JP2017159846A - 駆動力制御装置 - Google Patents

駆動力制御装置 Download PDF

Info

Publication number
JP2017159846A
JP2017159846A JP2016047799A JP2016047799A JP2017159846A JP 2017159846 A JP2017159846 A JP 2017159846A JP 2016047799 A JP2016047799 A JP 2016047799A JP 2016047799 A JP2016047799 A JP 2016047799A JP 2017159846 A JP2017159846 A JP 2017159846A
Authority
JP
Japan
Prior art keywords
acceleration
vehicle
speed
vehicle speed
reacceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016047799A
Other languages
English (en)
Other versions
JP6489044B2 (ja
Inventor
桑原 清二
Seiji Kuwabara
清二 桑原
章 竹市
Akira Takeichi
章 竹市
聖悟 津下
Shogo TSUGE
聖悟 津下
隆史 小窪
Takashi Kokubo
隆史 小窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016047799A priority Critical patent/JP6489044B2/ja
Publication of JP2017159846A publication Critical patent/JP2017159846A/ja
Application granted granted Critical
Publication of JP6489044B2 publication Critical patent/JP6489044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】連続コーナーを走行する場合であっても、運転者の意図や運転志向を適切に反映した駆動力で車両を再加速走行させること。
【解決手段】変速制御を実行して車両の駆動力を制御する駆動力制御装置において、加速走行時における車速と加速度との相関関係に基づいて、減速走行した後に再加速走行をする際の目標車速として期待車速を設定し、現在車速および前記期待車速に基づいて前記再加速走行する際の制御指標とする再加速時加速度を求め、前記再加速走行前に、前記再加速時加速度に基づく変速比を設定してダウンシフトするとともに、前記ダウンシフト後に、(イ)新たな前記変速制御が実行されていない状態で所定時間以上経過、(ロ)タービン回転数が所定回転数よりも高い、(ハ)前記車両の横加速度が所定加速度未満、の少なくとも一つが成立した場合に、アップシフトする(ステップS600〜S900)。
【選択図】図11

