JP2017159517A - Method and apparatus for joining metal member and resin member to each other - Google Patents

Method and apparatus for joining metal member and resin member to each other Download PDF

Info

Publication number
JP2017159517A
JP2017159517A JP2016044889A JP2016044889A JP2017159517A JP 2017159517 A JP2017159517 A JP 2017159517A JP 2016044889 A JP2016044889 A JP 2016044889A JP 2016044889 A JP2016044889 A JP 2016044889A JP 2017159517 A JP2017159517 A JP 2017159517A
Authority
JP
Japan
Prior art keywords
metal member
resin member
drive unit
joining
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016044889A
Other languages
Japanese (ja)
Other versions
JP6327268B2 (en
Inventor
聡子 島田
Satoko Shimada
聡子 島田
杉本 幸弘
Yukihiro Sugimoto
幸弘 杉本
勝也 西口
Katsuya Nishiguchi
勝也 西口
耕二郎 田中
Kojiro Tanaka
耕二郎 田中
松田 祐之
Sukeyuki Matsuda
祐之 松田
嗣久 宮本
Tsuguhisa Miyamoto
嗣久 宮本
泰博 森田
Yasuhiro Morita
泰博 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016044889A priority Critical patent/JP6327268B2/en
Publication of JP2017159517A publication Critical patent/JP2017159517A/en
Application granted granted Critical
Publication of JP6327268B2 publication Critical patent/JP6327268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/347General aspects dealing with the joint area or with the area to be joined using particular temperature distributions or gradients; using particular heat distributions or gradients
    • B29C66/3472General aspects dealing with the joint area or with the area to be joined using particular temperature distributions or gradients; using particular heat distributions or gradients in the plane of the joint, e.g. along the joint line in the plane of the joint or perpendicular to the joint line in the plane of the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for joining a metal member and a resin member to each other, in which joint strength can be sufficiently improved.SOLUTION: In the method for joining a metal member and a resin member to each other by a heat-pressing type joining method in which a metal member and a resin member are allowed to overlap one another, pressure and heat are applied to the resin member by press from a metal member side by a press member, to soften and melt the resin member, and the resin member is then solidified to perform joining, the joining is performed while the pulse variation of the amount of the applied heat is caused.SELECTED DRAWING: None

Description

本発明は、金属部材と樹脂部材との接合方法および接合装置に関する。   The present invention relates to a joining method and joining apparatus for a metal member and a resin member.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図15に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して、摩擦熱を連続的に発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である(特許文献1)。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 15, the friction stir welding method is a method in which a metal member 211 and a resin member 212 are overlapped and pressed against the metal member 211 while rotating the rotary tool 216 to continuously generate frictional heat. In this method, the resin member 212 is melted by the frictional heat and then solidified to join the metal member 211 and the resin member 212 (Patent Document 1).

また摩擦撹拌接合方法において、樹脂部材として官能基を有する樹脂部材を用いることにより、高強度に接合する技術が開示されている(特許文献2)。   Moreover, in the friction stir welding method, a technique for bonding with high strength by using a resin member having a functional group as the resin member is disclosed (Patent Document 2).

特開2010−158885号公報JP 2010-158885 A 特開2014−208461号公報JP 2014-208461 A

本発明の発明者等は、従来の摩擦撹拌接合方法において、接合強度の向上の観点から、金属部材と樹脂部材との界面における樹脂部材表面の回転ツール直下部だけでなく、その外周部も溶融させると、かえって十分な接合強度が得られないことを見い出した。   Inventors of the present invention, in the conventional friction stir welding method, from the viewpoint of improving the bonding strength, not only the portion immediately below the rotary tool on the surface of the resin member at the interface between the metal member and the resin member but also the outer peripheral portion thereof is melted. On the contrary, it was found that sufficient bonding strength could not be obtained.

詳しくは、従来の摩擦撹拌接合方法においては、摩擦熱を連続的に発生させて、図16に示すような樹脂部材212の回転ツール直下部260を溶融させると、図17に示すように、当該直下部260の温度とその外周部261の温度との差d’が比較的大きくなった。このため、外周部261は十分に溶融せず、十分な接合強度は得られなかった。図16は、従来の摩擦撹拌接合方法を説明するための概略断面図である。図17は、従来の摩擦撹拌接合方法における直下部260の温度(図16におけるK260での界面温度)およびその外周部261の温度(図16におけるK261での界面温度)の経時変化の一例を示すグラフである。 Specifically, in the conventional friction stir welding method, frictional heat is continuously generated to melt the lower portion 260 immediately below the rotary tool of the resin member 212 as shown in FIG. 16, as shown in FIG. The difference d ′ between the temperature of the immediate lower portion 260 and the temperature of the outer peripheral portion 261 became relatively large. For this reason, the outer peripheral part 261 did not fully melt | dissolve and sufficient joint strength was not obtained. FIG. 16 is a schematic cross-sectional view for explaining a conventional friction stir welding method. FIG. 17 shows an example of changes over time in the temperature of the immediate lower portion 260 (interface temperature at K 260 in FIG. 16) and the temperature of the outer peripheral portion 261 (interface temperature at K 261 in FIG. 16) in the conventional friction stir welding method. It is a graph which shows.

そこで、直下部260だけでなく、その外周部261も溶融させるために、摩擦熱を連続的に発生させると、図18に示すように、直下部260の温度とその外周部261の温度との差d’’がやはり比較的大きいため、直下部260が過熱され、十分な接合強度が得られなかった。直下部の過熱は、金属部材が比較的高い熱伝導率を有するアルミニウムからなる場合よりも、比較的低い熱伝導率を有する鋼板からなる場合において、顕著に起こった。例えば樹脂部材212が炭素繊維を40重量%含有するポリプロピレン樹脂からなる場合、図14に示すように、樹脂が約330℃超に過熱されると、接合強度(せん断強度)が低下した。このような過熱による接合強度の低下は、樹脂分子が過熱により分解されることに基づくものと考えられる。図18は、従来の摩擦撹拌接合方法における直下部260の温度(図16におけるK260での界面温度)およびその外周部261の温度(図16におけるK261での界面温度)の経時変化の一例を示すグラフである。図14は、実施例で使用された樹脂部材の回転ツール直下部の温度を様々に変化させて接着強度(せん断強度)を測定したときの、当該温度と接合強度との関係を示す。 Therefore, when frictional heat is continuously generated in order to melt not only the immediate lower portion 260 but also the outer peripheral portion 261 thereof, as shown in FIG. 18, the temperature of the direct lower portion 260 and the temperature of the outer peripheral portion 261 are Since the difference d ″ is still relatively large, the lower part 260 is overheated, and sufficient bonding strength cannot be obtained. The overheating immediately below occurred remarkably when the metal member was made of a steel plate having a relatively low thermal conductivity than when the metal member was made of aluminum having a relatively high thermal conductivity. For example, when the resin member 212 is made of a polypropylene resin containing 40% by weight of carbon fiber, as shown in FIG. 14, when the resin is overheated to over 330 ° C., the bonding strength (shear strength) is lowered. Such a decrease in bonding strength due to overheating is considered to be based on the fact that resin molecules are decomposed by overheating. FIG. 18 shows an example of the change over time of the temperature of the immediate lower portion 260 (interface temperature at K 260 in FIG. 16) and the temperature of the outer peripheral portion 261 (interface temperature at K 261 in FIG. 16) in the conventional friction stir welding method. It is a graph which shows. FIG. 14 shows the relationship between the temperature and the bonding strength when the adhesive strength (shear strength) is measured by varying the temperature immediately below the rotary tool of the resin member used in the examples.

本発明は、接合強度を十分に向上させることができる金属部材と樹脂部材との接合方法を提供することを目的とする。   An object of this invention is to provide the joining method of the metal member and resin member which can fully improve joining strength.

本発明は、
金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記付与する熱量をパルス変化させながら前記接合を行う、金属部材と樹脂部材との接合方法に関する。
The present invention
The metal member and the resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, heat is applied to soften and melt the resin member, and then solidified to perform bonding. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
The present invention relates to a joining method between a metal member and a resin member, in which the joining is performed while changing the amount of heat applied.

本発明の接合方法によれば、接合強度を十分に向上させることができる。   According to the bonding method of the present invention, the bonding strength can be sufficiently improved.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 本発明の接合方法に使用される金属部材および樹脂部材の一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in the said joining method while showing the schematic sectional drawing of an example of the metal member and resin member which are used for the joining method of this invention. 本発明の接合方法における樹脂部材の回転ツール直下部とその外周部の経時的温度変化を示すグラフの一例である。It is an example of the graph which shows the time-dependent temperature change of the rotation tool direct lower part of the resin member in the joining method of this invention, and its outer peripheral part. 本発明において付与する熱量をパルス変化させるときの熱量の経時的変化の一例を示すグラフである。It is a graph which shows an example of a time-dependent change of the calorie | heat amount when changing the pulse of the calorie | heat amount provided in this invention. 本発明の接合方法に使用される金属部材および樹脂部材一例の概略断面図を示すとともに、当該接合方法における押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process and stirring stirring process in the said joining method while showing the schematic sectional drawing of a metal member and an example of a resin member used for the joining method of this invention. 本発明の荷重制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(i−1))を示すグラフである。In the joining method which concerns on the load control system of this invention, it is a graph which shows an example (method (i-1)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the heat amount to provide with a pulse. . 本発明の荷重制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(i−2))を示すグラフである。In the joining method which concerns on the load control system of this invention, it is a graph which shows an example (method (i-2)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the amount of heat to provide with a pulse. . 本発明の荷重制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(i−3))を示すグラフである。In the joining method which concerns on the load control system of this invention, it is a graph which shows an example (method (i-3)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the amount of heat to apply | coat with a pulse. . 本発明の位置制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(ii−1))を示すグラフである。In the joining method which concerns on the position control system of this invention, it is a graph which shows an example (method (ii-1)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the amount of heat to give with a pulse. . 本発明の位置制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(ii−2))を示すグラフである。In the joining method which concerns on the position control system of this invention, it is a graph which shows an example (method (ii-2)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the amount of heat to provide while changing a pulse. . 本発明の位置制御方式に係る接合方法において、付与する熱量をパルス変化させながら押込み撹拌工程を行うときの、回転ツールの駆動の制御方法の一例(方法(ii−3))を示すグラフである。In the joining method which concerns on the position control system of this invention, it is a graph which shows an example (method (ii-3)) of the control method of the drive of a rotary tool when performing an indentation stirring process, changing the amount of heat to provide with a pulse. . 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 本発明の実施例で使用される樹脂部材を用いて、回転ツール直下部の温度を様々に変化させて接着強度(せん断強度)を測定したときの、当該温度と接合強度との関係を示す。The relationship between the said temperature and joining strength when the adhesive strength (shear strength) is measured by changing the temperature of the direct lower part of a rotary tool variously using the resin member used in the Example of this invention is shown. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. 従来技術において接合強度が低下するメカニズムを説明するための、金属部材および樹脂部材の一例の概略断面図である。It is a schematic sectional drawing of an example of a metal member and a resin member for demonstrating the mechanism in which joining strength falls in a prior art. 従来技術における樹脂部材の回転ツール直下部とその外周部の経時的温度変化を示すグラフの一例である。It is an example of the graph which shows the time-dependent temperature change of the rotation tool right part of the resin member in the prior art, and its outer peripheral part. 従来技術における樹脂部材の回転ツール直下部とその外周部の経時的温度変化を示すグラフの一例である。It is an example of the graph which shows the time-dependent temperature change of the rotation tool right part of the resin member in the prior art, and its outer peripheral part.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。熱および圧力は好ましくは局所的に付与される。本発明の熱圧式接合方法は、押圧部材により圧力を付与しつつ、押圧部材または別の手段により熱を付与する方法である。熱圧式接合方法は、後述するように、付与する熱量をパルス変化させながら接合を行うことができる方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは押圧部材により熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, after a metal member and a resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and heat is applied to soften and melt the resin member. This is a hot-pressure joining method in which a metal member and a resin member are joined by solidification. Heat and pressure are preferably applied locally. The hot-pressure bonding method of the present invention is a method of applying heat by a pressing member or another means while applying pressure by the pressing member. As will be described later, the hot-pressure bonding method is not particularly limited as long as it is a method capable of performing bonding while changing the amount of heat to be applied, for example, a friction stir welding method, an ultrasonic heating bonding method, A laser heating bonding method, a resistance heating bonding method, an induction heating bonding method, or the like may be used. Preferably, it is a method in which heat and pressure are locally applied from the metal member side by a pressing member, and a friction stir welding method is more preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材側から樹脂部材を押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The friction stir welding method, as will be described in detail later, generates frictional heat by pressing the resin member from the metal member side while overlapping the metal member and the resin member and rotating the rotary tool as the pressing member. The resin member is softened and melted with this frictional heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材側から樹脂部材を加圧しながら、超音波(熱付与手段)により押圧部材及び金属部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heat bonding method is a method in which a metal member and a resin member are overlapped, and the pressure member and the metal member are pressed by the ultrasonic wave (heat applying means) while the resin member is pressed from the metal member side by the pressing member. In this method, the resin member is softened and melted by the frictional heat of the resin member / metal member generated by the vibration, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、レーザー(熱付与手段)を金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。   The laser heating bonding method is a method in which a metal member and a resin member are overlapped and heat is generated by irradiating a metal member with a laser (heat applying means) in a state where the metal member and the resin member are constrained by pressurization by a pressing member. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、金属部材に、直接電流(熱付与手段)を流すことにより生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The resistance heating bonding method uses heat generated by flowing a current (heat applying means) directly to a metal member in a state where the metal member and the resin member are overlapped and constrained by pressurization by the pressing member. The resin member is softened and melted and then solidified to join the metal member and the resin member.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、電磁誘導作用により金属部材に、誘導電流(熱付与手段)を生じさせ、該電流により生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The induction heating joining method is a method in which a metal member and a resin member are overlapped, and an induction current (heat applying means) is generated in the metal member by electromagnetic induction in a state in which the metal member and the resin member are constrained by pressurization by the pressing member. In this method, the resin member is softened and melted using heat generated by an electric current and then solidified to join the metal member and the resin member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、付与する熱量をパルス変化させながら接合を行う限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる「上下方向」は、図中における上下方向に対応した方向に相当する。また特記しない限り、これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, the joining method of the present invention adopting the friction stir welding method will be described in detail with reference to the drawings. However, as long as joining is performed while changing the amount of heat to be applied, the present invention can be used even if other joining methods described above are used. It is clear that the effect of can be obtained. It should be noted that the various elements shown in the drawings are merely schematically shown for understanding of the present invention, and the dimensional ratio, appearance, and the like may differ from the actual ones. The “vertical direction” used directly or indirectly in this specification corresponds to a direction corresponding to the vertical direction in the drawing. Unless otherwise specified, in these drawings, common reference numerals indicate the same members, parts, dimensions, or regions.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1〜図14を用いて具体的に説明する。
[Method of joining metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS.

