JP6614204B2 - Method of joining metal member and resin member and metal member or resin member used in the method - Google Patents

Method of joining metal member and resin member and metal member or resin member used in the method Download PDF

Info

Publication number
JP6614204B2
JP6614204B2 JP2017116473A JP2017116473A JP6614204B2 JP 6614204 B2 JP6614204 B2 JP 6614204B2 JP 2017116473 A JP2017116473 A JP 2017116473A JP 2017116473 A JP2017116473 A JP 2017116473A JP 6614204 B2 JP6614204 B2 JP 6614204B2
Authority
JP
Japan
Prior art keywords
metal member
resin
resin member
convex portion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017116473A
Other languages
Japanese (ja)
Other versions
JP2019001029A (en
Inventor
勝也 西口
耕二郎 田中
泰博 森田
聡子 島田
幸弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017116473A priority Critical patent/JP6614204B2/en
Publication of JP2019001029A publication Critical patent/JP2019001029A/en
Application granted granted Critical
Publication of JP6614204B2 publication Critical patent/JP6614204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材に関する。   The present invention relates to a method for joining a metal member and a resin member, and a metal member or a resin member used in the method.

従来より、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に軽量化に留まらず、接合部材の高強度化および高剛性化、ならびに生産性の向上を実現させる観点からも重要である。   Conventionally, weight reduction has been demanded in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to reduce the thickness of steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. In this field, the development of joining technology for metal members and resin members is important not only from the viewpoint of weight reduction, but also from the viewpoint of realizing higher strength and higher rigidity of the joining member and improved productivity. .

これまで、金属部材と樹脂部材との接合方法として、摩擦撹拌接合(FSW:friction stir welding)方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等のような、加圧しながら加熱を行う熱圧式接合方法が知られている(例えば、特許文献1、2)。   Up to now, as a joining method between a metal member and a resin member, a friction stir welding (FSW) method, a resistance heating joining method (electric heating joining method), an induction heating joining method, an ultrasonic heating joining method, etc. In addition, a hot-pressure bonding method in which heating is performed while applying pressure is known (for example, Patent Documents 1 and 2).

一方、熱圧式接合方法において、樹脂部材または金属部材の少なくとも一方に、溶融樹脂を流入させるための溜まり溝を形成する技術が開示されている(特許文献3)。   On the other hand, in the hot-pressure bonding method, a technique for forming a reservoir groove for allowing molten resin to flow into at least one of a resin member or a metal member is disclosed (Patent Document 3).

特開2008−023583号公報JP 2008-023583 A 特開2011−088197号公報JP 2011-088197 A 特開2015−131444号公報JP-A-2015-131444

本発明の発明者等は、従来の熱圧式接合方法による金属部材と樹脂部材との接合に際し、両者間に接着剤およびシール材等のような第3成分が介在すると、十分な接合強度を確保することが困難であることを見い出した。   The inventors of the present invention ensure sufficient bonding strength when a third component such as an adhesive and a sealing material is interposed between the metal member and the resin member by the conventional hot-pressure bonding method. I found it difficult to do.

例えば、摩擦撹拌接合方法においては、図7Aに示すように、金属部材211と、接着層203を有する樹脂部材212とを重ね合わせ、回転ツール216を金属部材211に押し込む。次いで、図7Bに示すように、回転ツール216をさらに押し込み、その回転動作を継続する。その結果、十分な接合強度が得られなかった。金属部材211と樹脂部材212との間に接着層203由来の接着剤が残存し、両者の接合を阻害するため、十分な接合強度が得られないものと考えられる。   For example, in the friction stir welding method, as shown in FIG. 7A, the metal member 211 and the resin member 212 having the adhesive layer 203 are overlapped, and the rotary tool 216 is pushed into the metal member 211. Next, as shown in FIG. 7B, the rotation tool 216 is further pushed in, and the rotation operation is continued. As a result, sufficient bonding strength was not obtained. Since the adhesive derived from the adhesive layer 203 remains between the metal member 211 and the resin member 212 and inhibits the bonding between them, it is considered that sufficient bonding strength cannot be obtained.

摩擦撹拌接合方法以外の他の熱圧式接合方法においても、金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させると、十分な接合強度が得られなかった。   Also in other hot-pressure bonding methods other than the friction stir welding method, if the metal member and the resin member are overlapped and an adhesive is interposed between them, sufficient bonding strength cannot be obtained.

本発明は、金属部材と樹脂部材との間に接着剤が介在する場合であっても、より良好な接合強度が得られる金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材を提供することを目的とする。   The present invention relates to a method for joining a metal member and a resin member, which can obtain better joint strength even when an adhesive is interposed between the metal member and the resin member, and the metal member used in the method. Alternatively, an object is to provide a resin member.

本発明は、
金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させた状態で、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
金属部材または樹脂部材の少なくとも一方の部材が他方の部材との対向面に凸状部を有し、該凸状部と他方の部材との間で、樹脂部材を溶融させることにより、溶融した樹脂を、平面視において前記凸状部からその外周側に向けて、前記接着剤と共に流動させる、金属部材と樹脂部材との接合方法
に関する。
The present invention
The metal member and the resin member are overlapped, and with the adhesive interposed therebetween, the resin member is melted by applying pressure and heat from the metal member side to join the metal member and the resin member. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
At least one member of the metal member or the resin member has a convex portion on the surface facing the other member, and the molten resin is melted by melting the resin member between the convex portion and the other member. The present invention relates to a method for joining a metal member and a resin member, in which, as viewed from above, the fluid flows together with the adhesive from the convex portion toward the outer periphery thereof.

本発明はまた、上記接合方法において使用される金属部材または樹脂部材に関する。   The present invention also relates to a metal member or a resin member used in the joining method.

本発明の接合方法によれば、あらゆる熱圧式接合方法において、金属部材と樹脂部材との間に接着剤が介在する場合であっても、より良好な接合強度を得ることができる。   According to the bonding method of the present invention, in any hot-pressure bonding method, even when an adhesive is interposed between the metal member and the resin member, better bonding strength can be obtained.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の一実施態様に係る接合方法における予熱工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the preheating process in the joining method which concerns on one embodiment of this invention. 本発明の一実施態様に係る接合方法における押込み撹拌工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process in the joining method which concerns on one embodiment of this invention. 本発明の一実施態様に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the pushing stirring process, stirring maintenance process, and holding process in the joining method which concerns on one embodiment of this invention. 本発明の一実施態様に係る接合方法における予熱工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the preheating process in the joining method which concerns on one embodiment of this invention. 本発明の一実施態様に係る接合方法における押込み撹拌工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process in the joining method which concerns on one embodiment of this invention. 本発明の一実施態様に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the pushing stirring process, stirring maintenance process, and holding process in the joining method which concerns on one embodiment of this invention. 上図は、図1に示される樹脂部材の概略上面見取り図であり、下図は、上図のM−M断面を矢印方向で見たときの概略断面図である。The upper figure is a schematic top view of the resin member shown in FIG. 1, and the lower figure is a schematic sectional view when the MM section of the upper figure is viewed in the direction of the arrow. 上図は、本発明の接合方法に使用される樹脂部材の一例の概略上面見取り図であり、下図は、上図のM−M断面を矢印方向で見たときの概略断面図である。The upper figure is a schematic top view of an example of a resin member used in the bonding method of the present invention, and the lower figure is a schematic sectional view when the MM section of the upper figure is viewed in the direction of the arrow. 上図は、本発明の接合方法に使用される樹脂部材の一例の概略上面見取り図であり、下図は、上図のM−M断面を矢印方向で見たときの概略断面図である。The upper figure is a schematic top view of an example of a resin member used in the bonding method of the present invention, and the lower figure is a schematic sectional view when the MM section of the upper figure is viewed in the direction of the arrow. 上図は、本発明の接合方法に使用される樹脂部材の一例の概略上面見取り図であり、下図は、上図のM−M断面を矢印方向で見たときの概略断面図である。The upper figure is a schematic top view of an example of a resin member used in the bonding method of the present invention, and the lower figure is a schematic sectional view when the MM section of the upper figure is viewed in the direction of the arrow. 本発明の接合方法に使用される回転ツールの一例の先端部近傍の拡大図である。It is an enlarged view near the front-end | tip part of an example of the rotary tool used for the joining method of this invention. 本発明の一実施態様に係る接合方法で得られた接合体から金属部材を強制的に剥離させて得られた樹脂部材の概略平面図である。It is a schematic plan view of the resin member obtained by forcibly peeling the metal member from the joined body obtained by the joining method according to one embodiment of the present invention. 従来技術における金属部材と樹脂部材との接合方法における予熱工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the preheating process in the joining method of the metal member and resin member in a prior art. 従来技術における金属部材と樹脂部材との接合状態における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the pushing stirring process in the joining state of the metal member and resin member in a prior art, a stirring maintenance process, and a holding process.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、圧力および熱を、金属部材側から付与することにより、好ましくは金属部材側から局所的に付与することにより、樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法に関する。本発明の接合方法において採用される接合方式は、加圧しながら加熱を行う方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等であってもよい。中でも、好ましくは摩擦撹拌接合方法が採用される。   The bonding method of the present invention softens the resin member by superimposing the metal member and the resin member and applying pressure and heat from the metal member side, preferably locally from the metal member side. The present invention relates to a hot-pressure joining method for joining a metal member and a resin member. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of heating while applying pressure. For example, a friction stir welding method, a resistance heating joining method (electric heating joining method), induction A heat bonding method, an ultrasonic heat bonding method, or the like may be used. Among these, the friction stir welding method is preferably employed.

摩擦撹拌接合方法においては、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材として回転ツールを回転させつつ金属部材に対して押圧することにより発生する摩擦熱を利用して、金属部材と樹脂部材との接合を行う。
抵抗加熱接合方法においては、電極(押圧部材)により金属部材側から加圧しながら、金属部材に電流を流すことにより生じる熱を利用して、金属部材と樹脂部材との接合を行う)。
誘導加熱接合方法とは、押圧部材により金属部材側から加圧しながら、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して。金属部材と樹脂部材との接合を行う。
超音波加熱接合方法とは、押圧部材により金属部材側から加圧しながら、超音波の印加により板間の微小すべりにより生じる摩擦熱を利用して、金属部材と樹脂部材を行う。
In the friction stir welding method, as will be described in detail later, frictional heat generated by overlapping a metal member and a resin member and pressing the metal member while rotating a rotary tool as a pressing member is used. Then, the metal member and the resin member are joined.
In the resistance heating joining method, the metal member and the resin member are joined using heat generated by passing an electric current through the metal member while being pressed from the metal member side by an electrode (pressing member).
The induction heating joining method is a method in which an induction current is generated in a metal member by electromagnetic induction while pressing from the metal member side by a pressing member, and heat generated by the current is used. The metal member and the resin member are joined.
In the ultrasonic heating joining method, the metal member and the resin member are performed by using frictional heat generated by micro-slip between the plates by applying ultrasonic waves while applying pressure from the metal member side by the pressing member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図1〜図6を用いて説明する。以下の摩擦撹拌接合方法に関する説明を参照すれば、当該摩擦撹拌接合方法における作用および効果と同様の作用および効果が、他の熱圧式接合方法においても得られることは明らかである。例えば、他の熱圧式接合方法においても、金属部材または樹脂部材の少なくとも一方の部材が他方の部材との対向面に凸状部を有し、該凸状部と他方の部材との間で、樹脂部材を溶融させる。これにより、溶融した樹脂を、平面視において前記凸状部からその外周側に向けて、前記接着剤と共に流動させることができる。その結果、より良好な接合強度が得られる。図1〜図6において、共通する符号は、特記しない限り、同じ部材、部位、寸法または領域を示すものとする。平面視とは、押圧部材(例えば後述の回転ツール)の軸方向について上方から見たときの平面図のことである。断面視とは、押圧部材(例えば後述の回転ツール)の軸方向について平行な断面図のことである。   Hereinafter, the joining method of the present invention employing the friction stir welding method will be described with reference to FIGS. With reference to the following description of the friction stir welding method, it is apparent that the same actions and effects as those in the friction stir welding method can be obtained in other hot-pressure welding methods. For example, also in other hot-pressure bonding methods, at least one member of a metal member or a resin member has a convex portion on the surface facing the other member, and between the convex portion and the other member, The resin member is melted. Thereby, molten resin can be made to flow with the adhesive toward the outer peripheral side from the convex part in a plan view. As a result, better bonding strength can be obtained. 1 to 6, common reference numerals indicate the same members, parts, dimensions, or regions unless otherwise specified. The plan view is a plan view when viewed from above in the axial direction of a pressing member (for example, a rotating tool described later). The cross-sectional view is a cross-sectional view parallel to the axial direction of a pressing member (for example, a rotating tool described later).

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図5参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、樹脂部材12に伝導する。
[Method of joining metal member and resin member by friction stir welding method]
FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member. As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 5), the metal member 11 is pressed downward in the pressing region P (scheduled pressing region) as indicated by an arrow A2. Frictional heat is generated by the pressing of the rotary tool 16 and is conducted to the resin member 12.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

本発明において金属部材11または樹脂部材12の少なくとも一方は他方の部材との対向面に凸状部を有している。
例えば、図2Aに示すように、樹脂部材12は金属部材11との対向面120に凸状部122を有し、かつ金属部材11は樹脂部材12との対向面110に凸状部を有さず、平面形状を有していてもよい(以下、「態様1」という)。
また例えば、図3Aに示すように、金属部材11は樹脂部材12との対向面110に凸状部112を有し、かつ樹脂部材12は金属部材11との対向面120に凸状部を有さず、平面形状を有していてもよい(以下、「態様2」という)。
また例えば、樹脂部材12は図2Aに示すように金属部材11との対向面120に凸状部122を有し、かつ金属部材11は図3Aに示すように樹脂部材12との対向面110に凸状部112を有してもよい(以下、「態様3」という)。
In the present invention, at least one of the metal member 11 or the resin member 12 has a convex portion on the surface facing the other member.
For example, as shown in FIG. 2A, the resin member 12 has a convex portion 122 on the surface 120 facing the metal member 11, and the metal member 11 has a convex portion on the surface 110 facing the resin member 12. Instead, it may have a planar shape (hereinafter referred to as “mode 1”).
For example, as shown in FIG. 3A, the metal member 11 has a convex portion 112 on the surface 110 facing the resin member 12, and the resin member 12 has a convex portion on the surface 120 facing the metal member 11. Instead, it may have a planar shape (hereinafter referred to as “aspect 2”).
Further, for example, the resin member 12 has a convex portion 122 on the surface 120 facing the metal member 11 as shown in FIG. 2A, and the metal member 11 is formed on the surface 110 facing the resin member 12 as shown in FIG. 3A. The convex portion 112 may be included (hereinafter referred to as “mode 3”).

本発明においては金属部材11または樹脂部材12の少なくとも一方が凸状部を有するので、当該凸状部と他方の部材との間で、圧力および熱が集中する。このため、樹脂部材が溶融すると、溶融した樹脂が平面視において凸状部からその外周側に向けて流動する。溶融した樹脂が平面視において凸状部からその外周側に向けて流動するとは、回転ツール16の軸方向から観察したとき、溶融樹脂が凸状部を中心として放射状に(すなわち、あらゆる半径方向に)移動するという意味である。このとき、溶融樹脂の流動速度(移動速度)は、凸状部が存在しない場合と比較して、より速い。このことは、凸状部の存在により、溶融樹脂の量が多くなること、および流動方向が半径方向に決定付けられ易くなることに基づくものと考えられる。   In the present invention, since at least one of the metal member 11 or the resin member 12 has a convex portion, pressure and heat are concentrated between the convex portion and the other member. For this reason, when the resin member is melted, the melted resin flows from the convex portion toward the outer peripheral side in a plan view. The fact that the molten resin flows from the convex portion toward the outer peripheral side in a plan view means that when the molten resin is observed from the axial direction of the rotary tool 16, the molten resin is radially centered on the convex portion (that is, in any radial direction). ) Means moving. At this time, the flow rate (moving speed) of the molten resin is faster than in the case where there is no convex portion. This is considered to be based on the fact that the amount of the molten resin is increased due to the presence of the convex portion and that the flow direction is easily determined in the radial direction.

すなわち、例えば、態様1においては、図2A〜図2Cに示すように、凸状部122はその頂部1220から溶融され、すなわち樹脂部材の溶融開始点は局所的となるため、流動方向はその頂部1220からの半径方向に決定付けられ易くなる。しかも凸状部の分だけ溶融樹脂の量は多くなる。これらの結果、樹脂部材12が凸状部122を有する場合において、溶融樹脂の流動速度は、凸状部が存在しない場合と比較して、より速くなる。   That is, for example, in the first aspect, as shown in FIGS. 2A to 2C, the convex portion 122 is melted from the top portion 1220, that is, the melting start point of the resin member is local, and the flow direction is the top portion. It becomes easy to determine in the radial direction from 1220. In addition, the amount of molten resin increases by the amount corresponding to the convex portion. As a result, in the case where the resin member 12 has the convex portion 122, the flow rate of the molten resin is faster than in the case where the convex portion does not exist.

また例えば、態様2においては、図3A〜図3Cに示すように、樹脂部材12における凸状部頂部の接近部1250から溶融され、すなわち樹脂部材の溶融開始点は局所的となるため、流動方向は当該近傍部からの半径方向に決定付けられ易くなる。しかも凸状部により押し退けられる溶融樹脂の分だけ、溶融樹脂の量は多くなる。これらの結果、金属部材11が凸状部112を有する場合において、溶融樹脂の流動速度は、凸状部が存在しない場合と比較して、より速くなる。樹脂部材12における凸状部頂部の接近部1250とは、樹脂部材12において金属部材11の凸状部112が最接近している部分という意味である。   Further, for example, in the second aspect, as shown in FIGS. 3A to 3C, the resin member 12 is melted from the approaching portion 1250 at the top of the convex portion, that is, the melting start point of the resin member is local, and thus the flow direction Is easily determined in the radial direction from the vicinity. Moreover, the amount of the molten resin is increased by the amount of the molten resin pushed away by the convex portion. As a result, in the case where the metal member 11 has the convex portion 112, the flow rate of the molten resin is faster than in the case where the convex portion does not exist. The approaching portion 1250 at the top of the convex portion of the resin member 12 means a portion of the resin member 12 where the convex portion 112 of the metal member 11 is closest.

例えば、態様3においては、上記した態様1および態様2の相乗効果により、溶融樹脂の流動速度は、凸状部が存在しない場合と比較して、より一層、速くなる。   For example, in aspect 3, due to the synergistic effect of aspect 1 and aspect 2 described above, the flow rate of the molten resin is further increased compared to the case where no convex portion is present.

このように溶融樹脂の流動速度がより速くなると、金属部材11と樹脂部材12との間に介在する接着剤3は、凸状部が存在しない場合と比較して、当該溶融樹脂の流れに沿って、溶融樹脂とともに放射状に流動および移動し易くなる。この結果、金属部材と樹脂部材との間の接合領域に接着剤が残存し難くなり、より良好な接合強度が得られるようになるものと考えられる。なお、図2Aにおいて、接着剤3は、接着層として、樹脂部材12の平面部だけでなく、凸状部122(特にその頂部)にも形成されているが、回転ツール16による圧力とその後の樹脂の溶融とにより、容易に破れ、溶融樹脂の移動の起点となる。図3Aにおいて、接着剤3は、接着層として、樹脂部材12の平面部に形成され、樹脂部材12における金属部材11の凸状部112との接触部にも形成されているが、回転ツール16による圧力とその後の樹脂の溶融とにより、容易に破れ、溶融樹脂の移動の起点となる。   When the flow rate of the molten resin becomes higher in this way, the adhesive 3 interposed between the metal member 11 and the resin member 12 follows the flow of the molten resin as compared with the case where no convex portion exists. Therefore, it becomes easy to flow and move radially together with the molten resin. As a result, it is considered that the adhesive hardly remains in the bonding region between the metal member and the resin member, and better bonding strength can be obtained. In FIG. 2A, the adhesive 3 is formed not only on the flat surface portion of the resin member 12 but also on the convex portion 122 (particularly the top portion) as an adhesive layer. Due to the melting of the resin, it is easily broken and becomes the starting point for the movement of the molten resin. In FIG. 3A, the adhesive 3 is formed as an adhesive layer on the planar portion of the resin member 12 and is also formed on the contact portion of the resin member 12 with the convex portion 112 of the metal member 11. And the subsequent melting of the resin, it is easily broken and becomes the starting point for the movement of the molten resin.

溶融樹脂流動の高速化による接合強度のさらなる向上の観点から、少なくとも樹脂部材12が凸状部を有することが好ましい。当該好ましい実施態様においては、上記した態様1および態様3が包含される。同様の観点と、製造コストの観点とのバランスから、より好ましくは態様1である。   From the viewpoint of further improving the bonding strength by increasing the speed of the molten resin flow, at least the resin member 12 preferably has a convex portion. In the preferable embodiment, the above-described aspects 1 and 3 are included. In view of the balance between the same viewpoint and the viewpoint of manufacturing cost, the first aspect is more preferable.

接着剤3は、図2A〜図2Cおよび図3A〜図3Cにおいて、接着層として、樹脂部材12における金属部材11との対向面120に形成されているが、金属部材11または樹脂部材12の少なくとも一方における対向面に形成されていればよい。例えば、接着剤3は、金属部材11における樹脂部材12との対向面110に層形態で提供されていてもよいし、または樹脂部材12の対向面120および金属部材11の対向面110の両方に層形態で提供されていてもよい。また例えば、接着剤3は、金属部材11および樹脂部材12のいずれの対向面にも形成されず、これらの対向面から独立して、接着剤シートの形態で金属部材11と樹脂部材12との間に介在してもよい。また例えば、接着剤3は、金属部材11または樹脂部材12の少なくとも一方における対向面にビード状に提供され、接合時における両部材の接近により金属部材11と樹脂部材12との間で層形態を有するようになってもよい。接着剤3は、溶融樹脂の流動の高速化による接合強度のさらなる向上の観点から、樹脂部材12における金属部材11との対向面120のみに層形態で提供されていること、または樹脂部材12における対向面120のみにビード状に提供され、接合時における両部材の接近により層形態を有するようになることが好ましい。   In FIGS. 2A to 2C and FIGS. 3A to 3C, the adhesive 3 is formed as an adhesive layer on the surface 120 facing the metal member 11 in the resin member 12, but at least the metal member 11 or the resin member 12 is used. What is necessary is just to be formed in the opposing surface in one side. For example, the adhesive 3 may be provided in a layer form on the facing surface 110 of the metal member 11 facing the resin member 12, or on both the facing surface 120 of the resin member 12 and the facing surface 110 of the metal member 11. It may be provided in layer form. Further, for example, the adhesive 3 is not formed on any of the opposing surfaces of the metal member 11 and the resin member 12, and independently of these opposing surfaces, the metal member 11 and the resin member 12 are in the form of an adhesive sheet. It may be interposed between them. In addition, for example, the adhesive 3 is provided in a bead shape on the opposing surface of at least one of the metal member 11 or the resin member 12, and a layer form is formed between the metal member 11 and the resin member 12 due to the approach of both members at the time of joining. You may come to have. The adhesive 3 is provided in a layer form only on the surface 120 facing the metal member 11 in the resin member 12 from the viewpoint of further improving the bonding strength by speeding up the flow of the molten resin, or in the resin member 12. It is preferably provided in a bead shape only on the facing surface 120 and has a layer form due to the proximity of both members during joining.

接着剤3が凸状部を有する樹脂部材12に層形態で提供される場合、接着剤(層)3は、図2Aに示すように、樹脂部材12における金属部材11との対向面120において、平面部だけでなく、凸状部にも形成されてもよい。当該接着剤(層)3は、溶融樹脂流動の高速化による接合強度のさらなる向上の観点から、樹脂部材12の対向面120における凸状部122の頂部以外の領域に形成されることが好ましい。同様の観点から、当該接着剤(層)3は、樹脂部材12の対向面120における凸状部122以外の領域に形成されることが好ましい。このような形成領域の調整は、接着剤(層)3の形成時の塗布装置におけるコンピュータ制御により容易に可能である。   When the adhesive 3 is provided in a layer form on the resin member 12 having a convex portion, the adhesive (layer) 3 is, as shown in FIG. 2A, on the surface 120 facing the metal member 11 in the resin member 12, You may form not only a plane part but a convex part. The adhesive (layer) 3 is preferably formed in a region other than the top of the convex portion 122 on the facing surface 120 of the resin member 12 from the viewpoint of further improving the bonding strength by increasing the speed of the molten resin flow. From the same viewpoint, the adhesive (layer) 3 is preferably formed in a region other than the convex portion 122 on the facing surface 120 of the resin member 12. Such adjustment of the formation region can be easily performed by computer control in the coating apparatus when the adhesive (layer) 3 is formed.

接着剤3は、従来から金属部材11と樹脂部材12との接着に寄与し得るあらゆる接着剤を包含する。従って、接着剤3は、接着剤として使用される材料だけでなく、金属部材11と樹脂部材12との間のシーリングに使用されているシール材も包含する概念で用いるものとする。接着剤3を構成する材料として、例えば、エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂およびこれらの混合物等の熱硬化性樹脂、合成ゴム系樹脂、ポリ塩化ビニル系樹脂およびこれらの混合物等の熱可塑性樹脂が挙げられる。   The adhesive 3 conventionally includes any adhesive that can contribute to the adhesion between the metal member 11 and the resin member 12. Therefore, the adhesive 3 is used in a concept including not only a material used as an adhesive but also a sealing material used for sealing between the metal member 11 and the resin member 12. Examples of the material constituting the adhesive 3 include thermosetting resins such as epoxy resins, urethane resins, acrylic resins, and mixtures thereof, and heat such as synthetic rubber resins, polyvinyl chloride resins, and mixtures thereof. A plastic resin is mentioned.

接着剤3が層形態で提供される場合、当該接着剤(層)3は、上記構成材料またはその有機溶剤溶液を層状に塗布し、所望により熱硬化することにより形成されてもよい。塗布後、乾燥することにより、接着剤(層)3を形成してもよい。   When the adhesive 3 is provided in the form of a layer, the adhesive (layer) 3 may be formed by applying the above-described constituent material or an organic solvent solution thereof in a layer form and thermally curing as desired. The adhesive (layer) 3 may be formed by drying after application.

接着剤3がビード状で提供される場合、当該接着剤3は、上記構成材料またはその有機溶剤溶液をビード状に塗布することにより提供されてもよい。塗布後、乾燥してもよい。   When the adhesive 3 is provided in a bead shape, the adhesive 3 may be provided by applying the constituent material or the organic solvent solution thereof in a bead shape. You may dry after application | coating.

接着剤3の塗布量は通常、接合後の接着層の厚みが0.1〜1.5mm、特に0.2〜0.5mmとなるような量である。接着剤3の塗布量は通常、10〜500mg/mであり、接着剤と溶融樹脂流動の高速化とによる接合強度のさらなる向上の観点から、好ましくは50〜300mg/mである。 The amount of the adhesive 3 applied is usually such that the thickness of the adhesive layer after bonding is 0.1 to 1.5 mm, particularly 0.2 to 0.5 mm. The application amount of the adhesive 3 is usually 10 to 500 mg / m 2 , and preferably 50 to 300 mg / m 2 from the viewpoint of further improving the bonding strength by increasing the speed of the adhesive and the molten resin flow.

金属部材11の凸状部112および樹脂部材12の凸状部122の形状および寸法は共通する。金属部材11の凸状部112は通常、金属部材11の本体部と同様の材料から一体的に形成される。樹脂部材12の凸状部122は通常、樹脂部材12の本体部と同様の材料から一体的に形成される。   The shape and size of the convex portion 112 of the metal member 11 and the convex portion 122 of the resin member 12 are common. The convex portion 112 of the metal member 11 is usually integrally formed from the same material as the main body portion of the metal member 11. The convex portion 122 of the resin member 12 is usually integrally formed from the same material as that of the main body portion of the resin member 12.

凸状部は局所的隆起部である。局所的隆起部とは、その周辺で隆起しておらず、隆起部が点状に存在しているという意味である。このような凸状部の形状として、例えば、波形隆起形状、波形隆起台形状、錐形状または錐台形状が挙げられる。   The convex portion is a local raised portion. The local bulging portion means that the bulging portion does not bulge around the ridge and the bulging portion exists in a dot shape. Examples of the shape of the convex portion include a corrugated raised shape, a corrugated raised trapezoidal shape, a cone shape, and a truncated cone shape.

波形隆起形状とは、図4Aに示すように、断面視(例えば、図4Aの下図)において、隆起部の縁部から波状に緩やかにかつ湾曲して隆起した形状のことである。図4Aの上図は、波形隆起形状の平面視形状を示す。   As shown in FIG. 4A, the corrugated ridge shape is a shape that is gently and curvedly bulged from the edge of the ridge in a cross-sectional view (for example, the lower diagram in FIG. 4A). The upper view of FIG. 4A shows the plan view shape of the corrugated ridge shape.

波形隆起台形状とは、上記した波形隆起形状の頂部に頂面を有する形状のことである。   The corrugated raised trapezoid shape is a shape having a top surface at the top of the corrugated raised shape.

錐形状とは、図4Bおよび図4Cに示すように、断面視(例えば、図4Bおよび図4Cの下図)において、隆起部の縁部から直線的に隆起した形状のことである。錐形状は、図4Bに示すような円錐形状、図4Cに示すような四角錐形状等の多角形状を包含する。図4Bおよび図4Cの上図はそれぞれ、円錐形状および四角錐形状の平面視形状を示す。   As shown in FIGS. 4B and 4C, the cone shape is a shape that linearly bulges from the edge of the bulged portion in a cross-sectional view (for example, the lower views of FIGS. 4B and 4C). The cone shape includes polygonal shapes such as a cone shape as shown in FIG. 4B and a quadrangular pyramid shape as shown in FIG. 4C. The upper diagrams of FIGS. 4B and 4C show the plan view shapes of a cone shape and a quadrangular pyramid shape, respectively.

錐台形状とは、上記した錐形状の頂部に頂面を有する形状のことであり、例えば、図4Dに示すように、断面視(例えば、図4Dの下図)において頂面123を有する。図4Dの上図は、円錐台形状の平面視形状を示す。   The frustum shape is a shape having a top surface at the top of the above-mentioned cone shape. For example, as shown in FIG. 4D, the top surface 123 is shown in a cross-sectional view (for example, the lower diagram in FIG. 4D). The upper diagram in FIG. 4D shows a plan view shape of a truncated cone shape.

凸状部においては、溶融樹脂流動の高速化による接合強度のさらなる向上の観点から、凸状部の頂部(頂面)の面積S1(mm)および押圧部材(回転ツール16)による押圧面積S2(mm)は以下の関係式(1)を満たすことが好ましく、関係式(2)を満たすことがより好ましく、関係式(3)を満たすことがさらに好ましく、関係式(4)を満たすことがさらに好ましい。
S1/S2≦0.8 (1)
S1/S2≦0.6 (2)
S1/S2≦0.4 (3)
S1/S2≦0.2 (4)
In the convex portion, from the viewpoint of further improving the bonding strength by increasing the flow rate of the molten resin, the area S1 (mm 2 ) of the top portion (top surface) of the convex portion and the pressing area S2 by the pressing member (rotating tool 16). (Mm 2 ) preferably satisfies the following relational expression (1), more preferably satisfies the relational expression (2), more preferably satisfies the relational expression (3), and satisfies the relational expression (4). Is more preferable.
S1 / S2 ≦ 0.8 (1)
S1 / S2 ≦ 0.6 (2)
S1 / S2 ≦ 0.4 (3)
S1 / S2 ≦ 0.2 (4)

凸状部の頂部(頂面)の面積S1は通常、60mm以下、特に0〜60mmであり、好ましくは0〜50mmであり、より好ましくは0〜30mm、さらに好ましくは0〜15mmである。凸状部が波形隆起形状または錐形状を有するときの頂部(頂面)の面積S1は0(mm)である。 Apex of the convex portion (top surface) of the area S1 is usually, 60 mm 2 or less, in particular at 0~60Mm 2, preferably 0 to 50 mm 2, more preferably 0~30Mm 2, more preferably 0~15mm 2 . The area S1 of the top (top surface) when the convex portion has a corrugated ridge shape or a cone shape is 0 (mm 2 ).

押圧部材(回転ツール16)による押圧面積S2は、例えば、回転ツール(押圧部材)16による押圧により熱と圧を直接的に付与される金属部材11上の領域の面積であり、具体的には図1において斜線で示される押圧領域Pの面積である。面積S2は通常、28〜710mmであり、好ましくは50〜205mmである。 The pressing area S2 by the pressing member (rotating tool 16) is, for example, the area of the region on the metal member 11 to which heat and pressure are directly applied by pressing by the rotating tool (pressing member) 16, specifically, It is the area of the press area | region P shown by the oblique line in FIG. The area S2 is usually 28 to 710 mm 2 , preferably 50 to 205 mm 2 .

凸状部においては、溶融樹脂流動の高速化による接合強度のさらなる向上と、フランジ等の限られた面積への施工とのバランスの観点から、凸状部の最大幅W1(mm)および押圧部材(回転ツール16)の最大幅(直径)D1(mm)(図4A〜図4D参照)は以下の関係式(1)を満たすことが好ましく、関係式(2)を満たすことがより好ましく、関係式(3)を満たすことがさらに好ましく、関係式(4)を満たすことが最も好ましい。最大幅W1およびD1は、断面視における最大幅である。
1.0≦W1/D1≦10.0 (1)
1.5≦W1/D1≦5.0 (2)
1.5≦W1/D1≦4.0 (3)
1.5≦W1/D1≦2.5 (4)
In the convex portion, the maximum width W1 (mm) of the convex portion and the pressing member are selected from the viewpoint of further improvement of the bonding strength by increasing the speed of the molten resin flow and construction on a limited area such as a flange. The maximum width (diameter) D1 (mm) (see FIGS. 4A to 4D) of the (rotating tool 16) preferably satisfies the following relational expression (1), more preferably satisfies the relational expression (2). It is more preferable that the expression (3) is satisfied, and it is most preferable that the relational expression (4) is satisfied. The maximum widths W1 and D1 are the maximum widths in cross-sectional view.
1.0 ≦ W1 / D1 ≦ 10.0 (1)
1.5 ≦ W1 / D1 ≦ 5.0 (2)
1.5 ≦ W1 / D1 ≦ 4.0 (3)
1.5 ≦ W1 / D1 ≦ 2.5 (4)

凸状部の最大幅W1は通常、5〜50mmであり、溶融樹脂流動の高速化による接合強度のさらなる向上の観点から、好ましくは5〜30mmであり、溶融樹脂流動の高速化による接合強度のさらなる向上とフランジ等の限られた面積への施工の観点から、より好ましくは10〜45mmであり、さらに好ましくは20〜30mmである。 The maximum width W1 of the convex portion is usually 5 to 50 mm, and preferably 5 to 30 mm from the viewpoint of further improving the bonding strength by increasing the speed of the molten resin flow. From the viewpoint of further improvement and construction on a limited area such as a flange, the thickness is more preferably 10 to 45 mm 2 , and further preferably 20 to 30 mm 2 .

押圧部材(回転ツール16)の最大幅(直径)D1は通常、後で詳述する回転ツール16の直径と同様の範囲内である。   The maximum width (diameter) D1 of the pressing member (rotating tool 16) is usually in the same range as the diameter of the rotating tool 16 described in detail later.

凸状部の高さH(図4A〜図4D参照)は通常、0.5〜6mmであり、溶融樹脂流動の高速化による接合強度のさらなる向上の観点から、好ましくは0.5〜4mmである。   The height H of the convex portion (see FIGS. 4A to 4D) is usually 0.5 to 6 mm, and preferably 0.5 to 4 mm from the viewpoint of further improving the bonding strength by increasing the flow rate of the molten resin. is there.

(1)樹脂部材
樹脂部材12は、凸状部122を有する場合、本体部121および凸状部122からなり、凸状部122を有さない場合、本体部121からなる。樹脂部材12が凸状部122を有し、かつ本体部121および凸状部122が同じ材料からなる場合、本体部121と凸状部122とは一体的に成形されていることが好ましい。すなわち、樹脂部材12を、例えば、射出成形法、プレス成形法、押出成形法、引抜成形法、オートクレーブ成形法等のあらゆる公知の溶融成形方法により製造するに際し、使用される金型の成形面を転写させることにより、本体部121と凸状部122とを一体的に成形することが好ましい。本発明は、本体部121と凸状部122とを個別に成形し、接着剤結合法等のあらゆる結合方法により、これらを結合させることを妨げるものではないが、強固な結合および製造の容易さの観点から、上記したように、溶融成形方法において金型成形面の転写により、本体部121と凸状部122とを一体的に成形することが好ましい。樹脂部材12が凸状部122を有さない場合においても、樹脂部材12は、上記と同様の溶融成形方法により、製造することができる。
(1) Resin member The resin member 12 includes the main body portion 121 and the convex portion 122 when the convex portion 122 is provided, and includes the main body portion 121 when the convex member 122 is not provided. When the resin member 12 has the convex part 122 and the main body part 121 and the convex part 122 are made of the same material, it is preferable that the main body part 121 and the convex part 122 are integrally formed. That is, when the resin member 12 is manufactured by any known melt molding method such as an injection molding method, a press molding method, an extrusion molding method, a pultrusion molding method, or an autoclave molding method, the molding surface of a mold to be used is used. It is preferable that the main body 121 and the convex portion 122 are integrally formed by transferring. The present invention does not prevent the main body part 121 and the convex part 122 from being individually molded and bonded together by any bonding method such as an adhesive bonding method, but strong bonding and ease of manufacture. From this point of view, as described above, it is preferable to integrally mold the main body 121 and the convex portion 122 by transferring the mold forming surface in the melt molding method. Even when the resin member 12 does not have the convex portion 122, the resin member 12 can be manufactured by the same melt molding method as described above.

樹脂部材12、すなわち本体部121および凸状部122は、ポリマーおよびその他所望の添加剤からなっている。ポリマーとしては、熱可塑性ポリマーが使用されてもよいし、または熱硬化性ポリマーが使用されてもよい。   The resin member 12, that is, the main body 121 and the convex portion 122 are made of a polymer and other desired additives. As the polymer, a thermoplastic polymer may be used, or a thermosetting polymer may be used.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA))などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA));
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

熱可塑性ポリマーの分子量は、接合時に軟化・溶融可能な限り特に限定されるものではなく、通常はメルトフローレート(MFR)が2〜200、好ましくは2〜55の熱可塑性ポリマーが使用される。   The molecular weight of the thermoplastic polymer is not particularly limited as long as it can be softened and melted at the time of joining. Usually, a thermoplastic polymer having a melt flow rate (MFR) of 2 to 200, preferably 2 to 55, is used.

本明細書中、MFRはメルトフローレートであって、JIS K7210に基づいて230℃で測定された値(g/10分間)を用いている。   In the present specification, MFR is a melt flow rate, and a value (g / 10 minutes) measured at 230 ° C. based on JIS K7210 is used.

熱硬化性ポリマーとしては、自動車の分野で使用されている熱硬化性ポリマーが好ましく使用される。そのような熱硬化性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
エポキシ樹脂(EP);
フェノール樹脂(PF);
不飽和ポリエステル樹脂(UP);
メラミン樹脂(MF);
ポリウレタン(PUR)。
As the thermosetting polymer, a thermosetting polymer used in the field of automobiles is preferably used. Specific examples of such thermosetting polymers include, for example, the following polymers and mixtures thereof:
Epoxy resin (EP);
Phenolic resin (PF);
Unsaturated polyester resin (UP);
Melamine resin (MF);
Polyurethane (PUR).

樹脂部材12に含まれる添加剤としては、タルク等のフィラー、炭素繊維、ガラス繊維等の強化繊維が挙げられる。   Examples of the additive contained in the resin member 12 include fillers such as talc, and reinforcing fibers such as carbon fibers and glass fibers.

以上、樹脂部材12の本体部121は全体形状として略平板形状を有するものについて説明したが、これに限定されるものではなく、少なくとも凸状部の直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12の厚みtは特に限定されず、通常は1mm以上、特に1〜20mmである。   As described above, the main body portion 121 of the resin member 12 has been described as having a substantially flat plate shape as a whole, but is not limited to this, and as long as at least a portion immediately below the convex portion has a substantially flat plate shape, You may have a shape. The thickness t of the resin member 12 is not particularly limited, and is usually 1 mm or more, particularly 1 to 20 mm.

(2)金属部材
金属部材11は、凸状部112を有する場合、本体部111および凸状部112からなり、凸状部112を有さない場合、本体部111からなる。金属部材11が凸状部112を有し、かつ本体部111および凸状部112が同じ材料からなる場合、本体部111と凸状部112とは一体的に成形されていることが好ましい。すなわち、金属部材11を、例えば、ダイカスト鋳造等のあらゆる公知の成形方法により製造するに際し、使用される金型の成形面を転写させることにより、本体部111と凸状部112とを一体的に成形することが好ましい。本発明は、本体部111と凸状部112とを個別に成形し、溶接等のあらゆる結合方法により、これらを結合させることを妨げるものではないが、強固な結合および製造の容易さの観点から、上記したように、金属溶融成形方法において金型成形面の転写により、本体部111と凸状部112とを一体的に成形することが好ましい。金属部材11が凸状部112を有さない場合においても、金属部材11は、上記と同様の溶融成形方法により、製造することができる。
(2) Metal member The metal member 11 includes the main body portion 111 and the convex portion 112 when the convex portion 112 is provided, and includes the main body portion 111 when the convex portion 112 is not provided. When the metal member 11 has the convex part 112 and the main body part 111 and the convex part 112 are made of the same material, it is preferable that the main body part 111 and the convex part 112 are integrally formed. That is, when the metal member 11 is manufactured by any known molding method such as die casting, for example, the main body portion 111 and the convex portion 112 are integrally formed by transferring the molding surface of the mold used. It is preferable to mold. The present invention does not prevent the main body portion 111 and the convex portion 112 from being individually molded and bonded together by any bonding method such as welding, but from the viewpoint of strong bonding and ease of manufacture. As described above, it is preferable that the main body portion 111 and the convex portion 112 are integrally formed by transferring the mold forming surface in the metal melt forming method. Even when the metal member 11 does not have the convex portion 112, the metal member 11 can be manufactured by the same melt molding method as described above.

金属部材11の本体部111全体形状として略平板形状を有するものについて説明したが、これに限定されるものではなく、少なくとも凸状部の直上の部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11の厚みTは特に制限されるものではなく、通常、0.6〜3.0mm程度である。   Although the metal plate 11 has a substantially flat plate shape as the overall shape of the main body portion 111, the present invention is not limited to this, and any shape can be used as long as at least a portion immediately above the convex portion has a substantially flat plate shape. You may do it. The thickness T of the metal member 11 is not particularly limited, and is usually about 0.6 to 3.0 mm.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成するポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などのアルミニウム合金;
スチール;軟鋼板、高張力鋼板など
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and aluminum alloys such as 5000 series and 6000 series;
Steel; mild steel, high-strength steel, etc. Magnesium and its alloys;
Titanium and its alloys.

(3)回転ツール
図5は、回転ツール16の先端部近傍の拡大図である。図5において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図5に示すように、円柱状の回転ツール16は、先端部(図5では下端部)にピン部16a及びショルダ面16bを有している。ショルダ面16bは、回転ツール16の円形の先端面のことである。回転ツール16はショルダ面16bにピン部16aを有する。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図9では下方)に突設された、ショルダ面16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
(3) Rotating Tool FIG. 5 is an enlarged view of the vicinity of the tip of the rotating tool 16. In FIG. 5, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 5, the columnar rotary tool 16 has a pin portion 16 a and a shoulder surface 16 b at the tip portion (lower end portion in FIG. 5). The shoulder surface 16 b is a circular tip surface of the rotary tool 16. The rotary tool 16 has a pin portion 16a on the shoulder surface 16b. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder surface 16b, which protrudes outward (downward in FIG. 9) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ面16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ面16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、回転ツール16の直径は通常、ショルダ面16bの直径D1のことであり、通常、5〜100mm、特に5〜20mmである。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder surface 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder surface 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter of the rotating tool 16 is usually the diameter D1 of the shoulder surface 16b, and is usually 5 to 100 mm, particularly 5 to 20 mm.

(4)摩擦撹拌接合方法に基づく金属部材と樹脂部材との接合方法の具体例
本発明に係る摩擦撹拌接合方法に基づく接合方法は少なくとも以下のステップを含むものである:
金属部材11と樹脂部材12とを重ね合わせるとともに、両者間に接着剤3を介在させる第1ステップ;および
押圧部材としての回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材12を軟化・溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ。
なお、第1ステップにおいて得られる金属部材11と樹脂部材12とが重ね合わされたものを「ワーク」10と呼ぶ。
(4) Specific Example of Joining Method of Metal Member and Resin Member Based on Friction Stir Welding Method A joining method based on the friction stir welding method according to the present invention includes at least the following steps:
A first step in which the metal member 11 and the resin member 12 are overlapped with each other and the adhesive 3 is interposed therebetween; and the rotary tool 16 as the pressing member is rotated and pressed against the metal member 11 to generate frictional heat. A second step of joining the metal member 11 and the resin member 12 by softening and melting the resin member 12 with the frictional heat and then solidifying it.
The metal member 11 and the resin member 12 obtained in the first step are called “work” 10.

第1ステップ:
第1ステップにおいては、金属部材11と樹脂部材12とを、それらの対向面110および120が相互に対向するように重ね合わせる。詳しくは、金属部材11または樹脂部材12の少なくとも一方が有する凸状部が金属部材11の本体部111と樹脂部材12の本体部121との間に配置されるように、金属部材11と樹脂部材12とを重ね合わせる。例えば、樹脂部材12が凸状部122を有する場合には、図2Aに示すように、当該凸状部122が金属部材11と接触するように、金属部材11と樹脂部材12とを重ね合わせる。また例えば、金属部材11が凸状部112を有する場合には、図3Aに示すように、当該凸状部112が樹脂部材12と接触するように、金属部材11と樹脂部材12とを重ね合わせる。凸状部と金属部材11または樹脂部材12との接触は接着剤3の介在により間接的であってもよい。
First step:
In the first step, the metal member 11 and the resin member 12 are overlapped so that their facing surfaces 110 and 120 face each other. Specifically, the metal member 11 and the resin member are arranged such that the convex portion of at least one of the metal member 11 or the resin member 12 is disposed between the main body portion 111 of the metal member 11 and the main body portion 121 of the resin member 12. 12 is superimposed. For example, when the resin member 12 has the convex portion 122, the metal member 11 and the resin member 12 are overlapped so that the convex portion 122 contacts the metal member 11 as shown in FIG. 2A. Further, for example, when the metal member 11 has the convex portion 112, the metal member 11 and the resin member 12 are overlapped so that the convex portion 112 contacts the resin member 12, as shown in FIG. 3A. . The contact between the convex portion and the metal member 11 or the resin member 12 may be indirect by the interposition of the adhesive 3.

接着剤3は金属部材11と樹脂部材12との間に介在する限り、いかなる形態で提供されていてもよい。上記したように、例えば、接着剤3は、金属部材11または樹脂部材12の少なくとも一方における対向面に接着層の形態で提供されていてもよい。また例えば、接着剤3は、金属部材11および樹脂部材12のいずれの対向面にも提供されず、これらの対向面から独立して、接着剤シートの形態で金属部材11と樹脂部材12との間に提供されていてもよい。また例えば接着剤3は、金属部材11または樹脂部材12の少なくとも一方における対向面にビード状に提供され、第2ステップにおける両部材の接近により層形態を有するようになってもよい。接着剤3は、溶融樹脂の流動の高速化による接合強度のさらなる向上の観点から、樹脂部材12における金属部材11との対向面120のみに接着層の形態で提供されているか、または樹脂部材12の対向面120のみにビード状に提供されて、それらの接近により層形態を有するようになることが好ましい。   The adhesive 3 may be provided in any form as long as it is interposed between the metal member 11 and the resin member 12. As described above, for example, the adhesive 3 may be provided in the form of an adhesive layer on the facing surface of at least one of the metal member 11 and the resin member 12. Further, for example, the adhesive 3 is not provided on any of the opposing surfaces of the metal member 11 and the resin member 12, and independently of these opposing surfaces, the metal member 11 and the resin member 12 are in the form of an adhesive sheet. It may be provided in between. Further, for example, the adhesive 3 may be provided in a bead shape on the opposing surface of at least one of the metal member 11 or the resin member 12 and may have a layer form due to the proximity of both members in the second step. The adhesive 3 is provided in the form of an adhesive layer only on the surface 120 of the resin member 12 facing the metal member 11 from the viewpoint of further improving the bonding strength by increasing the flow rate of the molten resin, or the resin member 12. It is preferable that a bead shape is provided only on the opposite surface 120 of the first and second layers so as to have a layer form by their approach.

第2ステップ:
第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面130に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。このとき、回転ツール16により金属部材11を介して凸状部に圧力および熱を付与するようにする。
Second step:
In the second step, at least a push-in stirring step C <b> 2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joining boundary surface 130 between the metal member 11 and the resin member 12. At this time, the rotating tool 16 applies pressure and heat to the convex portion via the metal member 11.

例えば、樹脂部材12が凸状部122を有する場合には、図2Aおよび図4A〜図4Dに示すように、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材12表面上の領域P’内に凸状部122の形成領域が配置されるように、回転ツール16を金属部材11に押し込む。接合強度およびその信頼性のさらなる向上の観点から、好ましくは、当該領域P’が、図2Aおよび図4A〜図4Dに示すように、凸状部122の形成領域の中央に位置するように、回転ツール16を金属部材11に押し込む。   For example, when the resin member 12 has the convex portion 122, as shown in FIG. 2A and FIGS. 4A to 4D, it corresponds to a position immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11. The rotary tool 16 is pushed into the metal member 11 so that the formation region of the convex portion 122 is disposed in the region P ′ on the surface of the resin member 12 to be performed. From the viewpoint of further improving the bonding strength and its reliability, preferably, as shown in FIGS. 2A and 4A to 4D, the region P ′ is positioned at the center of the formation region of the convex portion 122. The rotary tool 16 is pushed into the metal member 11.

また例えば、金属部材11が凸状部112を有する場合には、図3Aに示すように、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に凸状部112の形成領域が配置されるように、回転ツール16を金属部材11に押し込む。接合強度およびその信頼性のさらなる向上の観点から、好ましくは、当該領域Pの直下領域が、図3Aに示すように、凸状部112の形成領域の中央に位置するように、回転ツール16を金属部材11に押し込む。   In addition, for example, when the metal member 11 has the convex portion 112, as shown in FIG. 3A, the convex portion 112 is formed immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11. The rotary tool 16 is pushed into the metal member 11 so that the area is arranged. From the viewpoint of further improving the bonding strength and its reliability, the rotary tool 16 is preferably set so that the region immediately below the region P is located at the center of the region where the convex portion 112 is formed as shown in FIG. 3A. Push into the metal member 11.

本発明においては、第2ステップにおいて、押込み撹拌工程の前に、回転ツール16のショルダー面16b(先端部のみ)を金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the present invention, in the second step, preheating is performed to rotate the rotary tool 16 in a state where the shoulder surface 16b (only the tip portion) of the rotary tool 16 is in contact with the surface portion of the metal member 11 before the pushing and stirring step. Although it is preferable to perform step C1, it does not necessarily have to be performed.
After the indentation stirring step, it is preferable to perform the stirring maintenance step C3 in which the rotation operation of the rotary tool 16 is continued at the position where the rotary tool 16 has entered to a depth that does not reach the joining boundary surface. It doesn't have to be.

以下、各工程について詳しく説明する。   Hereinafter, each step will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図2Aおよび図3Aに示すように、回転ツール16のショルダー面16b(先端部のみ)を金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図2Aおよび図3Aは、図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、本発明の接合方法における予熱工程を説明するための概略断面図である。
(Preheating process C1)
In the preheating step C1, as shown in FIGS. 2A and 3A, the shoulder surface 16b (only the front end portion) of the rotary tool 16 is moved to the surface portion of the metal member 11 by bringing the rotary tool 16 and the receiving member 17 close to each other. This is a step of rotating the rotary tool 16 in a state of being in contact with the upper surface (in the example shown in the figure). In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N). 2A and 3A are schematic cross-sectional views when the ZZ cross section in FIG. 1 is viewed in the arrow direction, and are schematic cross-sectional views for explaining a preheating step in the joining method of the present invention.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。また次の押込み撹拌工程C2において、溶融樹脂は、平面視で、凸状部からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に接着剤3と共に流動および移動し易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2. In the next indentation stirring step C2, the molten resin flows together with the adhesive 3 in a radial direction from the convex portion toward the outer peripheral side, that is, from the center of the region 60 immediately below to the outer peripheral region 61 in plan view. And it becomes easy to move.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との境界面を介して樹脂部材12に伝導する。例えば、樹脂部材12が凸状部122を有する場合(図2A)、摩擦熱は、樹脂部材12において凸状部122の頂部1220にまず伝導するため、当該頂部1220が局所的かつ最初に溶融し易くなる。また例えば、金属部材11が凸状部112を有する場合(図3A)、摩擦熱は、樹脂部材12において、凸状部112の頂部1120が接近する部分1250にまず伝導するため、当該接近部分1250が局所的かつ最初に溶融し易くなる。   In the preheating step C <b> 1, the frictional heat is conducted to the resin member 12 through the boundary surface between the metal member 11 and the resin member 12. For example, when the resin member 12 has the convex portion 122 (FIG. 2A), the frictional heat is first conducted to the top portion 1220 of the convex portion 122 in the resin member 12, so that the top portion 1220 is locally and first melted. It becomes easy. Further, for example, when the metal member 11 has the convex portion 112 (FIG. 3A), the frictional heat is first conducted to the portion 1250 where the top portion 1120 of the convex portion 112 approaches in the resin member 12, and thus the approaching portion 1250. Tends to melt locally and initially.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は、700N以上1200N未満の値、第1の加圧時間は、0.5秒以上2.0秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoint of ease of pushing in the rotary tool 16 and the ease of softening / melting of the resin member 12, and values thereof. Varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressure in the preheating step C1 is 700 N or more and less than 1200 N, and the first pressurizing time is 0.5 seconds. A value of not less than 2.0 seconds and a rotation speed of the rotary tool is preferably not less than 500 rotations / minute and not more than 10,000 rotations / minute.

(押込み撹拌工程C2)
押込み撹拌工程C2は、回転ツール16と受け具17とを相互に近接させることにより、図2B〜図2Cおよび図3B〜図3Cに示すように、回転ツール16を金属部材11に押し込む工程である。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図2B〜図2Cおよび図3B〜図3Cに示すように、回転ツール16を金属部材11に押し込む。すなわち、回転ツール16を金属部材11と樹脂部材12との境界面130に達しない深さまで進入させる。これにより、溶融樹脂を、平面視で、矢印方向(図2B〜図2Cおよび図3B〜図3C)において凸状部からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に接着剤3と共に流動および移動させる。
(Indentation stirring step C2)
The pushing and stirring step C2 is a step of pushing the rotating tool 16 into the metal member 11 as shown in FIGS. 2B to 2C and FIGS. 3B to 3C by bringing the rotating tool 16 and the receiving member 17 close to each other. . When the indentation stirring step C2 is performed after the preheating step C1, the rotary tool 16 and the receiving member 17 are further brought closer to each other, as shown in FIGS. 2B to 2C and FIGS. 3B to 3C. 16 is pushed into the metal member 11. That is, the rotary tool 16 is advanced to a depth that does not reach the boundary surface 130 between the metal member 11 and the resin member 12. Thereby, in a plan view, the molten resin is moved from the convex portion toward the outer peripheral side in the arrow direction (FIGS. 2B to 2C and FIGS. 3B to 3C), that is, from the center of the immediately lower region 60 to the outer peripheral region 61. And flow and move together with the adhesive 3 radially.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。この回転ツール16の押込みにより、図2Cおよび図3Cに示すように、金属部材11の回転ツール直下部115において、金属部材11と樹脂部材12との接合境界面130が受け具側(図例では下側)に移動し、当該直下部115が樹脂部材12側に突出変形する。これによっても、接合境界面130において回転ツールの直下領域60の溶融樹脂が、平面視で、矢印方向において、凸状部からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動および移動する。これに伴い、接着剤3も移動する。溶融樹脂は、回転ツール直下領域60を中心とする略円形状で広がる。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. 2C and 3C, the joint interface 130 between the metal member 11 and the resin member 12 is placed on the receiving side (in the illustrated example). The lower part 115 projects and deforms toward the resin member 12 side. Also in this manner, the molten resin in the region 60 directly below the rotary tool on the joint boundary surface 130 in the plan view from the convex portion toward the outer peripheral side in the arrow direction, that is, from the center of the region 60 directly below the outer peripheral region 61. Toward and toward the surface. Along with this, the adhesive 3 also moves. The molten resin spreads in a substantially circular shape centering on the region 60 directly below the rotary tool.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ面16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is pushed further (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder surface 16b of the rotary tool 16 exceeds the joint boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本発明では、この押込み撹拌工程C2において、回転ツール16のショルダ面16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の溶融および流動(移動)が促進される。これに伴い、接着剤3の移動も促進される。   Therefore, in the present invention, in the indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder surface 16b of the rotation tool 16 enters a depth that does not reach the joint boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and the melting and flow (movement) of the resin member 12 is promoted. . Along with this, the movement of the adhesive 3 is also promoted.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値、第2の加圧時間は、0.1秒以上0.5秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is 0.1. A value of at least 2 seconds and less than 0.5 seconds, and a rotation speed of the rotating tool is preferably at least 500 rotations / minute and not more than 10,000 rotations / minute.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図2Cおよび図3Cに示すように、上記接合境界面130に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、5.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual proximity of the rotary tool 16 and the support 17 and, as shown in FIG. 2C and FIG. Is referred to as “reference position”), and the rotation operation of the rotary tool 16 is continued. In the stirring maintaining step C3, the rotary tool 16 is moved to a third pressurizing time (for example, 5.75) longer than the first pressurizing time with a third pressurizing force (for example, 500 N) smaller than the first pressurizing force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の領域60の範囲を超えて、広い範囲で十分に軟化・溶融し、平面視で、より一層、有効に矢印方向において、凸状部からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動および移動する。これに伴い、接着剤3も移動する。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the region 60 immediately below the pressing region P, and more effectively in the direction of the arrow in a plan view, from the convex portion to the outer periphery thereof. It flows and moves radially toward the side, that is, from the center of the region 60 directly below to the outer peripheral region 61. Along with this, the adhesive 3 also moves.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値、第3の加圧時間は、1.0秒以上10秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring maintaining step C3 is a value of 100 N or more and less than 700 N, and the third pressurizing time is 1.0. A value of not less than 10 seconds and less than 10 seconds, and the rotation speed of the rotary tool is preferably not less than 500 rotations / minute and not more than 10,000 rotations / minute.

(保持工程C4)
押込み撹拌工程C2または撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図2Cおよび図3Cに示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
(Holding process C4)
After the indentation stirring step C2 or the stirring maintaining step C3, a holding step C4 is performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held at a predetermined pressure for a predetermined pressurizing time. Also good.
Similarly, as shown in FIGS. 2C and 3C, the holding step C4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12とを受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation is stopped due to the pressure force being smaller than the indentation stirring step C 2 but larger than the stirring maintaining step C 3 is the metal member 11, the resin member 12, and the receiving member 17. And clamp between. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の押圧領域Pの密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値が好ましい。第4の加圧時間は、例えば1秒以上の値が好ましい。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion strength of the pressing region P during the cooling period as described above, and the values thereof are, for example, those of the material of the metal member 11 It varies depending on the type. For example, when the aluminum alloy metal member 11 is used, the fourth pressing force in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, for example. The fourth pressurization time is preferably, for example, a value of 1 second or longer.

本発明では、少なくとも前記した工程C2を経て、好ましくは前記した工程C1およびC2を経て、より好ましくは前記した工程C1〜C3を経て、最も好ましくは前記した工程C1〜C4を経て、最終的に、図6に示すように、金属部材11と樹脂部材12とが広い範囲で高強度に接合された金属部材11と樹脂部材12との接合体20が得られる。図6は、本発明の接合方法で得られた接合体から金属部材を強制的に剥離させて得られた樹脂部材の表面状態を示す概略平面図である。   In the present invention, at least through the above-described steps C2, preferably through the above-described steps C1 and C2, more preferably through the above-described steps C1 to C3, and most preferably through the above-described steps C1 to C4, finally. As shown in FIG. 6, a joined body 20 of the metal member 11 and the resin member 12 in which the metal member 11 and the resin member 12 are joined with high strength in a wide range is obtained. FIG. 6 is a schematic plan view showing the surface state of the resin member obtained by forcibly peeling the metal member from the joined body obtained by the joining method of the present invention.

第2ステップにおいて所定の工程を行った後、通常は冷却を行い、溶融樹脂を固化させる。冷却方法は特に限定されず、例えば、放置冷却法等が挙げられる。   After performing a predetermined process in the second step, cooling is usually performed to solidify the molten resin. The cooling method is not particularly limited, and examples thereof include a standing cooling method.

(5)接合体
本発明の接合方法により接合された金属部材11と樹脂部材12との接合体20は、接合境界面130における樹脂部材12の回転ツール直下領域60およびその外周領域61において、金属部材11と樹脂部材12との接合が達成されている。このことは、接合体20の接合境界面130において、溶融樹脂が固化してなる溶融固化域が回転ツール直下領域60を中心とする略円形状で広がっていることを確認することにより、検知できる。
(5) Bonded Body The bonded body 20 of the metal member 11 and the resin member 12 bonded by the bonding method of the present invention is a metal in the region 60 directly below the rotating tool of the resin member 12 and the outer peripheral region 61 on the bonding boundary surface 130. Joining of the member 11 and the resin member 12 is achieved. This can be detected by confirming that the melted and solidified region obtained by solidifying the molten resin spreads in a substantially circular shape centering on the region 60 directly below the rotary tool at the joining interface 130 of the joined body 20. .

以下、特記しない限り、本発明の一実施態様に係る接合方法により接合された接合体について説明する。
具体的には、接合体20から金属部材11を強制的に剥離させると、例えば、図6に示すような、樹脂部材12における金属部材11との接触面122aが観察できる。このような樹脂部材12の接触面122aにおいて、溶融固化域は回転ツール直下領域60にある樹脂溶融域131A(斜線領域)と、その外周領域にある溶融樹脂流動域132A(格子領域)とからなっている。
Hereinafter, unless otherwise specified, the joined body joined by the joining method according to one embodiment of the present invention will be described.
Specifically, when the metal member 11 is forcibly separated from the joined body 20, for example, a contact surface 122a of the resin member 12 with the metal member 11 as shown in FIG. 6 can be observed. In such a contact surface 122a of the resin member 12, the melting and solidifying region is composed of a resin melting region 131A (shaded region) in the region 60 immediately below the rotary tool and a molten resin flow region 132A (lattice region) in the outer peripheral region. ing.

樹脂溶融域131Aは、その表面に、金属部材11の突出変形により、回転ツール径と略同等の径の凹形状が形成されている。また、金属部材11表面の微小形状が転写されており、接合強度によっては変色する場合もあることから、元の樹脂部材12の表面性状(表面粗さ、色他)との比較により、目視による認識は容易に可能である。   The resin melting region 131 </ b> A has a concave shape with a diameter substantially equal to the diameter of the rotating tool due to the protruding deformation of the metal member 11 on the surface thereof. Further, since the minute shape on the surface of the metal member 11 is transferred and may be discolored depending on the bonding strength, it is visually confirmed by comparison with the surface properties (surface roughness, color, etc.) of the original resin member 12. Recognition is easily possible.

溶融樹脂流動域132Aは、その表面に、金属部材11表面の微小形状が転写されており、接合強度によっては変色する場合もあることから、元の樹脂部材12の表面性状(表面粗さ、色他)との比較により、目視による認識は容易に可能である。   Since the minute shape of the surface of the metal member 11 is transferred to the surface of the molten resin flow region 132A and the color may be changed depending on the bonding strength, the surface properties (surface roughness, color, etc.) of the original resin member 12 may be changed. By comparison with others, visual recognition is easily possible.

本発明においては、接着剤3が溶融樹脂により流動および移動するため、溶融樹脂流動域132A(特に外周部分)における接着剤3由来成分の含有割合は、樹脂溶融域131Aにおける当該含有割合よりも高くなっている。   In the present invention, since the adhesive 3 flows and moves by the molten resin, the content ratio of the component derived from the adhesive 3 in the molten resin flow region 132A (particularly the outer peripheral portion) is higher than the content ratio in the resin melt region 131A. It has become.

本発明の接合方法により接合された金属部材11と樹脂部材12との接合体において、金属部材11と樹脂部材12との間隙距離は通常、2mm以下であり、接着剤による接着強度への寄与の観点から、好ましくは1mm以下、より好ましくは0.8mm以下、さらに好ましくは0.5mm以下である。当該間隙距離は短いほど好ましく、その下限値は通常、0.1mmまたは0.2mmである。この間隙距離は、樹脂部材12が凸状部122を有し、かつ金属部材11が凸状部112を有さない場合における「潰れ残り高さ」のことである。   In the joined body of the metal member 11 and the resin member 12 joined by the joining method of the present invention, the gap distance between the metal member 11 and the resin member 12 is usually 2 mm or less, which contributes to the adhesive strength by the adhesive. From the viewpoint, it is preferably 1 mm or less, more preferably 0.8 mm or less, and still more preferably 0.5 mm or less. The gap distance is preferably as short as possible, and the lower limit is usually 0.1 mm or 0.2 mm. This gap distance is the “uncrushed height” when the resin member 12 has the convex portion 122 and the metal member 11 does not have the convex portion 112.

[実施例1]
(樹脂部材)
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、図4Aに示すような、波形隆起形状を有する凸状部122を備えた樹脂部材12を製造した。凸状部122は射出成形法で使用される金型の成形面を転写させることにより形成した。樹脂部材12における凸状部122の形成面120の全面に接着剤(エポキシ系樹脂;BF9050L;ダウ・ケミカル社製)を、接合後の接着層3の厚みが0.2mmとなるように、塗布量100mg/mにて塗布した。
樹脂部材12の寸法は以下の通りであった(図4A参照):
全体寸法;縦100mm×横60mm
凸状部最大幅W1=10mm;
凸状部高さH=2mm;
t=3mm。
[Example 1]
(Resin member)
Resin member provided with a convex portion 122 having a corrugated raised shape as shown in FIG. 4A by injection molding using polypropylene pellets (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.) containing 40% by weight of carbon fiber. 12 was produced. The convex portion 122 was formed by transferring a molding surface of a mold used in the injection molding method. An adhesive (epoxy resin; BF9050L; manufactured by Dow Chemical Co.) is applied to the entire surface 120 of the convex portion 122 of the resin member 12 so that the thickness of the adhesive layer 3 after bonding is 0.2 mm. Application was performed at an amount of 100 mg / m 2 .
The dimensions of the resin member 12 were as follows (see FIG. 4A):
Overall dimensions: 100mm length x 60mm width
Convex portion maximum width W1 = 10 mm;
Convex part height H = 2 mm;
t = 3 mm.

(金属部材)
金属部材11としては、6000系のアルミニウム合金製の平板状部材を用いた。
金属部材11の寸法は以下の通りであった:
全体寸法;縦100mm×横60mm×厚み(T)1.2mm
(Metal member)
As the metal member 11, a flat plate member made of 6000 series aluminum alloy was used.
The dimensions of the metal member 11 were as follows:
Overall dimensions: length 100mm x width 60mm x thickness (T) 1.2mm

(回転ツール)
回転ツールとしては、図5の各部の寸法がD1=10mm、D2=2mm、h=0.25mmの工具鋼製のものを用いた。
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 5 of D1 = 10 mm, D2 = 2 mm, and h = 0.25 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11と樹脂部材12とを図1および図2Aに示すように重ね合わせた。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The metal member 11 and the resin member 12 were overlaid as shown in FIGS. 1 and 2A.

第2ステップ:
金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材12表面上の領域P’(図4A参照)の中心が凸状部122の中心に位置するように、回転ツール16を金属部材11に押し込んだ。
詳しくは、図2Aに示すように、回転ツール16のピン部16aのみを金属部材11に押し込み、かつ回転ツール16のショルダー面16bを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000r)。
次いで、図2Bおよび図2Cに示すように、回転ツール16を金属部材11にさらに押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図2Cに示すように、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpm)。
次いで、金属部材11から回転ツール16を抜き取り、放置冷却した。
Second step:
The center of the region P ′ (see FIG. 4A) on the surface of the resin member 12 corresponding to the position immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11 is positioned at the center of the convex portion 122. The rotary tool 16 was pushed into the metal member 11.
Specifically, as shown in FIG. 2A, the rotary tool 16 is moved in a state where only the pin portion 16 a of the rotary tool 16 is pushed into the metal member 11 and the shoulder surface 16 b of the rotary tool 16 is in contact with the surface portion of the metal member 11. It was rotated (preheating step C1: pressing force 900 N, pressurizing time 1.00 seconds, tool rotation speed 3000 r).
Next, as shown in FIGS. 2B and 2C, the rotary tool 16 is further pushed into the metal member 11 to a depth not reaching the joining interface between the metal member 11 and the resin member 12 (pushing stirring step C2: addition Pressure 1500N, pressurization time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 2C, the rotating operation of the rotating tool 16 was continued at the position where the rotating tool 16 was advanced to a depth that did not reach the joining boundary surface (stirring maintaining step C3: pressurizing pressure 500N, pressurizing time) 5.75 seconds, tool rotation speed 3000 rpm).
Next, the rotary tool 16 was extracted from the metal member 11 and left to cool.

(接合強度)
JIS Z 3136に規定されている方法により、金属部材と樹脂部材とが接合された接合体を図1の矢印Y,Yに示す方向に引っ張り、せん断引張試験を行った。せん断強度Sに基づいて評価した。
◎;5.0kN≦S(優);
○;2.0kN≦S<5.0kN(良);
△;1.0kN≦S<2.0kN(実用上問題なし);
×;S<1.0kN(実用上問題あり)。
(Joint strength)
The joined body in which the metal member and the resin member were joined by a method defined in JIS Z 3136 was pulled in the directions indicated by arrows Y and Y in FIG. Evaluation was based on the shear strength S.
A: 5.0 kN ≦ S (excellent);
O; 2.0 kN ≦ S <5.0 kN (good);
Δ: 1.0 kN ≦ S <2.0 kN (no problem in practical use);
X: S <1.0 kN (problem in practical use).

[実施例2〜11および比較例1]
樹脂部材において、凸状部の形状および寸法を表に示すように変更したこと以外、実施例1と同様の方法により、金属部材と樹脂部材との接合および評価を行った。
比較例1で使用された樹脂部材は凸状部を有さない。
[Examples 2 to 11 and Comparative Example 1]
In the resin member, the metal member and the resin member were joined and evaluated by the same method as in Example 1 except that the shape and dimensions of the convex portions were changed as shown in the table.
The resin member used in Comparative Example 1 does not have a convex portion.

Figure 0006614204
Figure 0006614204

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
3:接着剤(接着層)
10:ワーク
11:金属部材
12:樹脂部材
111:金属部材本体部
112:金属部材凸状部
121:樹脂部材本体部
122:樹脂部材凸状部
16:回転ツール
17:受け具
20:接合体
120:樹脂部材における金属部材との接合側の表面
P:金属部材表面における回転ツールによる押圧領域(押圧予定領域)
P’:押圧領域Pの直下に対応する樹脂部材表面の領域
1: Friction stir welding device 3: Adhesive (adhesive layer)
DESCRIPTION OF SYMBOLS 10: Work | work 11: Metal member 12: Resin member 111: Metal member main-body part 112: Metal member convex-shaped part 121: Resin member main-body part 122: Resin member convex-shaped part 16: Rotating tool 17: Receiver 20: Joined body 120 : Surface of the resin member on the side to be joined with the metal member P: Pressing area (scheduled pressing area) by the rotating tool on the metal member surface
P ′: a region on the surface of the resin member corresponding to directly below the pressing region P

Claims (18)