Description

この発明は、減速走行時に、自動変速機の変速比を変化させることにより車両の駆動力を制御する駆動力制御装置に関するものである。
特許文献1には、アクセルの急閉時にアップシフトを禁止する制御、および、急制動時にダウンシフトする制御を含む減速度アシスト制御を実行する車両の駆動力制御装置に関する発明が記載されている。この特許文献1に記載された駆動力制御装置は、車両の走行環境や走行状態に基づいて、上記のような減速度アシスト制御の条件を決定するように構成されている。例えば、前方の車間距離や路面勾配あるいは運転者の運転志向などに応じて、減速度アシスト制御の実行の可否および減速度アシスト制御を実行する際の制御レベルが決定される。そして、この特許文献1には、減速度アシスト制御の実行時に、運転者の運転志向がスポーツ走行志向である場合には、より低速段までダウンシフトができるようにする制御例が記載されている。スポーツ走行志向は、車両の動力性能を重視し、運転操作に対する車両の反応を迅速にすることが要求される運転志向である。
なお、特許文献2には、道路のカーブや路面傾斜に応じて適切なギヤ段を選定することを目的とした車両用変速制御装置が記載されている。この特許文献2に記載された変速制御装置は、実際の曲がり情報や路面傾斜情報に対応する状態がアップシフト禁止領域内であっても、エンジン回転数が所定値以上の場合は、アップシフトを許可するように構成されている。
また、特許文献3には、マニュアルシフトモードでのシフトスイッチの操作が困難な状況では、運転者に代わって自動的に変速操作を行うことを目的とした自動変速機の変速制御装置が記載されている。この特許文献2に記載された変速制御装置は、マニュアルシフトモードでダウンシフトを固定した場合であっても、エンジン回転数が高回転判定閾値を超える場合はアップシフトするように構成されている。また、カーブ路走行時には高回転判定閾値を増大させるように構成されている。
また、特許文献4には、複数のコーナーが連続する複合コーナーにおいて、ドライバの意図しない減速度変化を抑制することを目的とした車両の変速制御装置が記載されている。この特許文献4に記載された変速制御装置は、車両前方に複合コーナーが検出された場合、複数のコーナーのうち最も曲率半径の小さなコーナーを減速対象としてダウンシフトを実行するように構成されている。
そして、特許文献5には、コーナーが連続している道路であるか否かの判定を精度良く行うことを目的としたコーナー判定装置、および、そのコーナー判定装置による判定結果に応じて車両を制御する車両制御装置が記載されている。この特許文献5に記載された車両制御装置は、車両前方の道路がコーナーの連続するワインディングロードである場合に、このコーナーでのダウンシフトにおける変速制御の制御量を変更するように構成されている。
特開2007−170444号公報 特開2002−122225号公報 特開2012−127427号公報 特開2010−242919号公報 特開2007−118832号公報
上記のように、特許文献1に記載された制御装置では、車両の走行時に、運転者の運転志向が推定される。そして、その運転志向がスポーツ走行志向である場合は、例えばコーナーあるいは交差点の手前での減速時に、スポーツ走行志向でない場合に比べて、より低速段までダウンシフトされる。減速時にダウンシフトが行われることにより、制動後に車両を再加速する際の加速性能を向上させることができる。
一方、上記の特許文献1に記載された制御装置は、コーナーあるいは交差点の手前での減速時に、運転者の運転志向がスポーツ走行志向であるか否かによって一律に変速段が設定され、ダウンシフトが行われる。それに対して、例えば、コーナーが連続するいわゆるS字カーブやワインディングロードなどを走行する場合には、運転者の運転志向は、コーナーを走行している途中で、スポーツ走行志向から通常の走行志向あるいは通常よりも燃費や効率を重視する燃費走行志向へ変化する場合がある。そのような場合には、ダウンシフト後に設定される変速段または変速比が運転者の意思に合致しない可能性がある。例えば、ダウンシフト後のエンジン回転数が運転者の意図する回転数よりも高くなってしまい、その結果、運転者に違和感を与えてしまうおそれがある。
この発明は上記の技術的課題に着目して考え出されたものであり、車両が減速走行した後に再加速走行する際に適切な駆動力を発生させる駆動力制御装置であって、特に、車両がS字カーブやワインディングロードなどを走行する場合であっても、運転者の意図や運転志向を適切に反映した駆動力で車両を再加速走行させることができる駆動力制御装置を提供することを目的とするものである。
上記の目的を達成するために、この発明は、車両に搭載されるエンジンと、駆動輪と、前記エンジンと駆動輪との間でトルクを伝達する自動変速機と、前記自動変速機の変速比を変更する変速制御を実行して前記車両の駆動力を制御するコントローラと、を備えた駆動力制御装置において、前記コントローラは、前記車両が減速走行する以前の加速走行時における前記車両の車速と加速度との相関関係を表す近似線を算出し、前記減速走行した後に再加速走行をする際の目標車速として、前記近似線に基づいて前記再加速走行する際に運転者が所望すると推定される期待車速を設定し、現在の前記車速および前記期待車速に基づいて前記再加速走行する際の制御指標とする再加速時加速度を求め、前記再加速走行を開始する前に、前記再加速時加速度に基づき前記再加速時加速度を実現可能な前記変速比を設定してダウンシフトを実施するとともに、前記再加速時加速度に基づく前記ダウンシフトが実施された後に、(イ)新たな前記変速制御が実行されていない状態で所定時間以上経過したこと、(ロ)前記自動変速機の入力軸回転数が所定回転数よりも高いこと、および、(ハ)前記車両の横加速度が所定加速度よりも小さいこと、の少なくともいずれか一つが成立した場合に、前記再加速時加速度に基づいて設定される前記変速比よりも小さい変速比を設定してアップシフトを実施することを特徴とするものである。
この発明の駆動力制御装置では、減速走行後の再加速走行時に、その再加速走行が開始されるまでに、上記のような再加速時加速度で車両を加速させることが可能な自動変速機の変速段(もしくは変速比)が設定される。再加速時加速度は、減速走行後の再加速走行時に運転者が期待する加速度であって、再加速走行時の駆動力制御における制御指標となるものである。この再加速時加速度は、再加速走行時に運転者が所望する車速として推定される期待車速に基づいて求められる。期待車速は、以前の加速走行時における走行データに基づいて、再加速時加速度と車速との近似線を算出することによって求められる。したがって、期待車速は、運転者の意図や運転志向を反映した推定値として算出される。
再加速時加速度が上記のような期待車速に基づいて求められることにより、その再加速時加速度を、運転者の意図や運転志向等を反映した変速制御の制御指標とすることができる。そのため、減速走行後の再加速走行の開始時点では、既に、再加速のために必要な駆動力を得ることが可能な変速比を自動変速機で設定しておくことができる。また、その際に設定される変速比は、運転者が意図する加速度、あるいは運転者が要求する加速度で車両を加速させることが可能であると推定される変速比となっている。
したがって、この発明の駆動力制御装置によれば、例えば、減速走行時のダウンシフトが不十分なために、その減速走行後の再加速走行時に駆動力の不足を補うために更にダウンシフトが行われてしまうようなことを回避して、適切に車両を加速走行させることができる。そのため、運転者に違和感やショックを与えてしまうようなことを抑制し、車両の加速性能および加速フィーリングを向上させることができる。
そして、この発明の駆動力制御装置では、上記のような再加速時加速度に基づいてダウンシフトを実施する再加速性確保のための変速制御が実行されるとともに、車両が、例えばS字カーブやワインディングロードを定常走行するような場合(旋回中定常走行時)に、再加速性確保の要否が判断される。すなわち、再加速走行時の加速性能よりも車両のNV性能が優先される状況か否かが判断される。具体的には、上記のような再加速時加速度に基づくダウンシフトが実施された後に、(イ)新たな変速制御が実行されていない状態で所定時間以上経過したこと、(ロ)自動変速機の入力軸回転数(あるいは、トルクコンバータのタービン回転数)が所定回転数よりも高いこと、(ハ)車両の横加速度が所定加速度よりも小さいことの少なくともいずれか一つが成立するか否かが判断される。そして、それら(イ)、(ロ)、(ハ)の各条件のうち、少なくとも一つの条件が成立した場合に、アップシフトが実施される。そのため、上記のような旋回中定常走行時に、エンジン回転数が運転者の意図よりも高くなってしまうことを抑制し、いわゆるエンジン回転数の高止まり感のような違和感を運転者に与えてしまうことを抑制することができる。すなわち、車両のドライバビリティを向上させることができる。
この発明で制御の対象とする車両の構成および制御系統の一例を示す図である。 この発明の駆動力制御装置による基本的な制御の一例を説明するためのフローチャートである。 この発明の駆動力制御において「期待車速」および「再加速時加速度」を算出するために求められる「再加速時加速度」と車速との相関関係を説明するための図である。 図3で示す相関関係における相関線(近似線)を説明するための図である。 この発明の駆動力制御において「再加速時加速度」を求めるための制御マップの一例を説明するための図である。 この発明の駆動力制御において「出力可能加速度」およびその出力可能加速度を出力可能な変速段(変速比)を求める制御を説明するための図である。 この発明の駆動力制御を実行するコントローラの構成を説明するためのブロック図である。 無段変速機を搭載した車両を対象にしてこの発明の駆動力制御を実行した場合の車両の挙動(車速、加速度、エンジン回転数等)を説明するための図である。 「期待車速」および「再加速時加速度」を求めるための走行データに対して重み付けを行う制御に関して、走行データの近似線の算出方法を説明するための図である。 上記の走行データに対する重み付けの効果について説明するための図である。 この発明の駆動力制御装置による特徴的な制御の一例を説明するためのフローチャートである。 図11のフローチャートにおけるステップS100の制御内容を具体的に説明するためのフローチャートである。 図12のフローチャートのステップS101における「目標の仮想ギヤ比」の算出処理を説明するための図である。 図12のフローチャートのステップS103において「NV防止回転数」を算出するために用いるマップの一例を説明するための図である。 図12のフローチャートのステップS107において「旋回閾値」を算出するために用いるマップの一例を説明するための図である。 図11のフローチャートにおけるステップS600の制御内容を具体的に説明するためのフローチャートである。 図16のフローチャートで示す制御を実行する場合に用いられるフラグおよびカウンタの動作等の一例を説明するためのタイムチャートである。