(1)接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Joining Device First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding device suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。   As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), it moves downward as indicated by an arrow A2. At this time, the rotary tool 16 applies pressure in the pressing region P (scheduled pressing region) on the surface of the metal member 11. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined.

図2は、回転ツール16の一例の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、金属部材と接触する先端部(図2では下端部)にピン部16a及び該ピン部を支持するショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the tip portion of an example of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b that supports the pin portion at a distal end portion (lower end portion in FIG. 2) that contacts the metal member. The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、押圧部材としての回転ツール16の駆動により、付与する熱量をパルス変化させることができるように、回転ツールの駆動条件、特に押圧駆動条件および/または回転駆動条件、好ましくは押圧駆動条件および回転駆動条件、を制御する駆動制御装置(図示せず)を含む。   The friction stir welding apparatus 1 is capable of changing the amount of heat applied by driving the rotary tool 16 as a pressing member in a pulse manner, in particular, the pressing tool driving condition, particularly the pressing driving condition and / or the rotational driving condition, preferably A drive control device (not shown) for controlling the pressing drive condition and the rotational drive condition is included.

駆動制御装置は、後で詳述するように、回転ツールに加える荷重、加圧時間および回転数を制御する荷重制御方式を採用してもよいし、または回転ツールの進入速度、進入量、特定位置での保持時間および回転数を制御する位置制御方式を採用してもよい。   As will be described in detail later, the drive control device may adopt a load control method for controlling the load applied to the rotating tool, the pressurizing time, and the number of rotations, or the approach speed, the amount of approach, and the identification of the rotating tool. You may employ | adopt the position control system which controls the holding time and rotation speed in a position.

なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(2)接合方法
本発明においては、金属部材11および樹脂部材12に付与する熱量を制御しながら接合を行う。詳しくは、付与する熱量をパルス変化させながら接合を行う。付与する熱量をパルス変化させながら接合を行うとは、付与する熱量の大/小の切り替えを繰り返しながら接合を行う、という意味であり、具体的には、圧力および熱を付与して接合を行うに際して、比較的大きい熱量と、比較的小さい熱量とを繰り返し付与する、という意味である。このような熱量の制御により、接合時において、図3に示すような金属部材11と樹脂部材12との境界面13における樹脂部材12の回転ツール直下部60とその外周部61との温度差dを、図4に示すように、減小させることができる。その結果として、直下部60の過熱が抑制され、当該直下部60の温度を樹脂部材12の分解温度(Td(℃))以下に制御しつつ、金属部材11中での熱伝導が十分に達成され、外周部61も溶融させることができる。このため、直下部60における樹脂分子の分解が抑制されつつ、当該直下部60およびその外周部61の溶融が十分に起こり、これらの両方が金属部材11と接合し、接合強度を十分に向上させることができる。図3は、本発明の接合方法に使用される金属部材および樹脂部材の一例の概略断面図を示す。図4は、本発明の摩擦撹拌接合方法における直下部60の温度T60(図3におけるP60での界面温度)およびその外周部61の温度T61(図3におけるP61での界面温度)の経時変化の一例を示すグラフである。
(2) Joining method In the present invention, joining is performed while controlling the amount of heat applied to the metal member 11 and the resin member 12. Specifically, bonding is performed while changing the amount of heat to be applied in pulses. Joining while changing the amount of heat to be applied means that the joining is performed by repeatedly switching the amount of heat to be applied. Specifically, joining is performed by applying pressure and heat. In this case, it means that a relatively large amount of heat and a relatively small amount of heat are repeatedly applied. By controlling the amount of heat, the temperature difference d between the lower part 60 of the rotation tool of the resin member 12 and the outer peripheral portion 61 at the boundary surface 13 between the metal member 11 and the resin member 12 as shown in FIG. Can be reduced as shown in FIG. As a result, overheating of the direct lower portion 60 is suppressed, and heat conduction in the metal member 11 is sufficiently achieved while controlling the temperature of the direct lower portion 60 to be equal to or lower than the decomposition temperature (Td (° C.)) of the resin member 12. The outer peripheral portion 61 can also be melted. For this reason, the decomposition of the resin molecules in the direct lower portion 60 is suppressed, and the direct lower portion 60 and its outer peripheral portion 61 are sufficiently melted, both of which are bonded to the metal member 11 and the bonding strength is sufficiently improved. be able to. FIG. 3 shows a schematic cross-sectional view of an example of a metal member and a resin member used in the joining method of the present invention. FIG. 4 shows the temperature T 60 (the interface temperature at P 60 in FIG. 3) and the temperature T 61 of the outer periphery 61 (the interface temperature at P 61 in FIG. 3) in the friction stir welding method of the present invention. It is a graph which shows an example of a time-dependent change.

図4において、直下部60の温度T60およびその外周部61の温度T61は、熱量の制御により、接合寄与範囲(約200〜300℃)に制御されているが、このような接合寄与範囲は使用される樹脂部材12の融点Tm(℃)および分解温度Td(℃)に基づいて決定される。接合寄与範囲とは、樹脂分子の分解なしに、接合に寄与する溶融が可能な温度範囲という意味である。接合寄与範囲は通常、樹脂部材12の融点Tm以上分解温度Td以下、であり、好ましくはTm+30(℃)〜Tm+130(℃)である。なお、直下部60およびその外周部61と、熱量を付与する回転ツール16との位置関係より、外周部61の温度T61が直下部60の温度T60を超えることはない。 4, the temperature T 61 temperature T 60 and the outer peripheral portion 61 immediately below portion 60, under the control of heat, has been controlled to the joint contribution range (about 200 to 300 [° C.), such bonding contributes range Is determined based on the melting point Tm (° C.) and the decomposition temperature Td (° C.) of the resin member 12 used. The joining contribution range means a temperature range in which melting that contributes to joining is possible without decomposition of resin molecules. The joining contribution range is usually the melting point Tm or more and the decomposition temperature Td or less of the resin member 12, and preferably Tm + 30 (° C.) to Tm + 130 (° C.). Note that the temperature T 61 of the outer peripheral portion 61 does not exceed the temperature T 60 of the direct lower portion 60 due to the positional relationship between the direct lower portion 60 and its outer peripheral portion 61 and the rotary tool 16 that imparts heat.

本発明においては、直下部60の温度T60も、その外周部61の温度T61も、早期に接合寄与範囲に到達し、かつ到達後は最終の冷却工程まで当該接合寄与範囲内で推移することが好ましい。接合強度のさらなる向上の観点からは、直下部60の温度T60およびその外周部61の温度T61が接合寄与範囲で推移する時間は長いほど好ましい。 In the present invention, the temperature T 60 immediately below portion 60 is also the temperature T 61 of the outer peripheral portion 61, early reaches the junction contribution range, and after reaching the transitions within the joint contribution range to the final cooling step It is preferable. From the viewpoint of further improving the bonding strength, the time the temperature T 60 and the temperature T 61 of the outer peripheral portion 61 immediately below portion 60 has remained at the joint contribution range longer preferred.

本発明において、熱量のパルス変化の波形(比較的大きい熱量と比較的小さい熱量との繰り返しの形態)は、樹脂部材における回転ツール直下部60の温度をTd以下に制御できる限り、特に限定されず、例えば、図5に示すように周期的であってもよいし、または非周期的であってもよい。熱量制御の容易性の観点から好ましくは、付与する熱量は周期的にパルス変化させる。図5は、本発明において付与する熱量をパルス変化させるときの熱量の経時的変化の一例を示すグラフである。図5において、「70」は比較的大きい熱量を付与している時を示し、「71」は比較的小さい熱量を付与している時を示す。   In the present invention, the waveform of the pulse change of the amount of heat (repetitive form of a relatively large amount of heat and a relatively small amount of heat) is not particularly limited as long as the temperature of the portion 60 directly below the rotary tool in the resin member can be controlled to Td or less. For example, it may be periodic as shown in FIG. 5 or aperiodic. Preferably, the amount of heat to be applied is periodically pulse-changed from the viewpoint of ease of heat amount control. FIG. 5 is a graph showing an example of a temporal change in the amount of heat when the amount of heat applied in the present invention is changed in pulses. In FIG. 5, “70” indicates a time when a relatively large amount of heat is applied, and “71” indicates a time when a relatively small amount of heat is applied.

