JP6314935B2 - Method of joining metal member and resin member - Google Patents

Method of joining metal member and resin member Download PDF

Info

Publication number
JP6314935B2
JP6314935B2 JP2015157427A JP2015157427A JP6314935B2 JP 6314935 B2 JP6314935 B2 JP 6314935B2 JP 2015157427 A JP2015157427 A JP 2015157427A JP 2015157427 A JP2015157427 A JP 2015157427A JP 6314935 B2 JP6314935 B2 JP 6314935B2
Authority
JP
Japan
Prior art keywords
metal member
resin member
resin
joining
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015157427A
Other languages
Japanese (ja)
Other versions
JP2017035808A (en
Inventor
耕二郎 田中
耕二郎 田中
聡子 島田
聡子 島田
泰博 森田
泰博 森田
松田 祐之
祐之 松田
嗣久 宮本
嗣久 宮本
小林 めぐみ
めぐみ 小林
勝也 西口
勝也 西口
宣夫 坂手
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2015157427A priority Critical patent/JP6314935B2/en
Publication of JP2017035808A publication Critical patent/JP2017035808A/en
Application granted granted Critical
Publication of JP6314935B2 publication Critical patent/JP6314935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法に関する。   The present invention relates to a method for joining a metal member and a resin member.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図10に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 10, the friction stir welding method is a method in which a metal member 211 and a resin member 212 are overlapped, and the rotary tool 216 is rotated and pressed against the metal member 211 to generate frictional heat. In this method, the resin member 212 is melted and then solidified to join the metal member 211 and the resin member 212 together.

このような摩擦撹拌接合方法においては、例えば、接合強度および簡易接合の観点から、回転ツールの形状や押込み量を特定範囲内に設定する技術(特許文献1)が開示されている。   In such a friction stir welding method, for example, a technique (Patent Document 1) is disclosed in which the shape and push-in amount of the rotary tool are set within a specific range from the viewpoint of joining strength and simple joining.

一方、樹脂部材に強化繊維を含有させて、樹脂部材の強度を向上させる技術が知られている。   On the other hand, a technique for improving the strength of a resin member by adding a reinforcing fiber to the resin member is known.

特開2010−158885号公報JP 2010-158885 A

しかしながら、従来の摩擦撹拌接合方法において、強化繊維を含有する樹脂部材を用いた場合、接合強度が低下することがあった。   However, in the conventional friction stir welding method, when a resin member containing reinforcing fibers is used, the bonding strength may be reduced.

本発明の発明者等は、このような接合強度の低下の現象を鋭意研究した結果、当該現象は、樹脂部材に含有される強化繊維のスプリングバックに起因することを見い出した。具体的には、図11(A)に示すように、押圧部材216を金属部材211に押し込んで、摩擦熱により、樹脂部材212の押圧部材直下領域221およびその外周領域を溶融させた後、固化させると、樹脂部材212の当該溶融固化領域においてスプリングバックが生じた。スプリングバックとは、湾曲した強化繊維が樹脂部材212の溶融時に拘束力から解放され、まっすぐに戻ろうと変形する現象である。このようなスプリングバックが生じると、図11(B)に示すように、樹脂部材212における溶融固化領域において、気泡が混入して、見掛け上、発泡したように見える気泡層(スプリングバック層)222が形成され、強度の低い気包層222内で層内破断が生じることで接合強度が低下するものと考えられる。   The inventors of the present invention have intensively studied the phenomenon of such a decrease in bonding strength, and as a result, have found that the phenomenon is caused by springback of reinforcing fibers contained in the resin member. Specifically, as shown in FIG. 11A, the pressing member 216 is pushed into the metal member 211, and the region 221 directly below the pressing member of the resin member 212 and its outer peripheral region are melted by frictional heat, and then solidified. As a result, springback occurred in the melted and solidified region of the resin member 212. The spring back is a phenomenon in which the curved reinforcing fiber is released from the restraining force when the resin member 212 is melted and deforms so as to return straight. When such a springback occurs, as shown in FIG. 11B, bubbles are mixed in the melt-solidified region of the resin member 212, and a bubble layer (springback layer) 222 that appears to be foamed apparently. It is considered that the bonding strength is reduced by the formation of the fracture within the air envelope layer 222 having a low strength.

本発明は、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を十分な強度で達成することができる金属部材と樹脂部材との接合方法を提供することを目的とする。   The present invention provides a method for joining a metal member and a resin member, which can achieve joining of the resin member and the metal member with sufficient strength even when the reinforcing fiber is contained in the resin member. With the goal.

本発明は、
金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記接合中、前記強化繊維の短繊維化を行うことを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention
The metal member and the resin member containing the reinforcing fiber are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a hot-pressure joining method,
The present invention relates to a method for joining a metal member and a resin member, wherein the reinforcing fiber is shortened during the joining.

本発明はまた、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法による金属部材と樹脂部材との接合方法であって、
前記接合中、前記強化繊維の短繊維化を行うことを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention also provides
A first step of superimposing the metal member and the resin member; and, while rotating the rotary tool as the pressing member, pressing the metal member to generate frictional heat, and softening and melting the resin member by this frictional heat, A method of joining a metal member and a resin member by a friction stir welding method including a second step of solidifying and joining the metal member and the resin member,
The present invention relates to a method for joining a metal member and a resin member, wherein the reinforcing fiber is shortened during the joining.

本発明の接合方法によれば、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を十分な強度で達成することができる。   According to the joining method of the present invention, even when the reinforcing fiber is contained in the resin member, the joining of the resin member and the metal member can be achieved with sufficient strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 本発明の第1実施態様における押込み撹拌工程の初期段階の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the initial stage of the indentation stirring process in the 1st embodiment of this invention. 本発明の第1実施態様における押込み撹拌工程の最終段階の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the last step of the indentation stirring process in the 1st embodiment of this invention. 本発明の第2実施態様における押込み撹拌工程の初期段階の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the initial stage of the indentation stirring process in the 2nd embodiment of this invention. 本発明の第2実施態様における押込み撹拌工程の最終段階の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the last step of the indentation stirring process in the 2nd embodiment of this invention. (A)は本発明の第2実施態様において使用可能な金属部材に形成され得る一軸繊維切断用突起部の概略見取り図であり、(B)は本発明の第2実施態様において使用可能な金属部材に形成され得る二軸繊維切断用突起部の概略見取り図である。(A) is a schematic sketch of the uniaxial fiber cutting projection that can be formed on the metal member usable in the second embodiment of the present invention, and (B) is a metal member usable in the second embodiment of the present invention. It is a schematic outline drawing of the projection part for biaxial fiber cutting which can be formed in. 本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面状態を示す概略模式図である。It is a schematic diagram which shows the surface state of the resin member when a metal member is forcedly peeled from the joining body obtained by the joining method of this invention, and the metal member side surface of the resin member is observed. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. (A)は従来技術における金属部材と樹脂部材との接合方法を説明するための概略断面図であり、(B)は、(A)の方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。(A) is a schematic sectional drawing for demonstrating the joining method of the metal member and resin member in a prior art, (B) is the metal member and resin member in the joined_body | zygote obtained by the method of (A). It is an enlarged view of the joining boundary surface.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。熱および圧力は好ましくは局所的に付与される。本発明の熱圧式接合方法は、押圧部材により圧力を付与しつつ、押圧部材または別手段により熱を付与する方法である。熱圧式接合方法は、後述の方法により、接合中、樹脂部材に含有される強化繊維の短繊維化を行うことができる方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは押圧部材により熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, a metal member and a resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat and then solidified. This is a hot-pressure joining method for joining a metal member and a resin member. Heat and pressure are preferably applied locally. The hot-pressure bonding method of the present invention is a method of applying heat by a pressing member or another means while applying pressure by the pressing member. The hot-pressure bonding method is not particularly limited as long as it is a method capable of shortening the reinforcing fibers contained in the resin member during the bonding by the method described later. For example, the friction stir welding method, An ultrasonic heating bonding method, a laser heating bonding method, a resistance heating bonding method, an induction heating bonding method, or the like may be used. Preferably, it is a method in which heat and pressure are locally applied from the metal member side by a pressing member, and a friction stir welding method is more preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   As will be described in detail later, the friction stir welding method is a method in which a metal member and a resin member are overlapped and a rotating tool as a pressing member is rotated to press the metal member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧しながら、押圧部材及び金属部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heat bonding method is a resin member / metal member produced by superposing a metal member and a resin member, causing ultrasonic vibrations to the pressing member and the metal member while pressing the metal member with the pressing member, and the vibration. In this method, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、レーザーを金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。   The laser heating bonding method is a method in which a metal member and a resin member are overlapped, and heat is generated by irradiating the metal member with a laser in a state in which the metal member and the resin member are constrained by pressurization by the pressing member. In this method, the metal member and the resin member are joined after being softened and melted and then solidified. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して接合する方法である。   The resistance heating bonding method is a method in which a metal member and a resin member are overlapped and bonded using heat generated by flowing a current directly through the metal member in a state in which the metal member and the resin member are constrained by pressure applied by the pressing member. .

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して接合する方法である。   The induction heating joining method is a method in which a metal member and a resin member are overlapped, and an induction current is generated in the metal member by electromagnetic induction while the metal member and the resin member are constrained by pressure applied by the pressing member, and heat generated by the current is used. And joining them.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、後述する短繊維化を行う限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる「上下方向」は、図中における上下方向に対応した方向に相当する。また特記しない限り、これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, the joining method of the present invention that employs the friction stir welding method will be described in detail with reference to the drawings. However, as long as the fiber shortening described later is performed, the effects of the present invention can be obtained even if other joining methods described above are used. It is clear that It should be noted that the various elements shown in the drawings are merely schematically shown for understanding of the present invention, and the dimensional ratio, appearance, and the like may differ from the actual ones. The “vertical direction” used directly or indirectly in this specification corresponds to a direction corresponding to the vertical direction in the drawing. Unless otherwise specified, in these drawings, common reference numerals indicate the same members, parts, dimensions, or regions.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1〜図8を用いて具体的に説明する。
[Method of joining metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS.

