JP2017214004A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2017214004A
JP2017214004A JP2016109559A JP2016109559A JP2017214004A JP 2017214004 A JP2017214004 A JP 2017214004A JP 2016109559 A JP2016109559 A JP 2016109559A JP 2016109559 A JP2016109559 A JP 2016109559A JP 2017214004 A JP2017214004 A JP 2017214004A
Authority
JP
Japan
Prior art keywords
engine
rotating machine
mode
state
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016109559A
Other languages
English (en)
Other versions
JP6677083B2 (ja
Inventor
裕士 川西
Hiroshi Kawanishi
裕士 川西
田端 淳
Atsushi Tabata
淳 田端
達也 今村
Tatsuya Imamura
達也 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016109559A priority Critical patent/JP6677083B2/ja
Publication of JP2017214004A publication Critical patent/JP2017214004A/ja
Application granted granted Critical
Publication of JP6677083B2 publication Critical patent/JP6677083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】パラレル走行中にエンジンの運転を停止する条件が成立したときに、早期にエンジンの運転を停止させて、燃費を向上する。【解決手段】パラレル走行中に運転停止条件が成立したと判定された場合には、変速部44が中立状態とされた後に、又は、エンジン14と第1回転機MG1とを連結するクラッチCSが解放状態とされた後に、エンジン14の運転が停止され、エンジン回転速度Neがゼロに向けて低下させられるので、パラレル走行とは異なり、走行中であってもエンジン回転速度Neをゼロとするように制御することができる。よって、パラレル走行中にエンジン12の運転停止条件が成立したときに、早期にエンジン12の運転を停止させることができて、燃費を向上することができる。【選択図】図1

Description

本発明は、変速部を介してエンジンと連結されて第1回転機の運転状態が制御されることにより差動状態が制御される差動部と、駆動輪に動力伝達可能に連結された第2回転機とを備えた車両の制御装置に関するものである。
エンジンが動力伝達可能に入力回転部材に連結された変速部と、前記変速部の出力回転部材に連結された第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有する差動機構を備えて前記第1回転機の運転状態が制御されることにより前記差動機構の差動状態が制御される差動部と、前記駆動輪に動力伝達可能に連結された第2回転機とを備えた車両が良く知られている。例えば、特許文献1に記載された車両がそれである。この特許文献1には、エンジンの動力を差動部へ伝達する変速部は、遊星歯車機構と、係合と解放とが油圧によって制御される摩擦係合装置とを含んで構成され、その摩擦係合装置の係合によってエンジンと差動部との間での動力伝達が可能な状態(すなわち変速部における機械的な動力伝達が可能な状態)とされることが開示されている。
国際公開第2013/114594号
ところで、前記車両において、燃費向上の為に、エンジンと第1回転機とを連結する係合装置を更に備え、例えば変速部を中立状態(ニュートラル状態)とし且つその係合装置を係合状態とすることで、エンジンの動力にて第1回転機により発電を行い、その発電電力を用いて第2回転機を駆動して走行するシリーズ走行を可能とすることが考えられる。このように構成された車両では、例えば変速部を非中立状態とし且つ上記係合装置を係合状態とすることで、エンジンや第2回転機を駆動して走行するパラレル走行も可能である。このパラレル走行では、変速部と差動部との全体のギヤ比が固定された有段走行状態とされるので、パラレル走行中にフューエルカットなどによってエンジンの運転を停止させると、車速に応じたエンジンブレーキが作用する。その為、パラレル走行中にエンジンの運転を停止する際に、エンジンブレーキトルクが不要な場面又はあまり必要とされない場面では、エンジンの運転停止の実施を制限する必要がある(例えばエンジンブレーキトルクが小さくされる車速となるまでエンジンの運転停止の実施を待機する必要がある)。そうすると、エンジンの運転を停止する条件が成立したとしても、エンジンの運転停止を早期に実施することができず、燃費を向上し難くなる可能性がある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、パラレル走行中にエンジンの運転を停止する条件が成立したときに、早期にエンジンの運転を停止させることができて、燃費を向上することができる車両の制御装置を提供することにある。
第1の発明の要旨とするところは、(a) エンジンが動力伝達可能に入力回転部材に連結された変速部と、前記変速部の出力回転部材に連結された第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有する差動機構を備えて前記第1回転機の運転状態が制御されることにより前記差動機構の差動状態が制御される差動部と、前記駆動輪に動力伝達可能に連結された第2回転機とを備えた車両の、制御装置であって、(b) 前記車両は、前記エンジンと前記第1回転機とを連結する係合装置を更に備えるものであり、(c) 前記変速部を機械的な動力伝達が可能な非中立状態とし且つ前記係合装置を係合状態として、前記エンジンを運転させて走行するパラレル走行を実行するハイブリッド制御部と、(d) 前記エンジンの運転を停止する運転停止条件が成立したか否かを判定する条件成立判定部と、(e) 前記パラレル走行中に前記運転停止条件が成立したと判定された場合には、前記変速部を機械的な動力伝達が不能な中立状態とした後に、又は、前記係合装置を解放状態とした後に、前記エンジンの運転を停止し、前記エンジンの回転速度をゼロに向けて低下させるエンジン停止制御部とを、含むことにある。
前記第1の発明によれば、パラレル走行中に運転停止条件が成立したと判定された場合には、変速部が中立状態とされた後に、又は、エンジンと第1回転機とを連結する係合装置が解放状態とされた後に、エンジンの運転が停止され、エンジンの回転速度がゼロに向けて低下させられるので、パラレル走行とは異なり、走行中であってもエンジン回転速度をゼロとするように制御することができる。よって、パラレル走行中にエンジンの運転を停止する条件が成立したときに、早期にエンジンの運転を停止させることができて、燃費を向上することができる。
本発明が適用される車両の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。 エンジン走行とモータ走行との切替制御に用いる駆動力源切替マップの一例を示す図である。 各走行モードにおける各係合装置の各作動状態を示す図表である。 単駆動EVモード時の共線図である。 両駆動EVモード時の共線図である。 HV走行モードのシリーズパラレルローモード時の共線図である。 HV走行モードのシリーズパラレルハイモード時の共線図である。 HV走行モードのシリーズモード時の共線図である。 HV走行モードのパラレルローモード時の共線図である。 HV走行モードのパラレルハイモード時の共線図である。 電子制御装置の制御作動の要部すなわちパラレル走行中にエンジンの運転を停止する条件が成立したときに早期にエンジンの運転を停止させて燃費を向上する為の制御作動を説明するフローチャートである。 図11のフローチャートに示す制御作動を実行した場合のタイムチャートであって、要求減速度が比較的小さい場合の一例を示す図である。 図11のフローチャートに示す制御作動を実行した場合のタイムチャートであって、要求減速度が比較的大きい場合の一例を示す図である。