図5において、熱量のパルス波形は矩形波で示されているが、比較的大きい熱量と比較的小さい熱量が繰り返し付与される限り、その波形は特に限定されるものではなく、例えば、正弦波、三角波、のこぎり波であってもよい。   In FIG. 5, the pulse waveform of the amount of heat is shown as a rectangular wave, but the waveform is not particularly limited as long as a relatively large amount of heat and a relatively small amount of heat are repeatedly applied. For example, a sine wave, It may be a triangular wave or a sawtooth wave.

比較的大きい熱量Haおよびその単位付与時間Ta、比較的小さい熱量Hbおよびその単位付与時間Tb、ならびにそれらの比率および周期Tcは、樹脂部材12における回転ツール直下部60とその外周部61との温度差dの減小により当該直下部の温度をTd以下に制御できる限り、特に限定されない。   The relatively large amount of heat Ha and its unit application time Ta, the relatively small amount of heat Hb and its unit application time Tb, and the ratio and period Tc thereof are the temperatures of the rotary tool directly lower portion 60 and the outer peripheral portion 61 of the resin member 12. There is no particular limitation as long as the temperature of the immediately lower part can be controlled to Td or less by reducing the difference d.

熱量Hbは通常、0.7×Ha以下であり、好ましくは0.5×Ha以下であり、より好ましくは0.3×Ha以下であり、さらに好ましくは0である。
比率Hb/Haは通常、0.7以下であり、好ましくは0.5以下、より好ましくは0.3以下であり、さらに好ましくは0である。
比率Tb/Taは通常、0.5〜2であり、好ましくは0.8〜1.2、より好ましくは1である。
TaおよびTbはそれぞれ独立して通常、0.1〜1秒間であり、好ましくは0.1〜0.5秒間、より好ましくは0.1〜0.3秒間である。
Tcは通常、0.2〜2秒間であり、好ましくは0.2〜1秒間、より好ましくは0.2〜0.6秒間である。
The amount of heat Hb is usually 0.7 × Ha or less, preferably 0.5 × Ha or less, more preferably 0.3 × Ha or less, and even more preferably 0.
The ratio Hb / Ha is usually 0.7 or less, preferably 0.5 or less, more preferably 0.3 or less, and even more preferably 0.
The ratio Tb / Ta is usually 0.5 to 2, preferably 0.8 to 1.2, and more preferably 1.
Ta and Tb are each independently usually 0.1 to 1 second, preferably 0.1 to 0.5 second, and more preferably 0.1 to 0.3 second.
Tc is usually 0.2 to 2 seconds, preferably 0.2 to 1 second, and more preferably 0.2 to 0.6 seconds.

比較的大きい熱量Haと比較的小さい熱量Hbとの繰り返しにおいて、比率Hb/Haおよび/またはHbを小さくする、または比率Tb/Taおよび/またはTbを大きくすると、樹脂部材における回転ツール直下部とその外周部との温度差dが減少し、当該回転ツール直下部の温度が低下する傾向を示す。他方、当該繰り返しにおいて、比率Hb/Haおよび/またはHbを大きくする、または比率Tb/Taおよび/またはTbを小さくすると、樹脂部材における回転ツール直下部とその外周部との温度差dが増加し、当該回転ツール直下部の温度が増加する傾向を示す。   When the ratio Hb / Ha and / or Hb is decreased or the ratio Tb / Ta and / or Tb is increased in the repetition of the relatively large heat amount Ha and the relatively small heat amount Hb, The temperature difference d with the outer peripheral portion decreases, and the temperature immediately below the rotating tool tends to decrease. On the other hand, if the ratio Hb / Ha and / or Hb is increased or the ratio Tb / Ta and / or Tb is decreased in the repetition, the temperature difference d between the lower portion of the resin member and the outer peripheral portion thereof increases. The temperature immediately below the rotating tool tends to increase.

本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法においては、上記した熱量の制御は、回転ツール16の駆動、特に押圧駆動および/または回転駆動、好ましくは押圧駆動および回転駆動、を制御することにより行うことができる。具体的な、制御因子およびその制御方法は荷重制御方式と位置制御方式とで異なるため、後で詳述する。   In the joining method of the metal member and the resin member by the friction stir welding method according to the present invention, the above-described control of the amount of heat is performed by driving the rotary tool 16, in particular, pressing drive and / or rotating drive, preferably pressing drive and rotating drive. , Can be performed by controlling. Since specific control factors and their control methods differ between the load control method and the position control method, they will be described in detail later.

本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
The method of joining the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed to generate frictional heat, and the resin member 12 is softened and melted by the frictional heat. Then, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法においては、上記したように熱量をパルス変化させながら第2ステップを行えばよい。   In the joining method of the metal member and the resin member by the friction stir welding method according to the present invention, the second step may be performed while changing the amount of heat in pulses as described above.

第1ステップにおいては、図1に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。   In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are overlapped at a desired joint portion.

第2ステップにおいては、回転ツールの駆動条件を制御して、上記のように熱量をパルス変化させる。第2ステップにおいては、回転ツールに加える荷重、加圧時間および回転数を制御する荷重制御方式、または回転ツールの進入速度、進入量、特定位置での保持時間および回転数を制御する位置制御方式を採用する。以下、荷重制御方式を採用する第2ステップを第1実施態様として説明し、位置制御方式を採用する第2ステップを第2実施態様として説明する。   In the second step, the drive condition of the rotary tool is controlled to change the amount of heat in pulses as described above. In the second step, a load control method for controlling the load applied to the rotary tool, the pressurizing time and the rotational speed, or a position control system for controlling the approach speed, the approach amount, the holding time at a specific position and the rotational speed of the rotary tool. Is adopted. Hereinafter, the second step employing the load control method will be described as the first embodiment, and the second step employing the position control method will be described as the second embodiment.

<第1実施態様:荷重制御方式>
本実施態様においては、回転ツールの駆動条件として、回転ツールに加える荷重、加圧時間および回転数からなる群から選択される1種以上の駆動条件を制御して、上記のように熱量をパルス変化させながら、第2ステップを行えばよい。
<First Embodiment: Load Control Method>
In this embodiment, as the driving condition of the rotating tool, one or more driving conditions selected from the group consisting of the load applied to the rotating tool, the pressurizing time, and the number of rotations are controlled, and the amount of heat is pulsed as described above. The second step may be performed while changing.

本実施態様の第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。   In the second step of the present embodiment, at least the pushing and stirring step C <b> 2 for pushing the rotary tool 16 into the metal member 11 and entering to a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12 is performed. preferable.

本実施態様の第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。   In the second step of the present embodiment, a preheating step C1 for rotating the rotary tool 16 in a state where only the front end portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the pushing and stirring step. Although preferred, it is not necessary.

本実施態様の第2ステップにおいては、前記押込撹拌工程の後に、回転ツール16を前記押込み撹拌工程で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。   In the second step of the present embodiment, it is preferable to perform the stirring maintaining step C3 for continuing the rotating operation of the rotating tool 16 at the position where the rotating tool 16 is entered in the pressing stirring step after the pressing stirring step. However, this process is not necessarily performed.

本実施態様の第2ステップにおいては、予熱工程、押込み撹拌工程および撹拌維持工程のうち、少なくとも押込み撹拌工程を行うに際し、上記のように熱量をパルス変化させればよい。   In the second step of the present embodiment, at least the indentation stirring process among the preheating process, the indentation stirring process, and the agitation maintaining process may be performed by changing the amount of heat as described above.

以下、本実施態様におけるこれらの工程について詳しく説明する。   Hereinafter, these steps in this embodiment will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の荷重p1(例えば、900〜1200N)で、第1の加圧時間t1(例えば、(1〜2秒)だけ、第1の回転数r1(例えば、2500〜3500rpm)で回転させる。図3は、図1におけるX−X断面を矢印方向で見たときの概略断面図である。
(Preheating process C1)
In the preheating step C1, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 3, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is moved to a first rotation speed r1 (for example, for (1-2 seconds) with a first load p1 (for example, 900 to 1200 N) for a first pressurizing time t1 (for example (for 1-2 seconds)). 3 is a schematic cross-sectional view of the XX cross section in FIG.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域P(回転ツール16による押圧領域)の範囲及び押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing area P (the pressing area by the rotary tool 16) of the metal member 11 and the area near the pressing area P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

本工程において付与される熱量は、主として、第1の荷重p1の大きさ、第1の加圧時間t1の長さ、および回転ツールの第1の回転数r1の大きさによって決まる。   The amount of heat applied in this step is mainly determined by the magnitude of the first load p1, the length of the first pressurizing time t1, and the magnitude of the first rotation speed r1 of the rotary tool.

本予熱工程C1の第1の荷重p1及び第1の加圧時間t1は、上記熱量の制御、次工程での回転ツールの押込み易さ、樹脂部材の軟化・溶融のし易さ、および生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定されればよい。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、予熱工程C1における第1の荷重p1は、1300N未満が好ましい。第1の加圧時間t1は0.5秒以上が好ましい。回転ツールの回転数r1は4000rpm以下が好ましい。   The first load p1 and the first pressurization time t1 in the preheating step C1 are the control of the heat amount, the ease of pushing the rotary tool in the next step, the ease of softening and melting the resin member, and the productivity. The value may be determined depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later, the first load p1 in the preheating step C1 is preferably less than 1300N. The first pressurization time t1 is preferably 0.5 seconds or longer. The rotational speed r1 of the rotary tool is preferably 4000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2では、回転ツール16と受け具17とを相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図6に示すように、樹脂部材12側に突出変形させることが好ましい。これにより、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120について、その溶融と該直下領域から外周領域への流動(図6の矢印方向)を促進させることができる。図6は、図1におけるX−X断面を矢印方向で見たときの概略断面図である。
(Indentation stirring step C2)
In the pushing and stirring step C2, the rotating tool 16 and the receiving member 17 are brought close to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. When the pushing and stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. Thereby, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable that the lower part 110 of the metal member 11 is protruded and deformed toward the resin member 12 as shown in FIG. Thereby, about the molten resin 120 of the resin member surface melt | dissolved in the area | region immediately under a rotating tool, the fusion | melting and the flow (arrow direction of FIG. 6) to the outer peripheral area | region can be promoted. 6 is a schematic cross-sectional view of the XX cross-section in FIG. 1 as viewed in the direction of the arrow.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の荷重p1より大きい第2の荷重p2(例えば、1500N〜3000N)で、第2の加圧時間t2(例えば、2〜4秒)だけ、第2の回転数r2(例えば、2500〜3500rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is subjected to the second pressurization time t2 (for example, 2 to 4 seconds) with the second load p2 (for example, 1500 N to 3000 N) larger than the first load p1. Only at the second rotation speed r2 (for example, 2500 to 3500 rpm).

押込み撹拌工程C2では、荷重が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。好ましくは、この回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。本押込み撹拌工程C2およびこの後に好ましく行われる撹拌維持工程C3により、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外周領域まで流動する(図6の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化領域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合が十分に良好な作業効率かつ十分な強度で達成することができる。   In the indentation stirring step C2, the rotary tool 16 is pushed into the metal member 11 because the load is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. Preferably, when the rotary tool 16 is pressed, the joining boundary surface 13 between the metal member 11 and the resin member 12 moves to the support 17 side (lower side in the illustrated example) in the lower portion 110 of the metal member 11. The right lower part 110 projects and deforms toward the resin member 12 side. By the indentation stirring step C2 and the stirring maintaining step C3 that is preferably performed thereafter, the melting of the molten resin 120 on the surface of the resin member melted in the region immediately below the rotary tool at the joining interface 13 is promoted, and the region immediately below And flows to the outer peripheral region (in the direction of the arrow in FIG. 6). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonded region) obtained by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Can be achieved with sufficiently good working efficiency and sufficient strength.

