからなるp型クラッド層56を成長させる。p型クラッド層56上であって、第1発光素子20が形成される領域及び第2発光素子30が形成される領域にレジストからなるマスク57を形成する。マスク57は、開口53が並んで形成された領域に、開口53の幅よりも狭い幅のストライプ状に形成される。
図8Aのように、マスク57をエッチングマスクとして用いて、p型クラッド層56、活性層55、n型クラッド層54、回折格子層50、及び半導体基板10の一部に対してドライエッチング処理を施す。これにより、第1発光素子20が形成される領域においては、回折格子層21、n型クラッド層22、活性層23、及びp型クラッド層58からなるメサストライプが形成される。第2発光素子30が形成される領域においては、回折格子層31、n型クラッド層32、活性層33、及びp型クラッド層59からなるメサストライプが形成される。ドライエッチング処理として、例えばSiClを用いたRIE法を用いることができる。
図8Bのように、メサストライプの両側を埋め込むように、半導体基板10上に、例えばp型InPからなるp型ブロック層60を成長させる。p型ブロック層60上に、例えばn型InPからなるn型ブロック層62を成長させる。p型クラッド層58、59及びn型ブロック層62の上面が覆われるように、例えばp型InPからなるp型クラッド層61を成長させる。p型クラッド層58〜61及びp型ブロック層60は、例えば同じ材料及び組成からなる。
図9のように、p型クラッド層61上に、例えばp型InGaAsからなるコンタクト層を成長させた後、コンタクト層から半導体基板10の一部まで掘り込まれた凹部15(図2A及び図2B参照)を形成する。これにより、第1発光素子20が形成される領域では、回折格子層21、n型クラッド層22、及び活性層23からなるメサストライプ27を覆うp型クラッド層24が形成され且つp型クラッド層24上にコンタクト層25が形成される。第2発光素子30が形成される領域では、回折格子層31、n型クラッド層32、及び活性層33からなるメサストライプ37を覆うp型クラッド層34が形成され且つp型クラッド層34上にコンタクト層35が形成される。
第1発光素子20が形成される領域において、メサストライプ27の上方の領域を除くコンタクト層25上に保護膜14を形成すると共に、コンタクト層25の露出領域及び保護膜14を覆うようにp側電極26を形成する。第2発光素子30が形成される領域において、メサストライプ37の上方の領域を除くコンタクト層35上に保護膜14を形成すると共に、コンタクト層35の露出領域及び保護膜14を覆うようにp側電極36を形成する。半導体基板10の下面にn側電極13を形成する。
その後、半導体基板10を劈開してチップ化した後に、端面11に高反射膜HRを形成し、端面12に低反射膜ARを形成することで、第1発光素子20と第2発光素子30を備える光半導体素子500が形成される。なお、上記の各半導体層の成長の際には、MOVPE(有機金属気相成長)法を用いることができる。
ここで、実施例1の効果を説明するにあたり、比較例1の光半導体素子について説明する。図10Aは、比較例1に係る光半導体素子1000の平面図、図10Bは、図10AのA−A間の断面図である。図10A及び図10Bのように、比較例1の光半導体素子1000では、第1発光素子20のみを備え、第2発光素子30は備えていない。その他の構成は、実施例1と同じであるため説明を省略する。
高反射膜HRが設けられた端面での回折格子の端面位相によって波長変動が生じる。例えば半導体基板10を劈開してチップ化する際に劈開面の位置が所望の位置からずれることがある。この場合、比較例1では、第1発光素子20だけしか備わっていないため、高反射膜HR側における回折格子21aの端面位相が所望の位相からずれて、単一波長性が悪化してしまう。
これに対し、実施例1によれば、高反射膜HRが設けられた端面11における回折格子21a、31aの端面位相が互いに異なる第1発光素子20と第2発光素子30を備える。このため、例えばチップ化の際に劈開面の位置が所望の位置からずれた場合でも、第1発光素子20及び第2発光素子30のうちの単一波長性の良好な方を選択することが可能となり、単一波長性の悪化を抑制することができる。
また、実施例1によれば、図6A及び図7Aのように、半導体基板10上に回折格子層50を形成する。図6B及び図7Bのように、出力されるレーザ光の波長に応じた周期で設けられ且つ端面11における端面位相が互いに異なる第1、第2回折格子が形成されるように、回折格子層50上に形成したマスク51を用いて回折格子層50を除去する。図8Aから図9のように、第1回折格子に沿った活性層23を形成して第1発光素子20を形成し、第2回折格子に沿った活性層33を形成して第2発光素子30を形成する。このような製造工程によって光半導体素子500を形成することで、第1発光素子20及び第2発光素子30のうちの単一波長性の良好な方を選択することが可能となり、単一波長性の悪化を抑制することができる。
図11は、実施例1に係る光半導体素子500の検査方法を示すフローチャートである。図11のように、第1発光素子20の電気特性(DC特性)を測定する(ステップS10)。次いで、第1発光素子20の光特性(スペクトル特性)を測定する(ステップS12)。次いで、第2発光素子30の電気特性(DC特性)を測定する(ステップS14)。次いで、第2発光素子30の光特性(スペクトル特性)を測定する(ステップS16)。なお、ステップS10からS16の順序は入れ替えてもよい。