つぎに、この発明の実施例を図面に基づいて説明する。この発明を適用することのできる車両は、エンジンが出力する動力を変速して駆動輪に伝達することが可能な自動変速機を搭載した車両である。この発明における自動変速機は、例えばベルト式無段変速機やトロイダル式無段変速機のように、変速比を連続的に変化させることが可能な無段変速機であってもよい。また、エンジンおよびモータが出力する動力を合成・分割する動力分割機構を備えたハイブリッド車両にもこの発明を適用することができる。すなわち、そのようなハイブリッド車両における動力分割機構は、いわゆる電気式無段変速機構として機能するため、そのような電気式無段変速機構もこの発明における自動変速機に含めることができる。
この発明を適用することのできる車両の一例として、エンジンの出力側に自動変速機を搭載した車両の構成および制御系統を図1に示してある。この図1に示す車両Veは、前輪1および後輪2を有している。この図1に示す例では、車両Veは、エンジン(ENG)3が出力する動力を自動変速機(AT)4およびデファレンシャルギヤ5を介して後輪2に伝達して駆動力を発生させる後輪駆動車として構成されている。なお、この発明を適用することのできる車両Veは、エンジン3が出力する動力を前輪2に伝達して駆動力を発生させる前輪駆動車であってもよい。あるいは、エンジン3が出力する動力を前輪1および後輪2にそれぞれ伝達して駆動力を発生させる四輪駆動車であってもよい。
エンジン3には、例えば電子制御式のスロットルバルブあるいは電子制御式の燃料噴射装置、および、吸入空気の流量を検出するエアフローセンサが備えられている。この図1に示す例では、電子スロットルバルブ6およびエアフローセンサ7が備えられている。したがって、例えば後述のアクセルセンサ9の検出データを基に電子スロットルバルブ6の動作を電気的に制御することにより、エンジン3の出力を自動制御することができる。
エンジン3の出力側に、エンジン3の出力トルクを変速して駆動輪側へ伝達する自動変速機4が設けられている。自動変速機4は、例えば、遊星歯車機構およびクラッチ・ブレーキ機構から構成される従来一般的な有段式の自動変速機であり、クラッチ機構やブレーキ機構の動作を制御することにより、自動変速機4で設定する変速段(もしくは変速比)を自動制御することができるように構成されている。
エンジン3の出力および自動変速機4の変速動作を制御するためのコントローラ(ECU)8が備えられている。コントローラ8は、例えばマイクロコンピュータを主体にして構成される電子制御装置である。このコントローラ8に、制御のための通信が可能なように、エンジン1が接続されている。また、このコントローラ8に、制御のための通信が可能なように、油圧制御装置(図示せず)を介して自動変速機4が接続されている。なお、図1では1つのコントローラ8が設けられた例を示しているが、コントローラ8は、例えば制御する装置や機器毎に、あるいは制御内容毎に、複数設けられていてもよい。
上記のコントローラ8には、車両Ve各部の各種センサ類からの検出信号や各種車載装置からの情報信号などが入力されるように構成されている。例えば、前述のエアフローセンサ7、アクセル開度を検出するアクセルセンサ9、ブレーキペダルの踏み込み量を検出するブレーキセンサ(もしくはブレーキスイッチ)10、エンジン3の出力軸3aの回転数を検出するエンジン回転数センサ11、自動変速機4の出力軸4aの回転数を検出するアウトプット回転数センサ12、および、各車輪1,2の回転速度をそれぞれ検出して車速を求める車速センサ13などからの検出信号がコントローラ8に入力されるように構成されている。そして、それら入力されたデータおよび予め記憶させられているデータ等を使用して演算を行い、その演算結果を基に制御指令信号を出力するように構成されている。
上記のよう構成された車両Veでは、前述したように、車両Veが減速走行した後に再加速走行する際に、運転者がアクセルペダルを踏み込むことによってダウンシフトが行われる場合がある。減速走行時に実施されるダウンシフトが適切でないと、再加速走行時に駆動力が不足し、再加速走行を開始する際に更に変速段を下げる(変速比を大きくする)ダウンシフトが行われることになる。その結果、運転者が違和感を覚えたり、加速フィーリングがよくないと感じてしまったりする場合がある。また、運転者の意図や運転志向は、運転者の個人差や走行環境などによっても変化する。それに対して上記のような減速走行時のダウンシフトが一律に実行されると、再加速走行を開始する際に、運転者が意図する駆動力や加速度を得られない可能性がある。
そこで、コントローラ8は、運転者の意図や運転志向を制御に反映させて車両Veの駆動力制御を実行することにより、適切に車両Veを再加速走行させることができるように構成されている。具体的には、コントローラ8は、車両Veが減速走行した後に再加速走行する際の制御指標とする「再加速時加速度」を求め、再加速走行を開始する前に、求めた「再加速時加速度」を実現可能な自動変速機4の変速比を設定するように構成されている。「再加速時加速度」は、減速走行後の再加速走行時に制御指標となるものであって、再加速走行時に運転者が所望する加速度、あるいは運転者が期待する加速度を推定したものである。この「再加速時加速度」は、加速特性、および、車両Veの走行データに基づいて求められる。加速特性は、「再加速時加速度」と車速との関係性を定めたものであって、例えば演算式やマップなどの形で予め記憶されている。車両Veの走行データは、例えば、車速、加速度、自動変速機4の変速比、あるいはエンジン回転数など、車両Veの走行状態を表す物理量であって、現在の減速走行以前の走行履歴から抽出される。現在の減速走行以前の走行履歴とは、例えば、コントローラ8が、イグニションスイッチ(もしくは、メインスイッチ)がOFFにされる際に走行データをクリアする構成であれば、現在の走行のために最後に車両VeのイグニションスイッチがONにされ、以下の図2に説明する制御が最初に開始された時点から、現在に至るまでに取得された走行データの履歴である。
コントローラ8によって実行されるより具体的な制御内容を以下に示してある。図2は、基本となる制御の一例を説明するためのフローチャートである。先ず、車両Veの加速走行が終了したか否かが判断される(ステップS1)。例えば、車速センサ13あるいは前後加速度センサ(図示せず)の検出値を基に、加速走行が終了したか否かを判断することができる。なお、このステップS1で「車両Veの加速走行が終了した」と判断されるのは、一旦、車両Veが加速走行していると判定された後に、車両Veの加速度が0になった場合、もしくは、車両Veの加速度が0以下となる減速走行へ移行した場合である。あるいは、ブレーキスイッチ10がONになった場合などである。したがって、それら以外の場合は、全て、このステップS1で否定的に判断される。例えば、この制御の開始以降に未だ車両Veの加速走行が行われていない場合、車両Veが減速走行中である場合、車両Veが加速走行中である場合、あるいは、車両Veが定常走行中である場合には、このステップS1で否定的に判断される。
車両Veの加速走行が終了したことにより、このステップS1で肯定的に判断された場合は、ステップS2へ進む。ステップS2では、期待車速Vexpおよび勾配係数Kが算出されて更新される。具体的には、ステップS1で終了が判定された加速走行中に記憶された車両Veの走行データ(例えば、加速開始時の車速、加速走行中の最大加速度等)が読み込まれ、その走行データに基づいて、期待車速Vexpおよび勾配係数Kが更新される。運転者が車両Veを運転操作する際には、運転者は常に所定の車速を狙いながら運転していると仮定できる。このコントローラ8による制御では、上記のような運転者が目標とする車速、あるいは運転者が所望すると推定される車速を「期待車速」と定義している。例えば、同一の走行環境の下では、運転者の運転志向が、通常よりも動力性能や運動性能を重視する走行志向(スポーツ走行志向)になれば、「期待車速」は高くなる。反対に、運転者の運転志向が、通常よりも燃費や効率を重視する走行志向(燃費走行志向)になれば、「期待車速」は低くなる。この期待車速Vexpは、例えば、車速、前後加速度、横加速度、操舵角、路面勾配、車両姿勢などのデータを記録した車両Veの走行履歴を基に求めることができる。勾配係数Kは、後述するように、「期待車速」を求める際に用いる相関線の傾きを表している。これら期待車速Vexpおよび勾配係数Kの詳細については後述する。
一方、上記のステップS1で否定的に判断された場合には、ステップS3へ進む。ステップS3では、期待車速Vexpおよび勾配係数Kの各前回値が保持される。すなわち、前回の加速走行が終了した際に算出されて記憶されている期待車速Vexpおよび勾配係数Kが、それぞれ、今回の加速走行が終了するまで保持される。なお、この制御の開始以降に未だ加速走行が行われていない場合は、例えば、イグニションスイッチがONにされ、今回の制御が最初に開始された時点に記憶されている期待車速Vexpおよび勾配係数Kが、引き続き保持される。イグニションスイッチがOFFにされる際に期待車速Vexpおよび勾配係数Kがクリアされる構成では、予め設定されたそれぞれの初期値がイグニションスイッチがONにされる際に読み込まれ、期待車速Vexpおよび勾配係数Kとして記憶される。したがって、上記のようにこの制御の開始以降に未だ加速走行が行われていない場合は、期待車速Vexpおよび勾配係数Kのそれぞれの初期値が保持される。また、イグニションスイッチがOFFにされる際にその時点の期待車速Vexpおよび勾配係数Kが記憶される構成では、上記のようにこの制御の開始以降に未だ加速走行が行われていない場合は、最後にイグニションスイッチがOFFにされた際に記憶された期待車速Vexpおよび勾配係数Kが読み込まれ、引き続き保持される。
上記のステップS2で期待車速Vexpおよび勾配係数Kが更新されると、もしくは、上記のステップS3で期待車速Vexpおよび勾配係数Kの各前回値が保持されると、ステップS4へ進む。ステップS4では、再加速時加速度Gexpが求められる。車両Veが停止することなく減速走行する場合は、その減速走行を終えた後に再加速走行する状態に移行する。例えば、車両Veがコーナーを旋回走行する場合、一般に、車両Veは、コーナー手前から減速走行しながらコーナーに進入する。コーナー内では減速しながら、あるいは一定速度で、旋回走行する。そして、コーナーを脱出する際に再加速走行する。このように車両Veが減速走行後に再加速走行する場合、運転者は、期待車速Vexpに向けて車両Veを加速させると仮定できる。したがって、期待車速Vexpと現在車速Vcurとの車速差ΔV(ΔV=Vexp−Vcur)が大きければ、運転者は、その車速差ΔVを縮めるために大きな加速度を要求して車両Veを再加速走行させるものと推測できる。
上記のような仮定により、このステップS4では、期待車速Vexpと現在車速Vcurとの車速差ΔVから、再加速走行時に運転者が期待する加速度として、再加速時加速度Gexpが求められる。例えば、図3および図4に示すように、走行実験やシミュレーション等の結果から、上記のような「再加速時加速度」と車速との間には負の相関があることが分かっている。再加速走行を開始する時点の車速をx軸にし、その際の加速度(最大対地加速度)をy軸にすると、図4において「y=a・x+b」で示すような一次関数の相関線(近似線)を求めることができる。この相関線は、図3に破線f,f,fで示すように、運転者の運転志向毎に求めておくこともできる。