仮に、回転ツール16がさらに押し込まれると(つまり荷重が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、回転ツール16の外周部が樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the load is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joint boundary surface. That is, the rotary tool 16 penetrates the metal member 11, and the outer peripheral portion of the rotary tool 16 contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12の固化が促進される。   Therefore, in this indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters a depth that does not reach the joint boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. Thereby, solidification of the resin member 12 is accelerated | stimulated by the following stirring maintenance process C3.

本工程において付与される熱量は、主として、第2の荷重p2の大きさ、第2の加圧時間t2の長さ、および回転ツールの第2の回転数r2の大きさによって決まる。   The amount of heat applied in this step is mainly determined by the magnitude of the second load p2, the length of the second pressurizing time t2, and the magnitude of the second rotation speed r2 of the rotary tool.

本押込み撹拌工程C2において、特に上記のように熱量をパルス変化させるためには、回転ツールを第2の回転数(r2)以下で回転させつつ前記第1の荷重(p1)より大きい第2の荷重(p2)以下で押圧させる駆動を第2の加圧時間(t2)だけ行い、かつ以下の方法から選択される1つの方法に従う:
(i−1)図7に示すように、回転ツールをr2で回転させつつp2で押圧させる駆動単位i−1aと、回転ツールをr2で回転させつつ0.7×p2以下で押圧させる駆動単位i−1bとを、t2だけ繰り返す;駆動単位i−1bにおいて、荷重は0.5×p2以下が好ましく、より好ましくは0.3×p2以下であり、さらに好ましくは0Nである;
(i−2)図8に示すように、回転ツールをr2で回転させつつp2で押圧させる駆動単位i−2aと、回転ツールを0.5×r2以下で回転させつつp2で押圧させる駆動単位i−2bとを、t2だけ繰り返す;駆動単位i−2bにおいて、回転数は0.3×r2以下が好ましく、より好ましくは0.1×r2以下であり、さらに好ましくは0rpmである;
(i−3)図9に示すように、回転ツールをr2で回転させつつp2で押圧させる駆動単位i−3aと、回転ツールを0.7×r2以下で回転させつつ0.7×p2以下で押圧させる駆動単位i−3bとを、t2だけ繰り返す;駆動単位i−3bにおいて、荷重は0.6×p2以下が好ましく、より好ましくは0.5×p2以下であり、さらに好ましくは0Nである;駆動単位i−3bにおいて、回転数は0.6×r2以下が好ましく、より好ましくは0.5×r2以下であり、さらに好ましくは0rpmである;および
(i−4)前記(i−1)〜(i−3)の駆動単位から選択され、荷重および/または回転数が異なる2種以上の駆動単位を組み合わせてt2だけ繰り返す。
In the indentation stirring step C2, in order to change the amount of heat in pulses as described above, the second load larger than the first load (p1) while rotating the rotary tool at the second rotation speed (r2) or less. The driving for pressing below the load (p2) is performed for the second pressurization time (t2), and one method selected from the following methods is followed:
(I-1) As shown in FIG. 7, the driving unit i-1a for rotating the rotating tool at r2 and pressing it at p2, and the driving unit for rotating the rotating tool at r2 and pressing it at 0.7 × p2 or less. i-1b is repeated by t2; in the driving unit i-1b, the load is preferably 0.5 × p2 or less, more preferably 0.3 × p2 or less, and further preferably 0N;
(I-2) As shown in FIG. 8, the drive unit i-2a for rotating the rotary tool at r2 and pressing it at p2, and the drive unit for pressing at p2 while rotating the rotary tool at 0.5 × r2 or less i-2b is repeated by t2; in the drive unit i-2b, the rotation speed is preferably 0.3 × r2 or less, more preferably 0.1 × r2 or less, and further preferably 0 rpm;
(I-3) As shown in FIG. 9, the drive unit i-3a that rotates the rotating tool at r2 and presses it at p2, and 0.7 × p2 or less while rotating the rotating tool at 0.7 × r2 or less. The driving unit i-3b to be pressed is repeated by t2; in the driving unit i-3b, the load is preferably 0.6 × p2 or less, more preferably 0.5 × p2 or less, and further preferably 0N. In the drive unit i-3b, the rotation speed is preferably 0.6 × r2 or less, more preferably 0.5 × r2 or less, and further preferably 0 rpm; and (i-4) (i− A combination of two or more drive units selected from the drive units 1) to (i-3) and having different loads and / or rotational speeds is repeated for t2.

上記方法(i−1)、(i−2)または(i−3)、特に方法(i−1)および(i−3)が好ましい。   The method (i-1), (i-2) or (i-3), particularly the methods (i-1) and (i-3) are preferred.

本押込み撹拌工程C2の第2の荷重p2及び第2の加圧時間t2は、上記熱量の制御、上記のような金属部材11の孔開き回避、回転ツール16の樹脂部材12への近接の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、押込み撹拌工程C2における第2の荷重p2は、3000N以下が好ましい。第2の加圧時間t2は、4秒以下が好ましい。回転ツールの第2の回転数r2は3500rpm以下が好ましい。   The second load p2 and the second pressurization time t2 in the indentation stirring step C2 are the viewpoints of the control of the heat amount, the avoidance of the opening of the metal member 11 as described above, and the proximity of the rotary tool 16 to the resin member 12. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the second load p2 in the indentation stirring step C2 is preferably 3000 N or less. The second pressurization time t2 is preferably 4 seconds or less. The second rotational speed r2 of the rotary tool is preferably 3500 rpm or less.

本工程において付与される熱量は、方法(i−1)〜(i−3)における各駆動単位の駆動単位時間の比率によっても変化し得る。例えば、前記駆動単位i−1aの駆動単位時間taと前記駆動単位i−1bの駆動単位時間tbとの比率tb/ta、前記駆動単位i−2aの駆動単位時間taと前記駆動単位i−2bの駆動単位時間tbとの比率tb/ta、および前記駆動単位i−3aの駆動単位時間taと前記駆動単位i−3bの駆動単位時間tbとの比率tb/taは通常、0.5〜2であり、好ましくは0.8〜1.2、より好ましくは1である。本工程においてtaおよびtbはそれぞれ独立して通常、0.1〜1秒間であり、好ましくは0.1〜0.5秒間、より好ましくは0.1〜0.3秒間である。   The amount of heat applied in this step can also vary depending on the ratio of the drive unit time of each drive unit in the methods (i-1) to (i-3). For example, the ratio tb / ta between the drive unit time ta of the drive unit i-1a and the drive unit time tb of the drive unit i-1b, the drive unit time ta of the drive unit i-2a, and the drive unit i-2b The ratio tb / ta with respect to the drive unit time tb and the ratio tb / ta between the drive unit time ta of the drive unit i-3a and the drive unit time tb of the drive unit i-3b are usually 0.5-2. It is preferably 0.8 to 1.2, more preferably 1. In this step, ta and tb are each independently usually 0.1 to 1 second, preferably 0.1 to 0.5 second, more preferably 0.1 to 0.3 second.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図6に示すように、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の荷重p1より小さい第3の荷重p3(例えば、500〜800N)で、第3の加圧時間t3(例えば、2〜4秒)だけ、第3の回転数(例えば、1500〜2500rpm)で回転させる。
(Stirring maintenance step C3)
In the stirring maintaining step C3, by stopping the mutual proximity of the rotary tool 16 and the receiving member 17, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the stirring maintaining step C3, the rotary tool 16 is moved for the third pressurization time t3 (for example, 2 to 4 seconds) with the third load p3 (for example, 500 to 800 N) smaller than the first load p1. It is rotated at a rotation speed of 3 (for example, 1500 to 2500 rpm).

撹拌維持工程C3では、荷重p3が押込み撹拌工程C2よりも小さくなることにより、回転ツール16が上記基準位置にほぼ維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるが、ツールに加わる荷重が小さいため、発生する摩擦熱が少なく、溶融した樹脂が十分に固化する。   In the stirring maintaining step C3, the load p3 is smaller than that in the pushing stirring step C2, so that the rotary tool 16 is substantially maintained at the reference position. Although the rotation operation of the rotary tool 16 is continued at the reference position close to the resin member 12, since the load applied to the tool is small, the generated frictional heat is small and the molten resin is sufficiently solidified.

本工程において付与される熱量は、主として、第3の荷重p3の大きさ、第3の加圧時間t3の長さ、および回転ツールの第3の回転数r3の大きさによって決まる。   The amount of heat applied in this step is mainly determined by the magnitude of the third load p3, the length of the third pressurizing time t3, and the magnitude of the third rotational speed r3 of the rotary tool.

本撹拌維持工程C3の第3の荷重p3及び第3の加圧時間t3は、上記熱量の制御、上記のような樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、撹拌維持工程C3における第3の荷重p3は800N未満が好ましい。第3の加圧時間t3は、2.0秒以上が好ましい。回転ツールの第3の回転数r3は2500rpm以下が好ましい。   The third load p3 and the third pressurization time t3 in the main stirring and maintaining step C3 are set from the viewpoints of control of the heat amount, sufficient softening / melting of the resin member 12 as described above, and productivity. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the third load p3 in the stirring and maintaining step C3 is preferably less than 800N. The third pressurization time t3 is preferably 2.0 seconds or longer. The third rotation speed r3 of the rotary tool is preferably 2500 rpm or less.

本実施態様において最終工程を行った後は、通常、冷却することにより、固化を促進しても良い。冷却方法は特に限定されず、放置冷却を行ってもよいし、または外部から強制的に冷却を行ってもよい。   In the present embodiment, after the final step, solidification may be promoted by cooling. The cooling method is not particularly limited, and the cooling may be performed by standing or may be forcibly cooled from the outside.

<第2実施態様:位置制御方式>
本実施態様においては、回転ツールの駆動条件として、回転ツールの進入速度、進入量、保持時間および回転数からなる群から選択される1種以上の駆動条件を制御して、上記のように熱量をパルス変化させながら、第2ステップを行えばよい。
<Second Embodiment: Position Control Method>
In this embodiment, as the driving condition of the rotary tool, one or more driving conditions selected from the group consisting of the approach speed, the approach amount, the holding time, and the rotational speed of the rotary tool are controlled, and the amount of heat is as described above. The second step may be performed while changing the pulse.

本実施態様の第2ステップにおいても、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。   Also in the second step of the present embodiment, at least the pushing and stirring step C <b> 2 for pushing the rotary tool 16 into the metal member 11 and entering it to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12 is performed. preferable.

本実施態様の第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行ってもよいが、位置制御方式を採用するため、通常は行わない。   In the second step of the present embodiment, a preheating step C1 for rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the indentation stirring step. However, since the position control method is adopted, it is not normally performed.

前記押込撹拌工程の後に、回転ツール16を前記押込み撹拌工程で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程は必ずしも行わなければならないというわけではない。   After the indentation stirring step, it is preferable to perform an agitation maintenance step C3 in which the rotation operation of the rotation tool 16 is continued at a position where the rotation tool 16 has entered in the indentation stirring step, but the step must be necessarily performed. Not that.

本実施態様の第2ステップにおいては、押込み撹拌工程および撹拌維持工程から選択される少なくとも1つの工程を行うに際し、上記のように熱量をパルス変化させればよい。樹脂部材における回転ツール直下部60の温度をより十分に低下させる観点からは、押込み撹拌工程を行うに際し、上記のように熱量をパルス変化させることが好ましい。   In the second step of this embodiment, when performing at least one process selected from the indentation stirring process and the stirring maintenance process, the amount of heat may be changed in pulses as described above. From the viewpoint of sufficiently lowering the temperature of the resin member directly below the rotary tool 60, it is preferable to change the amount of heat in pulses as described above when performing the indentation stirring step.

以下、本実施態様におけるこれらの工程について詳しく説明する。   Hereinafter, these steps in this embodiment will be described in detail.

(押込み撹拌工程C2)
本実施態様の押込み撹拌工程C2は、以下の方法により位置制御方式を採用すること以外、第1実施態様の押込み撹拌工程C2と同様である。詳しくは、本実施態様の押込み撹拌工程C2では、図6に示すように、回転ツール16を、第4の回転数r4(例えば、2500〜3500rpm)で回転させつつ、第1の進入速度v1(例えば、5〜50mm/分)で第1の進入量(進入深さ)d1(例えば、前記金属部材の厚みをT(mm)としたとき0.5×T〜0.9×T)に達するまで進入させる。
(Indentation stirring step C2)
The indentation stirring process C2 of this embodiment is the same as the indentation stirring process C2 of the first embodiment, except that the position control method is adopted by the following method. Specifically, in the indentation stirring step C2 of the present embodiment, as shown in FIG. 6, the first approach speed v1 (the rotation tool 16 is rotated at a fourth rotation speed r4 (for example, 2500 to 3500 rpm). For example, the first approach amount (entrance depth) d1 (for example, 0.5 × T to 0.9 × T when the thickness of the metal member is T (mm)) is reached at 5 to 50 mm / min. To enter.

押込み撹拌工程C2では、回転ツール16を第1の進入速度で第1の進入量まで進入させることにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。これにより、第1実施態様の押込み撹拌工程C2においてと同様に、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外周領域まで流動する(図6の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化領域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合が十分に良好な作業効率かつ十分な強度で達成することができる。   In the indentation stirring step C <b> 2, the rotating tool 16 is made to enter the first approaching amount at the first approach speed, so that the joining boundary surface between the metal member 11 and the resin member 12 at the lower part 110 of the rotating tool of the metal member 11. 13 moves to the receiving member 17 side (lower side in the illustrated example), and the immediate lower part 110 projects and deforms toward the resin member 12 side. As a result, as in the indentation stirring step C2 of the first embodiment, the melting of the molten resin 120 on the surface of the resin member melted in the region immediately below the rotary tool at the joining interface 13 is promoted, and the region immediately below And flows to the outer peripheral region (in the direction of the arrow in FIG. 6). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonded region) obtained by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Can be achieved with sufficiently good working efficiency and sufficient strength.

本工程において付与される熱量は、主として、回転ツールの第1の進入速度v1の大きさ、第1の進入量d1の大きさおよび第4の回転数r4の大きさによって決まる。   The amount of heat applied in this step is mainly determined by the magnitude of the first approach speed v1 of the rotary tool, the magnitude of the first approach quantity d1, and the magnitude of the fourth rotational speed r4.

本押込み撹拌工程C2において、特に上記のように熱量をパルス変化させるためには、第4の回転数(r4)以下で回転させつつ第1の進入速度(v1)以下で第1の進入量(d1)に達するまで進入させ、かつ以下の方法から選択される1つの方法に従う:
(ii−1)図10に示すように、回転ツールをr4で回転させつつv1で進入させる駆動単位ii−1aと、回転ツールをr4で回転させつつ0.5×v1以下で進入させる駆動単位ii−1bとを、進入量がd1に達するまで繰り返す;駆動単位ii−1bにおいて、進入速度は0.3×v1以下が好ましく、より好ましくは0.1×v1以下であり、さらに好ましくは0mm/分である;
(ii−2)図11に示すように、回転ツールをr4で回転させつつv1で進入させる駆動単位ii−2aと、回転ツールを0.8×r4以下で回転させつつv1で進入させる駆動単位ii−2bとを、進入量がd1に達するまで繰り返す;駆動単位ii−2bにおいて、回転数は0.6×r4以下が好ましく、より好ましくは0.5×r4以下であり、さらに好ましくは0.4×r4以下である;
(ii−3)図12に示すように、回転ツールをr4で回転させつつv1で進入させる駆動単位ii−3aと、回転ツールを0.8×r4以下で回転させつつ0.5×v1以下で進入させる駆動単位ii−3bとを、進入量がd1に達するまで繰り返す;駆動単位ii−3bにおいて、進入速度は0.3×v1以下が好ましく、より好ましくは0.1×v1以下であり、さらに好ましくは0mm/分である;駆動単位ii−3bにおいて、回転数は0.6×r4以下が好ましく、より好ましくは0.5×r4以下であり、さらに好ましくは0.4×r4以下である;および
(ii−4)前記(ii−1)〜(ii−3)の駆動単位から選択され、進入速度および/または回転数が異なる2種以上の駆動単位を組み合わせて進入量がd1に達するまで繰り返す。
In the indentation stirring step C2, in order to change the amount of heat in a pulse manner as described above, the first approach amount (v1) or less at the first approach speed (v1) while rotating at the fourth revolution number (r4) or less. Enter until d1) is reached and follow one method selected from:
(Ii-1) As shown in FIG. 10, the drive unit ii-1a for rotating the rotating tool at r4 and entering at v1 and the driving unit for entering at 0.5 × v1 or less while rotating the rotating tool at r4 ii-1b is repeated until the approach amount reaches d1; in the drive unit ii-1b, the approach speed is preferably 0.3 × v1 or less, more preferably 0.1 × v1 or less, and even more preferably 0 mm / Min;
(Ii-2) As shown in FIG. 11, a drive unit ii-2a for rotating the rotating tool at r4 and entering at v1, and a driving unit for moving the rotating tool at 0.8 × r4 or less and entering at v1 ii-2b is repeated until the approach amount reaches d1; in the drive unit ii-2b, the rotational speed is preferably 0.6 × r4 or less, more preferably 0.5 × r4 or less, and even more preferably 0 Less than or equal to 4 × r4;
(Ii-3) As shown in FIG. 12, the drive unit ii-3a that rotates the rotating tool at r4 and enters at v1, and the rotating tool that rotates at 0.8 × r4 or less and 0.5 × v1 or less. The driving unit ii-3b that is entered in step S3 is repeated until the approaching amount reaches d1; in the driving unit ii-3b, the approach speed is preferably 0.3 × v1 or less, more preferably 0.1 × v1 or less. In the driving unit ii-3b, the rotation speed is preferably 0.6 × r4 or less, more preferably 0.5 × r4 or less, and further preferably 0.4 × r4 or less. And (ii-4) The amount of approach is d1 by combining two or more types of drive units selected from the drive units (ii-1) to (ii-3) having different approach speeds and / or rotational speeds. Until it reaches Repeat.

接合強度のさらなる向上および接合時間の短縮の観点から、上記方法(ii−1)、(ii−2)または(ii−3)、特に方法(ii−1)、が好ましい。   From the viewpoint of further improving the bonding strength and shortening the bonding time, the method (ii-1), (ii-2) or (ii-3), particularly the method (ii-1) is preferable.

本押込み撹拌工程C2の回転ツールの第1の進入速度v1および第1の進入量d1は、上記熱量の制御の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、押込み撹拌工程C2における第1の進入速度v1は10〜30mm/分が好ましい。第1の進入量d1は、金属部材の厚みをT(mm)としたとき、0.4×T〜0.95×Tが好ましい。進入量は、金属部材の表面からその厚み方向での進入深さである。回転ツールの第4の回転数r4は2500rpm以上が好ましい。   The first approach speed v1 and the first approach amount d1 of the rotary tool in the indentation stirring step C2 are set from the viewpoint of controlling the heat amount, and the values thereof are, for example, the number of rotations of the rotary tool 16 and the metal member 11 It varies depending on the thickness, the type of material, the melting point of the resin member 12, and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later, the first entry speed v1 in the indentation stirring step C2 is preferably 10 to 30 mm / min. The first approach amount d1 is preferably 0.4 × T to 0.95 × T, where T (mm) is the thickness of the metal member. The amount of entry is the depth of entry in the thickness direction from the surface of the metal member. The fourth rotation speed r4 of the rotary tool is preferably 2500 rpm or more.

本工程において付与される熱量は、方法(ii−1)〜(ii−3)における各駆動単位の駆動単位時間の比率によっても変化し得る。例えば、前記駆動単位ii−1aの駆動単位時間taと前記駆動単位ii−1bの駆動単位時間tbとの比率tb/ta、前記駆動単位ii−2aの駆動単位時間taと前記駆動単位ii−2bの駆動単位時間tbとの比率tb/ta、および前記駆動単位ii−3aの駆動単位時間taと前記駆動単位ii−3bの駆動単位時間tbとの比率tb/taは通常、0.5〜2であり、好ましくは0.8〜1.2、より好ましくは1である。本工程においてtaおよびtbはそれぞれ独立して通常、0.1〜1秒間であり、好ましくは0.1〜0.5秒間、より好ましくは0.1〜0.3秒間である。   The amount of heat applied in this step can also change depending on the ratio of the drive unit time of each drive unit in the methods (ii-1) to (ii-3). For example, the ratio tb / ta between the drive unit time ta of the drive unit ii-1a and the drive unit time tb of the drive unit ii-1b, the drive unit time ta of the drive unit ii-2a, and the drive unit ii-2b The ratio tb / ta with respect to the drive unit time tb and the ratio tb / ta between the drive unit time ta of the drive unit ii-3a and the drive unit time tb of the drive unit ii-3b are usually 0.5-2. It is preferably 0.8 to 1.2, more preferably 1. In this step, ta and tb are each independently usually 0.1 to 1 second, preferably 0.1 to 0.5 second, more preferably 0.1 to 0.3 second.

本工程において回転ツール16が所定の深さまで進入した時点で、回転ツール16の押込み移動を停止する。   In this process, when the rotary tool 16 enters a predetermined depth, the pushing movement of the rotary tool 16 is stopped.

(撹拌維持工程C3)
本実施態様の撹拌維持工程C3は、位置制御方式を採用するため金属部材に対して圧力を付与しないこと以外、第1実施態様の撹拌維持工程C3と同様である。詳しくは回転ツール16により金属部材11に対して圧力を付与することなく、図6に示すように、回転ツール16を前記押込み撹拌工程C2で進入させた位置で、回転ツールを第5の回転数(r5)で回転させつつ、第1の保持時間(j1)だけ保持する。これにより、摩擦熱の発生が抑制され、樹脂部材12は十分に固化する。
(Stirring maintenance step C3)
The agitation maintaining step C3 of this embodiment is the same as the agitation maintaining step C3 of the first embodiment except that no pressure is applied to the metal member in order to adopt the position control method. Specifically, as shown in FIG. 6, without applying pressure to the metal member 11 by the rotating tool 16, the rotating tool is moved to the fifth rotational speed at the position where the rotating tool 16 is entered in the pushing and stirring step C <b> 2. While rotating at (r5), hold only for the first holding time (j1). Thereby, generation | occurrence | production of frictional heat is suppressed and the resin member 12 fully solidifies.

撹拌維持工程C3では、回転ツール16を上記所定の位置で第5の回転数(r5)にて回転させつつ、第1の保持時間(例えば、2〜4秒)だけ保持する。   In the agitation maintaining step C3, the rotary tool 16 is held at the predetermined position at the fifth rotation speed (r5) and held for the first holding time (for example, 2 to 4 seconds).

本工程において付与される熱量は、主として、回転ツールの第5の回転数r5の大きさおよび第1の保持時間j1の長さによって決まる。   The amount of heat applied in this step is mainly determined by the magnitude of the fifth rotation number r5 of the rotary tool and the length of the first holding time j1.