このように、第1発光素子20と第2発光素子30の波長(スペクトル特性)を測定することで、単一波長性の良好な方を選択することが可能となり、単一波長性の悪化を抑制することができる。
実施例1では、図5のように、活性層23、33は端面11に直交する方向に延在し、回折格子層21、31の端面11側の面は端面11に平行である場合を例に示した。しかしながら、この場合に限られるわけではなく、図12Aから図12Cの場合でもよい。図12Aから図12Cは、回折格子層の他の例を説明するための平面図である。
図12Aのように、活性層23、33は端面11に直交する方向に延在し、回折格子層21、31の端面11側の面は端面11に対して傾いていてもよい。この場合でも、端面11における回折格子21aの端面位相と回折格子31aの端面位相とを異ならせることができる。
図12Bのように、活性層23、33は端面11に対して傾いた方向に延在していてもよい。そして、回折格子層21の端面11側の面は活性層23と略同じ角度で傾いていて、回折格子層31の端面11側の面は活性層33と略同じ角度で傾いていてもよい。この場合でも、端面11における回折格子21aの端面位相と回折格子31aの端面位相とを異ならせることができる。なお、略同じ角度とは、製造誤差を含むものであり、例えば5°以下の誤差や、3°以下の誤差を含むものである。
図12Cのように、端面11の近傍に、回折格子層21は設けられ且つ回折格子層31は設けられていない領域18があってもよい。この場合でも、等価屈折率に差が生じ、位相回転量に差を持たせることができるため、端面11において、回折格子21aの端面位相と回折格子31aの端面位相とを異ならせることができる。
または、干渉露光法を用いて回折格子21a、31aの一方に位相シフト領域を設けてもよい。例えば、回折格子層50上にレジストを塗布し、レジスト側に段差を有するガラスなどの透明マスクをレジスト上に載置して干渉露光する。この場合、段差を境界に透明マスクにおける光路長が異なるようになり、位相シフト領域を設けることができる。
なお、実施例1では、光半導体素子500は第1発光素子20と第2発光素子30の2つの発光素子を備える場合を例に示したが、高反射膜HR側における回折格子の端面位相が互いに異なる3つ以上の発光素子を備えていてもよい。図13は、3つの発光素子を備える光半導体素子510の平面図である。光半導体素子510は、第1発光素子20と第2発光素子30に加え第3発光素子40を備える。第3発光素子40のp側電極46は、第1発光素子20のp側電極26と第2発光素子30のp側電極36との間にある。一方、第3発光素子40の電極パッド49は第2発光素子30のp側電極36よりも外側にある。このため、第3発光素子40では、p側電極46と電極パッド49とが立体配線47によって接続されている。
図14は、実施例2に係る光半導体素子600の平面図である。図15Aは、図14のA−A間の断面図、図15Bは、図14のB−B間の断面図である。なお、図15A及び図15Bでは、電極などの図示を省略している。実施例2の光半導体素子600は、分布帰還型半導体レーザと光変調器とが集積された光半導体素子である。
図14から図15Bのように、実施例2の光半導体素子600は、第1発光素子20と端面12との間に第1光変調器70を備え、第2発光素子30と端面12との間に第2光変調器80を備える。第1光変調器70及び第2光変調器80は、例えば電界吸収型光変調器である。
第1光変調器70は、第1発光素子20のn型クラッド層22に接続されたn型クラッド層72、活性層23に接続された光吸収層73、及びp型クラッド層24に接続されたp型クラッド層74を含む。n型クラッド層72は、例えば第1発光素子20のn型クラッド層22と同じ材料及び同じ組成からなる。すなわち、n型クラッド層72は、例えば1.0×1018/cmのSiがドープされたn型InPからなる。光吸収層73は、例えば第1発光素子20の活性層23と同じ材料からなる。すなわち、光吸収層73は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p型クラッド層74は、例えば第1発光素子20のp型クラッド層24と同じ材料からなる。すなわち、p型クラッド層74は、例えば1.0×1018/cmのZnがドープされたp型InPからなる。なお、第1光変調器70の光吸収層73は、第1発光素子20の活性層23の組成より、バンドギャップエネルギーが大きい組成からなる。
光吸収層73は、第1発光素子20の活性層23に接続して、活性層23と端面12との間を延在していることから、活性層23で発生した光が伝搬される。このため、第1光変調器70は、p側電極76とn側電極13との間に逆バイアス電圧が印加されると、活性層23で発生し伝搬された光の強度を変調する。