好適には、前記第1の発明に記載の車両の制御装置において、前記条件成立判定部は、前記車両に対する減速要求が所定値よりも大きいか否かを判定するものであり、前記エンジン停止制御部は、前記パラレル走行中に前記運転停止条件が成立したと判定されたときに、前記減速要求が前記所定値以下であると判定された場合には、前記変速部を前記中立状態とした後に前記エンジンの運転を停止する一方で、前記減速要求が前記所定値よりも大きいと判定された場合には、前記係合装置を解放状態とした後に前記エンジンの運転を停止することにある。このようにすれば、減速要求が比較的小さい場合には、変速部が中立状態とされ、且つ係合装置の係合によってエンジンと第1回転機とが連結された状態において、第1回転機によりエンジンの回転速度を速やかにゼロとするように制御することができる。一方で、減速要求が比較的大きい場合には、非中立状態とされた変速部と差動状態とされた差動部とを介してエンジンの動力が機械的に駆動輪へ伝達される状態において、第1回転機によりエンジンの回転速度をゼロとするように制御することができると共に、所望するエンジンブレーキトルクが得られるように第1回転機によりエンジンの回転速度を制御することができる。このように、減速要求が比較的小さい場合には、エンジンの回転速度をより速やかにゼロとするように制御することができる一方で、減速要求が比較的大きい場合には、エンジンブレーキを作用させられ得る状態で、エンジンの回転速度をゼロとするように制御することができる。よって、早期のエンジンの運転停止による燃費向上と、必要な制動トルクの実現とを両立することができる。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10の走行に関わる各部の概略構成を説明する図であると共に、その各部を制御する為の制御系統の要部を説明する図である。図1において、車両10は、走行用の駆動力源となり得る、エンジン12、第1回転機MG1、及び第2回転機MG2と、動力伝達装置14と、駆動輪16とを備えるハイブリッド車両である。
エンジン12は、例えばガソリンエンジンやディーゼルエンジン等、所定の燃料を燃焼させて動力を出力させる公知の内燃機関である。このエンジン12は、後述する電子制御装置80によってスロットル開度或いは吸入空気量、燃料供給量、点火時期等の運転状態が制御されることにより、エンジントルクTeが制御される。
第1回転機MG1及び第2回転機MG2は、駆動トルクを発生させる電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、インバータ部や平滑コンデンサなどを有する電力制御ユニット18を介してバッテリユニット20に接続されており、後述する電子制御装置80によって電力制御ユニット18が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルク(力行トルク又は回生トルク)であるMG1トルクTmg1及びMG2トルクTmg2が制御される。
動力伝達装置14は、エンジン12と駆動輪16との間の動力伝達経路に備えられており、車体に取り付けられる非回転部材であるケース22内に、第1回転機MG1及び第2回転機MG2と共に収容されている。動力伝達装置14は、第1動力伝達部24、第2動力伝達部26、第1動力伝達部24の出力回転部材であるドライブギヤ28と噛み合うドリブンギヤ30、ドリブンギヤ30を相対回転不能に固設するドリブン軸32、ドリブン軸32に相対回転不能に固設されたファイナルギヤ34(ドリブンギヤ30よりも小径のファイナルギヤ34)、デフリングギヤ36を介してファイナルギヤ34と噛み合うディファレンシャルギヤ38等をケース22内に備えている。又、動力伝達装置14は、ディファレンシャルギヤ38に連結された車軸40等を備えている。
第1動力伝達部24は、第1動力伝達部24の入力回転部材である入力軸42と同軸心に配置されており、変速部44と差動部46とを備えている。変速部44は、第1遊星歯車機構48、クラッチC1、及びブレーキB1を備えている。差動部46は、第2遊星歯車機構50及びクラッチCSを備えている。
第1遊星歯車機構48は、第1サンギヤS1、第1ピニオンギヤP1、第1ピニオンギヤP1を自転及び公転可能に支持する第1キャリヤCA1、第1ピニオンギヤP1を介して第1サンギヤS1と噛み合う第1リングギヤR1を有する公知のシングルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。第1遊星歯車機構48は、第2遊星歯車機構50よりもエンジン12側に配置された入力側差動機構である。第1キャリヤCA1は、入力軸42に一体的に連結され、その入力軸42を介してエンジン12が動力伝達可能に連結された回転要素(例えば第1回転要素RE1)であり、変速部44の入力回転部材として機能する。第1サンギヤS1は、ブレーキB1を介してケース22に選択的に連結される回転要素(例えば第2回転要素RE2)である。第1リングギヤR1は、差動部46の入力回転部材(すなわち第2遊星歯車機構50の第2キャリヤCA2)に連結された回転要素(例えば第3回転要素RE3)であり、変速部44の出力回転部材として機能する。又、第1キャリヤCA1と第1サンギヤS1とは、クラッチC1を介して選択的に連結される。
クラッチC1及びブレーキB1は、好適には何れも湿式の摩擦係合装置であり、油圧アクチュエータによって係合制御される多板型の油圧式摩擦係合装置である。このクラッチC1及びブレーキB1は、車両10に備えられた油圧制御回路52が後述する電子制御装置80によって制御されることにより、その油圧制御回路52から各々供給される油圧(例えばC1油圧Pc1、B1油圧Pb1)に応じて作動状態(係合や解放などの状態)が制御される。
クラッチC1及びブレーキB1が共に解放された状態においては、第1遊星歯車機構48の差動が許容される。よって、この状態では、第1サンギヤS1にてエンジントルクTeの反力トルクが取れない為、変速部44は機械的な動力伝達が不能な中立状態(ニュートラル状態)とされる。又、クラッチC1が係合され且つブレーキB1が解放された状態においては、第1遊星歯車機構48は各回転要素が一体回転させられる。よって、この状態では、エンジン12の回転は等速で第1リングギヤR1から第2キャリヤCA2へ伝達される。一方で、クラッチC1が解放され且つブレーキB1が係合された状態においては、第1遊星歯車機構48は第1サンギヤS1の回転が止められ、第1リングギヤR1の回転が第1キャリヤCA1の回転よりも増速される。よって、この状態では、エンジン12の回転は増速されて第1リングギヤR1から出力される。このように、変速部44は、直結状態(ギヤ比=1.0)となるローギヤと、オーバードライブ状態(例えばギヤ比=0.7)となるハイギヤとに切り替えられる2段の有段変速機として機能する。よって、クラッチC1及びブレーキB1のうちの一方が係合された状態では、変速部44は機械的な動力伝達が可能な非中立状態とされる。又、クラッチC1及びブレーキB1が共に係合された状態においては、第1遊星歯車機構48は各回転要素の回転が止められる。よって、この状態では、変速部44の出力回転部材である第1リングギヤR1の回転が停止されることで、差動部46の入力回転部材である第2キャリヤCA2の回転が停止させられる。
第2遊星歯車機構50は、第2サンギヤS2、第2ピニオンギヤP2、第2ピニオンギヤP2を自転及び公転可能に支持する第2キャリヤCA2、第2ピニオンギヤP2を介して第2サンギヤS2と噛み合う第2リングギヤR2を有する公知のシングルピニオン型の遊星歯車機構であり、差動作用を生じる差動機構として機能する。第2遊星歯車機構50は、第1遊星歯車機構48よりも駆動輪16側に配置された出力側差動機構である。第2キャリヤCA2は、変速部44の出力回転部材(すなわち第1遊星歯車機構48の第1リングギヤR1)に連結された入力要素としての回転要素(例えば第1回転要素RE1)であり、差動部46の入力回転部材として機能する。第2サンギヤS2は、第1回転機MG1のロータ軸54に一体的に連結されており、第1回転機MG1が動力伝達可能に連結された反力要素としての回転要素(例えば第2回転要素RE2)である。第2リングギヤR2は、ドライブギヤ28に一体的に連結されており、駆動輪16に連結された出力要素としての回転要素(例えば第3回転要素RE3)であり、差動部46の出力回転部材として機能する。又、第2サンギヤS2は、クラッチCSを介して第1キャリヤCA1と選択的に連結される。よって、クラッチCSは、第1キャリヤCA1に連結されたエンジン12と、第2サンギヤS2に連結された第1回転機MG1とを選択的に連結する係合装置である。
クラッチCSは、好適には湿式の摩擦係合装置であり、油圧アクチュエータによって係合制御される多板型の油圧式摩擦係合装置である。このクラッチCSは、後述する電子制御装置80によって油圧制御回路52が制御されることにより、その油圧制御回路52から供給される油圧(例えばCS油圧Pcs)に応じて作動状態(係合や解放などの状態)が制御される。