本撹拌維持工程C3の回転ツールの第1の保持時間j1は、上記熱量の制御、上記のような樹脂部材12の広い範囲での十分な固化および生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、撹拌維持工程C3における保持時間j1は、4秒以下が好ましい。回転ツールの第5の回転数r5は2500rpm以下が好ましい。保持時間が0秒であることは、本実施態様において撹拌維持工程C3は行わなくてもよいことを意味する。上記押込み撹拌工程C2工程だけでも、熱量を制御して樹脂部材における回転ツール直下部60の温度をより十分に低下させ得るためである。特に、上記押込み撹拌工程C2において回転ツールの進入量、進入速度および回転数が上記範囲内であるとき、本撹拌維持工程C3における保持時間は通常、2秒以上4秒以下である。   The first holding time j1 of the rotating tool in the stirring maintaining step C3 is set from the viewpoint of the control of the heat amount, sufficient solidification of the resin member 12 as described above, and productivity, and the value is For example, it changes depending on the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the holding time j1 in the stirring and maintaining step C3 is preferably 4 seconds or less. The fifth rotation speed r5 of the rotary tool is preferably 2500 rpm or less. The holding time of 0 seconds means that the stirring and maintaining step C3 may not be performed in this embodiment. This is because the amount of heat can be controlled and the temperature of the lower portion 60 immediately below the rotary tool in the resin member can be sufficiently reduced even by the indentation stirring step C2 alone. In particular, when the amount of approach, the approach speed, and the rotational speed of the rotary tool are within the above ranges in the indentation stirring step C2, the holding time in the stirring maintaining step C3 is usually 2 seconds or more and 4 seconds or less.

本実施態様においても最終工程を行った後は、通常、冷却することにより、固化を促進しても良い。冷却方法は特に限定されず、放置冷却を行ってもよいし、または外部から強制的に冷却を行ってもよい。   Also in this embodiment, after the final step is performed, solidification may be promoted by cooling. The cooling method is not particularly limited, and the cooling may be performed by standing or may be forcibly cooled from the outside.

(3)金属部材
本発明において使用される金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、少なくとも樹脂部材12と重ね合わせる部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11における樹脂部材12と重ね合わせる部分は両面ともに通常、平面から構成されている。
(3) Metal Member The metal member 11 used in the present invention has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this, and at least overlaps with the resin member 12. As long as the portion has a substantially flat plate shape, it may have any shape. The part of the metal member 11 that overlaps with the resin member 12 is generally composed of a flat surface on both sides.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図3参照)は通常、0.5〜4mmであるがこれに限定されるものではない。   The thickness T (thickness before the bonding treatment; see FIG. 3) of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

金属部材11を構成する好ましい金属はアルミニウムおよびアルミニウム合金である。   Preferred metals constituting the metal member 11 are aluminum and an aluminum alloy.

(4)樹脂部材
本発明において使用される樹脂部材12は熱可塑性ポリマーを含み、強化繊維をさらに含んでもよい。
(4) Resin member The resin member 12 used in the present invention contains a thermoplastic polymer and may further contain reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin resin, particularly polypropylene, which is inexpensive and excellent in mechanical properties is preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12における金属部材11直下の部分は両面ともに通常、平面から構成されている。   The resin member 12 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this. When the resin member 12 is overlapped with the metal member 11 for bonding, the resin member 12 is directly below the metal member 11. As long as the portion has a substantially flat plate shape, it may have any shape. The part immediately below the metal member 11 in the resin member 12 is generally composed of a flat surface on both sides.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図3参照)は通常、2〜10mm、特に2〜5mmであるがこれに限定されるものではない。   The thickness t (thickness before joining treatment; see FIG. 3) of the portion immediately below the metal member 11 in the resin member 12 is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に均一に含有および分散される繊維であればよい。強化繊維は連続繊維であってもよいし、または不連続繊維であってもよいが、本発明において強化繊維は、特に不連続繊維であることが好ましい。   The reinforcing fibers contained in the resin member 12 may be fibers that are uniformly contained and dispersed in the polymer in order to improve strength in the field of polymer-containing composite materials. The reinforcing fiber may be a continuous fiber or a discontinuous fiber. In the present invention, the reinforcing fiber is particularly preferably a discontinuous fiber.

強化繊維は樹脂部材中、ランダム配向形態で含有されることが好ましく、平均繊維長Lが通常、50mm以下、特に1mm超50mm以下、好ましくは1mm超30mm以下である。強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。   The reinforcing fibers are preferably contained in the resin member in a randomly oriented form, and the average fiber length L is usually 50 mm or less, particularly more than 1 mm and 50 mm or less, preferably more than 1 mm and 30 mm or less. The average fiber diameter of the reinforcing fibers is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10〜50重量%であり、好ましくは20〜50重量%、より好ましくは30〜50重量%である。   The content of the reinforcing fiber is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, more preferably 30 to 50% by weight, based on the total amount of the resin member.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。   The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, colorants, foaming agents, and the like.

樹脂部材12は、熱可塑性ポリマーならびに所望の添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。   The resin member 12 can be manufactured by subjecting a mixture containing a thermoplastic polymer and a desired additive to a molding method such as an injection molding method or a press molding method.

樹脂部材12の融点Tmは樹脂部材12の種類によって異なり、通常、150〜300℃である。
樹脂部材12の融点Tmは、JIS7121により測定された値を用いている。
The melting point Tm of the resin member 12 varies depending on the type of the resin member 12, and is usually 150 to 300 ° C.
As the melting point Tm of the resin member 12, a value measured according to JIS 7121 is used.

(5)接合体
本発明の接合方法により接合された金属部材11と樹脂部材12との接合体は、樹脂部材12における回転ツール直下部60とその外周部61との両方が金属部材11と十分に接合しているため、より高い接合強度を有している。
(5) Bonded body The bonded body of the metal member 11 and the resin member 12 bonded by the bonding method of the present invention is sufficient in that both the lower portion 60 of the rotary tool and the outer peripheral portion 61 of the resin member 12 are sufficient with the metal member 11. Therefore, it has higher bonding strength.

樹脂部材12における回転ツール直下部60とその外周部61との両方が金属部材11と十分に接合していることは、本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ樹脂部材12の金属部材側表面121を観察することにより、知見できる。詳しくは、金属部材の剥離後、樹脂部材12の金属部材側表面121において、直下部60の表面もその外周部の表面も、樹脂の凝集破壊の状態にあるため、これらの表面は金属部材11と十分に接合していたことが明らかである。凝集破壊は、剥離面の金属側に樹脂の表層部が残った状態である。他方、樹脂部材12の直下部60において樹脂分子が過熱により分解されていると、直下部のみ界面剥離の状態にあるため、当該表面は金属部材11と十分に接合していなかったことが明らかである。界面剥離は金属側に樹脂表層部が残存せず、金属と樹脂の界面で剥離することである。   The fact that both the rotary tool direct lower portion 60 and the outer peripheral portion 61 of the resin member 12 are sufficiently bonded to the metal member 11 means that the metal member is forcibly separated from the bonded body obtained by the bonding method of the present invention. It can be found by observing the metal member side surface 121 of the resin member 12. Specifically, after the metal member is peeled off, the surface of the metal member side 121 of the resin member 12 is in the state of cohesive failure of the resin in both the surface of the direct lower portion 60 and the outer peripheral portion thereof. It is clear that it was fully joined. Cohesive failure is a state in which the surface layer portion of the resin remains on the metal side of the release surface. On the other hand, when the resin molecules are decomposed by overheating in the lower part 60 of the resin member 12, only the lower part is in the state of interfacial peeling, so it is clear that the surface was not sufficiently bonded to the metal member 11. is there. Interfacial peeling means that the resin surface layer portion does not remain on the metal side and peels at the interface between the metal and the resin.

以上、押圧部材(特に回転ツール)を金属部材の表面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明した。本発明は、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)に適用されることを妨げるものではないが、本発明においては、三次元形状をした部材への施工性の向上の観点から、点接合を行うことが好ましい。   The case where the metal member and the resin member are joined in a dot shape without moving the pressing member (particularly the rotary tool) in the surface direction on the surface of the metal member has been described above. The present invention does not prevent application to the case where the metal member and the resin member are joined in a linear shape while moving the rotary tool in the plane direction (line joining). It is preferable to perform point joining from the viewpoint of improving the workability to a member having a three-dimensional shape.

[樹脂部材]
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材において炭素繊維の平均繊維長は3mm、平均繊維径は7μmであった。樹脂部材の融点Tmは170℃であった。
[Resin member]
A resin member 12 having dimensions of 100 mm in length, 30 mm in width, and 3 mm in thickness was produced by an injection molding method using polypropylene pellets containing 40% by weight of carbon fibers (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.). In the resin member, the average fiber length of the carbon fibers was 3 mm, and the average fiber diameter was 7 μm. The melting point Tm of the resin member was 170 ° C.

[金属部材]
金属部材としては、6000系のアルミニウム合金製の平板状部材(縦100mm×横30mm×厚さ1.2mm)を用いた。
[Metal members]
As the metal member, a flat plate member (length 100 mm × width 30 mm × thickness 1.2 mm) made of a 6000 series aluminum alloy was used.

[回転ツール]
図2に示す回転ツール16(D1=10mm、D2=2mm、h=0.5mm;工具鋼製)を用いた。
[Rotation tool]
The rotary tool 16 (D1 = 10 mm, D2 = 2 mm, h = 0.5 mm; made of tool steel) shown in FIG. 2 was used.

[実施例A1](荷重制御方式)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
[Example A1] (Load control method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1)。r1=2500rpm、p1=900N、時間=1秒。
Second step:
First, as shown in FIG. 3, the rotary tool 16 was rotated in a state where only the tip portion of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1). r1 = 2500 rpm, p1 = 900 N, time = 1 second.

その後、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2)。このとき、前記方法(i−1)に従い、図7に示すように、回転ツールを3000rpm(r2)で回転させつつ3000N(p2)で押圧させる駆動単位i−1a(ta=0.2秒)と、回転ツールを3000rpmで回転させつつ1500Nで押圧させる駆動単位i−1b(tb=0.2秒)とを、4秒(t2)だけ周期的に繰り返した。   Thereafter, as shown in FIG. 6, the rotary tool 16 was pushed into the metal member 11 to a depth not reaching the joining boundary surface 13 between the metal member 11 and the resin member 12 (indentation stirring step C2). At this time, according to the method (i-1), as shown in FIG. 7, while rotating the rotary tool at 3000 rpm (r2), the drive unit i-1a (ta = 0.2 seconds) is pressed at 3000 N (p2). Then, the drive unit i-1b (tb = 0.2 seconds) in which the rotating tool is rotated at 3000 rpm and pressed at 1500 N was periodically repeated for 4 seconds (t2).

次いで、図6に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3)。r3=2000rpm、p3=500N、時間=2秒。   Next, as shown in FIG. 6, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintaining step C3). r3 = 2000 rpm, p3 = 500 N, time = 2 seconds.

押込み撹拌工程において、樹脂部材12の回転ツール直下部60の温度T60(図3におけるP60での界面温度)およびその外周部61の温度T61(図3におけるP61での界面温度)を測定したところ、図4に示す経時変化を示した。直下部60の温度T60は押込み撹拌工程の初期に接合寄与範囲(200〜300℃)に到達し、外周部61の温度T61は押込み撹拌工程の終期に接合寄与範囲に到達し、いずれの温度も到達後は撹拌維持工程まで当該接合寄与範囲内で推移した。なお、P60は回転ツール16の軸上の測定点であり、P61はP60からの距離が10mmの測定点である。 In the indentation stirring step, the temperature T 60 (interface temperature at P 60 in FIG. 3) and the temperature T 61 of the outer peripheral portion 61 (interface temperature at P 61 in FIG. 3) of the resin member 12 immediately below the rotary tool are set. When measured, the change with time shown in FIG. 4 was shown. The temperature T 60 of the immediately lower portion 60 reaches the joining contribution range (200 to 300 ° C.) at the initial stage of the indentation stirring process, and the temperature T 61 of the outer peripheral portion 61 reaches the joining contribution range at the end of the indentation stirring process. After reaching the temperature, it remained within the joining contribution range until the stirring maintaining step. Incidentally, P 60 is the measured point on the axis of the rotational tool 16, P 61 is the measuring point distance 10mm from P 60.