第2光変調器80は、第2発光素子30のn型クラッド層32に接続されたn型クラッド層82、活性層33に接続された光吸収層83、及びp型クラッド層34に接続されたp型クラッド層84を含む。n型クラッド層82は、例えば第2発光素子30のn型クラッド層32と同じ材料及び同じ組成からなる。すなわち、n型クラッド層82は、例えば1.0×1018/cmのSiがドープされたn型InPからなる。光吸収層83は、例えば第2発光素子30の活性層33と同じ材料からなる。すなわち、光吸収層83は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p型クラッド層84は、例えば第2発光素子30のp型クラッド層34と同じ材料からなる。すなわち、p型クラッド層84は、例えば1.0×1018/cmのZnがドープされたp型InPからなる。なお、第2光変調器80の光吸収層83は、第2発光素子30の活性層33の組成より、バンドギャップエネルギーが大きい組成からなる。
光吸収層83は、第2発光素子30の活性層33に接続して、活性層33と端面12との間を延在していることから、活性層33で発生した光が伝搬される。このため、第2光変調器80は、p側電極86とn側電極13との間に逆バイアス電圧が印加されると、活性層33で発生し伝搬された光の強度を変調する。
実施例2のように、第1発光素子20からの光が伝搬される光吸収層73を含む第1光変調器70と第2発光素子30からの光が伝搬される光吸収層83を含む第2光変調器80とを備えていてもよい。
図16は、実施例3に係る光半導体素子700の平面図である。図17Aは、図16のA−A間の断面図、図17Bは、図16のB−B間の断面図である。なお、図17A及び図17Bでは、電極などの図示を省略している。実施例3の光半導体素子700は、分布帰還型半導体レーザと半導体光増幅器とが集積された光半導体素子である。
図16から図17Bのように、実施例3の光半導体素子700は、第1発光素子20と端面12との間に第1半導体光増幅器(SOA)90を備え、第2発光素子30と端面12との間に第2半導体光増幅器(SOA)100を備える。
第1半導体光増幅器90は、第1発光素子20のn型クラッド層22に接続されたn型クラッド層92、活性層23に接続された活性層93、及びp型クラッド層24に接続されたp型クラッド層94を含む。n型クラッド層92は、例えば第1発光素子20のn型クラッド層22と同じ材料及び同じ組成からなる。すなわち、n型クラッド層92は、例えば1.0×1018/cmのSiがドープされたn型InPからなる。活性層93は、例えば第1発光素子20の活性層23と同じ材料且つ同じ組成からなる。すなわち、活性層93は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p型クラッド層94は、例えば第1発光素子20のp型クラッド層24と同じ材料且つ同じ組成からなる。すなわち、p型クラッド層94は、例えば1.0×1018/cmのZnがドープされたp型InPからなる。
活性層93は、第1発光素子20の活性層23に接続して、活性層23と端面12との間を延在していることから、活性層23で発生した光が伝搬される。このため、第1半導体光増幅器90は、活性層23で発生した光を増幅する。
第2半導体光増幅器100は、第2発光素子30のn型クラッド層32に接続されたn型クラッド層102、活性層33に接続された活性層103、及びp型クラッド層34に接続されたp型クラッド層104を含む。n型クラッド層102は、例えば第2発光素子30のn型クラッド層32と同じ材料及び同じ組成からなる。すなわち、n型クラッド層102は、例えば1.0×1018/cmのSiがドープされたn型InPからなる。活性層103は、例えば第2発光素子30の活性層33と同じ材料且つ同じ組成からなる。すなわち、活性層103は、例えばInGaAsPからなるバリア層とInGaAsPからなるウェル層とが交互に複数積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる。p型クラッド層104は、例えば第2発光素子30のp型クラッド層34と同じ材料且つ同じ組成からなる。すなわち、p型クラッド層104は、例えば1.0×1018/cmのZnがドープされたp型InPからなる。
活性層103は、第2発光素子30の活性層33に接続して、活性層33と端面12との間を延在していることから、活性層33で発生した光が伝搬される。このため、第2半導体光増幅器100は、活性層33で発生した光を増幅する。
実施例3のように、第1発光素子20からの光が伝搬される活性層93を含む第1半導体光増幅器90と第2発光素子30からの光が伝搬される活性層103を含む第2半導体光増幅器100とを備えていてもよい。
図18は、実施例4に係る光半導体装置800を示す平面図である。図18のように、実施例4の光半導体装置800は、パッケージ110にレセプタクル111が結合されている。パッケージ110の内部には、温度制御装置112と温度制御装置112上のキャリア113とが収納されている。レセプタクルは、光ファイバを結合保持するためのものである。なお、図18では、パッケージ110内への部品の実装状態を示すために、上部が開放された状態を図示しているが、実際は上部の開口に蓋が設けられ、パッケージ110内部は密閉状態となっている。
キャリア113上には、サブキャリア114とレンズ115が実装されている。サブキャリア114の上面にはグランド配線パターン116と信号配線パターン117とが設けられている。グランド配線パターン116上に、実施例1の光半導体素子500とキャパシタ118が実装されている。キャパシタ118は、ワイヤ配線119を介してDC電源パッド120に電気的に接続されると共に、ワイヤ配線126を介して光半導体素子500の第1発光素子20の電極パッド29に電気的に接続されている。