(1)接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Joining Device First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding device suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。   As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), it moves downward as indicated by an arrow A2. At this time, the rotary tool 16 applies pressure in the pressing region P (scheduled pressing region) on the surface of the metal member 11. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined.

図2は、回転ツール16の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、先端部(図2では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the distal end portion of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 2). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body) or the like, the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(2)接合方法
本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
(2) Joining method The joining method of the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed to generate frictional heat, and the resin member 12 is softened and melted by the frictional heat. Then, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

第1ステップにおいては、図1に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。   In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are overlapped at a desired joint portion.

第2ステップは、回転ツール16を金属部材11に押し込んで、少なくとも金属部材11の内部に進入させる押込み撹拌工程、および回転ツールを押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程を含む。   In the second step, the rotary tool 16 is pushed into the metal member 11 and at least the pushing agitation process for entering the inside of the metal member 11 and the rotation operation of the rotary tool is continued at the position where the rotary tool is entered in the pushing agitation process. A stirring maintaining step.

本発明においては、接合中、樹脂部材12に含有される強化繊維の短繊維化を行う。「接合中」とは、金属部材11と樹脂部材12とを重ね合わせてから、固化により金属部材11と樹脂部材12との接合を達成するまでの間のいずれかの時という意味である。短繊維化は、第2ステップ、特に押込み撹拌工程または撹拌維持工程の一方または両方、において行うことが好ましい。   In the present invention, the reinforcing fibers contained in the resin member 12 are shortened during bonding. “Being joined” means any time from when the metal member 11 and the resin member 12 are overlapped to when the metal member 11 and the resin member 12 are joined by solidification. The shortening of the fibers is preferably performed in the second step, particularly in one or both of the indentation stirring process and the stirring maintenance process.

短繊維化は、樹脂部材12の金属部材側表面における少なくとも回転ツール直下領域の表層部121(図3〜6参照)において行われればよい。回転ツール直下領域とは、金属部材11と樹脂部材12とを重ね合わせたとき、金属部材11表面上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材12表面上の領域のことである。   The shortening of the fiber may be performed at least on the surface layer portion 121 (see FIGS. 3 to 6) in the region immediately below the rotary tool on the metal member side surface of the resin member 12. The region directly under the rotary tool is a region on the surface of the resin member 12 corresponding to the region immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the surface of the metal member 11 when the metal member 11 and the resin member 12 are overlapped. It is an area.

金属部材11と樹脂部材12との接合は、後述する図8に示すように、樹脂部材12の金属部材側表面120における少なくとも回転ツール直下領域60の表層部121が溶融し、その外周領域に流動した後、固化することにより達成される。本発明においては少なくともこのような表層部121において、接合中に強化繊維が短繊維化され、湾曲の程度が緩和された強化繊維が溶融樹脂とともに外周領域に流動するため、金属部材11と樹脂部材12との界面13においてスプリングバック層の形成が十分に防止される。表層部において強化繊維が短繊維化されないと、強化繊維の比較的大きな湾曲の程度が緩和されないため、スプリングバック層の形成を十分に防止できず、接合強度が低下する。図8は、本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面状態を示す概略模式図である。   As shown in FIG. 8, which will be described later, at least the surface layer portion 121 of the region 60 directly below the rotary tool 60 on the metal member side surface 120 of the resin member 12 melts and flows into the outer peripheral region. And then solidified. In the present invention, at least in such a surface layer portion 121, the reinforcing fiber is shortened during bonding, and the reinforcing fiber whose degree of curvature is relaxed flows to the outer peripheral region together with the molten resin. The formation of the springback layer is sufficiently prevented at the interface 13 with 12. If the reinforcing fiber is not shortened in the surface layer portion, the degree of the relatively large curvature of the reinforcing fiber is not relaxed, so that the formation of the springback layer cannot be sufficiently prevented and the bonding strength is lowered. FIG. 8 is a schematic diagram showing the surface state of the resin member when the metal member is forcibly separated from the joined body obtained by the joining method of the present invention and the metal member side surface of the resin member is observed.

短繊維化が行われる表層部121の厚みは、当該表層部の溶融による外周領域への流動の観点から、厳密に規定できるものではないが、後述するように、接合が達成された接合体の樹脂部材において回転ツール直下領域の外周領域で短繊維化が達成されているような厚みであればよい。   The thickness of the surface layer portion 121 where the shortening is performed cannot be strictly defined from the viewpoint of the flow to the outer peripheral region due to the melting of the surface layer portion, but, as will be described later, It is sufficient that the resin member has a thickness such that shortening is achieved in the outer peripheral region immediately below the rotary tool.

強化繊維の短繊維化は接合中に行われる限り、あらゆる方法により達成されてよく、通常は回転ツール(押圧部材)に起因した剪断力により行われる。回転ツールに起因した剪断力とは、回転ツールの動作により発生する剪断力のことであり、例えば、回転ツールの回転力および/または押圧力に起因した剪断力が挙げられる。   The shortening of the reinforcing fiber may be achieved by any method as long as it is performed during joining, and is usually performed by a shearing force caused by a rotating tool (pressing member). The shearing force caused by the rotating tool is a shearing force generated by the operation of the rotating tool, and includes, for example, the shearing force caused by the rotating force and / or the pressing force of the rotating tool.

回転ツールの回転力に起因した剪断力により短繊維化する方法として、以下の方法(I)が挙げられる:
方法(I):回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との界面13まで進入させ、樹脂部材12の表面を加熱および撹拌する方法。
The following method (I) is mentioned as a method for shortening the fiber by the shearing force resulting from the rotational force of the rotating tool:
Method (I): A method in which the rotary tool 16 is pushed into the metal member 11 to enter the interface 13 between the metal member 11 and the resin member 12, and the surface of the resin member 12 is heated and stirred.

回転ツールの押圧力に起因した剪断力により短繊維化する方法として、以下の方法(II)が挙げられる:
方法(II):回転ツール16による初期押圧で金属部材11の繊維切断用突起部50を樹脂部材12に刺衝する方法。
The following method (II) is mentioned as a method for shortening the fiber by the shearing force caused by the pressing force of the rotary tool:
Method (II): A method in which the fiber cutting projection 50 of the metal member 11 is stuck to the resin member 12 by the initial pressing with the rotary tool 16.

短繊維化の観点からは、方法(I)よりも方法(II)の方が、より確実性が高い。方法(I)と方法(II)とを組み合わせ、回転ツールの回転力および押圧力に起因した剪断力により短繊維化する方法(III)を採用してもよい。   From the viewpoint of shortening the fiber, the method (II) is more reliable than the method (I). A method (III) in which the method (I) and the method (II) are combined and the fiber is shortened by a shearing force resulting from the rotational force and pressing force of the rotary tool may be employed.

上記方法(I)〜(II)をそれぞれ第1〜第2実施態様において、以下、詳しく説明する。なお、後述するように、第1実施態様において短繊維化は撹拌維持工程において行われる。第2実施態様において短繊維化は押込み撹拌工程において行われる。   The above methods (I) to (II) will be described in detail below in the first and second embodiments. As will be described later, in the first embodiment, the shortening is performed in the stirring maintaining step. In the second embodiment, the shortening is performed in the indentation stirring step.

<第1実施態様>
本実施態様においては、押込み撹拌工程A1において、図3および図4に示すように、回転ツール16を回転させながら金属部材11に押し込んで、金属部材11と樹脂部材12との界面13まで進入させる。これにより、金属部材11の回転ツール直下部110が分離される。図3は、第1実施態様における押込み撹拌工程の初期段階の一例を説明するための概略断面図である。図4は、第1実施態様における押込み撹拌工程の最終段階の一例を説明するための概略断面図である。
<First Embodiment>
In the present embodiment, in the indentation stirring step A1, as shown in FIGS. 3 and 4, the rotary tool 16 is pushed into the metal member 11 while being rotated, and enters the interface 13 between the metal member 11 and the resin member 12. . Thereby, the rotation tool right lower part 110 of the metal member 11 is isolate | separated. FIG. 3 is a schematic cross-sectional view for explaining an example of the initial stage of the indentation stirring process in the first embodiment. FIG. 4 is a schematic cross-sectional view for explaining an example of the final stage of the indentation stirring process in the first embodiment.

本実施態様においては、前記押込み撹拌工程A1の後に、回転ツール16を前記押込撹拌工程A1で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程A2を行う。これにより、後で詳述するように、押込み撹拌工程A1で分離された金属部材11の回転ツール直下部110もまた回転するため、樹脂部材12の表面が撹拌される。その結果、樹脂部材12に含まれる強化繊維が直接剪断力を加えられることで短繊維化が達成される。   In this embodiment, after the indentation stirring step A1, an agitation maintaining step A2 in which the rotation operation of the rotation tool 16 is continued at the position where the rotation tool 16 is entered in the indentation stirring step A1. As a result, as described later in detail, the surface of the resin member 12 is agitated because the portion 110 directly below the rotary tool of the metal member 11 separated in the indentation agitation step A1 also rotates. As a result, the fiber shortening is achieved by applying a shearing force directly to the reinforcing fibers contained in the resin member 12.