次いで、回転ツール16を金属部材11から離間させ、放置冷却を行い、接合体を得た。   Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool down to obtain a joined body.

(接合強度)
JIS Z3140「スポット溶接部の検査方法」で規定されているA級せん断強度(特に強さを要求する部材に適用可能)に基づいて測定した。詳しくは、図13に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎;6.0kN≦S;
○;3.5kN≦S<6.0kN;
△;2.5kN≦S<3.5N;(実用上問題なし)
×;S<2.5kN(実用上問題あり)。
(Joint strength)
It was measured based on Class A shear strength defined in JIS Z3140 “Spot Weld Inspection Method” (particularly applicable to members requiring strength). Specifically, as shown in FIG. 13, the joined body of the metal member 11 and the resin member 12 was disposed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
A: 6.0 kN ≦ S;
O; 3.5 kN ≦ S <6.0 kN;
Δ: 2.5 kN ≦ S <3.5 N; (no problem in practical use)
X: S <2.5 kN (problem in practical use).

(分解温度)
樹脂部材の分解温度を以下の方法により測定したところ、335℃であった。樹脂の分解は、温度とその温度に晒された時間で決まる。ポリプロピレン(PP)の分解温度は概ね288℃であるが、短時間であれば335℃までは許容できる。
以下の方法により第2ステップを行ったこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合および接合強度の測定を行った。その際、以下の第2ステップにおいて、押込み撹拌工程での荷重や回転数を調整することにより、樹脂部材12の回転ツール直下部60の温度T60(図3におけるP60での界面温度)を様々な温度に制御し、当該温度と接着強度との関係を図14に示した。図14におけるピーク温度を分解温度とする。T60は経時変化における最高温度である。
(Decomposition temperature)
It was 335 degreeC when the decomposition temperature of the resin member was measured with the following method. The decomposition of the resin is determined by the temperature and the time exposed to that temperature. The decomposition temperature of polypropylene (PP) is approximately 288 ° C, but up to 335 ° C is acceptable for a short time.
The bonding between the resin member and the metal member and the measurement of the bonding strength were performed by the same method as in Example A1, except that the second step was performed by the following method. At that time, in the following second step, the temperature T 60 (interface temperature at P 60 in FIG. 3) of the resin member 12 directly below the rotary tool 60 is adjusted by adjusting the load and rotation speed in the indentation stirring process. Various temperatures were controlled, and the relationship between the temperature and the adhesive strength is shown in FIG. The peak temperature in FIG. 14 is taken as the decomposition temperature. T 60 is the maximum temperature over time.

第2ステップ:
図3に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程:荷重900N、加圧時間1.00秒、ツール回転数3000rpm)。
その後、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程:荷重1500〜2500N、加圧時間4秒、ツール回転数500〜3000rpm。
次いで、図6に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程:荷重500N、加圧時間2.75秒、ツール回転数3000rpm)。
次いで、回転ツール16を金属部材11から離間させ、放置冷却を行い、接合体を得た。
Second step:
As shown in FIG. 3, the rotary tool 16 was rotated in a state where only the tip of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating process: load 900 N, pressurization time 1.00 seconds, tool Rotation speed 3000 rpm).
Thereafter, as shown in FIG. 6, the rotary tool 16 was pushed into the metal member 11 and entered to a depth that did not reach the joint boundary surface 13 between the metal member 11 and the resin member 12 (indentation stirring step: load 1500 to 2500 N). Pressurization time 4 seconds, tool rotation speed 500-3000 rpm.
Next, as shown in FIG. 6, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintaining step: load 500 N, pressurization time 2). 75 seconds, tool rotation speed 3000 rpm).
Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool down to obtain a joined body.

[比較例A1]
以下の方法により第2ステップを行ったこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合および接合体の評価を行った。
[Comparative Example A1]
Except that the second step was performed by the following method, the resin member and the metal member were joined and the joined body was evaluated by the same method as in Example A1.

第2ステップ:
実施例A1と同様の方法により、予熱工程を行った。
熱量を制御することなく、押込み撹拌工程を行った。詳しくは、荷重を3000Nに一定に維持したこと、回転数を3000rpmに一定に維持したこと、および加圧時間を4秒としたこと以外、実施例A1と同様の方法により、押込み撹拌工程を行った。
実施例A1と同様の方法により、撹拌維持工程を行った。
Second step:
A preheating step was performed in the same manner as in Example A1.
The indentation stirring step was performed without controlling the amount of heat. Specifically, the indentation stirring step was performed in the same manner as in Example A1, except that the load was kept constant at 3000 N, the rotation speed was kept constant at 3000 rpm, and the pressurization time was 4 seconds. It was.
The stirring maintenance step was performed in the same manner as in Example A1.

[実施例B1](位置制御方式)
以下の方法により第2ステップを行ったこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合および接合体の評価を行った。
[Example B1] (Position control method)
Except that the second step was performed by the following method, the resin member and the metal member were joined and the joined body was evaluated by the same method as in Example A1.

第2ステップ:
予熱工程C1を行うことなく、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2)。このとき、前記方法(ii−1)に従い、図10に示すように、回転ツールを3000rpm(r4)で回転させつつ20mm/分(v1)で進入させる駆動単位ii−1a(ta=0.3秒)と、回転ツールを3000rpmで回転させつつ進入速度5mm/分で進入させる駆動単位ii−1b(tb=0.3秒)とを、進入量が0.8mm(d1)に達するまで周期的に繰り返した。
Second step:
Without performing the preheating step C1, as shown in FIG. 6, the rotary tool 16 was pushed into the metal member 11 to a depth not reaching the joint boundary surface 13 between the metal member 11 and the resin member 12 (indentation stirring). Step C2). At this time, according to the method (ii-1), as shown in FIG. 10, while rotating the rotary tool at 3000 rpm (r4), the drive unit ii-1a (ta = 0.3) is entered at 20 mm / min (v1). Second) and a drive unit ii-1b (tb = 0.3 seconds) for entering at a speed of 5 mm / min while rotating the rotary tool at 3000 rpm until the approach amount reaches 0.8 mm (d1). Repeated.

次いで、図6に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:保持時間1.0秒、ツール回転数2000rpm)。   Next, as shown in FIG. 6, the rotation operation of the rotary tool 16 was continued at the position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintaining step C3: holding time 1.0 second). Tool rotation speed 2000 rpm).

[比較例B1]
以下の方法により第2ステップを行ったこと以外、実施例B1と同様の方法により、樹脂部材と金属部材との接合および接合体の評価を行った。
[Comparative Example B1]
Except that the second step was performed by the following method, the resin member and the metal member were joined and the joined body was evaluated by the same method as in Example B1.

第2ステップ:
熱量を制御することなく、押込み撹拌工程を行った。詳しくは、進入速度を20mm/分に一定に維持したこと、および回転数を3000rpmに一定に維持したこと以外、実施例B1と同様の方法により、押込み撹拌工程を行った。
実施例B1と同様の方法により、撹拌維持工程を行った。
Second step:
The indentation stirring step was performed without controlling the amount of heat. Specifically, the indentation stirring step was performed by the same method as in Example B1, except that the approach speed was kept constant at 20 mm / min and the rotation speed was kept constant at 3000 rpm.
The stirring maintenance step was performed in the same manner as in Example B1.

Figure 2017159517
Figure 2017159517

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
60:金属部材と樹脂部材との境界面における樹脂部材の回転ツール直下部
61:樹脂部材における回転ツール直下部の外周部
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
P:押圧領域(押圧予定領域)
121:樹脂部材の金属部材側表面
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 12: Resin member 13: Joining interface between metal member and resin member 16: Rotating tool 17: Receiving tool 60: Resin at the interface between metal member and resin member Directly below the rotating tool of the member 61: Outer peripheral portion of the resin member immediately below the rotating tool 100: Jig for measuring the bonding strength 110: Directly below the rotating tool of the metal member P: Pressing area (scheduled pressing area)
121: Metal member side surface of resin member

Claims (18)