上述したように、「期待車速」は、加速走行時に運転者が目標とする車速として定義されたものである。そのため、車速がこの「期待車速」に到達した場合は、それ以上車両Veを加速させる必要がなくなり、その結果、加速度は0になると推測できる。したがって、図4に示すような一次関数の相関線において、y軸の加速度が0になるx切片(−a/b)を算出することにより、「期待車速」を求めることができる。
なお、上記の対地加速度は、例えばアウトプット回転数センサ12あるいは車速センサ13の検出データの微分値として求めることのできる加速度である。車両Veに搭載した加速度センサによって加速度を求めることもできるが、その場合は、車両Veの姿勢や路面勾配の影響を受けて加速度の検出データにノイズが入る可能性がある。そのため、この制御では、上記のような回転数センサから求めた対地加速度を用いている。
上記のような「再加速時加速度」と車速との間の相関関係を用いて、予め「再加速時加速度」と車速との関係性を車両Veの加速特性として定め、コントローラ8に記憶しておくことができる。そのような加速特性を車速の関数として定めておくことにより、上記のような「期待車速」および「現在車速」に対応する「再加速時加速度」を算出することができる。
また、「期待車速」および「現在車速」に対応する「再加速時加速度」は、例えば図5に示すような制御マップから求めることができる。すなわち、以前の加速走行時の走行履歴あるいは走行情報から求めた上記のような「再加速時加速度」と車速との間の相関関係を用いて、予め「再加速時加速度」と車速との関係性を車両Veの加速特性として定め、それを図5に示すような制御マップとしてコントローラ8に記憶しておくことができる。
図5で、直線fは、上述の相関線「y=a・x+b」に相当していて、「再加速時加速度」と車速との関係性を定めた加速特性を示している。この直線fの傾きが、勾配係数Kを示している。直線fにおいて、対地加速度が0になる車速、すなわち直線fのx切片が「期待車速」である。したがって、図5において、前述のステップS2で求めた期待車速Vexpを通る直線fに対して、その直線fおよび勾配係数Kで示される関係式に現在車速Vcurを当てはめることにより、再加速時加速度Gexpを求めることができる。
また、直線fは、例えば図5において直線fsおよび直線fmで示すように、上記のような「期待車速」毎に、あるいは、運転志向に応じて、複数設定しておくこともできる。その場合、以前の加速走行時における走行履歴から、その相関線として、複数設定された中から所定の直線fが決定される。それと共に、その直線fのx切片として「期待車速」が求められる。このようにして以前の加速走行時の履歴に基づいて求められる「期待車速」は、以前の加速走行時に現れていた運転志向が反映されたものとなっている。そして、上記のようにして求められた「期待車速」、および、例えば車速センサ13の検出値として求められた「現在車速」に基づいて、「再加速時加速度」が求められる。図5に示すように、「期待車速」と「現在車速」との差が大きいほど、「再加速時加速度」は大きくなる。また、運転志向としてスポーツ走行志向が強いほど、「期待車速」が大きい直線fsが選択され、それによって求められる「再加速時加速度」も大きくなる。反対に、運転志向として燃費走行志向が強いほど、「期待車速」が小さい直線fmが選択され、それによって求められる「再加速時加速度」も小さくなる。
上記のようにして、ステップS4で再加速時加速度Gexpが求められると、その再加速時加速度Gexpを実現可能な自動変速機4の変速段が求められる(ステップS5)。すなわち、車両Veが再加速時加速度Gexpで加速走行するために自動変速機4で設定する最適な変速段が求められる。そのような変速段を求める手法の一例を図6に示してある。先ず、出力可能加速度Gablが設定される。出力可能加速度Gablは、エンジン3の出力トルクの最大値をTemax、走行抵抗をR、車両重量をW、ギヤ比をgとすると、
Gabl=(Temax・g−R)/W
の計算式から算出することができる。図6に示すように、出力可能加速度Gablは、自動変速機4の各変速段毎に算出されている。
図6には、自動変速機4が前進8速の有段変速機である例を示してある。この図6に示す例では、「期待車速」および「現在車速」から求められた「再加速時加速度」に対して、その「再加速時加速度」を達成することが可能な変速段(この図6の例では、第2速、第3速、第4速、第5速)の内の最も高速段(この図6の例では、第5速)が選択される。すなわち、図6において、期待車速Vexpを通る相関線と現在車速Vcurを示す直線との交点として、再加速時加速度Gexpが表されている。この再加速時加速度Gexpを示す点は、第5速の出力可能加速度Gablと第6速の出力可能加速度Gablとの間に位置している。これは、エンジン3で最大トルクを出力した場合に、自動変速機4で第6速以上の変速段(第6速、第7速、第8速)が設定されていると、再加速時加速度Gexpを達成できないことを表している。したがって、この図6に示す例では、再加速時加速度Gexpを達成可能な自動変速機4の第5速以下の変速段(第5速から第1速)の中の最高速段である第5速が選択される。
ステップS5で再加速時加速度Gexpを実現可能な自動変速機4の変速段(変速比)が算出されると、車両Veが減速走行中であるか否かが判断される(ステップS6)。例えば、車速センサ13あるいは前後加速度センサ(図示せず)の検出値や、ブレーキスイッチ10の動作信号などを基に、車両Veが減速走行中である否かを判断することができる。車両Veが減速走行中でないことにより、このステップS6で否定的に判断された場合は、以降の制御を実行することなく、このルーチンを一旦終了する。
これに対して、車両Veが減速走行中であることにより、ステップS6で肯定的に判断された場合には、ステップS7へ進む。ステップS7では、現在、自動変速機4で設定されている変速段が、上記のステップS5で算出された変速段よりも高速段であるか否か、すなわち、現在の変速段の変速比が算出された変速段の変速比よりも小さいか否かが判断される。現在の変速段が算出された変速段よりも低速段であることにより、このステップS7で否定的に判断された場合は、以降の制御を実行することなく、このルーチンを一旦終了する。
これに対して、現在の変速段が算出された変速段よりも高速段であることにより、ステップS7で肯定的に判断された場合には、ステップS8へ進み、算出された変速段に向けて自動変速機4でダウンシフトが実施される。そしてその後、このルーチンを一旦終了する。
上記のような減速走行時の制御を実行するコントローラ8の具体的な構成を、図7のブロック図に示してある。このコントローラ8は、一例として、加速度算出部B1、期待車速算出部B2、再加速時加速度算出部B3、出力可能加速度算出部B4、目標変速段算出部B5、および、変速出力判断部B6から構成されている。
加速度算出部B1は、アウトプット回転数センサ12の検出データを基に車両Veの加速度を算出する。車速センサ13の検出データから車両Veの加速度を算出することもできる。期待車速算出部B2は、上記の加速度算出部B1で算出された加速度データおよび車速センサ13の検出データを基に期待車速Vexpを算出する。再加速時加速度算出部B3は、上記の期待車速算出部B2で算出された期待車速Vexpと車速センサ13の検出データから求まる現在車速Vcurとの車速差ΔVを基に再加速時加速度Gexpを算出する。一方、出力可能加速度算出部B4は、エアフローセンサ7の検出データを基に自動変速機4の各変速段(もしくは、変速比)毎の出力可能加速度Gablを算出する。目標変速段算出部B5は、上記の再加速時加速度算出部B3で算出された再加速時加速度Gexpおよび出力可能加速度算出部B4で算出された出力可能加速度Gablを基に自動変速機4に対する目標変速段(もしくは、目標変速比)を算出する。そして、変速出力判断部B6は、上記の目標変速段算出部B5で算出された目標変速段ならびにアクセルセンサ9の検出データおよびブレーキスイッチ10の検出データを基に自動変速機4に対する変速指令に関する判断を行う。具体的には、自動変速機4に対するダウンシフトの実行の要否を判断する。
前述の図6では、自動変速機4が前進8速の有段変速機である例を示しているが、この発明の自動変速機4は、ベルト式やトロイダル式の無段変速機、あるいはハイブリッド車両における電気式の無段変速機構を対象にすることもできる。自動変速機4が上記のような無段変速機あるいはハイブリッド車両の電気式無段変速機構である場合には、「再加速時加速度」を実現可能な自動変速機4の変速比が算出され、その算出された変速比に基づいて自動変速機4が制御される。例えば、図8の(a)に示すように、「現在車速」および「期待車速」から「再加速時加速度」を実現可能な変速比γが求められ、その変速比γに基づいて自動変速機4が制御される。その場合のエンジン回転数の挙動を図8の(b)に示してある。
上述した実施例では、例えば図4に示すような相関線、あるいは図5に示すような制御マップから「期待車速」が求められる。それら図4に示す相関線や図5に示す制御マップは、過去の加速走行時の走行データを基に設定される。その場合に使用する過去の走行データを単純に蓄積していくと、データ量が膨大になってしまう。また、過去の走行データを過度に重視すると、走行環境や運転志向が変化した場合であっても、その変化以前の走行データが適用されてしまい、その結果、「期待車速」や「再加速時加速度」の推定精度が低下してしまう場合がある。そこで、このコントローラ8による駆動力制御では、「期待車速」を求めるために使用される走行データに対して重み付けが行われる。
上記のような走行データの重み付けは、過去の走行データに対して所定の重み係数を乗じることにより実施される。あるいは、全ての走行データの履歴の中から所定の走行データを選択して「期待車速」の算出に用いることにより実施される。例えば、図4に示す相関線や図5に示す制御マップを設定するために用いられる過去の走行データに対して重み係数w(w<1)を乗じることにより、走行データの重み付けを行うことができる。あるいは、最新から所定の回数分遡った直近の走行データのみを用いて、図4に示す相関線を設定することにより、走行データの重み付けを行うことができる。
例えば、図9のグラフに示すように、所定の走行データをグラフ上にプロットしたデータを点(x,y)とし、走行データの履歴から得られる近似線を「y=a・x+b」とすると、点(x,y)の誤差dは、
d=(y−a・x−b)
となる。これに重み付けのための重み係数wを考慮した二乗誤差(w)・dは、
(w)・d=(w)・(y−a・x−b)
となる。したがって、この二乗誤差(w)・dが最小となる係数aおよび係数bを算出することにより、近似線「y=a・x+b」を求めることができる。そのような二乗誤差(w)・dが最小となる係数aおよび係数bは、それぞれ、次の(1)式および(2)式で示す漸化式によって算出される。
Figure 2017159846

Figure 2017159846
上記の(1)式および(2)式において、xの総和の項をAとすると、An−1およびAは、それぞれ、次の(3)式および(4)式のような漸化式で表される。
Figure 2017159846

Figure 2017159846
上記の(1)式および(2)式の漸化式におけるxの総和の項に関して、総和の前回値(An−1)にxの今回値(x )を加え、その和に重み係数wを乗じることにより、総和の今回値(A)を求めることができる。このことは、上記の(1)式および(2)式の漸化式における他の総和の項についても同様に当てはまる。そのため、上記の(1)式および(2)式で表される係数aおよび係数bについては、総和の前回値が分かっていれば、今回値も求めることができる。したがって、過去の走行データの履歴が全て記憶されていなくとも、総和の前回値が記憶されていれば、その総和の前回値と今回値とから、重み係数wによって重み付けされた近似線「y=a・x+b」を求めることができる。
上記のような重み係数wを、例えば「w=0.7」として走行データの重み付けを行った場合、図10に示すように、直近の4回分のデータだけで全体の約75%の情報量を占めることになる。このように、上記のような重み付けを行うことにより、直近のデータに対する重要度を高めることができ、例えば、重要度が低くなった過去のデータをクリアすることもできる。また、重み係数wを一定値とすることにより、上記のような漸化式における1回毎の変化が一定となり、その結果、上記のような漸化式の計算によって近似線「y=a・x+b」を容易に求めることができる。したがって、上記のように走行データに対して重み付けを行うことにより、「期待車速」や「再加速時加速度」の一定の推定精度を確保しつつ、データを記憶するメモリの負荷および演算処理の際の負荷を軽減することができる。
このように、コントローラ8による駆動力制御では、減速走行後の再加速走行時に、その再加速走行が開始される以前に、「再加速時加速度」で加速走行することが可能な変速比を設定する自動変速機4の変速制御を完了させておくことができる。また、上記のような「期待車速」に基づいて「再加速時加速度」を求めることにより、その「再加速時加速度」を、運転者の意図や運転志向等を反映した変速制御の制御指標とすることができる。そのため、減速走行後の再加速走行の開始時点では、事前に、再加速のために必要な駆動力を得ることが可能な変速比を自動変速機4で設定しておくことができる。また、その際に設定されている変速比は、運転者が意図する加速度、あるいは運転者が要求する加速度で車両を加速させることが可能であると推定される変速比となっている。
例えば、車両Veがコーナーを旋回走行する場合には、コーナーへの進入段階からコーナー内での旋回走行段階における車両Veの減速走行中に、予め、コーナーからの脱出段階における車両Veの再加速走行時に適した変速比、すなわち「再加速時加速度」を実現可能な変速比へ、自動変速機4をダウンシフトさせておくことができる。したがって、車両Veがコーナーに進入して旋回走行する場合に、大きな駆動力を得ることが可能な状態を維持しつつ、車両Veを適切に減速させて安定した旋回走行を行うことができる。そして、車両Veがコーナーから脱出して再加速走行を開始する際には、上記のように、既に、十分な駆動力を得ることが可能な状態にまでダウンシフトが完了されている。
したがって、コントローラ8による駆動力制御によれば、減速走行時のダウンシフトが不十分なために、その減速走行後の再加速走行時に駆動力の不足を補うために更にダウンシフトが行われるようなことを回避して、適切に車両を加速走行させることができる。そのため、運転者に違和感やショックを与えてしまうようなことを抑制し、車両Veの加速性能および加速フィーリングを向上させることができる。
また、コントローラ8による駆動力制御において、「期待車速」は、加速走行が行われる度に更新される。そのように「期待車速」が更新されることにより、運転者の最新の運転志向を制御に反映させることができる。例えば、運転者の運転志向が燃費走行志向からスポーツ走行志向へ変化した場合には、「期待車速」が増大する側に更新され、その結果、自動変速機4では、より低速段側の大きな変速比が設定され易い状態になる。そのため、その後の再加速走行の際には、より大きな駆動力を発生させて力強い加速走行が可能になり、上記のようなスポーツ走行志向への運転志向の変化を反映させて、車両Veを適切に加速走行させることができる。
ところで、上記のような再加速走行時の加速性能を重視した駆動力制御では、旋回走行終了後の再加速時の加速性能を確保するために、アップシフトのタイミングが遅くなる場合がある。例えば、車両Veがコーナーが連続するいわゆるS字カーブやワインディングロードなどを走行する状況が長時間継続すると、運転者が意図する以上にエンジン回転数が高い状態が長くなる可能性がある。そのため、いわゆるエンジン回転数の高止まり感のような違和感を運転者に与えてしまうおそれがある。また、車両Veが上記のようなS字カーブやワインディングロードなどを走行する際には、旋回走行中に、運転者の運転志向がスポーツ走行志向から通常の走行志向あるいは通常よりも燃費や効率を重視する燃費走行志向へ変化する場合がある。上記のような再加速走行時の加速性能を重視した駆動力制御の実行中に運転志向がスポーツ走行志向から燃費走行志向へ変化すると、ダウンシフト後のエンジン回転数が運転者が意図する回転数よりも高くなる可能性がある。そのため、運転者に違和感を与えてしまうおそれがある。
そこで、このコントローラ8は、車両VeがS字カーブやワインディングロードを走行するような場合であっても、運転者の意図や運転志向を適切に反映した駆動力制御を実行することができるように構成されている。例えば、車両VeがS字カーブやワインディングロードを走行するような場合に、再加速性確保の要否について、すなわち、再加速走行時の加速性能よりも車両のNV性能が優先される状況か否かを判断するように構成されている。
上記のS字カーブやワインディングロード等を走行するような状況に対応するためにコントローラ8で実行される制御の一例を、図11に示してある。この図11のフローチャートに示す制御は、前述の図2のフローチャートにおけるステップS6以降の各ステップに代わる他の制御形態として実行することができる。
先ず、アップシフト判断閾値算出処理が実行される(ステップS100)。このステップS100で実行されるアップシフト判断閾値算出処理は、具体的には、図12のフローチャートに示す制御ルーチンが実行される。
図12のフローチャートにおいて、先ず、ステップS101で、目標の仮想ギヤ比が算出される。目標の仮想ギヤ比は、図13に示すように、前述の図2のフローチャートにおけるステップS4で求められた再加速時加速度Gexpと上下の出力可能加速度Gablを表す曲線(MaxG線)との内分比によって算出することができる。
ステップS102では、目標のタービン回転数が算出される。タービン回転数は、エンジン3と自動変速機4との間に設置されているトルクコンバータ(図示せず)のタービンランナの回転数である。すなわち、タービン回転数は自動変速機4の入力軸回転数と等しくなる。したがって、目標のタービン回転数、すなわち、自動変速機4の目標入力軸回転数は、自動変速機4の出力軸回転数にステップS101で求めた仮想ギヤ比を乗算することにより算出することができる。
ステップS103では、ステップS102で求めた目標のタービン回転数およびアクセル開度に基づいてNV防止回転数が算出される。NV防止回転数は、現在のエンジン回転数が、そのエンジン回転数でのエンジン3の回転音が運転者に違和感を与えるような騒音となる可能性のある回転数か否かを判定するための閾値として算出される。例えば、NV防止回転数は、エンジン回転数が増大する際に運転者がエンジン3の回転音を騒音と感じない程度の最大の回転数であり、目標のタービン回転数よりも大きい値に設定される。後述するように、実際のタービン回転数がNV防止回転数を上回る場合に、エンジン3の回転音が騒音となる可能性があると判断される。このNV防止回転数は、目標のタービン回転数およびアクセル開度に関連付けされて、走行実験やシミュレーション等の結果を基に予め設定された計算式やマップから算出することができる。例えば、図14に示すようなマップから求めることができる。図14に示す例では、NV防止回転数は、目標のタービン回転数が低いほど大きな値に設定されている。
ステップS104では、現在の車両Veの横加速度(現在横G)が、車両Veの横加速度のピーク値(ピーク横G)よりも大きいか否かが判断される。ピーク横Gは、車両Veが旋回走行する度に記憶されて更新される横加速度の最大値である。現在横Gがピーク横Gよりも大きいことにより、このステップS104で肯定的に判断された場合は、ステップS105へ進む。現在横Gがピーク横G以下であることにより、ステップS104で否定的に判断された場合には、ステップS106へ進む。
ステップS105では、ピーク横Gが更新される。すなわち、最後に検出された現在横Gの最新値が、最新のピーク横Gとして設定される。
ステップS106では、ピーク横Gがスイープダウンされる。すなわち、ピーク横Gが徐々に低下させられる。この場合、現在横Gがピーク横G未満であることから、車両Veの旋回走行が終了へ向かっていると推定される。例えば、ピーク横Gは、低下傾向にある現在横Gの前回値を下回らない程度にスイープダウンされる。
ステップS107では、ピーク横Gおよび現在のタービン回転数によって旋回閾値が算出される。この場合のピーク横Gは、上記のステップS5で更新されたピーク横G、または、ステップS6でスイープダウンされている途中の最新のピーク横Gである。旋回閾値は、車両Veの旋回走行の状態を判定するための閾値として算出される。現在横Gがこの旋回閾値未満である場合に、車両Veは旋回走行中ではない(すなわち、直進走行中である)と判断される。旋回閾値は、走行実験やシミュレーション等の結果を基に予め設定された計算式やマップから算出することができる。例えば、図15に示すようなマップから求めることができる。図15に示す例では、旋回閾値は、ピーク横Gが低いほど大きな値に設定される。
ステップS107で旋回閾値が求められると、この図12のフローチャートで示すルーチンを抜けて、前述の図11のフローチャートにおけるステップS200へ進む。ステップS200では、車両VeがアクセルOFFの状態であるか否かが判断される。具体的には、アクセルセンサ9によって検出されるアクセル開度が、0である場合または0に近い所定開度よりも小さい場合に、車両VeはアクセルOFFの状態であると判定される。
なお、上記のステップS100は、すなわち、図12のフローチャートで示す制御ルーチンは、図11のフローチャートのステップS200以降に示す制御ルーチンとは別に実施してもよい。あるいは、図11のフローチャートのステップS200以降に示す制御ルーチンと並行して実施してもよい。
車両VeがアクセルOFFの状態であることにより、このステップS200で肯定的に判断された場合は、ステップS300へ進む。ステップS300では、現在変速段が算出変速段よりも大きいか否かが判断される。このステップS300は、前述の図2のフローチャートにおけるステップS7と同じ制御内容である。したがって、ステップS300では、現在、自動変速機4で設定されている変速段が、図2のフローチャートにおけるステップS5で算出された変速段よりも高速段であるか否か、すなわち、現在の変速段の変速比が算出された変速段の変速比よりも小さいか否かが判断される。現在の変速段が算出された変速段よりも低速段であることにより、このステップS300で否定的に判断された場合は、以降の制御を実行することなく、このルーチンを一旦終了する。
これに対して、現在の変速段が算出された変速段よりも高速段であることにより、ステップS300で肯定的に判断された場合には、ステップS400へ進む。このステップS400は、前述の図2のフローチャートにおけるステップS8と同じ制御内容である。したがって、ステップS400では、算出された変速段に向けて自動変速機4でダウンシフトが実施される。そしてその後、このルーチンを一旦終了する。
一方、車両VeがアクセルOFFの状態でない、すなわち、アクセル開度が所定開度以上になるアクセルONの状態であることにより、上記のステップS200で否定的に判断された場合は、ステップS500へ進む。
ステップS500では、ダウンシフトが実施されたか否かが判断される。未だダウンシフトが実施されていないことにより、このステップS500で否定的に判断された場合は、以降の制御を実行することなく、このルーチンを一旦終了する。これに対して、ダウンシフトが実施されたことにより、ステップS500で肯定的に判断された場合には、ステップS600へ進む。
ステップS600では、再加速性確保の復帰判定成立の判断処理が実行される。すなわち、このコントローラ8で実行される駆動力制御による再加速性確保の要否について判断される。このステップS600で実行される復帰判定成立の判断処理では、具体的には、図16のフローチャートに示す制御ルーチンが実行される。
図16のフローチャートにおいて、先ず、ステップS601で、定常走行判定用旋回フラグの前回値がONであるか否かが判断される。この定常走行判定用旋回フラグは、車両Veが旋回走行中であると判断された場合にONにされる制御フラグである。具体的には、定常走行判定用旋回フラグは、後述するステップS606で肯定的に判断された場合にONにされ、ステップS609で肯定的に判断された場合にOFFにされる。
定常走行判定用旋回フラグの前回値がONであることにより、このステップS601で肯定的に判断された場合は、ステップS602およびステップS603へ進む。
ステップS602では、定常走行判定用車速として、その前回値が設定される。すなわち、この図16のフローチャートに示す制御ルーチンが1回実行される毎に検出されて記憶される車速の前回値(前回の制御ルーチンにおける検出値)が、定常走行判定用車速として設定される。