本実施態様における各工程は、回転ツールの押圧力(加圧力)及び押圧時間を制御する圧力制御方式によって成されても良いし、回転ツールの押圧方向の挿入量(金属部材に接触してからの金属部材への挿入量)及びその移動時間を制御する位置制御方式によって成されても良いし、または、それらの組み合わせによって成されても良い。   Each step in this embodiment may be performed by a pressure control system that controls the pressing force (pressing force) and pressing time of the rotary tool, or the amount of insertion of the rotating tool in the pressing direction (after contacting the metal member) The amount of the metal member inserted into the metal member) and the position control method for controlling the movement time thereof, or a combination thereof may be used.

以下、本実施態様の工程について詳しく説明する。   Hereafter, the process of this embodiment is demonstrated in detail.

(押込み撹拌工程A1)
押込み撹拌工程A1では、図3に示すように、回転ツール16と受け具17とを相互に近接させることにより、回転ツール16を回転させながら金属部材11に押し込んで、結果として図4に示すように、金属部材11と樹脂部材12との界面13まで進入させる。本明細書中、回転ツール16を金属部材11と樹脂部材12との界面13まで進入させるとは、図4に示すように、回転ツール16の先端部におけるショルダ部16bの外周部を界面13まで進入させるという意味である。
(Indentation stirring step A1)
In the indentation stirring step A1, as shown in FIG. 3, the rotary tool 16 and the receiving member 17 are brought close to each other to push the rotary tool 16 into the metal member 11 while rotating, and as a result, as shown in FIG. Then, the metal member 11 and the resin member 12 are made to enter the interface 13. In this specification, when the rotary tool 16 enters the interface 13 between the metal member 11 and the resin member 12, the outer peripheral portion of the shoulder portion 16b at the tip of the rotary tool 16 extends to the interface 13 as shown in FIG. It means to enter.

具体的には回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。その後、回転ツール16を金属部材11にさらに押し込むと、図4に示すように、回転ツール16の先端部におけるショルダ部16bの外周部が界面13に達し、金属部材11の回転ツール直下部110が金属部材11から分離される。   Specifically, when the rotary tool 16 is pushed in, the joint boundary surface 13 between the metal member 11 and the resin member 12 moves to the receiving member 17 side (lower side in the example) in the lower part 110 of the metal member 11. The right lower part 110 projects and deforms toward the resin member 12 side. Thereafter, when the rotary tool 16 is further pushed into the metal member 11, as shown in FIG. 4, the outer peripheral portion of the shoulder portion 16 b at the tip of the rotary tool 16 reaches the interface 13, and the lower portion 110 of the metal member 11 directly below the rotary tool 110. Separated from the metal member 11.

回転ツール16の挿入量は、金属部材11の厚みをT(mm)としたとき、Tの近傍であればよく、強化繊維の短繊維化のし易さの観点から、好ましくはT〜T+0.5(mm)である。本明細書中、回転ツール16の挿入量は、回転ツール16のショルダー部16bにおける外周部の金属部材表面から厚み方向への挿入量のことである。回転ツール16の挿入量は、回転ツールの位置(挿入量)制御装置を用いると、より精密に制御することができる。   The insertion amount of the rotary tool 16 may be in the vicinity of T when the thickness of the metal member 11 is T (mm), and preferably T to T + 0. 5 (mm). In this specification, the amount of insertion of the rotary tool 16 is the amount of insertion in the thickness direction from the metal member surface of the outer peripheral portion of the shoulder portion 16b of the rotary tool 16. The insertion amount of the rotary tool 16 can be controlled more precisely by using a position (insertion amount) control device for the rotary tool.

押込み撹拌工程A1では、上記のように、回転ツール16を金属部材11と樹脂部材12との界面13まで進入させ、金属部材11の回転ツール直下部110を樹脂部材12側に突出変形させた後、金属部材11から分離させる。このため、本実施態様においては、金属部材11と樹脂部材12との界面13における回転ツール直下領域は金属部材11と樹脂部材12との接合にほとんど寄与しない。しかし、後述の撹拌維持工程A2において、強化繊維の短繊維化を行いながら、発生した摩擦熱により、樹脂部材12における少なくとも回転ツール直下領域の表層部121が溶融し、該直下領域を超えて、その外周領域まで流動する(図4の矢印方向)。このとき、溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。このため、本実施態様においては、樹脂部材と金属部材との接合は、金属部材11と樹脂部材12との界面13における回転ツール直下領域の外周領域のみにおいて十分な強度で達成することができる。   In the indentation stirring step A1, as described above, after the rotary tool 16 has entered the interface 13 between the metal member 11 and the resin member 12, and the lower part 110 directly below the rotary tool of the metal member 11 is projected and deformed toward the resin member 12 side. The metal member 11 is separated. For this reason, in this embodiment, the area directly under the rotary tool at the interface 13 between the metal member 11 and the resin member 12 hardly contributes to the bonding between the metal member 11 and the resin member 12. However, in the agitation maintaining step A2, which will be described later, while the shortening of the reinforcing fiber is performed, the generated frictional heat melts at least the surface layer portion 121 in the region immediately below the rotary tool in the resin member 12, exceeding the region immediately below. It flows to the outer peripheral area (arrow direction in FIG. 4). At this time, the molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. For this reason, in this embodiment, the joining of the resin member and the metal member can be achieved with sufficient strength only in the outer peripheral region of the region immediately below the rotary tool at the interface 13 between the metal member 11 and the resin member 12.

本工程が位置制御方式によって行われる場合において、押込み撹拌工程A1でのツール挿入量及び挿入速度、もしくは挿入時間は、上記挿入量が達成されるように、制御されればよい。   In the case where this step is performed by the position control method, the tool insertion amount and the insertion speed or the insertion time in the indentation stirring step A1 may be controlled so that the insertion amount is achieved.

本工程が圧力制御方式によって行われる場合において、押込み撹拌工程A1では、回転ツール16を、第1の加圧力で、第1の加圧時間だけ、所定回転数で回転させる。押込み撹拌工程A1の第1の加圧力及び第1の加圧時間は、本方式においても上記挿入量が達成されるように制御されればよく、回転ツール16を金属部材11と樹脂部材12との界面13まで進入させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程A1における第1の加圧力は、1200N以上1800N未満の値が好ましい。第1の加圧時間は、0.1秒以上3秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   In the case where this step is performed by the pressure control method, in the indentation stirring step A1, the rotary tool 16 is rotated at a predetermined rotation speed for the first pressurizing time with the first pressurizing force. The first pressurizing force and the first pressurizing time in the indentation stirring step A1 may be controlled so that the insertion amount is achieved also in this method, and the rotary tool 16 is replaced with the metal member 11 and the resin member 12. The value is set from the viewpoint of approaching to the interface 13, and the value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, and the type of material. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first applied pressure in the indentation stirring step A1 is preferably a value of 1200 N or more and less than 1800 N. The first pressurization time is preferably 0.1 seconds or more and less than 3 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(撹拌維持工程A2)
撹拌維持工程A2は、回転ツール16と受け具17との相互近接を停止することにより、同じく図4に示すように、回転ツール16を上記押込み撹拌工程A1で進入させた位置で回転ツール16の回転動作を継続させる工程である。
(Stirring maintenance step A2)
In the stirring maintaining step A2, by stopping the mutual proximity of the rotating tool 16 and the receiving member 17, similarly as shown in FIG. 4, the rotating tool 16 is moved into the position where the rotating tool 16 is advanced in the push-in stirring step A1. This is a step of continuing the rotation operation.

このような撹拌維持工程A2では、回転ツール16は上記押込み撹拌工程A1で進入させた位置にほぼ維持されるとともに、押込み撹拌工程A1で分離された金属部材11の回転ツール直下部110を回転させる。これにより、当該直下部110が、樹脂部材12における回転ツール直下領域の表層部121の表面を摺擦し、樹脂部材12に含まれる強化繊維に剪断力を付与するため、強化繊維が切断され、結果として強化繊維の短繊維化が達成される。本工程では多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12における少なくとも回転ツール直下領域の表層部121が溶融し、該直下領域を超えて、その外周領域まで流動する(図4の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。   In such an agitation maintaining step A2, the rotary tool 16 is substantially maintained at the position entered in the indentation agitation step A1, and the lower part 110 of the metal member 11 separated in the indentation agitation step A1 is rotated. . Thereby, the reinforcing fiber is cut in order that the immediately lower part 110 rubs the surface of the surface layer part 121 in the region immediately below the rotary tool in the resin member 12 and applies a shearing force to the reinforcing fiber included in the resin member 12. As a result, shortening of the reinforcing fiber is achieved. In this step, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, at least the surface layer portion 121 in the region immediately below the rotary tool in the resin member 12 melts and flows over the region directly below to the outer peripheral region (in the direction of the arrow in FIG. 4). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool.

本工程が位置制御方式によって行われる場合において、撹拌維持工程A2でのツール挿入量及び挿入速度、もしくは挿入時間は、上記位置で回転動作が継続される限り特に限定されない。   When this process is performed by the position control method, the tool insertion amount and the insertion speed or the insertion time in the stirring maintenance process A2 are not particularly limited as long as the rotation operation is continued at the above position.