クラッチCSが解放された状態においては、第2遊星歯車機構50の差動が許容される。よって、この状態では、第2遊星歯車機構50は、第2キャリヤCA2に入力される動力を第1回転機MG1及び第2リングギヤR2へ分配する動力分配機構として機能することが可能である。すなわち、差動部46において、第2リングギヤR2へ分配される機械的な動力伝達に加え、第1回転機MG1に分配された動力で第1回転機MG1が発電され、その発電された電力が蓄電されたりその電力で第2回転機MG2が駆動される。これにより、差動部46は、後述する電子制御装置80によって電力制御ユニット18が制御されて第1回転機MG1の運転状態が制御されることによりギヤ比(変速比)を制御する公知の電気式差動部(電気式無段変速機)として機能する。つまり、差動部46は、エンジン12に動力伝達可能に連結された差動機構としての第2遊星歯車機構50と、第2遊星歯車機構50に動力伝達可能に連結された差動用回転機としての第1回転機MG1とを有し、第1回転機MG1の運転状態が制御されることにより第2遊星歯車機構50の差動状態が制御される電気式変速機構である。又、クラッチCSが係合された状態においては、エンジン12と第1回転機MG1とが連結される為、エンジン12の動力によって第1回転機MG1にて発電を行い、その発電した電力を蓄電したりその電力で第2回転機MG2を駆動することが可能である。
このように構成された第1動力伝達部24においては、エンジン12の動力や第1回転機MG1の動力はドライブギヤ28からドリブンギヤ30へ伝達される。従って、エンジン12及び第1回転機MG1は、第1動力伝達部24を介して駆動輪16に動力伝達可能に連結される。又、変速部44は、オーバードライブであるので、第1回転機MG1の高トルク化が抑制される。
第2動力伝達部26は、入力軸42とは別にその入力軸42と平行に配置された、第2回転機MG2のロータ軸56、及びドリブンギヤ30と噛み合うと共にそのロータ軸56に連結されたリダクションギヤ58(ドリブンギヤ30よりも小径のリダクションギヤ58)を備えている。これにより、第2動力伝達部26においては、第2回転機MG2の動力は第1動力伝達部24を介すことなくドリブンギヤ30へ伝達される。従って、第2回転機MG2は、第1動力伝達部24を介さずに駆動輪16に動力伝達可能に連結される。つまり、第2回転機MG2は、第1動力伝達部24を介さずに動力伝達装置14の出力回転部材である車軸40に動力伝達可能に連結された回転機である。尚、動力伝達装置14の出力回転部材としては、車軸40の他に、ファイナルギヤ34やデフリングギヤ36も同意である。
このように構成された動力伝達装置14は、FF(フロントエンジン・フロントドライブ)方式の車両に好適に用いられる。又、動力伝達装置14では、エンジン12の動力や第1回転機MG1の動力や第2回転機MG2の動力は、ドリブンギヤ30へ伝達され、そのドリブンギヤ30から、ファイナルギヤ34、ディファレンシャルギヤ38、車軸40等を順次介して駆動輪16へ伝達される。又、動力伝達装置14では、エンジン12、第1動力伝達部24、及び第1回転機MG1と、第2回転機MG2とが異なる軸心上に配置されることで、軸長が短縮化されている。又、第2回転機MG2の減速比を大きくとることができる。
車両10は、走行に関わる各部を制御する制御装置を含む電子制御装置80を備えている。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置80は、エンジン12、第1回転機MG1、及び第2回転機MG2の各出力制御、後述する走行モードの切替制御等を実行するようになっており、必要に応じてエンジン制御用、回転機制御用、油圧制御用等に分けて構成される。
電子制御装置80には、車両10に設けられた各種センサ等(例えばエンジン回転速度センサ60、出力回転速度センサ62、レゾルバ等のMG1回転速度センサ64、レゾルバ等のMG2回転速度センサ66、アクセル開度センサ68、シフトポジションセンサ70、バッテリセンサ72など)による検出値に基づく各種信号(例えばエンジン回転速度Ne、車速Vに対応するドリブンギヤ30の回転速度である出力回転速度Nout、MG1回転速度Nmg1、MG2回転速度Nmg2、アクセル開度θacc、シフトレバーの操作位置Psh、バッテリユニット20のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbatなど)が供給される。又、電子制御装置80からは、車両10に備えられた各装置(例えばエンジン12、電力制御ユニット18、油圧制御回路52など)に各種指令信号(例えばエンジン制御指令信号Se、回転機制御指令信号Sm、油圧制御指令信号Spなど)が供給される。尚、電子制御装置80は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリユニット20の充電状態(充電容量)SOCを算出する。
電子制御装置80は、車両10における各種制御の為の制御機能を実現する為に、ハイブリッド制御手段すなわちハイブリッド制御部82、及び動力伝達切替手段すなわち動力伝達切替部84を備えている。
ハイブリッド制御部82は、電子スロットル弁を開閉制御し、燃料噴射量や噴射時期を制御し、点火時期を制御するエンジン制御指令信号Seを出力して、エンジントルクTeの目標トルクが得られるようにエンジン12の出力制御を実行する。又、ハイブリッド制御部82は、第1回転機MG1や第2回転機MG2の作動を制御する回転機制御指令信号Smを電力制御ユニット18へ出力して、MG1トルクTmg1やMG2トルクTmg2の目標トルクが得られるように第1回転機MG1や第2回転機MG2の出力制御を実行する。
ハイブリッド制御部82は、アクセル開度θaccからそのときの車速Vにて要求される駆動トルク(要求駆動トルク)を算出し、充電要求値(充電要求パワー)等を考慮して低燃費で排ガス量の少ない運転となるように、エンジン12、第1回転機MG1、及び第2回転機MG2の少なくとも1つから要求駆動トルクを発生させる。
ハイブリッド制御部82は、走行モードとして、モータ走行モード(EV走行モード)或いはハイブリッド走行モード(HV走行モード)を走行状態に応じて選択的に成立させる。EV走行モードは、エンジン12の運転を停止させると共に、第1回転機MG1及び第2回転機MG2のうちの少なくとも一方の回転機を走行用の駆動力源として走行するモータ走行(EV走行)を可能とする制御様式である。HV走行モードは、少なくともエンジン12を走行用の駆動力源として走行する(すなわちエンジン12の動力を駆動輪16へ伝達して走行する)エンジン走行を可能とする制御様式である。尚、エンジン12の動力が機械的に駆動輪16へ伝達されなくても、例えばエンジン12の動力が第1回転機MG1の発電によって電力に変換され、その電力によって第2回転機MG2を駆動して走行する場合であれば、HV走行モードに含まれる。つまり、このような場合、エンジントルクTeは機械的に駆動輪16へ伝達されないが、第2回転機MG2を駆動する基の動力源はエンジン12であるので、この走行(すなわち後述するシリーズ走行)もエンジン走行に含まれる。
ハイブリッド制御部82は、車速Vと要求駆動トルクとを変数としてエンジン走行領域とモータ走行領域(単駆動領域、両駆動領域)との境界線を有する予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)図2に示すような関係(駆動力源切替マップ)に車速V及び要求駆動トルクを適用することで、走行状態がモータ走行領域とエンジン走行領域との何れにあるかを判断する。ハイブリッド制御部82は、モータ走行領域にあると判断した場合には、EV走行モードを成立させる一方で、エンジン走行領域にあると判断した場合には、HV走行モードを成立させる。尚、ハイブリッド制御部82は、走行状態がモータ走行領域にあるときであっても、バッテリ温度THbatが低かったり充電容量SOCが低かったりしてバッテリユニット20から出力可能な電力が制限されている場合、又はエンジン12の暖機が必要な場合などには、エンジン12を運転するようにHV走行モードを成立させる。図2に示すように、モータ走行領域(単駆動領域、両駆動領域)は、エンジン走行領域と比較して、車速Vの低車速域、又は、要求駆動トルクの低トルク域にある。
ハイブリッド制御部82は、EV走行モードを成立させたときには、更に、図2に示すような駆動力源切替マップに車速V及び要求駆動トルクを適用することで、単駆動領域と両駆動領域との何れにあるかを判断する。例えば、ハイブリッド制御部82は、第2回転機MG2のみで要求駆動トルクを賄える場合には、単駆動EVモードを成立させる一方で、第2回転機MG2のみでは要求駆動トルクを賄えない場合には、両駆動EVモードを成立させる。ハイブリッド制御部82は、単駆動EVモードを成立させた場合には、第2回転機MG2のみを走行用の駆動力源とするEV走行を可能とする一方で、両駆動EVモードを成立させた場合には、第1回転機MG1及び第2回転機MG2の両方を走行用の駆動力源とするEV走行を可能とする。ハイブリッド制御部82は、第2回転機MG2のみで要求駆動トルクを賄えるときであっても、MG2回転速度Nmg2及びMG2トルクTmg2で表される第2回転機MG2の動作点が第2回転機MG2の効率を悪化させる動作点として予め定められた領域内にある場合には(換言すれば第1回転機MG1及び第2回転機MG2を併用した方が効率が良い場合には)、両駆動EVモードを成立させる。ハイブリッド制御部82は、両駆動EVモードを成立させた場合には、第1回転機MG1及び第2回転機MG2の運転効率に基づいて、第1回転機MG1及び第2回転機MG2にて要求駆動トルクを分担させる。
ハイブリッド制御部82は、走行状態がエンジン走行領域にあることでHV走行モードを成立させた場合には、例えばシリーズパラレルモードを成立させる。ハイブリッド制御部82は、シリーズパラレルモードを成立させた場合には、エンジン12の動力に対する反力を第1回転機MG1の発電により受け持つことでドライブギヤ28にエンジン直達トルクを伝達すると共に第1回転機MG1の発電電力により第2回転機MG2を駆動することで駆動輪16にトルクを伝達してエンジン走行を可能とする。すなわち、ハイブリッド制御部82は、シリーズパラレルモードを成立させた場合には、第1回転機MG1の運転状態を制御することによりエンジン12の動力を駆動輪16へ伝達して走行するシリーズパラレル走行を可能とする。ハイブリッド制御部82は、このシリーズパラレルモードでは、公知のエンジン12の最適燃費線を考慮したエンジン動作点(すなわちエンジン回転速度NeとエンジントルクTeとで表されるエンジン動作点)にてエンジン12を作動させる。又、このシリーズパラレルモードでは、第1回転機MG1の発電電力にバッテリユニット20からの電力を加えて第2回転機MG2を駆動することも可能である。
ハイブリッド制御部82は、走行状態がモータ走行領域(単駆動領域、両駆動領域)にあるときに、バッテリユニット20から出力可能な電力が制限されている場合又はエンジン12の暖機が必要な場合などには、HV走行モードを成立させる。ハイブリッド制御部82は、例えば走行状態が両駆動領域にあるときにHV走行モードを成立させる場合にはシリーズパラレルモードを成立させる一方で、走行状態が単駆動領域にあるときにHV走行モードを成立させる場合にはシリーズモードを成立させる。ハイブリッド制御部82は、シリーズモードを成立させた場合には、エンジン12を作動させて第1回転機MG1を発電させ、第1回転機MG1の発電電力により第2回転機MG2を駆動することで駆動輪16にMG2トルクTmg2を伝達して走行するシリーズ走行が可能である。尚、このシリーズモードは、バッテリユニット20から出力可能な電力が制限されていない場合であっても実行可能であり、このような場合、単駆動領域がより拡げられるという見方もできる。
ハイブリッド制御部82は、HV走行モードを成立させた場合には、パラレルモードを成立させることも可能である。ハイブリッド制御部82は、パラレルモードを成立させた場合には、エンジン12の動力に加えて、第1回転機MG1の動力及び/又は第2回転機MG2の動力を駆動輪16へ伝達して走行するパラレル走行を可能とする。このパラレルモードは、要求駆動トルクが大きかったり、車速Vが高かったりする走行状態の場合に有用である。
動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードに基づいて、クラッチC1、ブレーキB1、及びクラッチCSの各係合作動(作動状態)を制御する。動力伝達切替部84は、ハイブリッド制御部82により成立させられた走行モードにて走行する為の動力伝達が可能となるように、クラッチC1、ブレーキB1、及びクラッチCSを各々係合及び/又は解放させる油圧制御指令信号Spを油圧制御回路52へ出力する。
ここで、車両10にて実行可能な走行モードについて図3、及び図4−図10を用いて説明する。図3は、各走行モードにおけるクラッチC1、ブレーキB1、及びクラッチCSの各作動状態を示す図表である。図3の図表中の○印は係合装置(C1,B1,CS)の係合を示し、空欄は解放を示し、△印は運転停止状態のエンジン12を連れ回し状態とするエンジンブレーキ(エンブレともいう)の併用時に何れか一方を係合することを示している。又、「G」は回転機(MG1,MG2)を主にジェネレータとして機能させることを示し、「M」は回転機(MG1,MG2)を駆動時には主にモータとして機能させ、回生時には主にジェネレータとして機能させることを示している。図3に示すように、車両10は、走行モードとして、EV走行モード及びHV走行モードを選択的に実現することができる。EV走行モードは、単駆動EVモードと両駆動EVモードとの2つのモードを有している。HV走行モードは、シリーズパラレルモードとパラレルモードとシリーズモードとの3つのモードを有している。
図4−図10は、第1遊星歯車機構48及び第2遊星歯車機構50の各々における3つの回転要素RE1,RE2,RE3の回転速度を相対的に表すことができる共線図である。この共線図において、第1遊星歯車機構48における各回転要素の回転速度を表す縦線Y1−Y3は紙面向かって左から順に、縦線Y1がブレーキB1を介してケース22に選択的に連結される第2回転要素RE2である第1サンギヤS1の回転速度を、縦線Y2がエンジン12に連結された第1回転要素RE1である第1キャリヤCA1の回転速度を、縦線Y3が第2キャリヤCA2に連結された第3回転要素RE3である第1リングギヤR1の回転速度をそれぞれ示している。又、第2遊星歯車機構50における各回転要素の回転速度を表す縦線Y4−Y6は紙面向かって左から順に、縦線Y4が第1回転機MG1に連結された第2回転要素RE2である第2サンギヤS2の回転速度を、縦線Y5が第1リングギヤR1に連結された第1回転要素RE1である第2キャリヤCA2の回転速度を、縦線Y6がドライブギヤ28に連結された第3回転要素RE3である第2リングギヤR2の回転速度をそれぞれ示している。
図4は、単駆動EVモード時の共線図である。単駆動EVモードは、図3に示すように、クラッチC1、ブレーキB1、及びクラッチCSを共に解放した状態で実現される。単駆動EVモードでは、図4に示すように、クラッチC1及びブレーキB1が解放されることで、第1遊星歯車機構48の差動が許容され、変速部44は中立状態とされる。変速部44が中立状態とされると、第1リングギヤR1に連結された第2キャリヤCA2にてMG1トルクTmg1の反力トルクが取れない為、差動部46は中立状態とされ、第1動力伝達部24も中立状態とされる。この状態で、ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第2回転機MG2から走行用のMG2トルクTmg2を出力させる。後進時は、前進時に対して第2回転機MG2を逆回転させる。車両走行中には、第2回転機MG2の回転(ここでは駆動輪16の回転も同意)に連動してドライブギヤ28に連結された第2リングギヤR2が回転させられる。単駆動EVモードでは、第1回転機MG1を無負荷として空転させても良いが、第1回転機MG1における引き摺り損失等を低減する為に、ハイブリッド制御部82は、MG1回転速度Nmg1をゼロに維持する。例えば、ハイブリッド制御部82は、第1回転機MG1をジェネレータとして機能させて、フィードバック制御によりMG1回転速度Nmg1をゼロに維持する。或いは、ハイブリッド制御部82は、第1回転機MG1の回転が固定されるように第1回転機MG1に電流を流す制御(d軸ロック制御)を実行して、MG1回転速度Nmg1をゼロに維持する。或いは、MG1トルクTmg1をゼロとしても第1回転機MG1のコギングトルクによりMG1回転速度Nmg1をゼロに維持できるときはMG1トルクTmg1を加える必要はない。尚、MG1回転速度Nmg1をゼロに維持する制御を行っても、第1動力伝達部24は中立状態であるので、駆動トルクに影響を与えない。
単駆動EVモードでは、第1リングギヤR1は第2キャリヤCA2に連れ回されるが、変速部44は中立状態であるので、運転が停止されたエンジン12は連れ回されずゼロ回転で停止状態とされる。よって、単駆動EVモードでの走行中に第2回転機MG2にて回生制御を行う場合、回生量を大きく取ることができる。単駆動EVモードでの走行時に、バッテリユニット20が満充電状態となり回生エネルギーが取れない場合、エンジンブレーキを併用することが考えられる。エンジンブレーキを併用する場合は、図3に示すように、ブレーキB1又はクラッチC1が係合される(図3の単駆動EVモードのエンブレ併用を参照)。ブレーキB1又はクラッチC1が係合されると、エンジン12は連れ回し状態とされて、エンジンブレーキが作用させられる。MG1回転速度Nmg1を上昇させることで、エンジン12の連れ回し状態におけるエンジン回転速度Neを上昇させることができる。
上述したように、ブレーキB1又はクラッチC1を係合することでエンジン回転速度Neを上昇させることができるので、EV走行モードからエンジン12を始動するときには、ブレーキB1又はクラッチC1を係合した状態として、必要に応じて第1回転機MG1によりエンジン回転速度Neを引き上げて点火する。このとき、第2回転機MG2に反力キャンセルトルクを追加で出力させる。尚、車両停止時にエンジン12を始動する際には、ブレーキB1又はクラッチC1を係合した状態で第1回転機MG1により第2キャリヤCA2の回転を引き上げることでエンジン回転速度Neを上昇させても良いし、又、第1回転機MG1により第2キャリヤCA2の回転を引き上げてからブレーキB1又はクラッチC1を係合することでエンジン回転速度Neを上昇させても良い。
図5は、両駆動EVモード時の共線図である。両駆動EVモード(「Ne=0」)は、図3に示すように、クラッチC1及びブレーキB1を係合した状態、且つクラッチCSを解放した状態で実現される。この両駆動EVモードでは、図5に示すように、クラッチC1及びブレーキB1が係合されることで、第1遊星歯車機構48の差動が規制され、第1サンギヤS1の回転が停止させられる。その為、第1遊星歯車機構48は何れの回転要素も回転が停止させられる。これによって、エンジン12はゼロ回転で停止状態とされ、又、第1リングギヤR1に連結された第2キャリヤCA2の回転も停止させられる。第2キャリヤCA2の回転が停止させられると、第2キャリヤCA2にてMG1トルクTmg1の反力トルクが取れる為、MG1トルクTmg1を第2リングギヤR2から機械的に出力させて駆動輪16へ伝達することができる。ハイブリッド制御部82は、エンジン12の運転を停止させると共に、第1回転機MG1及び第2回転機MG2から各々走行用のMG1トルクTmg1及びMG2トルクTmg2を出力させる。この両駆動EVモードでは、前進時に対して第1回転機MG1及び第2回転機MG2を共に逆回転させて後進走行することも可能である。
図6は、HV走行モードのロー状態でのシリーズパラレルモード(以下、シリーズパラレルローモードという)時の共線図である。シリーズパラレルローモードは、図3に示すように、クラッチC1を係合した状態、且つブレーキB1及びクラッチCSを解放した状態で実現される。シリーズパラレルローモードでは、図6に示すように、クラッチC1が係合されることで、第1遊星歯車機構48の差動が規制され、第1遊星歯車機構48の回転要素が一体回転させられる。その為、エンジン12の回転は等速で第1リングギヤR1から第2キャリヤCA2へ伝達される。
図7は、HV走行モードのハイ状態でのシリーズパラレルモード(以下、シリーズパラレルハイモードという)時の共線図である。シリーズパラレルハイモードは、図3に示すように、ブレーキB1を係合した状態、且つクラッチC1及びクラッチCSを解放した状態で実現される。シリーズパラレルハイモードでは、図7に示すように、ブレーキB1が係合されることで、第1サンギヤS1の回転が停止させられる。その為、エンジン12の回転は増速されて第1リングギヤR1から第2キャリヤCA2へ伝達される。
シリーズパラレルモードでは、クラッチC1又はブレーキB1が係合されることで変速部44は非中立状態とされ、第2キャリヤCA2に伝達されたエンジン12の動力に対する反力を第1回転機MG1により受け持つことでエンジントルクTeの一部(エンジン直達トルク)を第2リングギヤR2から機械的に出力させて駆動輪16へ伝達することができる。動力伝達切替部84は、クラッチC1を係合することで変速部44をローギヤに切り替える一方で、ブレーキB1を係合することで変速部44をハイギヤに切り替える。ハイブリッド制御部82は、エンジン12を運転(作動)させると共に、エンジントルクTeに対する反力トルクとなるMG1トルクTmg1を第1回転機MG1の発電により出力させると共に、第1回転機MG1の発電電力により第2回転機MG2からMG2トルクTmg2を出力させる。シリーズパラレルモードでは、前進時に対して第2回転機MG2を逆回転させて後進走行することも可能である。
ハイブリッド制御部82は、車速Vが予め定められた閾値以上の高車速時には、シリーズパラレルハイモードを成立させる一方で、車速Vが予め定められた閾値未満の中低車速時には、シリーズパラレルローモードを成立させる。ここで、MG1回転速度Nmg1がゼロとされてエンジン12の動力が電気パス(第1回転機MG1や第2回転機MG2の電力授受に関わる電気経路である電気的な動力伝達経路)を介することなく全て機械的にドライブギヤ28へ伝達される状態となる所謂メカニカルポイントでは、差動部46の動力伝達効率(出力されたパワー/入力されたパワー)の理論値(理論伝達効率)が最大の「1」となる。このメカニカルポイントは、図6,7の共線図における差動部46(縦線Y4−Y6参照)において、MG1回転速度Nmg1がゼロとなる状態(すなわち第2サンギヤS2の回転速度がゼロとなる状態)である。シリーズパラレルモードにおいて変速部44がハイ状態(ハイギヤ)とロー状態(ローギヤ)とに切り替えられることでこのメカニカルポイントが2つとなり、ハイ状態でのシリーズパラレルモードを有することでメカニカルポイントが高車速側に増えることになり、高速燃費が向上する。
第1動力伝達部24において、変速部44と差動部46とは直列に接続されている。変速部44を変速すれば第1動力伝達部24のギヤ比も変化させられる。そこで、ハイブリッド制御部82は、例えば変速部44の変速時に第1動力伝達部24のギヤ比の変化が抑制されるように、動力伝達切替部84による変速部44の変速に合わせて、差動部46の変速を実行する。例えば、ハイブリッド制御部82は、変速部44がローギヤからハイギヤへアップシフトされる場合、それと同時に、差動部46をダウンシフトする。これによって、第1動力伝達部24は、所謂電気的無段変速機として機能させられる。又、変速部44と差動部46とが直列に接続された第1動力伝達部24はギヤ比幅がワイドになるので、差動部46から駆動輪16までの動力伝達経路におけるギヤ比を比較的大きくとることができる。
シリーズパラレルハイモードはシリーズパラレルローモードと比べて同じエンジン回転速度Neに対して第2キャリヤCA2の回転速度が高くされるので、シリーズパラレルモードにおけるエンジン走行では、高車速時に第1回転機MG1が負回転且つ負トルクの力行状態となって第1回転機MG1に電力が供給される動力循環状態となることが抑制される。
図8は、HV走行モードのシリーズモード時の共線図である。シリーズモードは、図3に示すように、クラッチC1及びブレーキB1を共に解放した状態、且つクラッチCSを係合した状態で実現される。シリーズモードでは、図8に示すように、クラッチC1及びブレーキB1が解放されることで、第1遊星歯車機構48の差動が許容され、変速部44は中立状態とされる。従って、差動部46は中立状態とされ、第1動力伝達部24も中立状態とされる。加えて、シリーズモードでは、クラッチCSが係合されることで、エンジン12と第1回転機MG1とが連結される。その為、エンジン12を作動させることで第1回転機MG1を回転駆動して発電をすることができる。この際、第1動力伝達部24は中立状態であるので、エンジントルクTeは機械的に駆動輪16へ伝達されない。ハイブリッド制御部92は、エンジン12を作動させ、エンジン12の動力によって第1回転機MG1を発電させ、第1回転機MG1の発電電力により第2回転機MG2を駆動して第2回転機MG2から走行用のMG2トルクTmg2を出力させる。シリーズモードでは、前進時に対して第2回転機MG2を逆回転させて後進走行することも可能である。車両走行中には、駆動輪16の回転に連動してドライブギヤ28に連結された第2リングギヤR2が回転させられる。又、エンジン回転速度Neに連動して第2サンギヤS2が回転させられる。差動部46においては、このように回転させられる、第2リングギヤR2の回転速度と第2サンギヤS2の回転速度とにより、第2キャリヤCA2の回転が決められる。
図9は、HV走行モードのロー状態でのパラレルモード(以下、パラレルローモードという)時の共線図である。パラレルローモードは、図3に示すように、クラッチC1及びクラッチCSを係合した状態、且つブレーキB1を解放した状態で実現される。パラレルローモードでは、図9に示すように、クラッチC1が係合されることで、第1遊星歯車機構48の差動が規制され、第1遊星歯車機構48の回転要素が一体回転させられる。その為、エンジン12の回転は等速で第1リングギヤR1から第2キャリヤCA2へ伝達される。加えて、パラレルローモードでは、クラッチCSが係合されることで、エンジン12と第1回転機MG1とが連結される。
図10は、HV走行モードのハイ状態でのパラレルモード(以下、パラレルハイモードという)時の共線図である。パラレルハイモードは、図3に示すように、ブレーキB1及びクラッチCSを係合した状態、且つクラッチC1を解放した状態で実現される。パラレルハイモードでは、図10に示すように、ブレーキB1が係合されることで、第1サンギヤS1の回転が停止させられる。その為、エンジン12の回転は増速されて第1リングギヤR1から第2キャリヤCA2へ伝達される。加えて、パラレルハイモードでは、クラッチCSが係合されることで、エンジン12と第1回転機MG1とが連結される。
パラレルモードでは、クラッチCSの係合によるエンジン12と第1回転機MG1との連結に加えて、クラッチC1又はブレーキB1が係合されることで変速部44はギヤ比が固定される為、第1動力伝達部24のギヤ比(すなわち変速部44と差動部46との全体のギヤ比)が固定される(以下、パラレルモードをパラレル有段モードということもある)。パラレル走行では、車速V(出力回転速度Nout)に対してエンジン回転速度Neが一意に決められる、有段走行状態とされる(以下、パラレル走行をパラレル有段走行ということもある)。このパラレルモードでは、エンジン12、第1回転機MG1、及び第2回転機MG2の何れの動力をも駆動輪16へ機械的に伝達することが可能である。例えば、パラレルモードの単駆動時には、エンジン12の動力に加えて、第2回転機MG2の動力を駆動輪16へ伝達して走行する。パラレルモードの両駆動時には、エンジン12の動力に加えて、第1回転機MG1の動力及び第2回転機MG2の動力を駆動輪16へ伝達して走行する。ハイブリッド制御部82は、エンジン12を運転させると共に、第1回転機MG1からMG1トルクTmg1を出力させたり、第2回転機MG2からMG2トルクTmg2を出力させる。パラレルモードでは、ハイブリッド制御部82は、変速部44を非中立状態とし且つクラッチCSを係合状態とするように動力伝達切替部84へ指令を出力して、エンジン12を運転させて走行するパラレル走行を実行する。動力伝達切替部84は、クラッチC1又はブレーキB1を係合することで変速部44を非中立状態とする。
パラレルモードにおける各係合装置(C1,B1,CS)の作動状態は、図3に示した両駆動EVモード(「Neフリー」)と同じである。つまり、図9及び図10の共線図は、エンジン12の運転を停止させれば、両駆動EVモード(「Neフリー」)の共線図である。この両駆動EVモード(「Neフリー」)は、両駆動EVモード(「Ne=0」)と同様に、第1回転機MG1の動力及び第2回転機MG2の動力を駆動輪16へ伝達して走行することが可能である。しかしながら、両駆動EVモード(「Neフリー」)は、走行中には、車速Vに応じてエンジン回転速度Neが一意に決まる為、エンジン回転速度Neをゼロとすることができない点が、両駆動EVモード(「Ne=0」)と異なる。
動力伝達装置14では、クラッチC1、ブレーキB1、及びクラッチCSの各作動状態の切替えや各部の潤滑や各部の冷却に用いられる作動油(オイル)を供給する為の機械式のオイルポンプ(図8のMOP参照)が第2キャリヤCA2に連結されており、第2キャリヤCA2の回転に伴って駆動される。よって、HV走行モードのシリーズ走行中には、潤滑等に必要なオイルが上記オイルポンプから供給可能である。尚、両駆動EVモードのように第2キャリヤCA2の回転が停止される場合、電動式のオイルポンプ(不図示)によりオイルが供給される。
ところで、パラレル走行中に要求駆動トルクが低くされたことなどによってパラレルモードからEV走行モード(特には、単駆動EVモード)へ切り替えられると、エンジン12の運転を停止することになる。前述したように、パラレルモードでは車速Vに対してエンジン回転速度Neが一意に決められる有段走行状態とされる為、パラレル走行中にエンジン12の運転を停止すると車速Vに応じたエンジンブレーキトルクが駆動輪16に付加させられる。その為、アクセルペダルが緩やかに戻し操作されたときなどのように大きな減速度が不要な場合には、パラレル走行中にエンジン12の運転を停止することを制限し、エンジントルクTeなどを低下させることで要求駆動トルクを実現しなければならないおそれがある。そうすると、パラレル走行中にエンジン12の運転を停止する走行状態となったとしても、エンジン12の運転停止を早期に実施することができず、燃費を向上し難くなる可能性があった。
そこで、電子制御装置80は、パラレル走行中にエンジン12の運転を停止する走行状態となった場合には、先ず、シリーズパラレルモード(シリーズパラレル走行)又はシリーズモード(シリーズ走行)へ切り替える。シリーズパラレルモードやシリーズモードは、エンジン回転速度Neが車速Vに対して一意に決められない無段走行状態であるので、走行中に、エンジン12の運転を停止して、エンジン回転速度Neをゼロとするように制御することができる。
シリーズモードは、第1動力伝達部24(変速部44+差動部46)が中立状態とされるので、エンジン12を運転停止したときにエンジン回転速度Neをゼロとしなくてもエンジンブレーキが作用させられない。従って、要求減速度が比較的小さい場合には、エンジンブレーキトルクを付加する必要性が低いと考えられる為、パラレル走行中にエンジン12の運転を停止する際にはシリーズモードへ切り替えることが望ましい。一方で、シリーズパラレルモードは、エンジン12を運転停止した状態では、単駆動EVモードのエンジンブレーキを併用する状態(図3の単駆動EVモードのエンブレ併用を参照)と同じであり、第1回転機MG1によってエンジン回転速度Neをゼロとするように制御できるし、又、第1回転機MG1によってエンジン回転速度Neを上昇させてエンジンブレーキを作用させることも可能である。従って、要求減速度が比較的大きい場合には、エンジンブレーキトルクを付加する可能性が高いと考えられる為、パラレル走行中にエンジン12の運転を停止する際にはシリーズパラレルモードへ切り替えることが望ましい。
電子制御装置80は、上述したパラレル走行中にエンジン12の運転を停止する制御を実現する為に、条件成立判定手段すなわち条件成立判定部86、及びエンジン停止制御手段すなわちエンジン停止制御部88を更に備えている。
条件成立判定部86は、パラレルモードでの走行中(すなわちパラレル走行中)であるか否かを判定する。又、条件成立判定部86は、エンジン12の運転を停止する運転停止条件が成立したか否かを判定する。この運転停止条件は、例えば車速V及び要求駆動トルクで表される走行状態が図2に示すような駆動力源切替マップにおいてエンジン走行領域からモータ走行領域へ遷移したという条件、又は、バッテリユニット20から出力可能な電力の制限が解除又は抑制されたという条件、又は、エンジン12の暖機が完了したという条件などである。
又、条件成立判定部86は、車両10に対する減速要求(すなわち要求減速度ΔG)が所定値Aよりも大きいか否かを判定する。条件成立判定部86は、例えばアクセルペダルの戻し速度(すなわちアクセル開度θaccの減少速度)が大きい程要求減速度ΔGが大きくされるように予め定められた関係(マップ)に実際のアクセル開度θaccの減少速度を適用することで要求減速度ΔGを算出する。又は、条件成立判定部86は、例えば降坂路の勾配が大きい程要求減速度ΔGが大きくされるように予め定められた関係(マップ)に実際の降坂路の勾配を適用することで要求減速度ΔGを算出する。前記所定値Aは、例えばエンジンブレーキを利用する必要がある程の要求減速度ΔGであることを判断する為の予め定められた閾値である。又は、条件成立判定部86は、例えば所定勾配以上の降坂路であるか否かを判定することで、要求減速度ΔGが所定値Aよりも大きいか否かを判定しても良い。又は、条件成立判定部86は、例えばシフトレバーの操作位置Pshがエンジンブレーキ効果をより強く得る為の操作位置であるエンジンブレーキポジション(又は低車速側ギヤ選択ポジションなど)であるか否かを判定することで、要求減速度ΔGが所定値Aよりも大きいか否かを判定しても良い。
エンジン停止制御部88は、条件成立判定部86によりパラレル走行中であると判定され且つエンジン12の運転を停止する運転停止条件が成立したと判定された場合には、変速部44を中立状態とした後に、又は、クラッチCSを解放状態とした後に、エンジン12の運転を停止し、エンジン回転速度Neをゼロに向けて低下させる。エンジン停止制御部88は、係合されているクラッチC1又はブレーキB1を解放する指令を動力伝達切替部84へ出力することで、変速部44を中立状態とする。又は、エンジン停止制御部88は、係合されているクラッチCSを解放する指令を動力伝達切替部84へ出力することで、クラッチCSを解放状態とする。エンジン停止制御部88は、エンジン12の点火を中止(停止)する(又はフューエルカットを実施する)指令をハイブリッド制御部82へ出力することで、エンジン12の運転を停止する。エンジン停止制御部88は、第1回転機MG1によりエンジン回転速度Neを引き下げる指令をハイブリッド制御部82へ出力することで、エンジン回転速度Neをゼロに向けて低下させる。エンジン停止制御部88は、パラレルモードから単駆動EVモードへ切り替える場合には、エンジン12を回転停止させた後、係合されているクラッチC1又はブレーキB1又はクラッチCSを解放する指令を動力伝達切替部84へ出力することで、単駆動EVモードへ切り替える。