パッケージ110の外部から内部にかけて配線基板121が挿入されている。パッケージ110の内部であって、配線基板121上にグランド端子122と信号端子123が設けられている。グランド端子122は、ワイヤ配線124、グランド配線パターン116、及びワイヤ配線127を介して光半導体素子500の第2発光素子30の電極パッド39に電気的に接続されている。信号端子123は、ワイヤ配線125、信号配線パターン117、及びワイヤ配線127を介して光半導体素子500の第1発光素子20の電極パッド29に電気的に接続されている。
信号端子123からの信号に応じて第1発光素子20はレーザ光を出力し、当該レーザ光は、レンズ115で集光されて、レセプタクル111に結合保持された光ファイバに入射する。
図19は、実施例4に係る光半導体装置800の製造方法を示すフローチャートである。図19のように、第1発光素子20と第2発光素子30とが集積された光半導体素子500を作製する(ステップS20)。光半導体素子500は、図6Aから図9で説明した方法によって作製することができる。
次いで、光半導体素子500の第1発光素子20又は第2発光素子30のうち単一波長性の良好な方の発光素子を選択する(ステップS22)。発光素子の選択は、第1発光素子20及び第2発光素子30を低反射膜ARが設けられた端面12から発光させ、それぞれの波長(スペクトル特性)を測定することで、単一波長性の良好な発光素子を選択する。この発光素子の選択は、図11で説明した方法によって行うことができる。
次いで、作製した光半導体素子500をパッケージ110に搭載する(ステップS24)。これにより、図18のように、光半導体素子500がパッケージ110内のサブキャリア114上に実装される。
次いで、第1発光素子20又は第2発光素子30のうちの単一波長性の良好な方の発光素子(ここでは、第1発光素子20とする)の電極パッド29をワイヤ配線126、119によってDC電源パッド120に電気的に接続させる(ステップS26)。
次いで、単一波長性が悪い方の発光素子(ここでは、第2発光素子30とする)の電極パッド39をワイヤ配線127によってグランド配線パターン116に電気的に接続させる(ステップS28)。このような工程を含んで、実施例4の光半導体装置800を製造することができる。
実施例4の製造方法によれば、第1発光素子20と第2発光素子30の波長を測定することで、第1発光素子20又は第2発光素子30のうちのいずれか一方の発光素子(例えば、第1発光素子20)を選択し、第1発光素子20の電極パッド29をワイヤ配線119、126によってDC電源パッド120に電気的に接続する。これにより、単一波長性の良好な発光素子を選択することができ、単一波長性の悪化を抑制することができる。
また、実施例4によれば、第1発光素子20又は第2発光素子30のうちの他方の発光素子(例えば、第2発光素子30)の電極パッド39をワイヤ配線127によってグランド配線パターン116に電気的に接続する。これにより、グランド配線パターン116と第2発光素子30のp側電極36とが電気的に接続することで、レーザ光を出力しない第2発光素子30が容量成分になることを抑制することができる。
また、実施例4によれば、第1発光素子20の電極パッド29と電源パッド120とがワイヤ配線119、126によって電気的に接続され、第2発光素子30の電極パッド39には電源が接続されていない。これにより、単一波長性の良好な発光素子を選択することができ、単一波長性の悪化を抑制できる。
なお、実施例4では、実施例1の光半導体素子500を備える場合を例に示したが、実施例2の光半導体素子600又は実施例3の光半導体素子700を備える場合でもよい。
10 半導体基板
11、12 端面
13 n側電極
14 保護膜
15 凹部
18 領域
20 第1発光素子
21、31 回折格子層
21a、31a 回折格子
22、32、72、82、92、102 n型クラッド層
23、33、93、103 活性層
24、34、74、84、94、104 p型クラッド層
25、35 コンタクト層
26、36、46、76、86、96、106 p側電極
27、37 メサストライプ
28、38 n型ブロック層
29、39、49、79、89、99、109 電極パッド
30 第2発光素子
40 第3発光素子
47 立体配線
50 回折格子層
51、57 マスク
52、53 開口
54 n型クラッド層
55 活性層
56、58、59、61 p型クラッド層
60 p型ブロック層
62 n型ブロック層
70 第1光変調器
80 第2光変調器
73、83 光吸収層
90 第1半導体光増幅器
100 第2半導体光増幅器
110 パッケージ
111 レセプタクル
112 温度制御装置
113 キャリア
114 サブキャリア
115 レンズ
116 グランド配線パターン
117 信号配線パターン
118 キャパシタ
119、124、125、126、127 ワイヤ配線
120 DC電源パッド
121 配線基板
122 グランド端子
123 信号端子
HR 高反射膜
AR 低反射膜
500、510、600、700、1000 光半導体素子
800 光半導体装置