本工程が圧力制御方式によって行われる場合において、撹拌維持工程A2では、回転ツール16を、第2の加圧力で、第2の加圧時間だけ、所定回転数で回転させる。第2の加圧力及び第2の加圧時間は、上記のような強化繊維の十分な短繊維化、樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程A2における第2の加圧力は、100N以上700N未満の値が好ましい。第2の加圧時間は、1.0秒以上20秒未満の値、特に3.0秒以上10秒以下の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   In the case where this process is performed by the pressure control method, in the stirring maintenance process A2, the rotary tool 16 is rotated at the predetermined rotation speed for the second pressurizing time with the second pressurizing force. The second pressing force and the second pressurizing time are set from the viewpoints of sufficiently shortening the reinforcing fiber as described above, sufficiently softening / melting the resin member 12 in a wide range, and productivity. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the stirring maintenance step A2 is preferably a value of 100 N or more and less than 700 N. The second pressurization time is preferably 1.0 to 20 seconds, particularly preferably 3.0 to 10 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

本実施態様においては、押込み撹拌工程A1の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程A0を行ってもよい。   In the present embodiment, the preheating step A0 for rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 may be performed before the pushing and stirring step A1.

(予熱工程A0)
予熱工程A0は、回転ツール16と受け具17とを相互に近接させることにより、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。
(Preheating step A0)
In the preheating step A0, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 3, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state.

具体的には、予熱工程A0では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域111(回転ツール16による押圧領域)の範囲及び押圧領域111の近傍の範囲が予熱される。これにより、次の押込み撹拌工程A1で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step A0, frictional heat is generated on the surface portion (upper surface portion in the illustrated example) of the metal member 11 by the pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing area 111 (the pressing area by the rotary tool 16) of the metal member 11 and the area near the pressing area 111 are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step A1.

本工程が位置制御方式によって行われる場合において、予熱工程A0でのツール挿入量及び挿入速度、もしくは挿入時間は、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させ得る限り特に限定されない。   When this step is performed by the position control method, the tool insertion amount and insertion speed or insertion time in the preheating step A0 are rotated with only the tip portion of the rotary tool 16 in contact with the surface portion of the metal member 11. There is no particular limitation as long as the tool 16 can be rotated.

本工程が圧力制御方式によって行われる場合において、予熱工程A0の加圧力及び加圧時間は、上記のような回転ツール16の押込み易さの観点、生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程A0における加圧力は、500N以上1000N未満の値が好ましい。加圧時間は、0.1秒以上3.0秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   In the case where this process is performed by the pressure control method, the pressurizing force and pressurizing time of the preheating process A0 are set from the viewpoint of ease of pushing in the rotary tool 16 as described above, from the viewpoint of productivity, and the values thereof are: For example, it changes depending on the number of rotations of the rotary tool 16, the thickness of the metal member 11, and the type of material. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the pressure applied in the preheating step A0 is preferably a value of 500 N or more and less than 1000 N. The pressurization time is preferably a value of 0.1 seconds or more and less than 3.0 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(樹脂部材)
本実施態様において使用される樹脂部材12は熱可塑性ポリマーおよび強化繊維を含むものである。
(Resin member)
The resin member 12 used in this embodiment includes a thermoplastic polymer and reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin resin, particularly polypropylene, which is inexpensive and excellent in mechanical properties is preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12における金属部材11直下の部分は両面ともに通常、平面から構成されている。   The resin member 12 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this. When the resin member 12 is overlapped with the metal member 11 for bonding, the resin member 12 is directly below the metal member 11. As long as the portion has a substantially flat plate shape, it may have any shape. The part immediately below the metal member 11 in the resin member 12 is generally composed of a flat surface on both sides.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図3および図5参照)は通常、2〜10mm、特に2〜5mmであるがこれに限定されるものではない。   The thickness t (thickness before joining treatment; see FIGS. 3 and 5) of the portion immediately below the metal member 11 in the resin member 12 is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に均一に含有および分散される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、特に不連続繊維を意味するものとする。不連続繊維は、スプリングバックが起こりやすいものと考えられているところ、本発明においてはそのような不連続繊維が含有される場合であっても、スプリングバックを十分に防止できるためである。   In the field of polymer-containing composite materials, the reinforcing fibers contained in the resin member 12 are fibers that are uniformly contained and dispersed in the polymer in order to improve strength, and are generally large in continuous fibers and discontinuous fibers. Although different, the reinforcing fiber in the present invention shall mean a discontinuous fiber. This is because discontinuous fibers are considered to be prone to spring back, and in the present invention, even when such discontinuous fibers are contained, spring back can be sufficiently prevented.

強化繊維は樹脂部材中、ランダム配向形態で含有され、平均繊維長Lが通常、50mm以下、特に1mm超50mm以下、好ましくは1mm超30mm以下である。強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。 The reinforcing fibers in the resin member, is contained in a random orientation form, the average fiber length L B is typically, less than 50mm, especially 1mm super 50mm or less, preferably 1mm super 30mm or less. The average fiber diameter of the reinforcing fibers is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10〜50重量%であり、好ましくは20〜50重量%、より好ましくは30〜50重量%である。   The content of the reinforcing fiber is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, more preferably 30 to 50% by weight, based on the total amount of the resin member.

強化繊維の含有量は、樹脂部材の製造時における各材料の使用量に基づく値を使用することができるし、以下の方法により測定される値を使用することもできる。まず、樹脂部材またはその一部(試料)を、電気炉等により、熱可塑性ポリマー(樹脂成分)の分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを取り出す。このとき、樹脂部材またはその一部(試料)を、熱可塑性ポリマーが溶解し得る溶剤に溶解させ、強化繊維を濾別することによっても強化繊維のみを取り出すことができる。加熱前後または溶解前後の重量測定により、強化繊維の含有量を試料の重量に対する割合として算出することができる。または、比重を測定することによっても、含有量の測定ができる。   As the content of the reinforcing fiber, a value based on the amount of each material used at the time of manufacturing the resin member can be used, and a value measured by the following method can also be used. First, a resin member or a part (sample) thereof is heated by an electric furnace or the like at a temperature not lower than the decomposition temperature of the thermoplastic polymer (resin component) and not higher than the decomposition temperature of the reinforcing fiber, thereby removing the thermoplastic polymer and reinforcing fiber. Take out only. At this time, only the reinforcing fiber can be taken out by dissolving the resin member or a part (sample) thereof in a solvent in which the thermoplastic polymer can be dissolved and filtering the reinforcing fiber. By measuring the weight before and after heating or before and after dissolution, the content of reinforcing fibers can be calculated as a ratio to the weight of the sample. Alternatively, the content can be measured by measuring the specific gravity.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。   The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, colorants, foaming agents, and the like.

樹脂部材12は、熱可塑性ポリマーおよび強化繊維ならびに所望の添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。   The resin member 12 can be manufactured by subjecting a mixture containing a thermoplastic polymer and reinforcing fibers and a desired additive to a molding method such as an injection molding method or a press molding method.

樹脂部材12の融点Tmは樹脂部材12の種類によって異なり、通常、130〜350℃である。
樹脂部材12の融点Tmは、JIS7121により測定された値を用いている。
The melting point Tm of the resin member 12 varies depending on the type of the resin member 12, and is usually 130 to 350 ° C.
As the melting point Tm of the resin member 12, a value measured according to JIS 7121 is used.

(金属部材)
本実施態様において使用される金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、少なくとも樹脂部材12と重ね合わせる部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11における樹脂部材12と重ね合わせる部分は両面ともに通常、平面から構成されている。
(Metal member)
The metal member 11 used in the present embodiment has a substantially flat plate shape as a whole in FIG. 1 and the like, but is not limited to this, and at least a portion overlapping with the resin member 12 is a substantially flat plate. As long as it has a shape, it may have any shape. The part of the metal member 11 that overlaps with the resin member 12 is generally composed of a flat surface on both sides.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図3および図5参照)は通常、0.5〜4mmであるがこれに限定されるものではない。   The thickness T (thickness before joining treatment; see FIGS. 3 and 5) of the substantially flat plate-shaped portion that is superimposed on the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto. .

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

<第2実施態様>
本実施態様においては、図5に示すように、樹脂部材側表面に繊維切断用突起部50を有する金属部材11を用い、押込み撹拌工程B1において、回転ツール16による初期押圧で金属部材11の繊維切断用突起部50を樹脂部材12に刺衝する。これにより、短繊維化を達成する。図5は、第2実施態様における押込み撹拌工程の初期段階の一例を説明するための概略断面図である。
<Second Embodiment>
In the present embodiment, as shown in FIG. 5, the metal member 11 having the fiber cutting projection 50 on the resin member side surface is used, and the fiber of the metal member 11 is initially pressed by the rotary tool 16 in the indentation stirring step B1. The cutting projection 50 is stuck to the resin member 12. Thereby, shortening is achieved. FIG. 5 is a schematic cross-sectional view for explaining an example of the initial stage of the indentation stirring process in the second embodiment.

本実施態様においては、前記押込み撹拌工程B1の後に、回転ツール16を前記押込撹拌工程B1で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程B2を行うことが好ましいが、当該工程は必ずしも行わなければならないというわけではない。   In the present embodiment, it is preferable to perform the stirring maintaining step B2 in which the rotating operation of the rotating tool 16 is continued at the position where the rotating tool 16 is entered in the pressing stirring step B1 after the pressing stirring step B1. The process does not necessarily have to be performed.

本実施態様における各工程は回転ツールの押圧力(加圧力)及び押圧時間を制御する圧力制御方式によって成されても良いし、回転ツールの押圧方向の挿入量(金属部材に接触してからの金属部材への挿入量)及びその移動時間を制御する位置制御方式によって成されても良いし、または、それらの組み合わせによって成されても良い。   Each step in this embodiment may be performed by a pressure control system that controls the pressing force (pressing force) and pressing time of the rotating tool, or the amount of insertion of the rotating tool in the pressing direction (after contact with the metal member) It may be made by a position control system for controlling the amount of insertion into the metal member) and its moving time, or a combination thereof.

以下、本実施態様の工程について詳しく説明する。   Hereafter, the process of this embodiment is demonstrated in detail.