金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させた状態で、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材または前記樹脂部材の少なくとも一方の部材が他方の部材との対向面に凸状部を有し、該凸状部と他方の部材との間で、前記樹脂部材を溶融させることにより、溶融した樹脂を、平面視において前記凸状部からその外周側に向けて、前記接着剤と共に流動させ
前記凸状部は、断面視において、波形隆起形状、波形隆起台形状、錐形状または錐台形状を有する、金属部材と樹脂部材との接合方法。
The metal member and the resin member are overlapped, and with the adhesive interposed therebetween, the resin member is melted by applying pressure and heat from the metal member side to join the metal member and the resin member. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
At least one member of the metal member or the resin member has a convex portion on the surface facing the other member, and by melting the resin member between the convex portion and the other member, The molten resin is flowed together with the adhesive from the convex portion toward the outer periphery in a plan view ,
The convex portion has a corrugated ridge shape, a corrugated ridge trapezoid shape, a cone shape, or a frustum shape in a cross-sectional view, and is a method for joining a metal member and a resin member.
前記圧力が押圧部材により付与され、
前記凸状部の頂部の面積S1および前記押圧部材による押圧面積S2が以下の関係式を満たす、請求項1に記載の金属部材と樹脂部材との接合方法。
S1/S2≦0.8
The pressure is applied by a pressing member;
The joining method of the metal member and resin member of Claim 1 with which the area S1 of the top part of the said convex-shaped part and the pressing area S2 by the said pressing member satisfy | fill the following relational expressions.
S1 / S2 ≦ 0.8
前記圧力が押圧部材により付与され、
前記凸状部の最大幅W1および前記押圧部材の最大幅(直径)D1が以下の関係式を満たす、請求項1または2に記載の金属部材と樹脂部材との接合方法。
1.0≦W1/D1≦10.0
The pressure is applied by a pressing member;
The joining method of the metal member and resin member of Claim 1 or 2 with which the maximum width W1 of the said convex-shaped part and the maximum width (diameter) D1 of the said press member satisfy | fill the following relational expressions.
1.0 ≦ W1 / D1 ≦ 10.0
金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させた状態で、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材または前記樹脂部材の少なくとも一方の部材が他方の部材との対向面に凸状部を有し、該凸状部と他方の部材との間で、前記樹脂部材を溶融させることにより、溶融した樹脂を、平面視において前記凸状部からその外周側に向けて、前記接着剤と共に流動させ
前記圧力が押圧部材により付与され、
前記凸状部の頂部の面積S1および前記押圧部材による押圧面積S2が以下の関係式を満たす、金属部材と樹脂部材との接合方法。
S1/S2≦0.8
The metal member and the resin member are overlapped, and with the adhesive interposed therebetween, the resin member is melted by applying pressure and heat from the metal member side to join the metal member and the resin member. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
At least one member of the metal member or the resin member has a convex portion on the surface facing the other member, and by melting the resin member between the convex portion and the other member, The molten resin is flowed together with the adhesive from the convex portion toward the outer periphery in a plan view ,
The pressure is applied by a pressing member;
A joining method of a metal member and a resin member, wherein an area S1 of the top of the convex portion and a pressing area S2 by the pressing member satisfy the following relational expression .
S1 / S2 ≦ 0.8
前記圧力が押圧部材により付与され、
前記凸状部の最大幅W1および前記押圧部材の最大幅(直径)D1が以下の関係式を満たす、請求項に記載の金属部材と樹脂部材との接合方法。
1.0≦W1/D1≦10.0
The pressure is applied by a pressing member;
The joining method of the metal member and resin member of Claim 4 with which the maximum width W1 of the said convex-shaped part and the maximum width (diameter) D1 of the said press member satisfy | fill the following relational expressions.
1.0 ≦ W1 / D1 ≦ 10.0
金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させた状態で、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材または前記樹脂部材の少なくとも一方の部材が他方の部材との対向面に凸状部を有し、該凸状部と他方の部材との間で、前記樹脂部材を溶融させることにより、溶融した樹脂を、平面視において前記凸状部からその外周側に向けて、前記接着剤と共に流動させ
前記圧力が押圧部材により付与され、
前記凸状部の最大幅W1および前記押圧部材の最大幅(直径)D1が以下の関係式を満たす、金属部材と樹脂部材との接合方法。
1.0≦W1/D1≦10.0
The metal member and the resin member are overlapped, and with the adhesive interposed therebetween, the resin member is melted by applying pressure and heat from the metal member side to join the metal member and the resin member. It is a joining method of a metal member and a resin member by a hot-pressure joining method,
At least one member of the metal member or the resin member has a convex portion on the surface facing the other member, and by melting the resin member between the convex portion and the other member, The molten resin is flowed together with the adhesive from the convex portion toward the outer periphery in a plan view ,
The pressure is applied by a pressing member;
A joining method of a metal member and a resin member, wherein the maximum width W1 of the convex portion and the maximum width (diameter) D1 of the pressing member satisfy the following relational expression .
1.0 ≦ W1 / D1 ≦ 10.0
前記樹脂部材が前記金属部材との対向面に凸状部を有し、該凸状部と前記金属部材との間で、前記凸状部をその頂部から溶融させることにより、該溶融した樹脂を前記接着剤と共に流動させる、請求項1〜6のいずれかに記載の金属部材と樹脂部材との接合方法。 The resin member has a convex portion on a surface facing the metal member, and the molten resin is melted between the convex portion and the metal member by melting the convex portion from the top. The joining method of the metal member and resin member in any one of Claims 1-6 made to flow with the said adhesive agent. 前記金属部材が前記樹脂部材との対向面に凸状部を有し、該凸状部と前記樹脂部材との間で、前記樹脂部材における前記凸状部の頂部の接近部から溶融させることにより、該溶融した樹脂を前記接着剤と共に流動させる、請求項1〜7のいずれかに記載の金属部材と樹脂部材との接合方法。 The metal member has a convex portion on the surface facing the resin member, and is melted from an approaching portion of the top of the convex portion in the resin member between the convex portion and the resin member. The method for joining a metal member and a resin member according to any one of claims 1 to 7 , wherein the molten resin is caused to flow together with the adhesive. 前記接着剤は、前記金属部材または前記樹脂部材の少なくとも一方における前記対向面に層形態で提供されている、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The adhesive, the is provided with a layer form the facing surface of at least one of the metal member or the resin member, method of joining the metal member and the resin member according to any one of claims 1-8. 前記接着剤は、前記樹脂部材における前記金属部材との対向面に層形態で提供されている、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The adhesive, the is provided with a layer form on the opposing surfaces of the metal member in the resin member, method of joining the metal member and the resin member according to any one of claims 1-9. 前記接着剤は、前記金属部材または前記樹脂部材の少なくとも一方における対向面にビード状に提供されている、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。 The said adhesive agent is a joining method of the metal member and resin member in any one of Claims 1-8 provided in the bead shape at the opposing surface in at least one of the said metal member or the said resin member. 前記凸状部は局所的隆起部である、請求項1〜11のいずれかに記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to any one of claims 1 to 11 , wherein the convex portion is a locally raised portion. 熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む請求項1〜12のいずれかに記載の接合方法:
前記金属部材と前記樹脂部材とを重ね合わせる第1ステップ;および
押圧部材としての回転ツールを回転させつつ、前記金属部材に押圧して摩擦熱を発生させ、この摩擦熱で前記樹脂部材を溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ。
The hot-pressure bonding method is a friction stir welding method,
The joining method according to any one of claims 1 to 12 , wherein the friction stir welding method includes the following steps:
A first step of superimposing the metal member and the resin member; and while rotating a rotary tool as a pressing member, the metal member is pressed to generate frictional heat, and the resin member is melted by the frictional heat. And then solidifying and joining the metal member and the resin member.
前記第2ステップが、前記回転ツールを前記金属部材に押し込んで前記金属部材と前記樹脂部材との境界面に達しない深さまで進入させる押込み撹拌工程を備えている請求項13に記載の接合方法。 The joining method according to claim 13 , wherein the second step includes a pushing and stirring step of pushing the rotating tool into the metal member to enter a depth that does not reach a boundary surface between the metal member and the resin member. 前記第2ステップが、押込み撹拌工程の前に、前記回転ツールのショルダー面を前記金属部材の表面部に接触させた状態で前記回転ツールを回転させる予熱工程をさらに備えている請求項14に記載の接合方法。 The second step is, before the pushing stirring step, wherein the shoulder surface of the rotary tool to claim 14, further comprising a preheating step of rotating the rotary tool in a state in contact with the surface portion of the metal member Joining method. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる請求項15に記載の接合方法。
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
Wherein the pushing stirring step of claim 15 is rotated only between the rotary tool is shorter than between the pressed while the first pressurization in the first pressure is greater than the second pressure second pressurization Joining method.
前記第2ステップが、前記回転ツールを前記境界面に達しない深さまで進入させた位置で、前記回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項16に記載の接合方法。
The second step further comprises an agitation maintaining step of continuing the rotation operation of the rotary tool at a position where the rotary tool has entered to a depth that does not reach the boundary surface,
Wherein the agitation maintains process of claim 16 which rotates only between the rotating the tool first longer than between the first pressurization while pressing under a pressure less than the third pressure third pressurization Joining method.
前記第2ステップが、撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で前記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項17に記載の接合方法。 The said 2nd step is further equipped with the holding process which stops rotation of the said rotation tool after a stirring maintenance process, and hold | maintains the said rotation tool with a predetermined pressurizing force for a predetermined pressurization time in the state. 18. The joining method according to item 17 .
JP2017116473A 2017-06-14 2017-06-14 Method of joining metal member and resin member and metal member or resin member used in the method Active JP6614204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116473A JP6614204B2 (en) 2017-06-14 2017-06-14 Method of joining metal member and resin member and metal member or resin member used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116473A JP6614204B2 (en) 2017-06-14 2017-06-14 Method of joining metal member and resin member and metal member or resin member used in the method

Publications (2)

Publication Number Publication Date
JP2019001029A JP2019001029A (en) 2019-01-10
JP6614204B2 true JP6614204B2 (en) 2019-12-04

Family

ID=65004661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116473A Active JP6614204B2 (en) 2017-06-14 2017-06-14 Method of joining metal member and resin member and metal member or resin member used in the method

Country Status (1)

Country Link
JP (1) JP6614204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156086B2 (en) * 2019-02-28 2022-10-19 マツダ株式会社 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961532B2 (en) * 2006-07-25 2012-06-27 日産自動車株式会社 Method and apparatus for joining dissimilar metals
JP2009202828A (en) * 2008-02-29 2009-09-10 Mazda Motor Corp Manufacturing method and manufacturing line of vehicle body
JP5808636B2 (en) * 2011-09-30 2015-11-10 日鐵住金建材株式会社 Composite structure comprising resin structure and metal plate and method for producing the same
JP6102806B2 (en) * 2013-03-22 2017-03-29 マツダ株式会社 Dissimilar member joining method
JP6098563B2 (en) * 2014-03-28 2017-03-22 マツダ株式会社 Method of joining metal member and resin member
JP6098565B2 (en) * 2014-03-28 2017-03-22 マツダ株式会社 Method of joining metal member and resin member

Also Published As

Publication number Publication date
JP2019001029A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6315017B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
US9919378B2 (en) Welding tool comprising a shoulder, welding method and workpiece
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6102877B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098605B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6330760B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP7156086B2 (en) METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
JP6098564B2 (en) Method of joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6614204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150