金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記付与する熱量をパルス変化させながら前記接合を行う、金属部材と樹脂部材との接合方法。
The metal member and the resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, heat is applied to soften and melt the resin member, and then solidified to perform bonding. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
A joining method between a metal member and a resin member, wherein the joining is performed while changing the amount of heat applied.
前記樹脂部材における押圧部材直下部の金属部材との界面温度が前記樹脂部材の分解温度(Td)以下に制御されるように、前記付与する熱量をパルス変化させながら前記接合を行う、請求項1に記載の金属部材と樹脂部材との接合方法。   The joining is performed while changing the amount of heat to be applied in pulses so that an interface temperature between the resin member and a metal member immediately below the pressing member is controlled to be equal to or lower than a decomposition temperature (Td) of the resin member. The joining method of the metal member and resin member of description. 前記熱圧式接合方法が、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法であり、
前記回転ツールの駆動条件を制御して前記付与する熱量をパルス変化させながら前記第2ステップを行う、請求項1または2に記載の金属部材と樹脂部材との接合方法。
The hot-pressure bonding method is
A first step of superimposing the metal member and the resin member; and, while rotating the rotary tool as the pressing member, pressing the metal member to generate frictional heat, softening and melting the resin member by the frictional heat, A friction stir welding method including a second step of solidifying and joining the metal member and the resin member;
The method for joining a metal member and a resin member according to claim 1 or 2, wherein the second step is performed while changing a pulse of the amount of heat applied by controlling a driving condition of the rotary tool.
前記回転ツールの駆動条件が前記回転ツールの押圧駆動条件および/または回転駆動条件である、請求項3に記載の金属部材と樹脂部材との接合方法。   The method for joining a metal member and a resin member according to claim 3, wherein the driving condition of the rotating tool is a pressing driving condition and / or a rotating driving condition of the rotating tool. 前記第2ステップにおいて荷重制御方式を採用し、
前記回転ツールの駆動条件が前記回転ツールの荷重、加圧時間および回転数からなる群から選択される1種以上の駆動条件である、請求項3または4に記載の金属部材と樹脂部材との接合方法。
Adopting a load control method in the second step,
5. The metal member and the resin member according to claim 3, wherein the driving condition of the rotating tool is one or more driving conditions selected from the group consisting of a load of the rotating tool, a pressing time, and a rotation speed. Joining method.
前記第2ステップが、
前記回転ツールの先端部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程;
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程
を含み、
前記回転ツールの荷重、加圧時間および回転数からなる群から選択される1種以上の駆動条件を制御して前記付与する熱量をパルス変化させながら、前記押込み撹拌工程を行う、請求項5に記載の金属部材と樹脂部材との接合方法。
The second step includes
A preheating step of rotating the rotary tool in a state where only the tip of the rotary tool is in contact with the surface of the metal member;
A pushing agitation step of pushing the rotating tool into the metal member and entering the metal member and the resin member to a depth not reaching the joining boundary surface; and a position where the rotating tool is entered in the pushing agitation step. Including an agitation maintaining step for continuing the rotation operation,
The indentation stirring step is performed while controlling the one or more driving conditions selected from the group consisting of the load of the rotating tool, the pressing time, and the number of rotations and changing the amount of heat to be applied in pulses. The joining method of the metal member and resin member of description.
前記押込み撹拌工程では回転ツールを第2の回転数(r2)以下で回転させつつ前記第1の荷重(p1)より大きい第2の荷重(p2)以下で押圧させる駆動を第2の加圧時間(t2)だけ行い、かつ以下の方法から選択される1つの方法に従う、請求項6に記載の金属部材と樹脂部材との接合方法:
(i−1)回転ツールをr2で回転させつつp2で押圧させる駆動単位i−1aと、回転ツールをr2で回転させつつ0.7×p2以下で押圧させる駆動単位i−1bとを、t2だけ繰り返す;
(i−2)回転ツールをr2で回転させつつp2で押圧させる駆動単位i−2aと、回転ツールを0.5×r2以下で回転させつつp2で押圧させる駆動単位i−2bとを、t2だけ繰り返す;および
(i−3)回転ツールをr2で回転させつつp2で押圧させる駆動単位i−3aと、回転ツールを0.7×r2以下で回転させつつ0.7×p2以下で押圧させる駆動単位i−3bとを、t2だけ繰り返す。
In the indentation stirring step, the second pressurizing time is a driving in which the rotary tool is rotated at a second rotation speed (r2) or less and pressed at a second load (p2) or less greater than the first load (p1). The method for joining the metal member and the resin member according to claim 6, wherein only the step (t2) is performed and the method is selected from the following methods:
(I-1) A drive unit i-1a for rotating the rotary tool at r2 and pressing it at p2, and a drive unit i-1b for rotating the rotary tool at r2 and pressing it at 0.7 × p2 or less, t2 Repeat only;
(I-2) A drive unit i-2a for rotating the rotary tool at r2 and pressing it at p2, and a drive unit i-2b for pressing the rotary tool at p2 while rotating it at 0.5 × r2 or less. And (i-3) drive unit i-3a for rotating the rotating tool at r2 and pressing at p2, and pressing at 0.7 × p2 or less while rotating the rotating tool at 0.7 × r2 or less The driving unit i-3b is repeated for t2.
前記第2の荷重(p2)が1500N以上3000N以下の範囲で調整され、
前記第2の回転数(r2)が2500rpm以上3500rpm以下の範囲で調整され、
前記第2の加圧時間(t2)が2秒以上4秒以下の範囲で調整される、請求項7に記載の金属部材と樹脂部材との接合方法。
The second load (p2) is adjusted in the range of 1500N to 3000N,
The second rotational speed (r2) is adjusted in a range of 2500 rpm to 3500 rpm,
The method for joining a metal member and a resin member according to claim 7, wherein the second pressurization time (t2) is adjusted in a range of 2 seconds to 4 seconds.
前記方法(i−1)〜(i−3)において、
前記駆動単位i−1aの駆動単位時間taと前記駆動単位i−1bの駆動単位時間tbとの比率tb/ta、前記駆動単位i−2aの駆動単位時間taと前記駆動単位i−2bの駆動単位時間tbとの比率tb/ta、および前記駆動単位i−3aの駆動単位時間taと前記駆動単位i−3bの駆動単位時間tbとの比率tb/taが0.5〜2である、請求項7または8に記載の金属部材と樹脂部材との接合方法。
In the methods (i-1) to (i-3),
The ratio tb / ta between the drive unit time ta of the drive unit i-1a and the drive unit time tb of the drive unit i-1b, the drive unit time ta of the drive unit i-2a and the drive of the drive unit i-2b The ratio tb / ta to the unit time tb and the ratio tb / ta between the drive unit time ta of the drive unit i-3a and the drive unit time tb of the drive unit i-3b are 0.5 to 2. Item 9. A method for joining a metal member and a resin member according to item 7 or 8.
前記第2ステップにおいて位置制御方式を採用し、
前記回転ツールの駆動条件が前記回転ツールの進入速度、進入量、保持時間および回転数からなる群から選択される1種以上の駆動条件である、請求項3または4に記載の金属部材と樹脂部材との接合方法。
Adopting a position control method in the second step,
The metal member and the resin according to claim 3 or 4, wherein the driving condition of the rotating tool is one or more driving conditions selected from the group consisting of an approach speed, an approach amount, a holding time, and a rotation speed of the rotating tool. Joining method with member.
前記第2ステップが、
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールを回転させつつ保持する撹拌維持工程;
を含み、
前記回転ツールの進入速度、進入量、保持時間および回転数からなる群から選択される1種以上の駆動条件を制御して前記付与する熱量をパルス変化させながら、前記押込み撹拌工程を行う、請求項10に記載の金属部材と樹脂部材との接合方法。
The second step includes
A pushing and stirring step of pushing the rotating tool into the metal member to enter a depth not reaching the joint interface between the metal member and the resin member; and a rotating tool at a position where the rotating tool is entered in the pushing and stirring step. Agitation maintaining step of holding while rotating;
Including
Controlling the one or more driving conditions selected from the group consisting of the approach speed, the approach amount, the holding time, and the rotation speed of the rotating tool to perform the indentation stirring step while changing the amount of heat to be applied in pulses. Item 11. A method for joining a metal member and a resin member according to Item 10.
前記押込み撹拌工程では回転ツールを第4の回転数(r4)以下で回転させつつ第1の進入速度(v1)以下で第1の進入量(d1)に達するまで進入させ、かつ以下の方法から選択される1つの方法に従う、請求項11に記載の金属部材と樹脂部材との接合方法:
(ii−1)回転ツールをr4で回転させつつv1で進入させる駆動単位ii−1aと、回転ツールをr4で回転させつつ0.5×v1以下で進入させる駆動単位ii−1bとを、進入量がd1に達するまで繰り返す;
(ii−2)回転ツールをr4で回転させつつv1で進入させる駆動単位ii−2aと、回転ツールを0.8×r4以下で回転させつつv1で進入させる駆動単位ii−2bとを、進入量がd1に達するまで繰り返す;および
(ii−3)回転ツールをr4で回転させつつv1で進入させる駆動単位ii−3aと、回転ツールを0.8×r4以下で回転させつつ0.5×v1以下で進入させる駆動単位ii−3bとを、進入量がd1に達するまで繰り返す。
In the indentation stirring step, the rotary tool is rotated at the fourth rotation speed (r4) or less and is made to enter the first approach speed (v1) or less until the first approach amount (d1) is reached. The method for joining a metal member and a resin member according to claim 11 according to one selected method:
(Ii-1) Enter a drive unit ii-1a that enters at v1 while rotating the rotary tool at r4, and a drive unit ii-1b that enters at 0.5 × v1 or less while rotating the rotary tool at r4 Repeat until the amount reaches d1;
(Ii-2) A drive unit ii-2a that enters at v1 while rotating the rotary tool at r4 and a drive unit ii-2b that enters at v1 while rotating the rotary tool at 0.8 × r4 or less are entered. Repeat until the amount reaches d1; and (ii-3) drive unit ii-3a that rotates the rotating tool at r4 and enters at v1, and 0.5 × while rotating the rotating tool at 0.8 × r4 or less. The drive unit ii-3b to be entered at v1 or less is repeated until the approach amount reaches d1.
前記第4の回転数(r4)が2500rpm以上3500rpm以下の範囲で調整され、
前記第1の進入速度(v1)が5〜50mm/分の範囲で調整され、
前記第1の進入量(d1)が、前記金属部材の厚みをTとしたとき、0.5×T〜0.9×Tの範囲で調整される、請求項12に記載の金属部材と樹脂部材との接合方法。
The fourth rotation speed (r4) is adjusted in a range of 2500 rpm to 3500 rpm,
The first approach speed (v1) is adjusted within a range of 5 to 50 mm / min;
The metal member and the resin according to claim 12, wherein the first entry amount (d1) is adjusted in a range of 0.5 × T to 0.9 × T, where T is the thickness of the metal member. Joining method with member.
前記方法(ii−1)〜(ii−3)において、
前記駆動単位ii−1aの駆動単位時間taと前記駆動単位ii−1bの駆動単位時間tbとの比率tb/ta、前記駆動単位ii−2aの駆動単位時間taと前記駆動単位ii−2bの駆動単位時間tbとの比率tb/ta、および前記駆動単位ii−3aの駆動単位時間taと前記駆動単位ii−3bの駆動単位時間tbとの比率tb/taが0.5〜2である、請求項12または13に記載の金属部材と樹脂部材との接合方法。
In the methods (ii-1) to (ii-3),
The ratio tb / ta between the drive unit time ta of the drive unit ii-1a and the drive unit time tb of the drive unit ii-1b, the drive unit time ta of the drive unit ii-2a and the drive of the drive unit ii-2b The ratio tb / ta to the unit time tb and the ratio tb / ta between the drive unit time ta of the drive unit ii-3a and the drive unit time tb of the drive unit ii-3b are 0.5-2. Item 14. A method for joining a metal member and a resin member according to Item 12 or 13.
前記金属部材の厚みTが0.5〜4mmである、請求項1〜14のいずれかに記載の金属部材と樹脂部材との接合方法。   The joining method of the metal member and resin member in any one of Claims 1-14 whose thickness T of the said metal member is 0.5-4 mm. 前記金属部材がアルミニウムまたはアルミニウム合金からなり、
前記樹脂部材が150〜300℃の融点Tmを有する、請求項1〜15のいずれかに記載の金属部材と樹脂部材との接合方法。
The metal member is made of aluminum or an aluminum alloy,
The joining method of the metal member and resin member in any one of Claims 1-15 in which the said resin member has melting | fusing point Tm of 150-300 degreeC.
金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合装置であって、
前記付与する熱量をパルス変化させながら前記接合を行うように押圧部材の駆動を制御する駆動制御装置を含む、金属部材と樹脂部材との接合装置。
The metal member and the resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, heat is applied to soften and melt the resin member, and then solidified to perform bonding. A device for joining a metal member and a resin member by a hot-pressure joining method,
A joining apparatus between a metal member and a resin member, including a drive control device that controls driving of the pressing member so as to perform the joining while changing the amount of heat applied.
請求項1〜16のいずれかに記載の金属部材と樹脂部材との接合方法を実施するための、請求項17に記載の金属部材と樹脂部材との接合装置。   The joining apparatus of the metal member and resin member of Claim 17 for implementing the joining method of the metal member and resin member in any one of Claims 1-16.
JP2016044889A 2016-03-08 2016-03-08 Method and apparatus for joining metal member and resin member Active JP6327268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044889A JP6327268B2 (en) 2016-03-08 2016-03-08 Method and apparatus for joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044889A JP6327268B2 (en) 2016-03-08 2016-03-08 Method and apparatus for joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2017159517A true JP2017159517A (en) 2017-09-14
JP6327268B2 JP6327268B2 (en) 2018-05-23

Family

ID=59853604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044889A Active JP6327268B2 (en) 2016-03-08 2016-03-08 Method and apparatus for joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6327268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490588A (en) * 2019-03-08 2021-10-08 睦月电机株式会社 Method for producing metal-resin bonded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090436A (en) * 2006-12-06 2007-04-12 Mazda Motor Corp Metal joining method
JP2013039601A (en) * 2011-08-17 2013-02-28 Osaka Univ Method and device for processing metallic material
US8393520B1 (en) * 2011-09-22 2013-03-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pulsed ultrasonic stir welding system
JP2013166349A (en) * 2012-02-16 2013-08-29 Eco−A株式会社 Conduction heating joining device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090436A (en) * 2006-12-06 2007-04-12 Mazda Motor Corp Metal joining method
JP2013039601A (en) * 2011-08-17 2013-02-28 Osaka Univ Method and device for processing metallic material
US8393520B1 (en) * 2011-09-22 2013-03-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pulsed ultrasonic stir welding system
JP2013166349A (en) * 2012-02-16 2013-08-29 Eco−A株式会社 Conduction heating joining device and method
US20150047779A1 (en) * 2012-02-16 2015-02-19 Eco-A Co., Ltd. Electrical heating-joining device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490588A (en) * 2019-03-08 2021-10-08 睦月电机株式会社 Method for producing metal-resin bonded body

Also Published As

Publication number Publication date
JP6327268B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098605B2 (en) Method of joining metal member and resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP2016068130A (en) Method of joining metal member with resin member
JP6098551B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP2015189173A (en) Joining method between metallic member and resin member, and joined body produced thereby
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150