(押込み撹拌工程B1)
押込み撹拌工程B1では、図5に示すように、回転ツール16と受け具17とを相互に近接させることにより、まず、金属部材11の繊維切断用突起部50を樹脂部材12に刺衝する。このように回転ツールの押圧力に起因して、強化繊維に剪断力を付与するため、強化繊維が切断され、結果として強化繊維の短繊維化が達成される。その後、さらに回転ツール16と受け具17とを相互に近接させることにより、図6に示すように回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図6に示すように、樹脂部材12側に突出変形させることが好ましい。このため、発生した摩擦熱により、樹脂部材12における少なくとも回転ツール直下領域の表層部121が溶融し、該直下領域を超えて、その外周領域まで流動する(図6の矢印方向)。図6は、第2実施態様における押込み撹拌工程の最終段階の一例を説明するための概略断面図である。
(Indentation stirring step B1)
In the indentation stirring step B1, as shown in FIG. 5, the fiber cutting projection 50 of the metal member 11 is first stabbed into the resin member 12 by bringing the rotary tool 16 and the receiving member 17 close to each other. In this way, due to the pressing force of the rotary tool, the reinforcing fiber is cut in order to apply a shearing force to the reinforcing fiber, and as a result, shortening of the reinforcing fiber is achieved. Thereafter, the rotating tool 16 and the receiving member 17 are further brought close to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. Thereby, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable that the lower part 110 of the metal member 11 is protruded and deformed toward the resin member 12 as shown in FIG. For this reason, at least the surface layer portion 121 of the resin member 12 in the region immediately below the rotating tool is melted by the generated frictional heat, and flows to the outer peripheral region beyond the region immediately below the region (in the arrow direction in FIG. 6). FIG. 6 is a schematic cross-sectional view for explaining an example of the final stage of the indentation stirring process in the second embodiment.

本工程が位置制御方式によって行われる場合において、回転ツール16の挿入量は、金属部材11の厚みをT(mm)としたとき、通常は0.2×T〜0.9×Tであり、好ましくは0.5×T〜0.8×T(mm)である。   When this process is performed by the position control method, the insertion amount of the rotary tool 16 is usually 0.2 × T to 0.9 × T, where the thickness of the metal member 11 is T (mm), Preferably, it is 0.5 × T to 0.8 × T (mm).

本工程が圧力制御方式によって行われる場合において、押込み撹拌工程B1では、回転ツール16を、第1の加圧力で、第1の加圧時間だけ、所定回転数で回転させる。押込み撹拌工程B1の第1の加圧力及び第1の加圧時間は、回転ツール16を金属部材11と樹脂部材12との界面13に達しない深さまで進入させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程B1における第1の加圧力は、1200N以上1800N未満の値が好ましい。第1の加圧時間は、0.1秒以上3秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   In the case where this process is performed by the pressure control method, in the indentation stirring process B1, the rotary tool 16 is rotated at a predetermined rotation speed with a first pressurizing force for a first pressurizing time. The first pressurizing force and the first pressurizing time in the indentation stirring step B1 are set from the viewpoint of causing the rotary tool 16 to reach a depth that does not reach the interface 13 between the metal member 11 and the resin member 12, and the values thereof are: For example, it changes depending on the number of rotations of the rotary tool 16, the thickness of the metal member 11, and the type of material. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first applied pressure in the indentation stirring step B1 is preferably a value of 1200 N or more and less than 1800 N. The first pressurization time is preferably 0.1 seconds or more and less than 3 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(撹拌維持工程B2)
撹拌維持工程B2は、回転ツール16と受け具17との相互近接を停止することにより、同じく図6に示すように、回転ツール16を上記押込み撹拌工程B1で進入させた位置で回転ツール16の回転動作を継続させる工程である。
(Stirring maintenance step B2)
In the stirring maintaining process B2, by stopping the mutual proximity of the rotating tool 16 and the receiving member 17, as shown in FIG. 6, the rotating tool 16 is moved to the position where the rotating tool 16 is moved in the indenting stirring process B1. This is a step of continuing the rotation operation.

このような撹拌維持工程B2では、回転ツール16は上記押込み撹拌工程B1で進入させた位置にほぼ維持される。本工程では多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12における少なくとも回転ツール直下領域の表層部121が溶融し、該直下領域を超えて、その外周領域まで流動する(図6の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、本実施態様においては、樹脂部材と金属部材との接合は、金属部材11と樹脂部材12との界面13における回転ツール直下領域とその外周領域において十分な強度で達成することができる。   In such a stirring maintaining step B2, the rotary tool 16 is substantially maintained at the position entered in the indenting stirring step B1. In this step, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, at least the surface layer portion 121 in the region immediately below the rotary tool in the resin member 12 melts and flows to the outer peripheral region beyond the region immediately below the region (in the arrow direction in FIG. 6). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, in this embodiment, the bonding between the resin member and the metal member can be achieved with sufficient strength in the region immediately below the rotary tool and the outer peripheral region at the interface 13 between the metal member 11 and the resin member 12.

本工程が位置制御方式によって行われる場合において、撹拌維持工程B2でのツール挿入量及び挿入速度、もしくは挿入時間は、上記位置で回転動作が継続される限り特に限定されない。   When this process is performed by the position control method, the tool insertion amount and the insertion speed or the insertion time in the stirring maintenance process B2 are not particularly limited as long as the rotation operation is continued at the above position.

本工程が圧力制御方式によって行われる場合において、撹拌維持工程B2では、回転ツール16を、第2の加圧力で、第2の加圧時間だけ、所定回転数で回転させる。撹拌維持工程B2の第2の加圧力及び第2の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程B2における第2の加圧力は、100N以上700N未満の値が好ましい。第2の加圧時間は、1.0秒以上20秒未満の値、特に3.0秒以上10秒以下の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   In the case where this process is performed by the pressure control method, in the stirring maintenance process B2, the rotary tool 16 is rotated at the predetermined rotation speed for the second pressurizing time with the second pressurizing force. The second pressurizing force and the second pressurizing time in the stirring maintaining step B2 are set from the viewpoint of sufficient softening / melting and productivity in a wide range of the resin member 12 as described above, and the values thereof are, for example, It changes depending on the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second applied pressure in the stirring and maintaining step B2 is preferably a value of 100 N or more and less than 700 N. The second pressurization time is preferably 1.0 to 20 seconds, particularly preferably 3.0 to 10 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(保持工程B3)
撹拌維持工程B2の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程B3を行ってもよいし、行わなくても良い。
保持工程B3は、同じく図6に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を第3の加圧力で第3の時間だけ保持する工程である。保持工程B3では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了し、ワーク10の冷却が開始する。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。
(Holding process B3)
After the agitation maintaining step B2, the rotation of the rotary tool 16 may be stopped, and in that state, a holding step B3 for holding the rotary tool 16 for a predetermined pressurizing time with a predetermined pressure may be performed. It is not necessary.
Similarly, as shown in FIG. 6, the holding step B <b> 3 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a third time with the third pressure in that state. In the holding step B3, when the rotation of the rotary tool 16 is stopped, the generation of frictional heat is completed, and cooling of the workpiece 10 is started. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程B3の第3の加圧力及び第3の加圧時間は、上記のような冷却期間中の金属部材11と樹脂部材12との密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程A3における第3の加圧力は、例えば700N以上1200N未満の値が好ましい。第3の加圧時間は、例えば1秒以上の値が好ましい。   The third pressing force and the third pressurizing time in the holding step B3 are set from the viewpoint of improving the adhesion between the metal member 11 and the resin member 12 during the cooling period as described above. It varies depending on the type of material of the member 11 and the like. For example, when the aluminum alloy metal member 11 is used, the third pressing force in the holding step A3 is preferably a value of 700 N or more and less than 1200 N, for example. The third pressurizing time is preferably, for example, a value of 1 second or longer.

本実施態様においては、押込み撹拌工程B1の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程B0を行ってもよい。もし予熱工程B0を行う場合、金属部材11に形成された繊維切断用突起部50による短繊維化は予熱工程B0もしくは押込み撹拌工程B1のどちらかの間で完了する。   In the present embodiment, a preheating step B0 in which the rotating tool 16 is rotated in a state where only the tip portion of the rotating tool 16 is in contact with the surface portion of the metal member 11 may be performed before the pushing and stirring step B1. If the preheating step B0 is performed, the shortening of the fiber by the fiber cutting projection 50 formed on the metal member 11 is completed during either the preheating step B0 or the indentation stirring step B1.

(予熱工程B0)
予熱工程B0は、回転ツール16と受け具17とを相互に近接させることにより、図5に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。具体的には、予熱工程B0では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域111(回転ツール16による押圧領域)の範囲及び押圧領域111の近傍の範囲が予熱される。これにより、次の押込み撹拌工程B1で、回転ツール16を金属部材11に押込み易くなる。
(Preheating process B0)
In the preheating step B0, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 5, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. Specifically, in the preheating step B0, frictional heat is generated on the surface portion (upper surface portion in the illustrated example) of the metal member 11 by the pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing area 111 (the pressing area by the rotary tool 16) of the metal member 11 and the area near the pressing area 111 are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step B1.

本実施態様における予熱工程B0は第1実施態様における予熱工程A0と同様である。予熱工程B0の加圧力および加圧時間の説明はそれぞれ、予熱工程A0の加圧力および加圧時間の説明と同様であるため、これらの詳しい説明は省略する。   The preheating step B0 in this embodiment is the same as the preheating step A0 in the first embodiment. Since the explanation of the pressure and pressurization time in the preheating step B0 is the same as the explanation of the pressure and pressurization time in the preheating step A0, detailed explanation thereof will be omitted.