エンジン停止制御部88は、条件成立判定部86によりパラレル走行中であると判定され且つエンジン12の運転を停止する運転停止条件が成立したと判定されたときに、条件成立判定部86により要求減速度ΔGが所定値A以下であると判定された場合には、変速部44を中立状態とした後にエンジン12の運転を停止し、エンジン回転速度Neをゼロに向けて低下させる一方で、条件成立判定部86により要求減速度ΔGが所定値Aよりも大きいと判定された場合には、クラッチCSを解放状態とした後にエンジン12の運転を停止し、エンジン回転速度Neをゼロに向けて低下させる。このようにすれば、要求減速度ΔGが比較的小さい場合には、変速部44が中立状態とされ、且つクラッチCSの係合によってエンジン12と第1回転機MG1とが連結された状態において(すなわちシリーズモードにおいて)、エンジンブレーキ作用が働かない状態で、第1回転機MG1によりエンジン回転速度Neを速やかにゼロとするように制御することができる。一方で、要求減速度ΔGが比較的大きい場合には、非中立状態とされた変速部44と差動状態とされた差動部46とを介してエンジン12の動力が機械的に駆動輪16へ伝達される状態において(すなわちシリーズパラレルモードにおいて)、第1回転機MG1によりエンジン回転速度Neをゼロとするように制御することができると共に、所望するエンジンブレーキトルクが得られるように第1回転機MG1によりエンジン回転速度Neを制御することができる。このように、要求減速度ΔGが比較的小さい場合には、エンジン回転速度Neをより速やかにゼロとするように制御することができる一方で、要求減速度ΔGが比較的大きい場合には、エンジンブレーキを作用させられ得る状態で、エンジン回転速度Neをゼロとするように制御することができる。よって、早期のエンジン12の運転停止による燃費向上と、必要な制動トルクの実現とを両立することができる。
図11は、電子制御装置80の制御作動の要部すなわちパラレル走行中にエンジン12の運転を停止する条件が成立したときに早期にエンジン12の運転を停止させて燃費を向上する為の制御作動を説明するフローチャートであり、例えば走行中に繰り返し実行される。図12は、図11のフローチャートに示す制御作動を実行した場合のタイムチャートであって、要求減速度ΔGが比較的小さい場合の一例を示す図である。図13は、図11のフローチャートに示す制御作動を実行した場合のタイムチャートであって、要求減速度ΔGが比較的大きい場合の一例を示す図である。
図11において、先ず、条件成立判定部86の機能に対応するステップ(以下、ステップを省略する)S10において、パラレル有段モードでの走行中(すなわちパラレル有段走行中)であるか否かが判定される。このS10の判断が否定される場合は本ルーチンが終了させられる。このS10の判断が肯定される場合は条件成立判定部86の機能に対応するS20において、エンジン12の運転を停止する運転停止条件が成立したか否か(すなわちエンジン12の運転停止への切替え要求が発生したか否か)が判定される。このS20の判断が否定される場合は本ルーチンが終了させられる。このS20の判断が肯定される場合は条件成立判定部86の機能に対応するS30において、車両10に対する要求減速度ΔGが所定値Aよりも大きいか否かが判定される。このS30の判断が否定される場合はエンジン停止制御部88の機能に対応するS40において、先ず、係合されているクラッチC1又はブレーキB1が解放され、クラッチCSが係合されたまま、エンジン12の運転が停止され、エンジン回転速度Neがゼロに向けて低下させられて、エンジン12が回転停止させられる(図12参照)。このS40におけるエンジン停止のシーケンスはパラレル有段モード時の走行状態によって以下のように相違する。パラレルハイモードの単駆動時は、ブレーキB1が解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチCSが解放される。パラレルハイモードの両駆動時は、第1回転機MG1からMG1トルクTmg1(力行トルク)の出力が停止され、ブレーキB1が解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチCSが解放される。パラレルローモードの単駆動時は、クラッチC1が解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチCSが解放される。パラレルローモードの両駆動時は、第1回転機MG1からMG1トルクTmg1(力行トルク)の出力が停止され、クラッチC1が解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチCSが解放される。
一方で、前記S30の判断が肯定される場合はエンジン停止制御部88の機能に対応するS50において、先ず、クラッチCSが解放され、このとき係合されているクラッチC1又はブレーキB1が係合されたまま、エンジン12の運転が停止され、エンジン回転速度Neがゼロに向けて低下させられて、エンジン12が回転停止させられる(図13参照)。このS50におけるエンジン停止のシーケンスはパラレル有段モード時の走行状態によって以下のように相違する。パラレルハイモードの単駆動時は、クラッチCSが解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、ブレーキB1が解放される。パラレルハイモードの両駆動時は、第1回転機MG1からMG1トルクTmg1(力行トルク)の出力が停止され、クラッチCSが解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、ブレーキB1が解放される。パラレルローモードの単駆動時は、クラッチCSが解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチC1が解放される。パラレルローモードの両駆動時は、第1回転機MG1からMG1トルクTmg1(力行トルク)の出力が停止され、クラッチCSが解放され、エンジン12の点火が中止され、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され、クラッチC1が解放される。
図12は、パラレルローモードの単駆動時から単駆動EVモードへの切替え状態を示している。図12において、パラレルローモードの単駆動走行中に、アクセル開度θaccが低下し初め(t1時点参照)、その後、アクセル戻しが判断されると(すなわちエンジン12の運転停止が判断されると)、クラッチC1の解放が開始される(t2時点参照)。この実施例は要求減速度ΔGが所定値A以下の場合であるので、エンジンブレーキを利用するモード(図3の単駆動EVモードのエンブレ併用を参照)への遷移はその確率が低いとして、クラッチCSが係合されたまま、クラッチC1が最初に解放されて、エンジン12の点火が中止される(t3時点参照)。その後、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され(t3時点−t5時点参照)、その後、クラッチCSが解放される(t5時点−t6時点参照)。この実施例では、クラッチCSが係合された状態で第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御されるので、MG1回転速度Nmg1をゼロに制御することで速やかにエンジン回転速度Neをゼロとすることができる。その後は、第1回転機MG1が無負荷とされても、エンジン回転速度Neをゼロとすることができる(t5時点以降参照)。クラッチCSの解放完了後は、第1回転機MG1が無負荷であるので、MG1回転速度Nmg1が低下させられ(t6時点−t7時点参照)、負回転領域で維持されている(t7時点以降参照)。尚、図4の実施例に示すように、単駆動EVモード時には、MG1回転速度Nmg1がゼロに維持されても良い。
図13は、パラレルローモードの単駆動時から単駆動EVモードへの切替え状態を示している。図13において、パラレルローモードの単駆動走行中に、アクセル開度θaccが低下し初め(t1時点参照)、その後、アクセル戻しが判断されると(すなわちエンジン12の運転停止が判断されると)、クラッチCSの解放が開始される(t2時点参照)。この実施例は要求減速度ΔGが所定値Aより大きい場合であるので、エンジンブレーキを利用するモード(図3の単駆動EVモードのエンブレ併用を参照)への遷移はその確率が高いとして、クラッチC1が係合されたまま、クラッチCSが最初に解放されて、エンジン12の点火が中止される(t3時点参照)。その後、第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御され(t3時点−t5時点参照)、その後、クラッチC1が解放される(t5時点−t6時点参照)。この実施例では、変速部44の非中立状態で第1回転機MG1によってエンジン回転速度Neがゼロとなるように制御されるので、MG1回転速度Nmg1を負回転としなければエンジン回転速度Neをゼロとすることができない。その後は、第1回転機MG1が無負荷とされても、エンジン回転速度Neをゼロとすることができる(t5時点以降参照)。
上述のように、本実施例によれば、パラレル走行中に運転停止条件が成立したと判定された場合には、変速部44が中立状態とされた後に、又は、エンジン14と第1回転機MG1とを連結するクラッチCSが解放状態とされた後に、エンジン14の運転が停止され、エンジン回転速度Neがゼロに向けて低下させられるので、パラレル走行とは異なり、走行中であってもエンジン回転速度Neをゼロとするように制御することができる。よって、パラレル走行中にエンジン12の運転停止条件が成立したときに、早期にエンジン12の運転を停止させることができて、燃費を向上することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例では、要求減速度ΔGが所定値A以下である場合には、先ず最初に、クラッチC1又はブレーキB1を解放する一方で、要求減速度ΔGが所定値Aよりも大きい場合には、先ず最初に、クラッチCSを解放したが、この態様に限らない。例えば、要求減速度ΔGの大きさに拘わらず、先ず最初に、クラッチC1又はブレーキB1を解放するという態様であっても良いし、又は、先ず最初に、クラッチCSを解放するという態様であっても良い。このような態様の場合、図11のフローチャートにおいては、S30は適宜除かれ、S40及びS50の何れか一方が適宜除かれる。
また、前述の実施例では、車両10は、第2回転機MG2が第1動力伝達部24の軸心とは別の軸心上に配置されるような連結関係のギヤトレーンであったが、例えば第2回転機MG2が第1動力伝達部24の軸心と同じ軸心上に配置されるような連結関係のギヤトレーンなどであっても良い。そもそも、エンジン12と、変速部44と、差動部46と、駆動輪16に動力伝達可能に連結された第2回転機MG2とを備えた車両であれば、本発明を適用することができる。又、FF方式の車両10に好適に用いられる動力伝達装置14を用いて発明を説明したが、本発明は、例えばRR方式など他の方式の車両に用いられる動力伝達装置においても適宜適用することができる。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
12:エンジン
16:駆動輪
44:変速部
CA1:第1キャリヤ(変速部の入力回転部材)
R1:第1リングギヤ(変速部の出力回転部材)
46:差動部
50:第2遊星歯車機構(差動機構)
CA2:第2キャリヤ(差動機構の第1回転要素)
S2:第2サンギヤ(差動機構の第2回転要素)
R2:第2リングギヤ(差動機構の第3回転要素)
80:電子制御装置(制御装置)
82:ハイブリッド制御部
86:条件成立判定部
88:エンジン停止制御部
CS:クラッチ(係合装置)
MG1:第1回転機
MG2:第2回転機

Claims (1)

  1. エンジンが動力伝達可能に入力回転部材に連結された変速部と、前記変速部の出力回転部材に連結された第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と駆動輪に連結された第3回転要素とを有する差動機構を備えて前記第1回転機の運転状態が制御されることにより前記差動機構の差動状態が制御される差動部と、前記駆動輪に動力伝達可能に連結された第2回転機とを備えた車両の、制御装置であって、
    前記車両は、前記エンジンと前記第1回転機とを連結する係合装置を更に備えるものであり、
    前記変速部を機械的な動力伝達が可能な非中立状態とし且つ前記係合装置を係合状態として、前記エンジンを運転させて走行するパラレル走行を実行するハイブリッド制御部と、
    前記エンジンの運転を停止する運転停止条件が成立したか否かを判定する条件成立判定部と、
    前記パラレル走行中に前記運転停止条件が成立したと判定された場合には、前記変速部を機械的な動力伝達が不能な中立状態とした後に、又は、前記係合装置を解放状態とした後に、前記エンジンの運転を停止し、前記エンジンの回転速度をゼロに向けて低下させるエンジン停止制御部と
    を、含むことを特徴とする車両の制御装置。
JP2016109559A 2016-05-31 2016-05-31 車両の制御装置 Active JP6677083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109559A JP6677083B2 (ja) 2016-05-31 2016-05-31 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109559A JP6677083B2 (ja) 2016-05-31 2016-05-31 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2017214004A true JP2017214004A (ja) 2017-12-07
JP6677083B2 JP6677083B2 (ja) 2020-04-08

Family

ID=60575294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109559A Active JP6677083B2 (ja) 2016-05-31 2016-05-31 車両の制御装置

Country Status (1)

Country Link
JP (1) JP6677083B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071699A (ja) * 2010-09-29 2012-04-12 Toyota Motor Corp ハイブリッド車両の駆動制御装置
WO2012059996A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2013114594A1 (ja) * 2012-02-01 2013-08-08 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
WO2014184852A1 (ja) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP2015024762A (ja) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 動力伝達装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071699A (ja) * 2010-09-29 2012-04-12 Toyota Motor Corp ハイブリッド車両の駆動制御装置
WO2012059996A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2013114594A1 (ja) * 2012-02-01 2013-08-08 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
WO2014184852A1 (ja) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP2015024762A (ja) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 動力伝達装置

Also Published As

Publication number Publication date
JP6677083B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
US10562402B2 (en) Control system for hybrid vehicle
JP6394654B2 (ja) 車両
JP6888497B2 (ja) 車両用動力伝達装置の制御装置
JP6844479B2 (ja) 車両用動力伝達装置の制御装置
JP6701991B2 (ja) 車両の制御装置
JP6658316B2 (ja) 車両の制御装置
JP6900861B2 (ja) 車両
JP6536498B2 (ja) ハイブリッド車両の走行モード切換制御装置
JP2017178104A (ja) 車両の制御装置
JP2017094780A (ja) 車両の制御装置
JP6677083B2 (ja) 車両の制御装置
JP6589757B2 (ja) ハイブリッド車両の走行モード切換制御装置
JP6547700B2 (ja) 車両の制御装置
JP6421704B2 (ja) 車両の制御装置
JP6583087B2 (ja) 車両の制御装置
JP6638566B2 (ja) 車両の制御装置
JP6870549B2 (ja) 車両用動力伝達装置の制御装置
JP6809424B2 (ja) 車両用動力伝達装置の制御装置
JP6579058B2 (ja) 車両の制御装置
JP6825524B2 (ja) 車両用動力伝達装置の制御装置
JP6597514B2 (ja) 車両の制御装置
JP6547699B2 (ja) ハイブリッド車両の走行モード切換制御装置
JP6900860B2 (ja) 車両の制御装置
JP2009154808A (ja) 車両用駆動装置
JP6911667B2 (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151