Claims (3)

  1. 一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、が集積された光半導体素子を備える光半導体装置の製造方法において、
    前記第1発光素子と前記第2発光素子をそれぞれ前記一方の端面で発光させ、前記第1発光素子と前記第2発光素子のそれぞれの波長を測定することで、前記第1発光素子又は前記第2発光素子のうちのいずれか一方の発光素子を選択する工程と、
    前記光半導体素子をパッケージに搭載する工程と、
    前記一方の発光素子の電極をワイヤ配線によって電源に接続する工程と、を含む、光半導体装置の製造方法。
  2. 前記第1発光素子又は前記第2発光素子のうちの他方の発光素子の電極を他のワイヤ配線によってグランドに接続する工程と、をさらに含む、請求項1に記載の光半導体装置の製造方法。
  3. 一方の端面から他方の端面に向かって延在して半導体基板上に設けられた第1活性層と、前記第1活性層に電流を注入する第1電極と、を含む第1発光素子と、前記第1発光素子と集積され、前記一方の端面から前記他方の端面に向かって延在して前記半導体基板上に設けられた第2活性層と、前記第2活性層に電流を注入する第2電極と、を含む第2発光素子と、を有する光半導体素子と、
    前記光半導体素子が搭載されるパッケージと、
    前記第1電極と前記第2電極のいずれか一方のみを電源に接続するワイヤ配線と、を備える、光半導体装置。
JP2016123812A 2016-06-22 2016-06-22 光半導体装置の製造方法及び光半導体装置 Pending JP2017228654A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123812A JP2017228654A (ja) 2016-06-22 2016-06-22 光半導体装置の製造方法及び光半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123812A JP2017228654A (ja) 2016-06-22 2016-06-22 光半導体装置の製造方法及び光半導体装置

Publications (1)

Publication Number Publication Date
JP2017228654A true JP2017228654A (ja) 2017-12-28

Family

ID=60891830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123812A Pending JP2017228654A (ja) 2016-06-22 2016-06-22 光半導体装置の製造方法及び光半導体装置

Country Status (1)

Country Link
JP (1) JP2017228654A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172089A1 (ja) * 2018-03-07 2019-09-12 日本電信電話株式会社 半導体光集積素子およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172089A1 (ja) * 2018-03-07 2019-09-12 日本電信電話株式会社 半導体光集積素子およびその製造方法
JP2019160840A (ja) * 2018-03-07 2019-09-19 日本電信電話株式会社 半導体光集積素子およびその製造方法
US11367997B2 (en) 2018-03-07 2022-06-21 Nippon Telegraph And Telephone Corporation Semiconductor integrated optics element and production method therefor

Similar Documents

Publication Publication Date Title
US6798807B2 (en) Semiconductor laser and semiconductor laser module
JP5387671B2 (ja) 半導体レーザ及び集積素子
JP4312239B2 (ja) 光素子及びその製造方法
JP5767864B2 (ja) 光素子、光素子を含む変調器モジュール、光素子を含むレーザ集積変調器モジュール、及び、光素子の製造方法
JP5891920B2 (ja) 変調器集積型レーザ素子
US6639241B2 (en) Optical device using semiconductor
US20100189154A1 (en) Semiconductor optical device
JP5467953B2 (ja) 半導体光素子、光送信モジュール、光送受信モジュール、及び、光伝送装置
JP2008010484A (ja) 半導体光素子及び光送信モジュール
JP6715589B2 (ja) 半導体光素子、アレイ半導体光素子、及び光モジュール
JPH11220212A (ja) 光素子、光素子の駆動方法及び半導体レーザ素子
US20210143609A1 (en) Semiconductor optical device and method for producing semiconductor optical device
JP7457485B2 (ja) 埋め込み型半導体光素子
JP6510966B2 (ja) 半導体レーザ及び光半導体モジュール
JPWO2005074047A1 (ja) 光半導体素子およびその製造方法
JP2017228654A (ja) 光半導体装置の製造方法及び光半導体装置
US20170194766A1 (en) Optical device and optical module
JP2012002929A (ja) 半導体光素子の製造方法、レーザモジュール、光伝送装置
JP6678994B2 (ja) 光半導体装置の製造方法及び光半導体装置
JP7371552B2 (ja) 量子カスケードレーザ
US20220206226A1 (en) Semiconductor optical device and method for manufacturing the same
JP6299839B2 (ja) 光素子及び光モジュール
JP2842387B2 (ja) 半導体光集積素子の製造方法
CN117859245A (zh) 一种具有集成mPD的半导体发射器
JP2020074473A (ja) 半導体光素子、アレイ半導体光素子、及び光モジュール

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200811