(樹脂部材)
本実施態様において使用される樹脂部材12は第1実施形態において使用される樹脂部材12と同様である。
(Resin member)
The resin member 12 used in this embodiment is the same as the resin member 12 used in the first embodiment.

(金属部材)
本実施態様において使用される金属部材11は、樹脂部材12と重ね合わせる部分における樹脂部材側表面に繊維切断用突起部50を有すること以外、第1実施形態において使用される金属部材11と同様である。例えば、図5に示すような繊維切断用突起部50を有する金属部材11が使用される。
(Metal member)
The metal member 11 used in the present embodiment is the same as the metal member 11 used in the first embodiment, except that the fiber member protruding surface 50 is provided on the resin member side surface in the portion overlapping the resin member 12. is there. For example, a metal member 11 having a fiber cutting projection 50 as shown in FIG. 5 is used.

繊維切断用突起部50は、樹脂部材12における回転ツール直下領域の表層部121への刺衝により強化繊維を切断可能な強化繊維の切断手段であり、例えば、いわゆるカッター、特に格子状カッターが使用される。   The fiber cutting projection 50 is a reinforcing fiber cutting means capable of cutting the reinforcing fiber by impinging on the surface layer portion 121 in the region immediately below the rotary tool in the resin member 12. For example, a so-called cutter, particularly a lattice cutter is used. Is done.

繊維切断用突起部50の全体形状は、短繊維化後の平均繊維長が所定の範囲内になるような形状であればよく、例えば、図7(A)に示すような一軸突起部501であってもよいし、または図7(B)に示すように二軸が互いに直行する二軸突起部502であってもよい。一軸突起部501を使用する場合は、繊維の配向度の高い樹脂材料を使用し、その配向方向に対して当該突起部の軸方向が直角をなすように突起部を当てるようにするのが好ましい。   The overall shape of the fiber cutting projection 50 may be any shape as long as the average fiber length after shortening is within a predetermined range. For example, the uniaxial projection 501 as shown in FIG. Alternatively, it may be a biaxial protrusion 502 in which two axes are orthogonal to each other as shown in FIG. In the case of using the uniaxial protrusion 501, it is preferable to use a resin material having a high degree of fiber orientation, and to apply the protrusion so that the axial direction of the protrusion is perpendicular to the orientation direction. .

突起部50のピッチ(例えば、図7(A)のx、図7(B)のx1およびx2)は通常、0.1〜1mmであり、好ましくは0.3〜0.8mmである。当該ピッチが狭いほど、短繊維化後の平均繊維長は短くなる。
突起部50の高さ(例えば、図7(A)のy、図7(B)のy1およびy2)は通常、0.3〜2mmであり、好ましくは0.5〜1mmである。
突起部50の頂角は、強化繊維を切断可能であれば特に限定されず、通常は30°以下である。
The pitch of the protrusions 50 (for example, x in FIG. 7A, x1 and x2 in FIG. 7B) is usually 0.1 to 1 mm, preferably 0.3 to 0.8 mm. The narrower the pitch, the shorter the average fiber length after shortening.
The height of the protrusion 50 (for example, y in FIG. 7A and y1 and y2 in FIG. 7B) is usually 0.3 to 2 mm, preferably 0.5 to 1 mm.
The apex angle of the protrusion 50 is not particularly limited as long as the reinforcing fiber can be cut, and is usually 30 ° or less.

突起部50は、金属部材11の樹脂部材側表面における少なくとも回転ツール直下領域に形成されればよい。   The protrusion 50 may be formed at least in the region immediately below the rotary tool on the resin member side surface of the metal member 11.

突起部50は、金属部材11と一体的に形成されてもよいし、または金属部材11とは別部材として形成されたものを、金属部材11の樹脂部材側表面における所定の領域に固定することにより形成されてもよい。   The protrusion 50 may be formed integrally with the metal member 11 or fixed as a separate member to the metal member 11 in a predetermined region on the surface of the metal member 11 on the resin member side. May be formed.

突起部50を金属部材11と一体的に形成する場合、当該突起部50は、いかなる方法により形成されてよく、例えば、所望形状に対応する型により金属部材11に対して型押しすることにより形成可能である。   When forming the protrusion 50 integrally with the metal member 11, the protrusion 50 may be formed by any method, for example, by pressing the metal member 11 with a mold corresponding to a desired shape. Is possible.

突起部50の構成材料としては、例えば、金属部材11と同様の構成金属が使用可能である。   As a constituent material of the protrusion 50, for example, a constituent metal similar to the metal member 11 can be used.

以上、各実施態様においては、回転ツールを金属部材の表面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, in each embodiment, the case where the metal member and the resin member are joined in a spot shape (point joining) without moving the rotary tool in the surface direction on the surface of the metal member has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly (line joining) while moving the rotary tool in the direction.

(3)接合体
本発明の接合方法により接合された金属部材11と樹脂部材12との接合体は、それらの接合境界面13における少なくとも回転ツール直下領域の外周領域において接合が達成されている。
(3) Bonded Body The bonded body of the metal member 11 and the resin member 12 bonded by the bonding method of the present invention has been bonded at least in the outer peripheral region of the bonding boundary surface 13 immediately below the rotary tool.

詳しくは第1実施態様における接合体は、接合境界面における回転ツール直下領域の外周領域のみにおいて接合が達成されている。
第2実施態様における接合体は、接合境界面における回転ツール直下領域およびその外周領域において接合が達成されている。
Specifically, in the joined body in the first embodiment, joining is achieved only in the outer peripheral region of the region immediately below the rotary tool on the joining boundary surface.
In the joined body in the second embodiment, the joining is achieved in the region immediately below the rotary tool and the outer peripheral region on the joining boundary surface.

これらのことは、樹脂部材12の金属部材側表面120において、溶融樹脂が固化してなる溶融固化域を確認すること、および金属部材において回転ツール直下部110の分離を確認することにより、検知できる。   These can be detected by confirming a melt-solidified region formed by solidification of the molten resin on the metal member-side surface 120 of the resin member 12 and confirming separation of the lower part 110 immediately below the rotary tool in the metal member. .

具体的には、接合体から金属部材11を強制的に剥離させると、例えば、図8に示すような、樹脂部材12の金属部材側表面120が観察できる。
例えば第2実施態様の接合体の場合、樹脂部材12の金属部材側表面120において、溶融固化域が回転ツール直下領域60(斜線領域)およびその外周領域61(格子領域)に形成されている。しかも金属部材11の回転ツール直下部110は分離されていない。このため、回転ツール直下領域60(斜線領域)およびその外周領域61のいずれの領域も接合に寄与していることが明らかである。
Specifically, when the metal member 11 is forcibly separated from the joined body, for example, the metal member side surface 120 of the resin member 12 as shown in FIG. 8 can be observed.
For example, in the case of the joined body of the second embodiment, on the metal member side surface 120 of the resin member 12, a melt-solidified region is formed in the region 60 (shaded region) directly below the rotating tool and the outer peripheral region 61 (lattice region). Moreover, the lower part 110 of the metal member 11 is not separated. For this reason, it is clear that both the region 60 (shaded region) directly below the rotating tool and the outer peripheral region 61 contribute to the joining.

また例えば第1実施態様の接合体の場合も、第2実施態様の接合体と同様に、樹脂部材12の金属部材側表面120において、溶融固化域が回転ツール直下領域60(斜線領域)およびその外周領域61(格子領域)に形成されている。しかし金属部材11の回転ツール直下部110は分離されている。このため、回転ツール直下領域60(斜線領域)の外周領域61のみが接合に寄与していることが明らかである。   Further, for example, in the case of the joined body of the first embodiment as well, in the same manner as the joined body of the second embodiment, on the metal member side surface 120 of the resin member 12, the melt-solidified region is the region 60 (shaded region) directly below the rotary tool It is formed in the outer peripheral area 61 (lattice area). However, the lower part 110 of the metal member 11 is separated. For this reason, it is clear that only the outer peripheral region 61 of the region 60 (shaded region) immediately below the rotating tool contributes to the joining.

溶融固化域60(斜線領域),61(格子領域)は、図8に示すように、接合時において、樹脂部材12の溶融および固化により形成された領域であって、樹脂部材12の金属部材側表面120における溶融が生じていない領域122に対し、溶融固化域の外周で目視により区別可能な段差(数ミクロンの段差)が存在する領域である。このような溶融固化域には金属部材における対応領域の表面が転写されるか、もしくは、溶融固化樹脂層内部で破断することにより、金属部材側表面へ溶融固化樹脂が全面、もしくは部分的に付着した状態となる。   As shown in FIG. 8, the melted and solidified regions 60 (hatched region) and 61 (lattice region) are regions formed by melting and solidifying the resin member 12 at the time of joining, and are on the metal member side of the resin member 12. This is a region where there is a step (a step of several microns) that can be visually discriminated on the outer periphery of the melt-solidified region with respect to the region 122 where the surface 120 is not melted. In such a melt-solidified region, the surface of the corresponding region in the metal member is transferred, or the melt-solidified resin adheres to the metal member side surface entirely or partially by breaking inside the melt-solidified resin layer. It will be in the state.

本発明の接合体は、溶融固化域(60,61)の直径をR(mm)、回転ツールの直径をD1(mm)としたとき、以下の関係を満たしている:
1<R/D1≦5;
好ましくは2≦R/D1≦5;
より好ましくは3≦R/D1≦5。
R/D1が小さすぎると、接合強度が十分ではない。
The joined body of the present invention satisfies the following relationship when the diameter of the melt-solidified region (60, 61) is R (mm) and the diameter of the rotary tool is D1 (mm):
1 <R / D1 ≦ 5;
Preferably 2 ≦ R / D1 ≦ 5;
More preferably, 3 ≦ R / D1 ≦ 5.
If R / D1 is too small, the bonding strength is not sufficient.