ステップS603では、旋回中定常走行カウンタがインクリメントされる。旋回中定常走行カウンタは、図17のタイムチャートに示すように、定常走行判定用旋回フラグがONになった時点(時刻t1)から作動を開始するカウンタである。この旋回中定常走行カウンタは、作動中に制御ルーチンの実行回数をカウントするカウンタ、または、作動中の経過時間を計測するタイマであってもよい。図17のタイムチャートでは、旋回中定常走行カウンタが、定常走行判定用旋回フラグがONになった時点からの経過時間を計測する例を示してある。
一方、定常走行判定用旋回フラグの前回値がONでない、すなわち、定常走行判定用旋回フラグの前回値がOFFであることにより、ステップS601で否定的に判断された場合には、ステップS604およびステップS605へ進む。
ステップS604では、定常走行判定用車速として、現在車速が設定される。すなわち、最後に検出された現在車速の最新値が、定常走行判定用車速として設定される。また、ステップS605では、旋回中定常走行カウンタがリセットされる。すなわち、旋回中定常走行カウンタのカウント値が0に戻される。
ステップS606では、車両Veが旋回走行中であるか否かが判断される。例えば、図17のタイムチャートに示すように、車両Veの現在横Gが所定値αよりも大きいことにより、車両Veは旋回走行中であると判断される。この所定値αは、走行実験やシミュレーション等の結果を基に予め設定することができる。
車両Veが旋回走行中であることにより、このステップS606で肯定的に判断された場合は、ステップS607およびステップS608へ進む。
ステップS607では、定常走行判定用旋回フラグがONにされる。既に、定常走行判定用旋回フラグがONされている場合は、そのONの状態が維持される。今回のルーチンで新たに車両Veが旋回走行中であると判断された場合は、このステップS607で定常走行判定用旋回フラグがONにされるとともに、図17のタイムチャートにおける時刻t1で示すように、旋回中定常走行カウンタの作動が開始される。
それに対して、車両Veが旋回走行中でないことにより、ステップS606で否定的に判断された場合には、上記のステップS607を飛ばし、ステップS608へ進む。
ステップS608では、車両Veの現在車速が取得される。現在車速は、前述したように、車速センサ13、あるいは、アウトプット回転数センサ12の検出値から求めることができる。
ステップS609では、旋回中定常走行カウンタのカウントが禁止されているか否かが判断される。旋回中定常走行カウンタは、前述したように定常走行判定用旋回フラグがONになった時点から作動を開始するカウンタであるが、作動を開始した時点の車速に対して現在車速が所定値δ以上に乖離した場合には、カウントが禁止される。あるいは、経過時間の計測が中止される。図17のタイムチャートでは、旋回中定常走行カウンタが作動を開始した時点(時刻t1)の車速に対する現在車速の乖離が所定値δ未満となっていて、旋回中定常走行カウンタのカウントが許可されている状態を示している。この所定値δは、走行実験やシミュレーション等の結果を基に予め設定することができる。
旋回中定常走行カウンタのカウントが禁止されていることにより、このステップS609で肯定的に判断された場合は、ステップS610およびステップS611へ進む。
ステップS610では、定常走行判定用旋回フラグがOFFにされる。この場合、車両Veは、旋回中定常走行ではないと判断されている状態である。旋回中定常走行とは、車両Veが旋回走行中であり、かつ、旋回走行中の車速の変化が所定値δ未満となる定常走行の状態である。したがって、このステップS610では、旋回中定常走行カウンタのカウントが禁止されていることに伴い、定常走行判定用旋回フラグがOFFにされる。
それに対して、旋回中定常走行カウンタのカウントが許可されていることにより、ステップS609で否定的に判断された場合には、上記のステップS610を飛ばし、ステップS611へ進む。この場合は、旋回中定常走行カウンタのカウントが実行されていることに伴い、定常走行判定用旋回フラグがONの状態に維持される。
ステップS611では、車両Veの状態が過渡時でないか否かが判断される。例えば、車両Veが、アクセル操作定常時であり、かつ、旋回走行中でなく、かつ、変速動作中でない場合に、車両Veの状態が過渡時でないと判断される。アクセル操作定常時とは、アクセルペダルの急な踏み込み操作や踏み戻し操作のない状態である。
車両Veの状態が過渡時でないことにより、このステップS611で肯定的に判断された場合は、ステップS612およびステップS14へ進む。
ステップS612では、定常状態カウンタがインクリメントされる。定常状態カウンタは、上記のようにステップS611で肯定的に判断される度に回数をカウントするカウンタである。図17のタイムチャートに示す例では、時刻t2および時刻t4で、定常状態カウンタがインクリメントされている。
それに対して、車両Veの状態が過渡時であることにより、ステップS611で否定的に判断された場合には、ステップS613およびステップS14へ進む。
ステップS613では、定常状態カウンタがリセットされる。すなわち、定常状態カウンタのカウント値が0に戻される。
ステップS614では、旋回中定常走行カウンタのカウント値が、所定値β以上であるか否かが判断される。この所定値βは、走行実験やシミュレーション等の結果を基に予め設定することができる。
旋回中定常走行カウンタのカウント値が所定値β以上であることにより、このステップS614で肯定的に判断された場合は、ステップS615へ進む。また、旋回中定常走行カウンタのカウント値が所定値β未満であることにより、ステップS614で否定的に判断された場合には、ステップS616へ進む。
ステップS615では、車両Veの定常走行の状態を判定するための閾値となる定常閾値が、第1閾値値Th1に設定される。また、ステップS616では、定常閾値が、第2閾値Th2に設定される。具体的には、図17のタイムチャートに示すように、旋回中定常走行カウンタのカウント値が、時刻t3で所定値β以上になることにより、回数選択フラグがONにされる。それとともに、定常閾値として第1閾値Th1が選択されて設定される。回数選択フラグは、上記のように旋回中定常走行カウンタのカウント値が所定値β以上の場合にONにされ、旋回中定常走行カウンタのカウント値が所定値β未満の場合にOFFにされるフラグである。旋回中定常走行カウンタのカウント値が所定値β未満であり、回数選択フラグがOFFにされる場合には、定常閾値として第2閾値Th2が選択されて設定される。第1閾値Th1は、第2閾値Th2よりも小さい値である。第2閾値Th2は、例えば、車両Veがワインディングロードを走行する状況においても十分な駆動力を確保することが可能なように設定されている。これら第1閾値Th1および第2閾値Th2は、走行実験やシミュレーション等の結果を基に予め設定することができる。
そして、ステップS617では、定常状態カウンタのカウント値が、定常閾値以上であるか否かが判断される。すなわち、定常状態カウンタのカウント値が、上記のステップS615で設定された第1閾値Th1以上であるか否か、または、上記のステップS616で設定された第2閾値Th2以上であるか否かが判断される。
定常状態カウンタのカウント値が定常閾値以上であることにより、このステップS617で肯定的に判断された場合は、この図16のフローチャートで示すルーチンを抜けて、図11のフローチャートにおけるステップS700へ進む。この場合は、定常状態カウンタのカウント値が定常閾値以上となったことから、エンジン回転数がいわゆる高止まりしている状態が所定時間以上経過しており、運転者に違和感を与えてしまう可能性が高いと判断される。すなわち、再加速時の加速性能を確保することよりも、いわゆるエンジン回転数の高止まりによる騒音を抑制することを優先する状況であると判断される。したがって、前述の図11のフローチャートにおけるステップS600で、再加速性確保の復帰判定が成立したと肯定的に判断される。そのため、この場合は、ステップS800およびステップS900を飛ばしてステップS700へ進み、直ちに、アップシフトが実施される。
一方、定常状態カウンタのカウント値が定常閾値未満であることにより、ステップS617で否定的に判断された場合には、この図16のフローチャートで示すルーチンを抜けて、前述の図11のフローチャートにおけるステップS800へ進む。この場合は、定常状態カウンタのカウント値が未だ定常閾値を超えていないことから、現状のエンジン回転数レベルでは運転者に違和感を与えてしまう可能性は低いと判断される。すなわち、エンジン回転数の高止まりによる騒音を抑制することよりも、再加速時の加速性能を確保することを優先する状況であると判断される。したがって、前述の図11のフローチャートでは、ステップS600で、未だ再加速性確保の復帰判定は成立していないと否定的に判断される。そのため、この場合は、現時点では未だアップシフトは実施されず、図11のフローチャートにおけるステップS800へ進む。
図11のフローチャートに戻り、ステップS700では、自動変速機4でアップシフトが実施される。なお、前述の図17のタイムチャートにおける時刻t5付近で示すように、このステップS700でアップシフトが実施されることにより、前述の図16のフローチャートにおける定常走行判定用旋回フラグがOFFにされる。また、それに伴って旋回中定常走行カウンタのカウント値が0に戻される。
ステップS800では、タービン回転数が、前述の図12のフローチャートにおけるステップS103で求めたNV防止回転数よりも高いか否かが判断される。タービン回転数がNV防止回転数よりも高いことにより、このステップS800で肯定的に判断された場合は、ステップS700へ進む。ステップS700では、従前と同様に、自動変速機4でアップシフトが実施される。この場合は、タービン回転数がNV防止回転数を上回っていることにより、エンジン回転数がいわゆる高止まりしている状態であると判断され、運転者に違和感を与えてしまう可能性が高いと判断される。すなわち、再加速時の加速性能を確保することよりも、いわゆるエンジン回転数の高止まりによる騒音を抑制することを優先する状況であると判断される。そのため、この場合は、ステップS900を飛ばしてステップS700へ進み、直ちに、アップシフトが実施される。
一方、タービン回転数がNV防止回転数以下であることにより、ステップS800で否定的に判断された場合には、ステップS900へ進む。ステップS900では、現在横Gが旋回閾値未満であるか否かが判断される。現在横Gが旋回閾値以上であることにより、このステップS900で否定的に判断された場合は、以降の制御を実行することなく、このルーチンを一旦終了する。すなわち、この場合は、未だ旋回走行中であり、かつ、タービン回転数がNV防止回転数以下であることから、エンジン回転数の高止まりによる騒音の影響は低く、直ちにアップシフトを実施する必要性は低いと判断される。すなわち、エンジン回転数の高止まりによる騒音を抑制することよりも、再加速時の加速性能を確保することを優先する状況であると判断される。そのため、この場合は、現時点では未だアップシフトは実施されず、このルーチンを一旦終了する。
これに対して、現在横Gが旋回閾値未満であることにより、ステップS900で肯定的に判断された場合には、ステップS700へ進む。ステップS700では、従前と同様に、自動変速機4でアップシフトが実施される。この場合は、現在横Gが旋回閾値を下回っていることにより、車両Veの旋回走行が終了したもしくは間もなく終了する状態であると判断される。また、先にダウンシフトが実際されているものの、アクセルOFFではない状態、すなわち、アクセルONの状態である。したがって、この状態が以降も継続すると、運転者に違和感を与えてしまう可能性が高いと判断される。そのため、この場合は、ステップS700へ進み、直ちに、アップシフトが実施される。
上記のようにして、ステップS700で、自動変速機4が制御されてアップシフトが実施されると、その後、このルーチンを一旦終了する。
以上のように、このコントローラ8で実行される駆動力制御では、前述したような「再加速時加速度」に基づいてダウンシフトを実施する再加速性確保のための変速制御が実行されるとともに、車両Veが、例えばS字カーブやワインディングロードを定常走行するような場合(旋回中定常走行時)に、再加速性確保の要否が判断される。すなわち、再加速走行時の加速性能よりも車両VeのNV性能が優先される状況か否かが判断される。具体的には、上記のような「再加速時加速度」に基づくダウンシフトが実施された後に、
(イ)定常状態カウンタのカウント値が定常閾値以上であること、すなわち、新たな変速制御が実行されていない状態で所定時間以上経過したこと、
(ロ)タービン回転数がNV防止回転数よりも高いこと、すなわち、自動変速機の入力軸回転数が所定回転数よりも高いこと、
(ハ)現在横Gが旋回閾値未満であること、すなわち、車両の横加速度が所定加速度よりも小さいこと、
の少なくともいずれか一つが成立するか否かが判断される。そして、上記の(イ)、(ロ)、(ハ)のうちの少なくとも一つが成立した場合に、アップシフトが実施される。そのため、上記のような旋回中定常走行時に、エンジン回転数が運転者の意図するよりも高くなってしまうことを抑制することができる。したがって、いわゆるエンジン回転数の高止まりに起因する違和感を運転者に与えてしまうことを抑制することができ、車両Veのドライバビリティを向上させることができる。
なお、上述した具体例では、「近似線」が直線である例を示しているが、「近似線」は、曲線であってもよい。例えば、「近似線」は、過去の走行データの近似曲線として求めることもできる。また、上述した具体例では、「近似線」を、グラフ上に示された線図として説明しているが、「近似線」、および、車速と加速度との相関線(直線f)等は、線図を表す関数、方程式、あるいは、相関式などの形で用いることもできる。
1…前輪、 2…後輪(駆動輪)、 3…エンジン、 4…自動変速機、 6…電子スロットルバルブ、 7…エアフローセンサ、 8…コントローラ(ECU)、 9…アクセルセンサ、 10…ブレーキセンサ(ブレーキスイッチ)、 11…エンジン回転数センサ、 12…アウトプット回転数センサ、 13…車速センサ、 Ve…車両。

Claims (1)

  1. 車両に搭載されるエンジンと、駆動輪と、前記エンジンと駆動輪との間でトルクを伝達する自動変速機と、前記自動変速機の変速比を変更する変速制御を実行して前記車両の駆動力を制御するコントローラと、を備えた駆動力制御装置において、
    前記コントローラは、
    前記車両が減速走行する以前の加速走行時における前記車両の車速と加速度との相関関係を表す近似線を算出し、
    前記減速走行した後に再加速走行をする際の目標車速として、前記近似線に基づいて前記再加速走行する際に運転者が所望すると推定される期待車速を設定し、
    現在の前記車速および前記期待車速に基づいて前記再加速走行する際の制御指標とする再加速時加速度を求め、
    前記再加速走行を開始する前に、前記再加速時加速度に基づき前記再加速時加速度を実現可能な前記変速比を設定してダウンシフトを実施するとともに、
    前記再加速時加速度に基づく前記ダウンシフトが実施された後に、(イ)新たな前記変速制御が実行されていない状態で所定時間以上経過したこと、(ロ)前記自動変速機の入力軸回転数が所定回転数よりも高いこと、および、(ハ)前記車両の横加速度が所定加速度よりも小さいこと、の少なくともいずれか一つが成立した場合に、前記再加速時加速度に基づいて設定される前記変速比よりも小さい変速比を設定してアップシフトを実施する
    ことを特徴とする駆動力制御装置。
JP2016047799A 2016-03-11 2016-03-11 駆動力制御装置 Active JP6489044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047799A JP6489044B2 (ja) 2016-03-11 2016-03-11 駆動力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047799A JP6489044B2 (ja) 2016-03-11 2016-03-11 駆動力制御装置

Publications (2)

Publication Number Publication Date
JP2017159846A true JP2017159846A (ja) 2017-09-14
JP6489044B2 JP6489044B2 (ja) 2019-03-27

Family

ID=59853889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047799A Active JP6489044B2 (ja) 2016-03-11 2016-03-11 駆動力制御装置

Country Status (1)

Country Link
JP (1) JP6489044B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223196A (ja) * 2016-06-17 2017-12-21 トヨタ自動車株式会社 車両の制御装置
KR20190070420A (ko) * 2017-12-13 2019-06-21 현대자동차주식회사 차량 및 그 제어방법
JP2019124269A (ja) * 2018-01-15 2019-07-25 本田技研工業株式会社 車両制御装置
JP2021071121A (ja) * 2019-10-29 2021-05-06 トヨタ自動車株式会社 車両およびその制御方法
CN115179950A (zh) * 2021-03-26 2022-10-14 广州汽车集团股份有限公司 基于驾驶行为的驾驶模式调整方法和车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001131A (ja) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2011207463A (ja) * 2009-08-18 2011-10-20 Toyota Motor Corp 車両制御装置
JP2013142436A (ja) * 2012-01-10 2013-07-22 Honda Motor Co Ltd 車両用自動変速機の制御装置
WO2013183362A1 (ja) * 2012-06-07 2013-12-12 本田技研工業株式会社 自動変速機の変速制御装置
JP2017150650A (ja) * 2016-02-26 2017-08-31 トヨタ自動車株式会社 駆動力制御装置
JP6217723B2 (ja) * 2015-09-18 2017-10-25 トヨタ自動車株式会社 駆動力制御装置
JP6222194B2 (ja) * 2015-03-17 2017-11-01 トヨタ自動車株式会社 駆動力制御装置
JP6229701B2 (ja) * 2015-09-18 2017-11-15 トヨタ自動車株式会社 駆動力制御装置
JP6229702B2 (ja) * 2015-09-18 2017-11-15 トヨタ自動車株式会社 駆動力制御装置
JP6380311B2 (ja) * 2015-09-18 2018-08-29 トヨタ自動車株式会社 駆動力制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001131A (ja) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2011207463A (ja) * 2009-08-18 2011-10-20 Toyota Motor Corp 車両制御装置
JP2013142436A (ja) * 2012-01-10 2013-07-22 Honda Motor Co Ltd 車両用自動変速機の制御装置
WO2013183362A1 (ja) * 2012-06-07 2013-12-12 本田技研工業株式会社 自動変速機の変速制御装置
JP6222194B2 (ja) * 2015-03-17 2017-11-01 トヨタ自動車株式会社 駆動力制御装置
JP6217723B2 (ja) * 2015-09-18 2017-10-25 トヨタ自動車株式会社 駆動力制御装置
JP6229701B2 (ja) * 2015-09-18 2017-11-15 トヨタ自動車株式会社 駆動力制御装置
JP6229702B2 (ja) * 2015-09-18 2017-11-15 トヨタ自動車株式会社 駆動力制御装置
JP6380311B2 (ja) * 2015-09-18 2018-08-29 トヨタ自動車株式会社 駆動力制御装置
JP2017150650A (ja) * 2016-02-26 2017-08-31 トヨタ自動車株式会社 駆動力制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223196A (ja) * 2016-06-17 2017-12-21 トヨタ自動車株式会社 車両の制御装置
KR20190070420A (ko) * 2017-12-13 2019-06-21 현대자동차주식회사 차량 및 그 제어방법
KR102450655B1 (ko) 2017-12-13 2022-10-11 현대자동차주식회사 차량 및 그 제어방법
JP2019124269A (ja) * 2018-01-15 2019-07-25 本田技研工業株式会社 車両制御装置
JP2021071121A (ja) * 2019-10-29 2021-05-06 トヨタ自動車株式会社 車両およびその制御方法
JP7234899B2 (ja) 2019-10-29 2023-03-08 トヨタ自動車株式会社 車両およびその制御方法
CN115179950A (zh) * 2021-03-26 2022-10-14 广州汽车集团股份有限公司 基于驾驶行为的驾驶模式调整方法和车辆
CN115179950B (zh) * 2021-03-26 2023-09-08 广州汽车集团股份有限公司 基于驾驶行为的驾驶模式调整方法和车辆

Also Published As

Publication number Publication date
JP6489044B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6222194B2 (ja) 駆動力制御装置
JP6489044B2 (ja) 駆動力制御装置
JP5392202B2 (ja) 車両の制御装置
JP5556523B2 (ja) 車両の制御装置
JP6645471B2 (ja) 車両の駆動力制御装置
US9810320B2 (en) Vehicle control system
JP4954058B2 (ja) ブレーキ動作を補助するために使用される自動式トランスミッションまたは自動化トランスミッションのシフトダウンを制御する方法
JP6750538B2 (ja) 自動変速機の変速制御装置
JP6229701B2 (ja) 駆動力制御装置
WO2018207816A1 (ja) 車両制御装置および車両制御方法
JP6217723B2 (ja) 駆動力制御装置
JP2007139090A (ja) 車両用走行制御装置
WO2018207860A1 (ja) 車両制御装置
JP6229702B2 (ja) 駆動力制御装置
JP6536430B2 (ja) 駆動力制御装置
JP6380311B2 (ja) 駆動力制御装置
US10040457B2 (en) Driving force control system for vehicle
JP2016211660A (ja) 駆動力制御装置
JP5458638B2 (ja) 車両の変速制御装置
JP2006015952A (ja) 車両の減速制御装置
JP2007071230A (ja) 車両用駆動力制御装置
JP2006137392A (ja) 車両の減速制御装置
JP5369912B2 (ja) 車両用自動変速機の制御装置
JP2017141883A (ja) 自動変速機の制御装置
JP2023028525A (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6489044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151