溶融固化域(60,61)における直径Rは、樹脂部材12の金属部材側表面120における溶融固化域の外周の段差に基づいて、容易に測定することができる。なお、当該直径Rは、溶融固化域(60,61)の最大寸法である。   The diameter R in the melt-solidified region (60, 61) can be easily measured based on the step on the outer periphery of the melt-solidified region on the metal member side surface 120 of the resin member 12. The diameter R is the maximum dimension of the melt-solidified region (60, 61).

本発明の方法により接合が達成された接合体においては、回転ツール直下領域60の外周領域61において短繊維化が達成されている。詳しくは、図8に示すように、樹脂部材12の金属部材側表面120におけるドーナツ型領域121Cにおいて、短繊維化が達成されている。ドーナツ型領域121Cとは、回転ツール直下領域60(直径D1(mm))と同心の少なくとも直径1.5×D1の円形領域62(破線)から、当該回転ツール直下領域60を除いた領域のことである。このようなドーナツ型領域121Cにおける表面から少なくとも0.1mm、好ましくは少なくとも0.5mm、より好ましくは少なくとも1mmの厚み(深さ)までの表層部で短繊維化が達成されていればよい。   In the joined body that has been joined by the method of the present invention, shortening of the fiber length is achieved in the outer peripheral region 61 of the region 60 directly below the rotary tool. Specifically, as shown in FIG. 8, shortening of fibers is achieved in the donut-shaped region 121 </ b> C on the metal member side surface 120 of the resin member 12. The donut-shaped region 121C is a region obtained by removing the region 60 directly below the rotary tool from the circular region 62 (broken line) having a diameter of at least 1.5 × D1 concentric with the region 60 directly below the rotary tool (diameter D1 (mm)). It is. It is sufficient that the shortening of the fiber is achieved in the surface layer portion having a thickness (depth) of at least 0.1 mm, preferably at least 0.5 mm, more preferably at least 1 mm from the surface in the donut-shaped region 121C.

短繊維化された強化繊維の平均繊維長L、すなわち少なくともドーナツ型領域121Cにおける上記厚みの表層部に含まれる強化繊維の平均繊維長L、は通常、1mm以下(0mmは含まない)である。 The average fiber length L A of the short fiberized reinforcing fibers, i.e. at least toroidal region 121C average fiber length of the reinforcing fibers contained in the surface layer portion of the thickness in L A, typically, 1 mm or less (0 mm is not included) is there.

(他の実施態様)
本発明においては、樹脂部材に含有される強化繊維の短繊維化を、接合のプロセスの一環として金属部材に接触する樹脂部材表面に対して、金属部材との接触前に予め行っても、スプリングバック層の発生を十分に防止することができる。短繊維化を、金属部材との接触前に予め行う場合において、短繊維化の方法としては、樹脂部材12における少なくとも回転ツール直下領域の表層部121に対してレーザーを照射するか、または格子状カッターを刺衝する方法が挙げられる。短繊維化が達成された樹脂部材12における回転ツール直下領域の表層部121においては、強化繊維は上記平均繊維長Lを有している。
(Other embodiments)
In the present invention, even if the shortening of the reinforcing fiber contained in the resin member is performed in advance before the contact with the metal member on the surface of the resin member in contact with the metal member as part of the joining process, the spring The generation of the back layer can be sufficiently prevented. In the case where the shortening is performed in advance before the contact with the metal member, as a method for shortening the fiber, at least the surface layer portion 121 in the region immediately below the rotary tool in the resin member 12 is irradiated with a laser or in a lattice shape. There is a method of piercing the cutter. In the surface layer portion 121 of the rotary tool the region immediately below the resin member 12 that fiber shortening is achieved, the reinforcing fibers have the average fiber length L A.

[樹脂部材]
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材において炭素繊維の平均繊維長は3mm、平均繊維径は7μmであった。樹脂部材の融点Tmは170℃であった。樹脂部材において炭素繊維はランダムに配向していた。
[Resin member]
A resin member 12 having dimensions of 100 mm in length, 30 mm in width, and 3 mm in thickness was produced by an injection molding method using polypropylene pellets containing 40% by weight of carbon fibers (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.). In the resin member, the average fiber length of the carbon fibers was 3 mm, and the average fiber diameter was 7 μm. The melting point Tm of the resin member was 170 ° C. In the resin member, the carbon fibers were randomly oriented.

[金属部材]
金属部材Xとしては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)の樹脂部材側表面に図7(A)に示すような一軸突起部501を形成したものを用いた。突起部501の形成領域は、金属部材の樹脂部材側表面における回転ツール直下領域であった。突起部501のピッチxは1mm、高さyは0.5mm、頂角は20°であった。突起部501は、所定形状に対応する型により金属部材11に対して型押しすることにより形成した。
[Metal members]
As the metal member X, a 6000 series aluminum alloy flat plate member (thickness 1.2 mm) having a uniaxial protrusion 501 as shown in FIG. The formation area of the protrusion 501 was an area directly below the rotary tool on the resin member side surface of the metal member. The pitch x of the protrusions 501 was 1 mm, the height y was 0.5 mm, and the apex angle was 20 °. The protruding portion 501 was formed by pressing the metal member 11 with a mold corresponding to a predetermined shape.

金属部材Yとしては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)の樹脂部材側表面に図7(B)に示すような二軸突起部502を形成したものを用いた。突起部502の形成領域は、金属部材の樹脂部材側表面における回転ツール直下領域であった。突起部502のピッチx1およびx2は1mm、高さy1およびy2は0.5mm、頂角は20°であった。突起部502は、突起部501と同様の方法により形成した。   As the metal member Y, a flat member (thickness 1.2 mm) made of a 6000 series aluminum alloy having a biaxial protrusion 502 as shown in FIG. . The formation region of the protrusion 502 was a region directly below the rotary tool on the resin member side surface of the metal member. The pitches x1 and x2 of the protrusions 502 were 1 mm, the heights y1 and y2 were 0.5 mm, and the apex angle was 20 °. The protrusion 502 was formed by the same method as the protrusion 501.

金属部材Zとしては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm、突起部なし)をそのまま用いた。   As the metal member Z, a flat plate member (thickness: 1.2 mm, no protrusion) made of a 6000 series aluminum alloy was used as it was.

[回転ツール]
回転ツールとしては、図2の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
[Rotation tool]
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 2 of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

[実施例1](第1実施態様)
金属部材11として金属部材Zを用いた。
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
[Example 1] (First embodiment)
A metal member Z was used as the metal member 11.
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず回転ツールを回転させつつ、位置制御方式により、金属部材に押し込んで、金属部材内部に進入させた。詳しくは、図4に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との界面13まで進入させた(押込み撹拌工程)。回転ツールの回転数、挿入量および挿入速度は表に示す通りであった。
Second step:
First, while rotating the rotary tool, it was pushed into the metal member by the position control method to enter the metal member. Specifically, as shown in FIG. 4, the rotary tool 16 was pushed into the metal member 11 to enter the interface 13 between the metal member 11 and the resin member 12 (indentation stirring step). The rotation number, insertion amount and insertion speed of the rotating tool were as shown in the table.

次いで、位置制御方式により、図4に示すように、回転ツール16を界面13に達する深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程)。回転数、継続時間(撹拌時間)は表に示す通りであった。   Next, as shown in FIG. 4, the rotational operation of the rotary tool 16 was continued at the position where the rotary tool 16 was advanced to the depth reaching the interface 13 by the position control method (stirring maintaining step). The number of rotations and duration (stirring time) were as shown in the table.

次いで、回転ツール16を金属部材11から離間させ、放置冷却を行った。   Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool.

(接合強度)
図9に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎◎;5.0≦S;
◎;4.0≦S<5.0;
○;3.0≦S<4.0(実用上問題なし);
×;S<3.0(実用上問題あり)。
(Joint strength)
As shown in FIG. 9, the joined body of the metal member 11 and the resin member 12 was placed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
◎◎; 5.0 ≦ S;
A; 4.0 ≦ S <5.0;
○: 3.0 ≦ S <4.0 (no problem in practical use);
X: S <3.0 (practical problem).

(溶融固化域)
溶融固化域の直径Rを前記した方法により測定し、R/D1を算出した。
(Melting zone)
The diameter R of the melt-solidified region was measured by the method described above, and R / D1 was calculated.

(スプリングバック層)
スプリングバック層の厚みを以下の方法により測定した。
金属部材と樹脂部材が接合されたままの状態で、測定したい部位の板厚方向の断面観察により行う。スプリングバック層は空気を取り込み発泡した状態であるため、目視によりその他の部位との差異は容易に確認できる。この時、スプリングバックが生じずに溶融後固化した樹脂層は、段差を有すること以外、非溶融樹脂層と同様である。
具体的には、接合体の断面画像における回転ツール直下領域において、スプリングバック層の最大厚みを求めた。
(Springback layer)
The thickness of the springback layer was measured by the following method.
In a state where the metal member and the resin member are joined, the cross section is observed in the plate thickness direction of the part to be measured. Since the springback layer is in a state where air is taken in and foamed, the difference from other parts can be easily confirmed by visual observation. At this time, the resin layer solidified after melting without springback is the same as the non-molten resin layer except that it has a step.
Specifically, the maximum thickness of the springback layer was determined in the region immediately below the rotary tool in the cross-sectional image of the joined body.

(強化繊維)
樹脂部材12から金属部材11を強制的に剥ぎ取った。図8に示すように、樹脂部材12の金属部材側表面120における回転ツール直下領域60と同心の直径15mmの円形領域62(破線)から、当該回転ツール直下領域60を除いたドーナツ型領域121Cにおいて、任意の10箇所で深さ0.1mmまでの試料を削り取り、秤量した(w1;mg)。次いで、試料を、電気炉等により、熱可塑性ポリマー(樹脂成分)の分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを濾別した。最後に、濾別した強化繊維を秤量し(w2;mg)、以下の式により含有率を算出した:
強化繊維の含有率(重量%)=(w2/w1)×100
強化繊維の平均繊維長は、含有量測定の際に得られた強化繊維を撮影した写真より、任意の100本の強化繊維の長さを直接的に測定することにより求めた。
(Reinforced fiber)
The metal member 11 was forcibly removed from the resin member 12. As shown in FIG. 8, in a donut-shaped region 121 </ b> C excluding the region 60 directly below the rotating tool 60 from a circular region 62 (broken line) having a diameter of 15 mm concentric with the region 60 directly below the rotating tool 60 on the metal member side surface 120 of the resin member 12. Then, samples up to a depth of 0.1 mm were scraped off at arbitrary 10 locations and weighed (w1; mg). Next, the sample was heated by an electric furnace or the like at a temperature not lower than the decomposition temperature of the thermoplastic polymer (resin component) and not higher than the decomposition temperature of the reinforcing fiber, thereby removing the thermoplastic polymer and filtering out only the reinforcing fiber. Finally, the filtered reinforcing fibers were weighed (w2; mg) and the content was calculated according to the following formula:
Reinforcing fiber content (% by weight) = (w2 / w1) × 100
The average fiber length of the reinforcing fibers was determined by directly measuring the length of any 100 reinforcing fibers from a photograph of the reinforcing fibers obtained at the time of content measurement.

[実施例2および比較例1〜2]
接合条件を表に記載のように変更したこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合体の整合およびその評価を行った。
実施例2は、第1実施態様に相当する。
[Example 2 and Comparative Examples 1-2]
Except that the joining conditions were changed as shown in the table, the joining of the resin member and the metal member was matched and evaluated by the same method as in Example 1.
Example 2 corresponds to the first embodiment.

[実施例3(参考例)](第2実施態様)
金属部材11として金属部材Xを用いた。
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
[Example 3 (Reference Example) ] (Second Embodiment)
A metal member X was used as the metal member 11.
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず回転ツールを回転させつつ、位置制御方式により、金属部材に押し込んで、金属部材内部に進入させた。詳しくは、図5に示すように、回転ツール16による初期押圧で金属部材11の繊維切断用突起部50を樹脂部材12に刺衝した。その後、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との界面13まで進入させた(押込み撹拌工程)。回転ツールの回転数、挿入量および進入速度は表に示す通りであった。
Second step:
First, while rotating the rotary tool, it was pushed into the metal member by the position control method to enter the metal member. Specifically, as shown in FIG. 5, the fiber cutting projection 50 of the metal member 11 was stuck to the resin member 12 by the initial pressing with the rotary tool 16. Thereafter, as shown in FIG. 6, the rotary tool 16 was pushed into the metal member 11 to enter the interface 13 between the metal member 11 and the resin member 12 (indentation stirring step). The number of rotations, the amount of insertion, and the approach speed of the rotating tool were as shown in the table.

次いで、位置制御方式により、図6に示すように、回転ツール16を界面13に達する深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程)。回転数、継続時間(撹拌時間)は表に示す通りであった。   Next, as shown in FIG. 6, the rotational operation of the rotary tool 16 was continued at the position where the rotary tool 16 was advanced to the depth reaching the interface 13 by the position control method (stirring maintaining step). The number of rotations and duration (stirring time) were as shown in the table.

次いで、回転ツール16を金属部材11から離間させ、放置冷却を行った。   Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool.

実施例1と同様の方法により、樹脂部材と金属部材との接合体の評価を行った。   Evaluation of the joined body of the resin member and the metal member was performed in the same manner as in Example 1.

[実施例4(参考例)](第2実施態様)
接合条件を表に記載のように変更したこと以外、実施例2と同様の方法により、樹脂部材と金属部材との接合体の整合およびその評価を行った。
[Example 4 (Reference Example) ] (Second Embodiment)
Except that the joining conditions were changed as described in the table, matching and evaluation of the joined body of the resin member and the metal member were performed in the same manner as in Example 2.

Figure 0006314935
Figure 0006314935

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
P:押圧領域(押圧予定領域)
111:押圧領域(押圧後)
121:樹脂部材における回転ツール直下領域の表層部
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 12: Resin member 13: Joining interface between metal member and resin member 16: Rotating tool 17: Receiving tool 100: Jig for measuring joint strength 110: Immediately below the rotating tool of the metal member P: Pressing area (Pressing scheduled area)
111: Pressing area (after pressing)
121: Surface layer portion of region directly under rotating tool in resin member

Claims (10)

金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記接合中、前記押圧部材を回転させながら金属部材に押し込んで、金属部材と樹脂部材との界面まで進入させ、樹脂部材表面を加熱および撹拌することにより、前記強化繊維の短繊維化を行うことを特徴とする金属部材と樹脂部材との接合方法。
The metal member and the resin member containing the reinforcing fiber are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a hot-pressure joining method,
During the joining, the reinforcing member is shortened by pressing into the metal member while rotating the pressing member, entering the interface between the metal member and the resin member, and heating and stirring the surface of the resin member. A joining method of a metal member and a resin member characterized by the above.
前記押圧部材に起因した剪断力により、前記短繊維化を行う、請求項1に記載の金属部材と樹脂部材との接合方法。   The method for joining a metal member and a resin member according to claim 1, wherein the shortening is performed by a shearing force caused by the pressing member. 前記押圧部材の回転力および/または押圧力に起因した剪断力により、前記短繊維化を行う、請求項1または2に記載の金属部材と樹脂部材との接合方法。   The joining method of the metal member and resin member of Claim 1 or 2 which performs the said short fiber by the shear force resulting from the rotational force and / or pressing force of the said pressing member. 前記金属部材が樹脂部材側表面に繊維切断用突起部を有し、押圧部材による初期押圧で前記金属部材の繊維切断用突起部を樹脂部材に刺衝することによっても、前記短繊維化を行う、請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合方法。 Wherein the metal member has a fiber cutting projections on the resin member surface, also it's a fiber cutting projections of the metal member in the initial pressing of the pressing member to stab the resin member, the short fibers The joining method of the metal member and resin member in any one of Claims 1-3 which performs formation. 前記樹脂部材の金属部材側表面における少なくとも押圧部材直下領域の表層部において前記短繊維化を行う、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The joining method of the metal member and resin member in any one of Claims 1-4 which performs the said short fiber in the surface layer part of the area | region directly under a press member in the metal member side surface of the said resin member. 前記熱圧式接合方法が、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法である請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。
The hot-pressure bonding method is
A first step of superimposing the metal member and the resin member; and, while rotating the rotary tool as the pressing member, pressing the metal member to generate frictional heat, and softening and melting the resin member by this frictional heat, The method for joining a metal member and a resin member according to any one of claims 1 to 5 , which is a friction stir welding method including a second step of solidifying and joining the metal member and the resin member.
前記第2ステップが、
前記回転ツールを金属部材に押し込んで、少なくとも金属部材内部に進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程
を含み、
前記押込み撹拌工程または前記撹拌維持工程の一方または両方において前記短繊維化を行う、請求項に記載の金属部材と樹脂部材との接合方法。
The second step includes
A pushing and stirring step of pushing the rotating tool into the metal member and entering at least the inside of the metal member; and an agitation maintaining step of continuing the rotating operation of the rotating tool at the position where the rotating tool is entered in the pushing and stirring step. ,
The joining method of the metal member and resin member of Claim 6 which performs the said short fiber in one or both of the said pushing stirring process or the said stirring maintenance process.
前記短繊維化された強化繊維の平均繊維長Lが1mm以下である、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The average fiber length L A of the short fiberized reinforcing fibers is 1mm or less, method of joining the metal member and the resin member according to any one of claims 1-7. 前記短繊維化前において強化繊維の平均繊維長Lが1mm超50mm以下である、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The average fiber length L B of the reinforcing fiber before fiber shortening is 1mm super 50mm or less, method of joining the metal member and the resin member according to any one of claims 1-8. 前記樹脂部材が該樹脂部材全量に対して10〜50重量%の割合で前記強化繊維を含有する、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The resin member contains the reinforcing fiber in a proportion of 10 to 50% by weight relative to the resin member the total amount, method of joining the metal member and the resin member according to any one of claims 1-9.
JP2015157427A 2015-08-07 2015-08-07 Method of joining metal member and resin member Expired - Fee Related JP6314935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157427A JP6314935B2 (en) 2015-08-07 2015-08-07 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157427A JP6314935B2 (en) 2015-08-07 2015-08-07 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2017035808A JP2017035808A (en) 2017-02-16
JP6314935B2 true JP6314935B2 (en) 2018-04-25

Family

ID=58048475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157427A Expired - Fee Related JP6314935B2 (en) 2015-08-07 2015-08-07 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6314935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433756B (en) * 2022-08-30 2024-04-09 山东新华制药股份有限公司 Preparation method of prednisolone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2383776T3 (en) * 2009-12-03 2012-06-26 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining metal and plastic parts
JP6098526B2 (en) * 2014-01-14 2017-03-22 マツダ株式会社 Method of joining metal member and resin member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433756B (en) * 2022-08-30 2024-04-09 山东新华制药股份有限公司 Preparation method of prednisolone

Also Published As

Publication number Publication date
JP2017035808A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098527B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6314935B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6098565B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees