JP6102806B2 - Dissimilar member joining method - Google Patents

Dissimilar member joining method Download PDF

Info

Publication number
JP6102806B2
JP6102806B2 JP2014057926A JP2014057926A JP6102806B2 JP 6102806 B2 JP6102806 B2 JP 6102806B2 JP 2014057926 A JP2014057926 A JP 2014057926A JP 2014057926 A JP2014057926 A JP 2014057926A JP 6102806 B2 JP6102806 B2 JP 6102806B2
Authority
JP
Japan
Prior art keywords
metal member
rotary tool
resin
resin member
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014057926A
Other languages
Japanese (ja)
Other versions
JP2014208461A (en
Inventor
耕二郎 田中
耕二郎 田中
杉本 幸弘
幸弘 杉本
勝也 西口
勝也 西口
千明 朝野
千明 朝野
松田 祐之
祐之 松田
嗣久 宮本
嗣久 宮本
小林 めぐみ
めぐみ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014057926A priority Critical patent/JP6102806B2/en
Publication of JP2014208461A publication Critical patent/JP2014208461A/en
Application granted granted Critical
Publication of JP6102806B2 publication Critical patent/JP6102806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92441Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
    • B29C66/92443Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
    • B29C66/92445Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、相互に種類の異なる異種部材、特に、金属製部材と樹脂製部材との接合方法に関する。   The present invention relates to different types of different members, and more particularly, to a method for joining a metal member and a resin member.

従来、自動車、鉄道車両、航空機、家電製品等は軽量化が求められている。例えば、自動車では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。これら異種材の接合技術は、単に軽量化に留まらず、車体の高強度化や高剛性化を実現できると共に、生産性向上の観点からも車体製造技術として重要である。これまで、スチール材とアルミ合金材との接合法として、溶接法に代わり、摩擦攪拌接合(FSW:friction stir welding)が有用であるとして多くの技術が特許文献として示されている。   Conventionally, automobiles, railway vehicles, aircraft, home appliances, and the like have been required to be lighter. For example, in automobiles, the use of high-tensile materials has led to thin steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. The joining technology of these different materials is not only a light weight, but can realize an increase in strength and rigidity of the vehicle body, and is also important as a vehicle body manufacturing technology from the viewpoint of improving productivity. Until now, as a joining method of steel material and aluminum alloy material, in place of welding method, friction stir welding (FSW: friction stir welding) is useful, and many techniques have been shown as patent documents.

すなわち、相互に種類の異なる、例えばアルミニウム材よりなる金属製部材と、例えばポリプロピレン(PP)よりなる樹脂製部材とを接合する技術として、特許文献1に開示されたものがある。この技術は、摩擦攪拌接合(FSW)を用いるものであって、金属製部材の一方の面に、樹脂製部材の熱可塑性樹脂と相溶可能な熱可塑性樹脂よりなる塗膜を形成し、上記塗膜が形成された金属製部材の面を樹脂製部材側にして上記金属製部材と上記樹脂製部材とを重ね合わせ、その後、金属製部材側から回転ツールを回転させつつ押圧することにより摩擦熱を発生させ、塗膜と樹脂製部材との界面を加熱して両者を相溶させ、その後、冷却して両者を一体化することにより金属製部材と樹脂製部材とを接合するものである。   That is, there is a technique disclosed in Patent Document 1 as a technique for joining a metal member made of, for example, an aluminum material and a resin member made of, for example, polypropylene (PP), which are different from each other. This technique uses friction stir welding (FSW), and forms a coating film made of a thermoplastic resin that is compatible with the thermoplastic resin of the resin member on one surface of the metal member. The metal member on which the coating film is formed faces the resin member, the metal member and the resin member are overlapped, and then the friction is generated by pressing while rotating the rotating tool from the metal member side. Heat is generated, the interface between the coating film and the resin member is heated to make them compatible, and then cooled to integrate the two to join the metal member and the resin member. .

また、特許文献2にも、摩擦攪拌接合を用いて樹脂製部材と金属製部材とを接合する方法が開示されている。それによれば、PET(ポリエチテンテレフタレート)製の樹脂製部材とアルミニウム合金製の金属製部材とを重ね合わせ、金属製部材側から回転ツールで摩擦攪拌して両部材を接合する場合に、十分な引張強度の実現と摩擦攪拌接合装置の過負荷の防止との観点から、回転ツールの押込み量を金属製部材の板厚の5%以上20%以下に設定すること、あるいは、回転ツールの外径を金属製部材の板厚の2倍以上5倍以下に設定することが開示されている。   Patent Document 2 also discloses a method of joining a resin member and a metal member using friction stir welding. According to this, when a resin member made of PET (polyethylene terephthalate) and a metal member made of aluminum alloy are overlapped, and both members are joined by friction stirring with a rotary tool from the metal member side, From the viewpoint of achieving tensile strength and preventing overloading of the friction stir welding apparatus, the amount of pushing of the rotary tool should be set to 5% to 20% of the plate thickness of the metal member, or the outer diameter of the rotary tool Is set to be not less than 2 times and not more than 5 times the plate thickness of the metal member.

特開2009−279858号公報(段落0007)JP 2009-279858 A (paragraph 0007) 特開2010−158885号公報(段落0059〜0071)JP 2010-158885 A (paragraphs 0059-0071)

上記特許文献1に開示の技術では、摩擦攪拌接合をする前に、予め、金属製部材の表面に、樹脂製部材の熱可塑性樹脂と相溶性の良い熱可塑性樹脂よりなる塗膜を形成するので、工程が増え、コストアップを招くという不利益がある。また、塗膜の厚みコントロール等の新たな課題を克服する必要も生じる。   In the technique disclosed in Patent Document 1, before the friction stir welding, a coating film made of a thermoplastic resin having good compatibility with the thermoplastic resin of the resin member is formed on the surface of the metal member in advance. There is a disadvantage that the number of processes increases and costs increase. In addition, there is a need to overcome new problems such as controlling the thickness of the coating film.

上記特許文献2に開示の技術では、樹脂製部材として、代表的な汎用樹脂であるポリプロピレン製の樹脂製部材を用いた場合に、金属製部材との接合強度が不足する可能性がある。その理由は、ポリプロピレンは、炭素(C)及び水素(H)のみからなる飽和炭化水素骨格を有する樹脂であり、分子構造に官能基が存在せず、反応性に乏しいため、金属材料と接合し難い樹脂だからである。また、ポリプロピレンは、他の樹脂と比べて熱伝導率が低いため(0.125W/m・K)、軟化・溶融に時間がかかり、この点からも金属材料との接合性が低い樹脂だからである。   In the technique disclosed in Patent Document 2, when a resin member made of polypropylene, which is a typical general-purpose resin, is used as the resin member, the bonding strength with the metal member may be insufficient. The reason is that polypropylene is a resin having a saturated hydrocarbon skeleton consisting only of carbon (C) and hydrogen (H), and has no functional group in the molecular structure and lacks reactivity. This is because it is a difficult resin. Also, since polypropylene has a lower thermal conductivity than other resins (0.125 W / m · K), it takes time to soften and melt, and from this point, it is also a resin with low bondability to metal materials. is there.

これに対し、PET樹脂は、分子構造に官能基であるカルボニル基(C=O)を有し、熱伝導率も比較的高いため(0.31W/m・K)、特許文献2に開示の技術では、特許文献1のような樹脂塗膜を形成しなくても、PET製の樹脂製部材とアルミニウム合金製の金属製部材とが接合されるものと考えられる。   In contrast, the PET resin has a carbonyl group (C═O) as a functional group in the molecular structure and has a relatively high thermal conductivity (0.31 W / m · K). According to the technology, it is considered that a resin member made of PET and a metal member made of an aluminum alloy are joined without forming a resin coating film as in Patent Document 1.

したがって、分子構造に官能基を有する樹脂よりなる樹脂製部材は、塗膜の形成等の工程を増やすことなく、金属製部材との摩擦攪拌接合が可能と考えられる。しかし、特許文献2に開示の技術では、回転ツールの押込み量を金属製部材の板厚の20%以下に設定するので、摩擦熱が樹脂製部材から比較的離間した金属製部材の表面部で発生する。そのため、樹脂製部材の軟化・溶融に時間がかかる、あるいは樹脂製部材に摩擦熱が十分伝わらない、等の理由により、たとえ官能基を有する樹脂製部材であっても、金属製部材との接合強度が不足する可能性がある。   Therefore, it is considered that the resin member made of a resin having a functional group in the molecular structure can be friction stir welded to the metal member without increasing the steps such as the formation of a coating film. However, in the technique disclosed in Patent Document 2, the pressing amount of the rotary tool is set to 20% or less of the plate thickness of the metal member, so that the frictional heat is generated on the surface portion of the metal member relatively separated from the resin member. Occur. Therefore, even if it is a resin member having a functional group, it takes time to soften and melt the resin member, or the frictional heat is not sufficiently transmitted to the resin member. The strength may be insufficient.

この問題に対処するために、回転ツールの加圧力を高めて回転ツールを金属製部材に深く押し込むことが考えられる。しかし、回転ツールを深く押し込み過ぎると、回転ツールが金属製部材を貫通し、回転ツールが通過した孔が開いた孔開き状態となり、接合不良が起きる可能性がある。   In order to cope with this problem, it is conceivable to increase the pressure of the rotating tool and push the rotating tool deeply into the metal member. However, when the rotary tool is pushed too deeply, the rotary tool penetrates the metal member, and a hole through which the rotary tool has passed is opened, which may cause poor bonding.

本発明は、上記のような事情に鑑みてなされたものであり、官能基を有する樹脂製部材と金属製部材とを、孔開き状態とすることなく、高強度に接合できる異種部材の接合方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and is a bonding method for dissimilar members capable of bonding a resin member having a functional group and a metal member with high strength without making them open. The purpose is to provide.

上記課題を解決するためのものとして、本発明は、金属製部材と、官能基を有する樹脂製部材とを重ね合わせる第1ステップと、回転ツールを回転させつつ金属製部材側から樹脂製部材側に押圧して摩擦熱を発生させ、この摩擦熱で樹脂製部材を軟化させて金属製部材と樹脂製部材とを接合する第2ステップとを含む異種部材の接合方法であって上記回転ツールとして、円柱状体の先端からなるショルダ部と、ショルダ部から突設されかつ外径がショルダ部よりも小さい円柱状のピン部とを有するものを用意し、上記第2ステップは、上記回転ツールのピン部およびショルダ部のみを上記金属製部材の表面部に接触させた状態で回転ツールを回転させる予熱工程と、この予熱工程の後、上記回転ツールを金属製部材に押し込んで金属製部材と樹脂製部材との接合境界面に達しない深さまで進入させ近接させる押込み攪拌工程と、上記接合境界面に達しない深さまで進入させ近接させた位置で上記回転ツールの回転動作を継続させる攪拌維持工程とを含み、上記予熱工程では上記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、上記押込み攪拌工程では上記回転ツールを上記第1の加圧力より大きい第2の加圧力で押圧しつつ上記第1の加圧時間より短い第2の加圧時間だけ回転させ、上記攪拌維持工程では上記回転ツールを上記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させることを特徴とする異種部材の接合方法である(請求項1)。 In order to solve the above problems, the present invention provides a first step of superimposing a metal member and a resin member having a functional group, and a resin member side from the metal member side while rotating the rotary tool. the pressed to generate frictional heat, the resin member is softened by the frictional heat and a second step of joining the metal member and the resin member to a joining method of including different member, the rotating As a tool, a tool having a shoulder part formed of a tip of a cylindrical body and a cylindrical pin part protruding from the shoulder part and having an outer diameter smaller than that of the shoulder part is prepared, and the second step includes the rotation a preheating step of only pin portion and shoulder portion of the tool to rotate the rotary tool in a state in contact with the surface portion of the metal member, after the preheating step, the metallic member is pushed the rotating tool to a metal member Pushing and stirring step for approaching and approaching to a depth that does not reach the joint boundary surface with the resin member, and stirring and maintaining step for continuing the rotational operation of the rotary tool at a position that enters and approaches the depth that does not reach the joint boundary surface look including the door, in the above preheating step is rotated only between a first pressurization while pressing the rotating tool in a first pressing force, the rotating tool first larger than the above first pressing force in the pushing stirring step While rotating with a pressing force of 2, the rotating tool is rotated for a second pressing time shorter than the first pressing time, and in the stirring maintaining step, the rotating tool is rotated with a third pressing force smaller than the first pressing force. The dissimilar member joining method is characterized in that it is rotated for a third pressurizing time longer than the first pressurizing time while pressing (claim 1).

本発明によれば、摩擦攪拌接合を用いて金属製部材と樹脂製部材とを接合する方法において、樹脂製部材として、例えば飽和炭化水素骨格のみよりなる樹脂製部材等に比べて、ある程度の反応性又は相互作用性を有する官能基を有する樹脂製部材が用いられる。そのため、塗膜の形成等の工程を増やすことなく、金属製部材と樹脂製部材とを接合することが可能となる。   According to the present invention, in a method of joining a metal member and a resin member using friction stir welding, a certain degree of reaction is obtained as a resin member, for example, compared to a resin member made of only a saturated hydrocarbon skeleton. A resin member having a functional group having a property or an interaction property is used. Therefore, it becomes possible to join the metal member and the resin member without increasing the steps such as the formation of the coating film.

その上で、回転ツールは、押込み攪拌工程で、金属製部材と樹脂製部材との接合境界面に達しない深さまで進入され近接された後、攪拌維持工程で、上記接合境界面に達しない深さまで進入され近接された位置(これを「基準位置」という)で回転動作が継続される。そのため、回転ツールを金属製部材に深く押し込む場合に、回転ツールが金属製部材を貫通し、回転ツールが通過した孔が開いた孔開き状態となることが防がれる。そして、樹脂製部材に近接した基準位置で摩擦熱が発生し、その摩擦熱の発生が継続されるので、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂製部材に移動する。そのため、樹脂製部材の軟化・溶融が促進され、樹脂製部材が広い範囲で十分に軟化・溶融して金属製部材と樹脂製部材とが広い範囲で高強度に接合された異種部材の接合体が得られる。以上により、官能基を有する樹脂製部材と金属製部材とを、孔開き状態とすることなく、高強度に接合できる異種部材の接合方法が提供される。   In addition, the rotating tool is inserted and approached to a depth that does not reach the joint boundary surface between the metal member and the resin member in the indentation stirring step, and then the depth that does not reach the joint boundary surface in the stirring maintenance step. The rotation operation is continued at a position approached and approached (this is referred to as “reference position”). For this reason, when the rotary tool is pushed deeply into the metal member, it is prevented that the rotary tool penetrates the metal member and the hole through which the rotary tool passes is opened. Then, frictional heat is generated at a reference position close to the resin member, and the generation of the frictional heat is continued. Therefore, a large amount of frictional heat is generated, and most of the generated frictional heat is transferred to the resin member. . Therefore, the softening and melting of the resin member is promoted, and the resin member is sufficiently softened and melted in a wide range so that the metal member and the resin member are joined with high strength in a wide range. Is obtained. As described above, there is provided a joining method for dissimilar members, which can join a resin member having a functional group and a metal member with high strength without making them open.

また、押込み攪拌工程の前の予熱工程で、回転ツールのピン部およびショルダ部のみを上記金属製部材の表面部に接触させることにより、金属製部材の表面部で発生した摩擦熱が金属製部材の内部に伝わり、金属製部材が予熱される。これにより、次の押込み攪拌工程で、回転ツールを金属製部材に容易に押し込むことができる。 Further, in the preheating step before the indentation stirring step, only the pin portion and the shoulder portion of the rotating tool are brought into contact with the surface portion of the metal member, so that the frictional heat generated on the surface portion of the metal member is made of the metal member. The metal member is preheated. Thereby, the rotary tool can be easily pushed into the metal member in the next pushing and stirring step.

一方、押込み攪拌工程では、予熱工程のときよりも加圧力を大きくすることにより、回転ツールを金属製部材に深く押し込むことができる。その場合に、押込み攪拌工程では、予熱工程のときよりも加圧時間を短くすることにより、回転ツールが金属製部材と樹脂製部材との接合境界面を行き過ぎて金属製部材を貫通することを防ぐことができる。 On the other hand, in the indentation stirring step, the rotary tool can be deeply pushed into the metal member by increasing the applied pressure compared to the preheating step. In that case, in the indentation stirring step, the pressurization time is shortened compared to the preheating step, so that the rotating tool passes through the metal member through the joint interface between the metal member and the resin member. Can be prevented.

さらに、攪拌維持工程では、予熱工程のときよりも加圧力を小さくすることにより、回転ツールが金属製部材と樹脂製部材との接合境界面を行き過ぎて金属製部材を貫通することを防ぐことができる。その場合に、攪拌維持工程では、予熱工程のときよりも加圧時間を長くすることにより、樹脂製部材に近接した基準位置で多量の摩擦熱を発生させることができる。 Furthermore , in the stirring maintaining step, by reducing the applied pressure as compared with the preheating step, it is possible to prevent the rotating tool from passing through the metal member by passing over the joining boundary surface between the metal member and the resin member. it can. In that case, in the stirring maintaining step, a large amount of frictional heat can be generated at the reference position close to the resin member by making the pressurization time longer than in the preheating step.

本発明において、好ましくは、上記第1の加圧力は700N以上1200N未満の値であり、上記第1の加圧時間は0.5秒以上2.0秒未満の値であり、上記第2の加圧力は1200N以上1800N未満の値であり、上記第2の加圧時間は0.1秒以上0.5秒未満の値であり、上記第3の加圧力は100N以上700N未満の値であり、上記第3の加圧時間は1.0秒以上10秒未満の値である(請求項2)。 In the present invention, preferably, the first pressurizing force is a value of 700 N or more and less than 1200 N, the first pressurizing time is a value of 0.5 second or more and less than 2.0 seconds, and the second pressurizing time is The applied pressure is a value of 1200 N or more and less than 1800 N, the second pressurizing time is a value of 0.1 to 0.5 seconds, and the third applied pressure is a value of 100 N or more and less than 700 N. The third pressurization time is a value of not less than 1.0 seconds and less than 10 seconds ( Claim 2 ).

この構成によれば、例えば、1mm以上2mm以下の厚みの金属製部材と2mm以上4mm以下の厚みの樹脂製部材とを接合する場合の生産性(時間短縮と歩留まりとのバランス)の観点から、予熱工程、押込み攪拌工程、及び攪拌維持工程における各加圧力及び各加圧時間の好ましい具体的数値が示される。   According to this configuration, for example, from the viewpoint of productivity (balance between time reduction and yield) when joining a metal member having a thickness of 1 mm to 2 mm and a resin member having a thickness of 2 mm to 4 mm, Preferable specific numerical values of each pressing force and each pressurizing time in the preheating step, the indentation stirring step, and the stirring maintaining step are shown.

本発明において、好ましくは、上記第2ステップは、上記攪拌維持工程の後に、上記回転ツールの回転を停止し、その状態で上記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程を含む(請求項3)。 In the present invention, preferably, in the second step, after the stirring maintaining step, the rotation of the rotary tool is stopped, and in this state, the rotary tool is held for a predetermined pressurizing time with a predetermined pressing force. A process ( claim 3 ).

この構成によれば、攪拌維持工程の後の保持工程で、回転が停止された回転ツールが金属製部材と樹脂製部材との接合部を所定の加圧力でクランプするので、摩擦攪拌接合終了後の冷却期間中の金属製部材と樹脂製部材との間の密着力が高められ、冷却完了後の接合強度が高められる。   According to this configuration, in the holding step after the stirring maintaining step, the rotating tool whose rotation is stopped clamps the joint portion between the metal member and the resin member with a predetermined pressure, so that after the friction stir welding is completed The adhesion force between the metal member and the resin member during the cooling period is increased, and the bonding strength after the cooling is completed is increased.

本発明において、上記官能基として、N,O,F,Si,S,Cl,Br,Iの少なくとも1つの元素を含有するものが好ましい(請求項4)。 In the present invention, it is preferable that the functional group contains at least one element of N, O, F, Si, S, Cl, Br, and I ( Claim 4 ).

このようにすれば、樹脂製部材と金属製部材との相互作用をより確実に促進することができ、樹脂製部材と金属製部材との接合性をより確実に高めることができる。   If it does in this way, interaction with a resin-made member and a metal member can be accelerated | stimulated more reliably, and the joining property of a resin-made member and a metal member can be improved more reliably.

ここで、上記元素のうちO,S,Clを含有する官能基は入手性と電気陰性度の高さに起因する接合性向上効果を両立するため、上記官能基としてこれら元素を含有するものを用いれば、比較的安価に樹脂製部材と金属製部材との接合性をより高めることができる(請求項5)。 Here, among the above elements, a functional group containing O, S, and Cl has both availability and an effect of improving the bonding property due to high electronegativity, and therefore, those containing these elements as the above functional group. If used, the bondability between the resin member and the metal member can be further increased at a relatively low cost ( Claim 5 ).

また本発明において、好ましくは、上記樹脂製部材の樹脂は、ポリアミド樹脂、ポリエチレンテレフタレート、又はポリ乳酸である(請求項6)。 In the present invention, preferably, the resin of the resin member is a polyamide resin, polyethylene terephthalate, or polylactic acid ( Claim 6 ).

この構成によれば、特に接合強度の高い異種部材の接合体が得られる。   According to this configuration, a joined body of different types of members having particularly high joining strength can be obtained.

以上説明したように、本発明は、樹脂製部材と金属製部材とを高強度に接合する技術を提供するので、軽量化が求められる自動車、鉄道車両、航空機、家電製品等の技術分野において産業の発展向上に寄与する。   As described above, the present invention provides a technique for joining a resin member and a metal member with high strength, so that the industry in the technical fields such as automobiles, railway vehicles, aircrafts, and home appliances that are required to be reduced in weight. Contribute to the development and improvement of

本発明の実施形態にかかる異種部材の接合方法に好適な摩擦攪拌接合装置の一例を模式的に示す図である。It is a figure which shows typically an example of the friction stir welding apparatus suitable for the joining method of the dissimilar member concerning embodiment of this invention. 上記摩擦攪拌接合装置の回転ツールの先端部の拡大図である。It is an enlarged view of the front-end | tip part of the rotary tool of the said friction stir welding apparatus. 上記異種部材の接合方法の工程表である。It is a process chart of the joining method of the said dissimilar member. 上記異種部材の接合方法の予熱工程を説明するための断面図である。It is sectional drawing for demonstrating the preheating process of the joining method of the said dissimilar member. 上記異種部材の接合方法の押込み攪拌工程、攪拌維持工程及び保持工程を説明するための断面図である。It is sectional drawing for demonstrating the pushing stirring process of the said dissimilar member joining method, the stirring maintenance process, and a holding process. 上記異種部材の接合方法で得られた接合体の断面図である。It is sectional drawing of the conjugate | zygote obtained by the joining method of the said dissimilar member. 上記実施形態において、種々の樹脂製部材について、金属製部材との接合強度を示すグラフである。In the said embodiment, it is a graph which shows joining strength with a metal member about various resin members. 上記実施形態において、各工程と接合強度との関係を調べた結果を示したものである。In the said embodiment, the result of having investigated the relationship between each process and joining strength is shown.

以下、本発明の実施形態を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(1)接合装置
まず、本実施形態にかかる異種部材の接合方法を実施するのに用いられる摩擦攪拌接合装置について概略的に説明する。
(1) Joining apparatus First, a friction stir welding apparatus used for carrying out the joining method for different members according to the present embodiment will be schematically described.

図1は、上記摩擦攪拌接合装置の一例を模式的に示す図である。図1に示される摩擦攪拌接合装置1は、金属製部材11と樹脂製部材12とを摩擦攪拌接合する装置である。   FIG. 1 is a diagram schematically showing an example of the friction stir welding apparatus. A friction stir welding apparatus 1 shown in FIG. 1 is an apparatus for friction stir welding a metal member 11 and a resin member 12.

摩擦攪拌接合装置1は、円柱状の回転ツール16を具備している。回転ツール16は、矢印A1のように中心軸線X(図2参照)回りに回転しつつ、金属製部材11が上、樹脂製部材12が下になるように重ね合わされたワーク10の接合部P(接合予定箇所)に押し付けられる。このとき、回転ツール16は、矢印A2のように金属製部材11側から樹脂製部材12側に向かって下方に押圧される。この回転ツール16の押圧により、少なくとも接合部Pにおいて摩擦熱が発生する。この摩擦熱を受けて樹脂製部材12は、軟化・溶融し、これにより、金属製部材11と樹脂製部材12とが接合される。   The friction stir welding apparatus 1 includes a cylindrical rotating tool 16. The rotary tool 16 rotates around the central axis X (see FIG. 2) as indicated by an arrow A1, and the joint P of the workpiece 10 is overlapped so that the metal member 11 is on top and the resin member 12 is on the bottom. It is pressed against (scheduled joint location). At this time, the rotary tool 16 is pressed downward from the metal member 11 side toward the resin member 12 side as indicated by an arrow A2. By the pressing of the rotary tool 16, frictional heat is generated at least at the joint P. Upon receiving this frictional heat, the resin member 12 is softened and melted, whereby the metal member 11 and the resin member 12 are joined.

図2は、回転ツール16の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、先端部(図2では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the distal end portion of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 2). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which projects outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属製部材11の金属の種類に応じて設定される。例えば、金属製部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属製部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a The protrusion length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter of the pin portion 16a. D2 is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto.

図1に戻り、回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が、回転ツール16と同軸に配置されている。受け具17は、図外の駆動源により、矢印A3のようにワーク10に向かって上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、その上端面がワーク10の下面(より詳しくは樹脂製部材12の下面)に当接する位置まで移動される。受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16が接合部Pを押圧している期間中、つまり摩擦攪拌接合中、回転ツール16の押圧力に抗してワーク10を下方から支持する。   Returning to FIG. 1, below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is disposed coaxially with the rotary tool 16. The receiving member 17 is moved upward toward the workpiece 10 as indicated by an arrow A3 by a driving source (not shown). The receiving member 17 is moved to a position where the upper end surface thereof abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) before the rotary tool 16 starts pressing the workpiece 10 at the latest. The holder 17 holds the workpiece 10 between the rotary tool 16 and the workpiece against the pressing force of the rotary tool 16 during the period when the rotary tool 16 presses the joint P, that is, during friction stir welding. 10 is supported from below.

なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

このような回転ツール16及び受け具17を含む摩擦攪拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。   The friction stir welding apparatus 1 including the rotating tool 16 and the receiving member 17 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device.

なお、図1には図示を省略したが、摩擦攪拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属製部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   Although not shown in FIG. 1, the friction stir welding apparatus 1 fixes a workpiece 10 in advance and a spacer, a clamp, and the like for preventing the metal member 11 from being lifted when the rotary tool 16 is pressed. The jig is equipped.

(2)接合方法
次に、上記摩擦攪拌接合装置1を用いて実施される本実施形態にかかる異種部材の接合方法(摩擦攪拌接合)の具体的内容について説明する。
(2) Joining method Next, the specific content of the joining method (friction stir welding) of the dissimilar members concerning this embodiment implemented using the said friction stir welding apparatus 1 is demonstrated.

本実施形態では、上記樹脂製部材12として、官能基を有する樹脂製部材を用いる。官能基は、例えば飽和炭化水素骨格等に比べて、ある程度の反応性又は相互作用性を有している。そのため、官能基を有する樹脂製部材12を用いれば、塗膜の形成等の工程を増やすことなく、金属製部材11との摩擦攪拌接合が可能となる。   In the present embodiment, a resin member having a functional group is used as the resin member 12. The functional group has a certain degree of reactivity or interaction compared to, for example, a saturated hydrocarbon skeleton. Therefore, if the resin member 12 having a functional group is used, the friction stir welding with the metal member 11 can be performed without increasing the steps such as the formation of a coating film.

すなわち、官能基を介して、樹脂製部材12の素材である樹脂と、金属製部材11との相互作用が促進され、樹脂製部材12と金属製部材11との接合性が向上する。   That is, the interaction between the resin that is the material of the resin member 12 and the metal member 11 is promoted via the functional group, and the bondability between the resin member 12 and the metal member 11 is improved.

具体的には、金属製部材11の表面(より詳しくは樹脂製部材12との対接面)に酸化物層(例えば、酸化アルミニウムや酸化鉄の層)がある領域(例えば後述する図5の円βで示される領域)では、官能基がこの酸化物層と相互作用する。より詳しくは、官能基は、金属酸化物層に存在する酸素やヒドロキシ基(−OH)等と相互作用する。また、酸化物層がない領域(例えば後述する図5の円αで示される領域)では、金属製部材11の新生面(例えば、アルミニウム合金(Al)や鉄)と相互作用する。この相互作用により、樹脂製部材12と金属製部材11とは接合しやすくなる。   Specifically, a region having an oxide layer (for example, an aluminum oxide or iron oxide layer) on the surface of the metal member 11 (more specifically, the contact surface with the resin member 12) (for example, FIG. 5 described later). In the region indicated by the circle β), the functional group interacts with this oxide layer. More specifically, the functional group interacts with oxygen, hydroxy group (—OH), etc. present in the metal oxide layer. Further, in a region where there is no oxide layer (for example, a region indicated by a circle α in FIG. 5 described later), it interacts with a new surface (for example, aluminum alloy (Al) or iron) of the metal member 11. By this interaction, the resin member 12 and the metal member 11 are easily joined.

上記樹脂製部材12として、例えば下記の樹脂材よりなるものを採用することができる。下記において、各樹脂材が有する官能基を併せて付記する。なお、下記樹脂材及び官能基は、あくまで例示に過ぎないことはいうまでもない。
・ ポリアミド樹脂(PA(PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6等)):アミド結合(−CONH−)
・ ポリエチレンテレフタレート(PET):カルボニル基(C=O)
・ ポリ乳酸(PLA):カルボニル基(C=O)、ヒドロキシ基(−OH)
・ ポリメタクリル酸メチル樹脂(PMMA):カルボニル基(C=O)
・ ポリカーボネート(PC):カーボネート基(−O・CO・O−)
・ ポリブチレンテレフタレート(PBT):カルボニル基(C=O)
・ ポリトリメチレンテレフタレート(PTT):カルボニル基(C=O)
・ 液晶ポリマー(LCP):カルボニル基(C=O)
・ ウレタン樹脂:ウレタン結合(−NH・CO・O−)
・ フッ素樹脂:フッ素(−F)
・ ポリフェニレンエーテル(PPE):エーテル結合(−O−)
・ ポリアセタール(POM):エーテル結合(−O−)
・ ポリフェニレンサルファイド(PPS):チオエーテル結合(−S−)
ただし、本発明者らは、複数の官能基について、樹脂製部材と金属製部材との接合性への影響を調べた結果、電気陰性度が高い元素を有する官能基を用いるほど、樹脂製部材11と金属製部材12との接合強度が高くなること、および、官能基を有しない樹脂製部材11にSi(例えば、シランカップリング剤)を導入すれば、金属製部材12との接合性が向上することを突き止めた。そのため、樹脂製部材に導入する官能基としては、電気陰性度の高い元素(電気陰性度が2.5以上の元素)であるN,O,F,S,Si,Cl,Br,Iの少なくとも1つの元素を含有するものを用いるのが好ましい。ここで、これら元素のうち、O,S,Clを含む官能基は、入手性の高さとより高い電気陰性度を両立する。そのため、樹脂製部材として、O,S,Clを含む官能基を炭素繊維に導入すれば、比較的安価に樹脂製部材と金属製部材との接合性をより高めることができる。
As said resin member 12, what consists of the following resin materials, for example can be employ | adopted. Below, the functional group which each resin material has is written together. In addition, it cannot be overemphasized that the following resin material and functional group are only illustrations to the last.
Polyamide resin (PA (PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6, etc.)): Amide bond (—CONH—)
・ Polyethylene terephthalate (PET): Carbonyl group (C = O)
-Polylactic acid (PLA): carbonyl group (C = O), hydroxy group (-OH)
Polymethyl methacrylate resin (PMMA): carbonyl group (C = O)
Polycarbonate (PC): carbonate group (-O, CO, O-)
-Polybutylene terephthalate (PBT): carbonyl group (C = O)
Polytrimethylene terephthalate (PTT): carbonyl group (C = O)
Liquid crystal polymer (LCP): carbonyl group (C = O)
・ Urethane resin: Urethane bond (-NH, CO, O-)
・ Fluorine resin: Fluorine (-F)
・ Polyphenylene ether (PPE): Ether bond (-O-)
・ Polyacetal (POM): Ether bond (-O-)
Polyphenylene sulfide (PPS): thioether bond (-S-)
However, as a result of investigating the influence on the bondability between the resin member and the metal member for a plurality of functional groups, the present inventors use a functional group having an element having a high electronegativity as the resin member. The bonding strength between the metal member 12 and the metal member 12 can be increased by introducing Si (for example, a silane coupling agent) into the resin member 11 having no functional group. I found it to improve. Therefore, the functional group introduced into the resin member is at least one of N, O, F, S, Si, Cl, Br, and I, which are elements having high electronegativity (elements having an electronegativity of 2.5 or more). It is preferable to use one containing one element. Here, among these elements, the functional group containing O, S, and Cl achieves both high availability and higher electronegativity. Therefore, if a functional group containing O, S, and Cl is introduced into the carbon fiber as a resin member, the bondability between the resin member and the metal member can be further increased at a relatively low cost.

また、上記官能基を有する樹脂製部材12として、官能基を有しないマトリックス樹脂に、官能基を導入した炭素繊維を含有させることで、樹脂製部材12中に官能基を含ませるようにしたものを用いてもよい。例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン系樹脂をマトリックス樹脂とし、官能基が導入された炭素繊維が混合された樹脂製部材12を用いてもよい。   Also, as the resin member 12 having the above functional group, a functional group is incorporated in the resin member 12 by including a carbon fiber having a functional group introduced into a matrix resin having no functional group. May be used. For example, a resin member 12 in which a polyolefin resin such as polyethylene (PE) or polypropylene (PP) is used as a matrix resin and carbon fibers having a functional group introduced therein are mixed may be used.

また、上記樹脂製部材12には、上記のような炭素繊維のほか、樹脂製部材単体での性能を高めるため各種添加剤が含まれていてもよい。例えば、剛性を高めるための添加剤として、タルク等のフィラーや、ガラス繊維等が含まれていてもよい。また、樹脂製部材12を、所定の形状に成形する具体的方法も特に限定されるものではなく、射出成形法、プレス成形法、押出成形法、引抜成形法、オートクレーブ成形法等が適宜用いられれば良い。   In addition to the carbon fiber as described above, the resin member 12 may contain various additives in order to improve the performance of the resin member alone. For example, a filler such as talc, glass fiber, or the like may be included as an additive for increasing rigidity. Further, a specific method for molding the resin member 12 into a predetermined shape is not particularly limited, and an injection molding method, a press molding method, an extrusion molding method, a pultrusion molding method, an autoclave molding method, and the like are appropriately used. It ’s fine.

以下では、上記金属製部材11および樹脂製部材12が、それぞれ板状を有する場合について説明する。   Below, the case where the said metal member 11 and the resin member 12 each have plate shape is demonstrated.

本実施形態では、摩擦攪拌接合装置1は、金属製部材11と樹脂製部材12とが重ね合わされたワーク10に対し、回転ツール16を回転させつつ金属製部材11側から樹脂製部材12側に押圧して摩擦熱を発生させ、この摩擦熱で樹脂製部材12を軟化・溶融させて金属製部材11と樹脂製部材12とを接合する。すなわち、摩擦攪拌接合装置1は、金属製部材11と、官能基を有する樹脂製部材12とを重ね合わせる第1ステップと、回転ツール16を回転させつつ金属製部材11側から樹脂製部材12側に押圧して摩擦熱を発生させ、この摩擦熱で樹脂製部材12を軟化・溶融させて金属製部材11と樹脂製部材12とを接合する第2ステップとを実行する。回転ツール16をワーク10に押圧する第2ステップでは、さらに、図3に示す4つの工程(予熱工程C1、押込み攪拌工程C2、攪拌維持工程C3、保持工程C4)が実行される。   In this embodiment, the friction stir welding apparatus 1 moves from the metal member 11 side to the resin member 12 side while rotating the rotary tool 16 with respect to the workpiece 10 in which the metal member 11 and the resin member 12 are overlapped. The frictional heat is generated by pressing, and the resin member 12 is softened and melted by the frictional heat to join the metal member 11 and the resin member 12 together. That is, the friction stir welding apparatus 1 includes a first step of superimposing the metal member 11 and the resin member 12 having a functional group, and the metal member 11 side to the resin member 12 side while rotating the rotary tool 16. To generate frictional heat, and the second step of softening and melting the resin member 12 with the frictional heat to join the metal member 11 and the resin member 12 is performed. In the second step of pressing the rotary tool 16 against the workpiece 10, the four steps shown in FIG. 3 (preheating step C1, indentation stirring step C2, stirring maintaining step C3, holding step C4) are further performed.

第2ステップの各工程の詳細について次に説明する。   Details of each step of the second step will be described next.

最初の予熱工程C1では、回転ツール16と受け具17とを相互に近接させる。そして、図4に示すように、回転ツール16の先端部(ピン部16a及びショルダ部16b)のみを金属製部材11の表面部(図例では上面部)に接触させた状態で、回転ツール16を回転させる。 In the first preheating step C1, the rotary tool 16 and the receiving member 17 are brought close to each other. Then, as shown in FIG. 4, the rotating tool 16 is in a state where only the front end portions (the pin portion 16 a and the shoulder portion 16 b) of the rotating tool 16 are in contact with the surface portion (upper surface portion in the illustrated example ) of the metal member 11. Rotate.

この予熱工程C1では、回転ツール16を、第1の加圧力で、第1の加圧時間だけ、所定回転数で回転させる。   In the preheating step C1, the rotary tool 16 is rotated at a predetermined number of revolutions for the first pressurizing time with the first applied pressure.

予熱工程C1では、回転ツール16の押圧により金属製部材11の表面部(図例では上面部)で摩擦熱が発生する。この摩擦熱は、金属製部材11の内部に伝わり、金属製部材11の上記接合部Pの範囲及び上記接合部Pの近傍の範囲を予熱する。このように金属製部材11が予熱されることで、次の押込み攪拌工程C2での、回転ツール16の金属製部材11への押し込みが容易になる。   In the preheating step C <b> 1, frictional heat is generated on the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. This frictional heat is transmitted to the inside of the metal member 11 and preheats the range of the joint P of the metal member 11 and the range in the vicinity of the joint P. By preheating the metal member 11 in this way, it becomes easy to push the rotary tool 16 into the metal member 11 in the next indentation stirring step C2.

また、上記摩擦熱は、金属製部材11と樹脂製部材12との接合境界面を介して、樹脂製部材12にも伝わる。摩擦熱は、樹脂製部材12の内部に伝わり、樹脂製部材12の上記接合部Pの範囲及び上記接合部Pの近傍の範囲を予熱する。このように樹脂製部材12が予熱されることで、次の押込み攪拌工程C2で、樹脂製部材12が軟化・溶融し易くなる。   Further, the frictional heat is also transmitted to the resin member 12 through the joint boundary surface between the metal member 11 and the resin member 12. The frictional heat is transmitted to the inside of the resin member 12, and preheats the range of the joint portion P of the resin member 12 and the vicinity of the joint portion P. By preheating the resin member 12 in this manner, the resin member 12 is easily softened and melted in the next indentation stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂製部材12の軟化・溶融し易さの観点から設定される。例えば、各値は、回転ツール16の回転数や金属製部材11及び樹脂製部材12の素材の種類等に応じて設定される。図3に示す例では、第1の加圧力は900N、第1の加圧時間1.00秒、所定回転数は3000rpmとされる。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoints of ease of pushing the rotary tool 16 and the ease of softening and melting of the resin member 12. For example, each value is set according to the number of rotations of the rotary tool 16 and the type of material of the metal member 11 and the resin member 12. In the example shown in FIG. 3, the first pressure is 900 N, the first pressurization time is 1.00 seconds, and the predetermined rotational speed is 3000 rpm.

予熱工程C1の次の押込み攪拌工程C2では、回転ツール16と受け具17とをさらに相互に近接させ、回転ツール16を金属製部材11に押し込む。具体的には、この押込み撹拌工程C2では、回転ツール16の加圧力を第1の加圧力より高い第2加圧力とする。そして、この第2の加圧力で、第1の加圧時間より短い第2の加圧時間だけ、所定回転数で回転ツール16を回転させる。   In the pushing and stirring step C2 next to the preheating step C1, the rotating tool 16 and the receiving member 17 are further brought closer to each other, and the rotating tool 16 is pushed into the metal member 11. Specifically, in this indentation stirring step C2, the pressing force of the rotary tool 16 is set to a second pressing force that is higher than the first pressing force. Then, the rotary tool 16 is rotated at a predetermined number of revolutions for a second pressurization time shorter than the first pressurization time by the second pressurizing force.

加圧力が予熱工程C1での加圧力よりも大きくなることにより、図5に示すように、回転ツール16が金属製部材11に押し込まれる。すなわち、回転ツール16が金属製部材11の内部に深く進入する。この回転ツール16の押込みにより、金属製部材11と樹脂製部材12との接合境界面は、受け具17側(図例では下側)に移動する。   As the applied pressure becomes larger than the applied pressure in the preheating step C1, the rotary tool 16 is pushed into the metal member 11 as shown in FIG. That is, the rotary tool 16 enters deep inside the metal member 11. By pressing the rotary tool 16, the joining boundary surface between the metal member 11 and the resin member 12 moves to the receiving member 17 side (lower side in the illustrated example).

ここで、仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが、金属製部材11と樹脂製部材12との接合境界面を超えて、回転ツール16が金属製部材11を貫通し、樹脂製部材12に接触し、金属製部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   Here, if the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 is moved between the metal member 11 and the resin member 12. The rotating tool 16 passes through the metal member 11 and contacts the resin member 12 beyond the bonding boundary surface with the metal member 11, and the hole in which the rotating tool 16 has passed through the metal member 11 is opened. Defects occur.

そこで、本実施形態では、この押込み攪拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入し近接した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させ近接させる。これにより、次の攪拌維持工程C3で、樹脂製部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂製部材12に伝わり、樹脂製部材12の軟化・溶融が促進される。   Therefore, in the present embodiment, in the indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters and approaches the depth not reaching the joining boundary surface. In other words, the rotary tool 16 is made to approach and approach the depth that does not reach the joining boundary surface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, and a large amount of frictional heat is transmitted to the resin member 12, which promotes softening and melting of the resin member 12. .

押込み攪拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属製部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂製部材12に近接させる観点から設定され、各値は、例えば回転ツール16の回転数や金属製部材11及び樹脂製部材12の素材の種類等に応じて設定される。図3に示す例では、第2の加圧力は1500N、第2の加圧時間は0.25秒、所定回転数は3000rpmとされる。   The second pressurizing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 and the rotating tool 16 as close to the resin member 12 as possible. Each value is set according to, for example, the number of rotations of the rotary tool 16 and the types of materials of the metal member 11 and the resin member 12. In the example shown in FIG. 3, the second applied pressure is 1500 N, the second pressurizing time is 0.25 seconds, and the predetermined rotational speed is 3000 rpm.

上記押込み攪拌工程C2では、金属製部材11と樹脂製部材12との接合境界面が変形することにより、例えば図5の円αで示される領域において、金属製部材11の表面(より詳しくは樹脂製部材12との対接面)の酸化物層(酸化アルミニウムや酸化鉄等の層)が破壊され、金属製部材12(アルミニウム合金や鉄等)の新生面が出現する。そして、樹脂製部材12が酸化物層と新生面との双方と接触し、先に説明したように、樹脂製部材12に含まれる官能基がアルミニウム合金の酸化物層(より詳しくは金属酸化物層に存在する酸素やヒドロキシ基(−OH))及び新生面の双方と相互作用し、金属製部材11と樹脂製部材12とが接合されていく。   In the indentation stirring step C2, the joining boundary surface between the metal member 11 and the resin member 12 is deformed, so that, for example, in the region indicated by the circle α in FIG. The oxide layer (layer of aluminum oxide, iron oxide, etc.) of the contact surface with the product member 12 is destroyed, and a new surface of the metal member 12 (aluminum alloy, iron, etc.) appears. The resin member 12 is in contact with both the oxide layer and the new surface, and as described above, the functional group contained in the resin member 12 is an aluminum alloy oxide layer (more specifically, a metal oxide layer). The metal member 11 and the resin member 12 are joined together by interacting with both oxygen and hydroxy groups (—OH)) and the new surface.

また、この押込み攪拌工程C2では、金属製部材11と樹脂製部材12との接合境界面が変形しない領域(例えば図5の円βで示される領域)において、金属製部材11の表面(より詳しくは樹脂製部材12との対接面)に破壊されずに残った酸化物層(より詳しくは金属酸化物層に存在する酸素やヒドロキシ基(−OH))と樹脂製部材12に含まれる官能基とが相互作用して、金属製部材11と樹脂製部材12とが接合されていく。   Moreover, in this indentation stirring process C2, in the area | region (for example, area | region shown by circle (beta) of FIG. 5) in which the joining boundary surface of the metal member 11 and the resin member 12 does not deform | transform, the surface (in detail). Is the oxide layer (more specifically, oxygen and hydroxy groups (—OH) present in the metal oxide layer) remaining on the resin member 12 and the functionality contained in the resin member 12. The base member interacts, and the metal member 11 and the resin member 12 are joined.

押込み攪拌工程C2の次の攪拌維持工程C3では、回転ツール16と受け具17との相互近接を停止する。そして図5に示すように、金属製部材11と樹脂製部材12との接合境界面に達しない深さ位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる。   In the agitation maintaining process C3 subsequent to the indentation agitation process C2, the close proximity between the rotary tool 16 and the support 17 is stopped. Then, as shown in FIG. 5, the rotation operation of the rotary tool 16 is continued at a depth position (this is referred to as “reference position”) that does not reach the joining boundary surface between the metal member 11 and the resin member 12.

具体的には、攪拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力で、第1の加圧時間より長い第3の加圧時間だけ、所定回転数で回転させる。   Specifically, in the stirring and maintaining step C3, the rotary tool 16 is rotated at a predetermined rotational speed for a third pressurizing time longer than the first pressurizing time with a third pressurizing force smaller than the first pressurizing force. Rotate.

このように加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み攪拌工程C2よりも小さくなることにより)、この撹拌維持工程C3では、回転ツール16が上記基準位置に維持される。   In this way, when the pressing force is smaller than that in the preheating step C1 (of course, smaller than the indentation stirring step C2), in the stirring maintaining step C3, the rotary tool 16 is maintained at the reference position.

そして、樹脂製部材12に近い基準位置で回転ツール16の回転動作が継続されることで、撹拌維持工程C3では、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂製部材12に移動する。そのため、樹脂製部材12は、上記接合部Pの範囲及び上記接合部Pの近傍の範囲を超えて、広い範囲で十分に軟化・溶融する。   Then, by continuing the rotation operation of the rotary tool 16 at the reference position close to the resin member 12, a large amount of frictional heat is generated in the stirring maintaining step C3, and most of the generated frictional heat is the resin member 12. Move to. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the joint portion P and the vicinity of the joint portion P.

攪拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂製部材12の広い範囲での十分な軟化・溶融の観点から設定され、各値は、例えば回転ツール16の回転数や金属製部材11及び樹脂製部材12の素材の種類等に応じて設定される。図3に示す例では、第3の加圧力は500N、第3の加圧時間は5.75秒、所定回転数は3000rpmとされる。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and each value is, for example, a rotary tool. It is set according to the number of rotations of 16 and the types of materials of the metal member 11 and the resin member 12. In the example shown in FIG. 3, the third pressure is 500 N, the third pressurizing time is 5.75 seconds, and the predetermined rotational speed is 3000 rpm.

最後の保持工程C4では、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間だけ保持する。   In the last holding process C4, the rotation of the rotary tool 16 is stopped, and in this state, the rotary tool 16 is held for a predetermined time with a predetermined pressure. In the holding step C4, the rotary tool 16 is moved to a fourth pressure that is shorter than the third pressurization time but longer than the second pressurization time at a fourth pressurization force that is larger than the third pressurization force but smaller than the second pressurization force. Hold for 4 pressurization times.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦攪拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。このワーク10の冷却期間中において、上述のように、加圧力は、押込み攪拌工程C2よりも小さいが攪拌維持工程C3よりも大きくされる。そのため、金属製部材11と樹脂製部材12との接合部Pは、回転が停止された回転ツール16と受け具17とによって、適度な圧力でクランプされた状態、すなわち密着力が高められた状態で冷却される。このように、密着力が高められた状態で冷却されることにより、金属製部材11と樹脂製部材12との間の接合強度は高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, as described above, the applied pressure is smaller than the indentation stirring step C2, but larger than the stirring maintenance step C3. Therefore, the joint P between the metal member 11 and the resin member 12 is clamped with an appropriate pressure by the rotating tool 16 and the receiving member 17 that are stopped from rotating, that is, a state in which the adhesion is increased. Cooled by. Thus, the bonding strength between the metal member 11 and the resin member 12 is increased by cooling in a state in which the adhesion is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の接合部Pの密着力向上の観点から設定され、各値は、例えば金属製部材11及び樹脂製部材12の素材の種類等に応じて設定される。図3に示す例では、第4の加圧力は1000N、第4の加圧時間は5.00秒とされる。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion of the joint P during the cooling period as described above, and the values are, for example, the metal member 11 and the resin. It is set according to the type of material of the member 12. In the example shown in FIG. 3, the fourth pressure is 1000 N and the fourth pressurization time is 5.00 seconds.

なお、図3に示す加圧力、加圧時間、及びツール回転数は、あくまで一例であって、適宜変更が可能である。ただし、例えば、1mm以上2mm以下の厚みの金属製部材11と2mm以上4mm以下の厚みの樹脂製部材12とを接合する場合の、主として生産性(時間短縮と歩留まりとのバランス)の観点から、予熱工程C1における第1の加圧力は、700N以上1200N未満の値、第1の加圧時間は、0.5秒以上2.0秒未満の値が好ましく、押込み攪拌工程C2における第2の加圧力は、1200N以上1800N未満の値、第2の加圧時間は、0.1秒以上0.5秒未満の値が好ましく、攪拌維持工程C3における第3の加圧力は、100N以上700N未満の値、第3の加圧時間は、1.0秒以上10秒未満の値が好ましい。また、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   Note that the pressurizing force, pressurizing time, and tool rotation speed shown in FIG. 3 are merely examples, and can be changed as appropriate. However, for example, when joining the metal member 11 having a thickness of 1 mm or more and 2 mm or less and the resin member 12 having a thickness of 2 mm or more and 4 mm or less, mainly from the viewpoint of productivity (balance between time reduction and yield), The first pressure in the preheating step C1 is preferably 700 N or more and less than 1200 N, and the first pressurizing time is preferably 0.5 seconds or more and less than 2.0 seconds. The second pressure in the indentation stirring step C2 is preferably The pressure is preferably a value of 1200 N or more and less than 1800 N, and the second pressurization time is preferably a value of 0.1 or more and less than 0.5 second, and the third pressure in the stirring and maintaining step C3 is 100 N or more and less than 700 N The value and the third pressurizing time are preferably 1.0 seconds or more and less than 10 seconds. Further, the fourth pressing force in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, for example, and the fourth pressurizing time is preferably a value of 1 second or more, for example.

本実施形態では、以上のような工程C1,C2,C3,C4を経て、最終的に、図6に示すように、回転ツール16の回転及び押圧で発生した摩擦熱により樹脂製部材12が軟化・溶融して金属製部材11と樹脂製部材12とが広い範囲で高強度に接合された異種部材の接合体20が得られる。   In the present embodiment, the resin member 12 is finally softened by the frictional heat generated by the rotation and pressing of the rotary tool 16 as shown in FIG. 6 through the steps C1, C2, C3, and C4 as described above. -The dissimilar member joined body 20 is obtained by melting and joining the metal member 11 and the resin member 12 with high strength over a wide range.

(3)接合試験
本実施形態において、官能基を有する樹脂製部材12と金属製部材11との接合強度を調べるために、JIS Z 3136に準じる接合試験を行った。ここでは、種々の樹脂製部材12について、それぞれ接合強度を調べた。また、比較例1として、官能基を有しない樹脂製部材と金属製部材との接合強度を調べた。
(3) Joining Test In this embodiment, in order to examine the joining strength between the resin member 12 having a functional group and the metal member 11, a joining test according to JIS Z 3136 was performed. Here, the bonding strength of each of the various resin members 12 was examined. Further, as Comparative Example 1, the bonding strength between a resin member having no functional group and a metal member was examined.

[試験条件]
・金属製部材:6000系のアルミニウム合金製の板状部材(厚さ1.2mm)を用いた。
・樹脂製部材:ポリアミド樹脂(PA6、ナイロン6)製(実施例1)、ポリアミド樹脂(PA66、ナイロン66)製(実施例2)、ポリエチテンテレフタレート(PET)製(実施例3)、及びポリ乳酸(PLA)製(実施例4)の板状部材(厚さ3.0mm)を用いた。
・比較例1の樹脂製部材:ポリプロピレン(PP)製の板状部材(厚さ3.0mm)を用いた。
・回転ツール:図2の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
[Test conditions]
Metal member: A plate member (thickness 1.2 mm) made of a 6000 series aluminum alloy was used.
-Resin member: made of polyamide resin (PA6, nylon 6) (Example 1), made of polyamide resin (PA66, nylon 66) (Example 2), made of polyethylene terephthalate (PET) (Example 3), and poly A plate member (thickness: 3.0 mm) made of lactic acid (PLA) (Example 4) was used.
-Resin member of Comparative Example 1: A plate member (thickness: 3.0 mm) made of polypropylene (PP) was used.
-Rotating tool: The tool made from the tool steel whose dimension of each part of FIG. 2 is D1 = 10mm, D2 = 2mm, h = 0.5mm was used.

[押圧条件]
・予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpmとした。
・押込み攪拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpmとした。
・攪拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpmとした。
・保持工程C4:加圧力1000N、加圧時間5.00秒とした。
[Pressing conditions]
Preheating step C1: The pressure was 900 N, the pressurization time was 1.00 seconds, and the tool rotation speed was 3000 rpm.
Indentation stirring step C2: Pressurizing force 1500 N, pressurizing time 0.25 seconds, tool rotation speed 3000 rpm.
Stirring maintenance step C3: The pressure was 500 N, the pressurization time was 5.75 seconds, and the tool rotation speed was 3000 rpm.
-Holding process C4: The applied pressure was 1000 N and the pressurizing time was 5.00 seconds.

[接合強度]
JIS Z 3136に規定されている方法により、金属製部材と樹脂製部材とが接合された接合体を図1の矢印Y,Yに示す方向に引っ張り、せん断引張試験を行った。結果を図7に示す。
[Joint strength]
By a method prescribed in JIS Z 3136, the joined body in which the metal member and the resin member were joined was pulled in the directions indicated by arrows Y and Y in FIG. The results are shown in FIG.

樹脂製部材が官能基を有しない比較例1すなわちポリプロピレン(PP)製の場合は、金属製部材と樹脂製部材とが満足に接合されず、接合強度は極めて低かった。そして、この比較例1では、破壊は図1の接合部Pで起こった。   In Comparative Example 1 in which the resin member did not have a functional group, that is, made of polypropylene (PP), the metal member and the resin member were not satisfactorily bonded, and the bonding strength was extremely low. And in this comparative example 1, destruction occurred in the junction part P of FIG.

一方、樹脂製部材が官能基を有する実施例1〜4、すなわち、ポリアミド樹脂(PA6)製、ポリアミド樹脂(PA66)製、ポリエチテンテレフタレート(PET)製、及びポリ乳酸(PLA)製の場合は、接合強度が飛躍的に高くなり、破壊は接合部Pで起こらず樹脂製部材で起こった。つまり、接合強度は、それぞれ、ポリアミド樹脂(PA6)自体の破断強度、ポリアミド樹脂(PA66)自体の破断強度、ポリエチテンテレフタレート(PET)自体の破断強度、ポリ乳酸(PLA)自体の破断強度と同等レベルであった。なかでも、樹脂製部材がポリエチテンテレフタレート製の場合は、接合強度が最も高かった。なお、図7には示していないが、樹脂製部材12として、クロロ基が導入された炭素繊維を40重量%含むポリプロピレン(PP)を用いた場合においても、高いせん断強度を得ることができるとの試験結果が得られた。   On the other hand, in Examples 1-4 in which the resin member has a functional group, that is, made of polyamide resin (PA6), polyamide resin (PA66), polyethylene terephthalate (PET), and polylactic acid (PLA) The bonding strength was dramatically increased, and the fracture did not occur at the joint P but occurred with the resin member. That is, the bonding strength is equivalent to the breaking strength of the polyamide resin (PA6) itself, the breaking strength of the polyamide resin (PA66) itself, the breaking strength of the polyethylene terephthalate (PET) itself, and the breaking strength of the polylactic acid (PLA) itself. It was a level. Especially, when the resin member was made of polyethylene terephthalate, the bonding strength was the highest. Although not shown in FIG. 7, even when polypropylene (PP) containing 40% by weight of carbon fibers having chloro groups introduced is used as the resin member 12, high shear strength can be obtained. The test results were obtained.

(4)作用等
以上のように、本実施形態では、摩擦攪拌接合を用いて金属製部材11と樹脂製部材12とを接合する方法において、樹脂製部材12として、例えば飽和炭化水素骨格のみよりなるポリプロピレン(PP)等のような樹脂製部材等に比べて、ある程度の反応性又は相互作用性を有する官能基を有する樹脂製部材を用いたため、塗膜の形成等の工程を増やすことなく、金属製部材11と樹脂製部材12とを高い強度で接合することが可能となる。
(4) Action, etc. As described above, in the present embodiment, in the method of joining the metal member 11 and the resin member 12 using friction stir welding, as the resin member 12, for example, only from a saturated hydrocarbon skeleton. Compared to a resin member such as polypropylene (PP), etc., since a resin member having a functional group having a certain degree of reactivity or interaction is used, without increasing the steps such as the formation of a coating film, It becomes possible to join the metal member 11 and the resin member 12 with high strength.

特に、本実施形態では、回転ツール16の先端部のみを金属製部材11の表面部に接触させた状態で回転ツール16を回転させる予熱工程C1、回転ツール16を金属製部材11と樹脂製部材12との接合境界面に達しない深さまで進入させる押込み攪拌工程C2、回転ツール16を上記接合境界面に達しない深さ位置(基準位置)で継続して回転させる攪拌維持工程C3、回転ツール16の回転を停止し、その状態で回転ツール16を所定期間保持する保持工程C4とを順に実施したため、樹脂製部材12と金属製部材11とを、孔開き状態とすることなく、高強度に接合することができる。   In particular, in the present embodiment, the preheating step C1 in which the rotary tool 16 is rotated in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11, and the rotary tool 16 is made of the metal member 11 and the resin member. Intrusion stirring step C2 for entering to a depth that does not reach the joint boundary surface with 12 and a stirring maintenance step C3 for continuously rotating the rotary tool 16 at a depth position (reference position) that does not reach the joint boundary surface, and the rotary tool 16 In this state, the holding step C4 for holding the rotary tool 16 for a predetermined period is sequentially performed, so that the resin member 12 and the metal member 11 are bonded with high strength without being opened. can do.

すなわち、本実施形態では、回転ツール16が、押込み攪拌工程C2で、金属製部材11と樹脂製部材12との接合境界面に達しない深さまで進入され近接された後、攪拌維持工程C3で、上記接合境界面に達しない深さまで進入され近接された基準位置で回転動作が継続される。そのため、回転ツール16を金属製部材11に深く押し込む場合に、回転ツール16が金属製部材11を貫通し、金属製部材11に回転ツール16が通過した孔が開いた孔開き状態となることを防ぐことができる。また、樹脂製部材12に近接した基準位置で摩擦熱が発生し、その摩擦熱の発生が継続されるので、多量の摩擦熱を発生させて、発生した摩擦熱の大部分を樹脂製部材12に移動させることができ、樹脂製部材12の軟化・溶融を促進して、樹脂製部材12を広い範囲で十分に軟化・溶融して金属製部材11と樹脂製部材12とを広い範囲で高強度に接合することができる。   That is, in this embodiment, after the rotary tool 16 is approached and approached to a depth that does not reach the joining boundary surface between the metal member 11 and the resin member 12 in the indentation stirring step C2, in the stirring maintaining step C3, The rotation operation is continued at a reference position that is approached and approached to a depth that does not reach the joint boundary surface. Therefore, when the rotary tool 16 is pushed deeply into the metal member 11, the rotary tool 16 penetrates the metal member 11, and the hole through which the rotary tool 16 passes is opened in the metal member 11. Can be prevented. Further, since frictional heat is generated at a reference position close to the resin member 12 and the generation of the frictional heat is continued, a large amount of frictional heat is generated and most of the generated frictional heat is generated by the resin member 12. The resin member 12 is promoted to be softened and melted, and the resin member 12 is sufficiently softened and melted in a wide range to make the metal member 11 and the resin member 12 wide in a wide range. Can be joined to strength.

さらに、本実施形態では、押込み攪拌工程C2の前に、上記回転ツール16の先端部のみを金属製部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程を実施している。   Furthermore, in this embodiment, before the indentation stirring step C2, a preheating step of rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed. Yes.

そのため、押込み攪拌工程C2の前の予熱工程C1で、金属製部材11の表面部で発生した摩擦熱を金属製部材11の内部に伝えて、金属製部材11を予熱し、これにより、次の押込み攪拌工程C2で、回転ツール16を金属製部材11に容易に押し込むことができる。   Therefore, in the preheating step C1 prior to the indentation stirring step C2, the frictional heat generated on the surface portion of the metal member 11 is transmitted to the inside of the metal member 11, and the metal member 11 is preheated. The rotary tool 16 can be easily pushed into the metal member 11 in the pushing and stirring step C2.

具体的には、本実施形態では、上記予熱工程C1では上記回転ツール16を第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、上記押込み攪拌工程C2では上記回転ツール16を上記第1の加圧力より大きい第2の加圧力で押圧しつつ上記第1の加圧時間より短い第2の加圧時間だけ回転させ、上記攪拌維持工程C3では上記回転ツール16を上記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させる。   Specifically, in the present embodiment, in the preheating step C1, the rotary tool 16 is rotated for a first pressurizing time while being pressed with a first pressure, and in the indentation stirring step C2, the rotary tool 16 is rotated. While pressing with a second pressure greater than the first pressure, the second tool is rotated for a second pressurization time shorter than the first pressurization time, and in the stirring maintaining step C3, the rotary tool 16 is rotated with the first pressurization time. Rotating for a third pressurization time longer than the first pressurization time while pressing with a third pressurization pressure smaller than the first pressurization pressure.

これによれば、押込み攪拌工程C2では、予熱工程C1のときよりも加圧力を大きくすることにより、回転ツール16を金属製部材11に深く押し込むことができる。その場合に、押込み攪拌工程C2では、予熱工程C1のときよりも加圧時間を短くすることにより、回転ツール16が金属製部材11と樹脂製部材12との接合境界面を行き過ぎて金属製部材11を貫通すること、すなわち、孔開き状態となることを防ぐことができる。   According to this, in the indentation stirring step C2, the rotary tool 16 can be pushed deeply into the metal member 11 by increasing the applied pressure compared to the preheating step C1. In that case, in the indentation stirring step C2, the pressurizing time is made shorter than that in the preheating step C1, so that the rotary tool 16 passes over the joining boundary surface between the metal member 11 and the resin member 12, and the metal member. 11 can be prevented from penetrating, that is, being in a perforated state.

また、攪拌維持工程C3では、予熱工程C1のときよりも加圧力を小さくすることにより、回転ツール16が金属製部材11と樹脂製部材12との接合境界面を行き過ぎて金属製部材11を貫通することを防ぐことができる。その場合に、攪拌維持工程C3では、予熱工程C1のときよりも加圧時間を長くすることにより、樹脂製部材12に近接した基準位置で多量の摩擦熱を発生させることができる。   Further, in the stirring maintaining step C3, the rotating tool 16 passes over the joining boundary surface between the metal member 11 and the resin member 12 by penetrating the metal member 11 by making the pressure smaller than that in the preheating step C1. Can be prevented. In that case, in the stirring maintenance process C3, a large amount of frictional heat can be generated at the reference position close to the resin member 12 by making the pressurization time longer than that in the preheating process C1.

しかも、本実施形態では、攪拌維持工程C3の後に、回転ツール16の回転を停止し、その状態で上記回転ツール16を第4の加圧力で第4の加圧時間だけ保持する保持工程C4を実施して、回転が停止された回転ツール16が金属製部材11と樹脂製部材12との接合部Pを第4の加圧力でクランプしている。そのため、金属製部材11と樹脂製部材12との間の冷却中の密着力を高めて、冷却完了後の接合強度を高めることができる。   In addition, in the present embodiment, after the stirring maintaining step C3, the rotation of the rotary tool 16 is stopped, and in this state, the holding step C4 for holding the rotary tool 16 with the fourth pressurizing time for the fourth pressurizing time is performed. The rotation tool 16 that has been stopped is clamped at the joint P between the metal member 11 and the resin member 12 with the fourth applied pressure. Therefore, the adhesive force during cooling between the metal member 11 and the resin member 12 can be increased, and the bonding strength after completion of cooling can be increased.

ここで、上記予熱工程C1および保持工程C4は省略可能である。ただし、上述のように、これらを押込み攪拌工程C2、攪拌維持工程C3と合わせて実施すれば、金属製部材11と樹脂製部材12とをより確実に孔開き状態となるのを回避しつつより高い接合強度で接合することができる。   Here, the preheating step C1 and the holding step C4 can be omitted. However, as described above, if these are performed together with the indentation stirring step C2 and the stirring maintenance step C3, the metal member 11 and the resin member 12 are more reliably avoided from being in a perforated state. Bonding can be performed with high bonding strength.

実施する工程と接合強度との関係について調べた結果を、図8に示す。この図8において、実施例1は、予熱工程C1と、押込み攪拌工程C2と、攪拌維持工程C3とを実施する一方、保持工程C4を省略した場合の結果であり、実施例2は、これら工程C1〜C3に加えて保持工程C4を実施した場合の結果であり、比較例1および比較例2は、押込み攪拌工程C2のみを実施した場合の結果である。また、この図8において、C1〜C4は、それぞれ工程C1〜C4を表し、時間は各工程の時間(回転ツール16を押し付ける時間)、加圧力は各工程において回転ツール16を押し付ける力、回転数は回転ツール16の回転数を表している。なお、この図8に示す試験結果は、金属製部材11として6000系のアルミニウム合金製の板状部材(厚さ1.2mm)を用い、樹脂製部材としてクロロ基が導入された炭素繊維を40重量%含むポリプロピレンを用い、回転ツール16として上記(3)試験で用いたものと同じものを用い、JIS Z 3136に規定されている方法により、金属製部材と樹脂製部材とが接合された接合体を図1の矢印Y,Yに示す方向に引っ張ってせん断引張試験を行った結果である。   FIG. 8 shows the results of examining the relationship between the steps to be performed and the bonding strength. In FIG. 8, Example 1 is the result when the preheating step C1, the indentation stirring step C2, and the stirring maintaining step C3 are performed while the holding step C4 is omitted. It is a result at the time of implementing holding process C4 in addition to C1-C3, and comparative example 1 and comparative example 2 are a result at the time of implementing only indentation stirring process C2. In FIG. 8, C1 to C4 represent processes C1 to C4, respectively, the time is the time of each process (the time for pressing the rotary tool 16), and the applied pressure is the force and the number of rotations for pressing the rotary tool 16 in each process. Represents the number of rotations of the rotation tool 16. The test results shown in FIG. 8 show that a 6000 series aluminum alloy plate-like member (thickness 1.2 mm) is used as the metal member 11, and 40 carbon fibers into which a chloro group is introduced are used as the resin member. Joining in which a metal member and a resin member are joined by a method defined in JIS Z 3136, using polypropylene containing wt%, using the same rotary tool 16 as that used in the above (3) test. It is the result of having pulled the body in the direction shown by arrows Y and Y in FIG.

この図8の比較例1に示されるように、押込み攪拌工程C2のみを実施した場合であって、回転ツール16の加圧力が比較的高い場合、具体的には、1500Nの加圧力で7.00秒間回転ツール16を金属製部材11に押し付けた場合には、金属製部材11に孔が開いてしまい、金属製部材11と樹脂製部材12との接合体を得ることができなかった。また、図8の比較例2に示されるように、孔開き状態を回避するべく加圧力を900Nに抑えた状態で押込み攪拌工程C2のみを実施した場合では、孔開き状態を回避して金属製部材11と樹脂製部材12とを接合することができたものの、その接合強度は、1.55kNと比較的小さい値となった。   As shown in Comparative Example 1 of FIG. 8, when only the indentation stirring step C2 is performed and the pressing force of the rotary tool 16 is relatively high, specifically, the pressing force of 1500 N is 7. When the rotary tool 16 was pressed against the metal member 11 for 00 seconds, a hole was opened in the metal member 11, and a joined body of the metal member 11 and the resin member 12 could not be obtained. In addition, as shown in Comparative Example 2 in FIG. 8, in the case where only the pushing and stirring step C2 is performed in a state where the applied pressure is suppressed to 900 N so as to avoid the hole opening state, the hole opening state is avoided and the metal is made. Although the member 11 and the resin member 12 could be joined, the joining strength was a relatively small value of 1.55 kN.

これに対して、図8の実施例1に示されるように、予熱工程C1と押込み攪拌工程C2と攪拌維持工程C3とを実施した場合、具体的には、回転ツール16を900Nで1.00秒間金属製部材11に押し付け(予熱工程C1)、その後、回転ツール16を1500Nで0.25秒間金属製部材11に押し付けて接合境界面に達しない深さまで進入させ(押込み攪拌工程C2)、その後、接合境界面に達しない基準位置で回転ツール16を500Nで5.75秒間回転させた(攪拌維持工程C3)場合では、孔開き状態を回避しつつ金属製部材11と樹脂製部材12とを、せん断強度2.81kNという高い強度で接合することができた。   On the other hand, as shown in Example 1 in FIG. 8, when the preheating step C1, the indentation stirring step C2, and the stirring maintaining step C3 are performed, specifically, the rotary tool 16 is set to 1.00 at 900 N. Press the metal member 11 for 2 seconds (preheating step C1), and then press the rotary tool 16 against the metal member 11 at 1500 N for 0.25 seconds until it reaches a depth not reaching the joint interface (indentation stirring step C2). In the case where the rotary tool 16 is rotated at 500 N for 5.75 seconds at the reference position that does not reach the joining boundary surface (stirring maintenance step C3), the metal member 11 and the resin member 12 are moved while avoiding the perforated state. Further, it was possible to join at a high strength of 2.81 kN shear strength.

さらに、図8の実施例2で示されるように、上記実施例1に加えてさらに保持工程C4を実施した場合、具体的には、上記実施例1での攪拌維持工程C3の後に、回転ツール16の回転を停止させつつ1000Nの加圧力で5.00秒間接合体に押し付けた場合では、接合体のせん断強度を3.04という実施例1よりも高い値まで高めることができた。   Further, as shown in Example 2 of FIG. 8, when the holding step C4 is further performed in addition to the above Example 1, specifically, after the stirring maintaining step C3 in the above Example 1, the rotating tool In the case of pressing against the bonded body for 5.00 seconds with a pressure of 1000 N while stopping the rotation of 16, the shear strength of the bonded body could be increased to a value higher than Example 1 of 3.04.

このように、押込み攪拌工程C2と攪拌維持工程C3とを実施すれば、孔開き状態を回避しつつ接合強度をある程度高めることはできるが、孔開き状態をより確実に回避しつつ接合強度をより一層高めるためには、上述のように、押込み攪拌工程C2と攪拌維持工程C3に加えて予熱工程C1、保持工程C4を実施するのが好ましい。なお、図示していないが、押込み攪拌工程C2と攪拌維持工程C3とのみを実施した場合は、予熱工程C1を実施した場合と同等のせん断強度を得ることができるが、この場合には、押込み撹拌工程C2の開始時の温度条件等(金属製部材11の温度が低温の場合等)によって回転ツール16に金属製部材11が凝着する場合があり、高強度の接合材を安定して得ることができないおそれがある。そのため、より確実に高強度の接合材を得るためには、予熱工程C1を実施して金属製部材11を予熱した後に、押込み撹拌工程C2を実施するのが好ましい。   As described above, if the indentation stirring step C2 and the stirring maintaining step C3 are performed, the bonding strength can be increased to some extent while avoiding the hole opening state, but the bonding strength can be further increased while avoiding the hole opening state more reliably. In order to further increase, as described above, it is preferable to perform the preheating step C1 and the holding step C4 in addition to the indentation stirring step C2 and the stirring maintaining step C3. Although not shown, when only the indentation stirring step C2 and the stirring maintaining step C3 are performed, the same shear strength as that obtained when the preheating step C1 is performed can be obtained. The metal member 11 may adhere to the rotary tool 16 depending on the temperature condition at the start of the agitation step C2 (when the temperature of the metal member 11 is low, etc.), and a high-strength bonding material is stably obtained. There is a risk that it will not be possible. Therefore, in order to obtain a bonding material with high strength more reliably, it is preferable to perform the indentation stirring step C2 after performing the preheating step C1 and preheating the metal member 11.

また、前記実施形態(接合試験)では、樹脂自体に官能基を含有させる場合の樹脂として、ポリアミド樹脂(PA6、ナイロン6)、ポリアミド樹脂(PA66、ナイロン66)、ポリエチレンテレフタレート(PET)、ポリ乳酸(PLA)を用いた場合について説明したが、樹脂の種類はこれらに限られない。ただし、これらを用いれば、上記「(3)接合試験」で説明したように、特に接合強度の高い異種部材の接合体20が得られる。   In the embodiment (bonding test), as the resin when the resin itself contains a functional group, polyamide resin (PA6, nylon 6), polyamide resin (PA66, nylon 66), polyethylene terephthalate (PET), polylactic acid Although the case where (PLA) is used has been described, the type of resin is not limited thereto. However, when these are used, as described in the above “(3) Joining test”, the joined body 20 of a different member having particularly high joining strength can be obtained.

また、上記実施形態(接合試験)では、金属製部材11として、アルミニウム合金製の金属製部材を用いたが、金属製部材11の具体的種類はこれに限らず、融点が樹脂製部材よりも高い金属全般に適用可能である。具体的には、自動車の分野に適用する場合では、この分野で多く使用される、5000系、6000系アルミニウム合金、スチール、マグネシウムおよびその合金、チタンおよびその合金等が挙げられる。   Moreover, in the said embodiment (joining test), although the metal member made from an aluminum alloy was used as the metal member 11, the specific kind of the metal member 11 is not restricted to this, and melting | fusing point is rather than a resin member. Applicable to all high metals. Specifically, when applied to the field of automobiles, 5000 series, 6000 series aluminum alloys, steel, magnesium and alloys thereof, titanium and alloys thereof, and the like, which are frequently used in this field.

例えば、金属製部材11として合金化溶融亜鉛めっき鋼板を用い、樹脂製部材12として40重量%の炭素繊維(官能基が導入されたもの)を含有するポリプロピレンを用い、上記実施形態に係る接合方法(ただし、押込み攪拌工程C2における加圧力、攪拌維持工程C3の加圧力は、それぞれ上記実施形態(押圧条件)と異なる値、具体的には、2500N、1500Nとした。)によりこれらを接合した場合では、樹脂製部材破断となる接合材すなわち接合部ではなく樹脂製部材で破断が生じ接合強度が炭素繊維強化ポリプロピレン自体の破断強度と同等レベルとなる接合材を得ることができた。   For example, an alloyed hot-dip galvanized steel sheet is used as the metal member 11, and a polypropylene containing 40 wt% carbon fiber (with functional groups introduced) is used as the resin member 12, and the joining method according to the above embodiment (However, the pressurizing force in the indentation stirring step C2 and the pressurizing force in the stirring maintaining step C3 are values different from those in the above embodiment (pressing conditions), specifically, 2500N and 1500N, respectively). Then, it was possible to obtain a joining material that would break the resin member, that is, a joining member that would break not at the joint but at the resin member, and that the joining strength would be equivalent to the breaking strength of the carbon fiber reinforced polypropylene itself.

また、上記実施形態では、板状の金属製部材11と樹脂製部材12とを接合する場合について説明したが、接合する金属製部材11と樹脂製部材12の具体的形状はこれに限らない。   Moreover, although the said embodiment demonstrated the case where the plate-shaped metal member 11 and the resin member 12 were joined, the specific shape of the metal member 11 and the resin member 12 to be joined is not restricted to this.

また、上記実施形態では、回転ツール16として、ピン部16aを有するものを用いたが、これに限らず、ピン部16aを有しないものを用いることもできる。   Moreover, in the said embodiment, although the thing which has the pin part 16a was used as the rotation tool 16, not only this but the thing which does not have the pin part 16a can also be used.

また、上記実施形態では、「(3)接合試験」で、回転ツール16として、図2の各部の寸法がD1=15mm、D2=3mm、h=0.5mmの工具鋼製のものを用いても、結果は同様であった。   In the above embodiment, in “(3) Joining test”, the rotating tool 16 is made of tool steel having dimensions of each part of FIG. 2 of D1 = 15 mm, D2 = 3 mm, and h = 0.5 mm. The results were similar.

また、上記実施形態では、回転ツール16を、金属製部材11と樹脂製部材12との重ね合わせ部分に対して、これらに接離する方向にのみ移動させ、これらを点接合する場合、すなわち、この重ね合わせ部分の1点のみを接合する場合について説明したが、これらを線接合してもよい。すなわち、回転ツール16を金属製部材11に押圧しながらこの金属製部材11の表面に沿って移動させて、金属製部材11と樹脂製部材12とを線状に接合させていってもよい。   Moreover, in the said embodiment, when the rotary tool 16 is moved only to the direction which touches / separates with respect to the overlapping part of the metal member 11 and the resin member 12, and these are point-joined, that is, Although the case where only one point of the overlapping portion is joined has been described, these may be joined together. That is, the metal member 11 and the resin member 12 may be joined linearly by moving the rotary tool 16 along the surface of the metal member 11 while pressing the rotary tool 16 against the metal member 11.

1 摩擦攪拌接合装置
10 ワーク
11 金属製部材
12 樹脂製部材
16 回転ツール
17 受け具
20 接合体
P 接合部
DESCRIPTION OF SYMBOLS 1 Friction stir welding apparatus 10 Workpiece | work 11 Metal member 12 Resin member 16 Rotating tool 17 Receptacle 20 Joint body P Joint part

Claims (6)

金属製部材と、官能基を有する樹脂製部材とを重ね合わせる第1ステップと、
回転ツールを回転させつつ金属製部材側から樹脂製部材側に押圧して摩擦熱を発生させ、この摩擦熱で樹脂製部材を軟化させて金属製部材と樹脂製部材とを接合する第2ステップとを含む異種部材の接合方法であって
上記回転ツールとして、円柱状体の先端からなるショルダ部と、ショルダ部から突設されかつ外径がショルダ部よりも小さい円柱状のピン部とを有するものを用意し、
上記第2ステップは、上記回転ツールのピン部およびショルダ部のみを上記金属製部材の表面部に接触させた状態で回転ツールを回転させる予熱工程と、この予熱工程の後、上記回転ツールを金属製部材に押し込んで金属製部材と樹脂製部材との接合境界面に達しない深さまで進入させ近接させる押込み攪拌工程と、上記接合境界面に達しない深さまで進入させ近接させた位置で上記回転ツールの回転動作を継続させる攪拌維持工程とを含み、
上記予熱工程では上記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
上記押込み攪拌工程では上記回転ツールを上記第1の加圧力より大きい第2の加圧力で押圧しつつ上記第1の加圧時間より短い第2の加圧時間だけ回転させ、
上記攪拌維持工程では上記回転ツールを上記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させることを特徴とする異種部材の接合方法。
A first step of superimposing a metal member and a resin member having a functional group;
The second step of joining the metal member and the resin member by pressing the metal member side to the resin member side while rotating the rotary tool to generate frictional heat, and softening the resin member by this frictional heat. the door a method of bonding including different members,
As the rotating tool, prepare a shoulder part composed of a tip of a cylindrical body, and a cylindrical pin part protruding from the shoulder part and having an outer diameter smaller than the shoulder part,
The second step includes a preheating step of rotating the rotating tool in a state where only the pin portion and the shoulder portion of the rotating tool are in contact with the surface portion of the metal member, and after the preheating step, the rotating tool is A push-in stirring step that pushes the metal member into a depth that does not reach the joint boundary surface between the metal member and the resin member, and the rotary tool at a position that enters and approaches the depth that does not reach the joint boundary surface look containing a stirring maintaining step to continue the rotation of,
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
In the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force,
In the stirring maintaining step, the rotary tool is rotated by a third pressurizing time longer than the first pressurizing time while pressing the rotary tool with a third pressurizing force smaller than the first pressurizing force. Member joining method.
請求項1に記載の異種部材の接合方法において、
上記第1の加圧力は700N以上1200N未満の値であり、上記第1の加圧時間は0.5秒以上2.0秒未満の値であり、
上記第2の加圧力は1200N以上1800N未満の値であり、上記第2の加圧時間は0.1秒以上0.5秒未満の値であり、
上記第3の加圧力は100N以上700N未満の値であり、上記第3の加圧時間は1.0秒以上10秒未満の値であることを特徴とする異種部材の接合方法。
In the joining method of the dissimilar member of Claim 1 ,
The first pressing force is a value of 700 N or more and less than 1200 N, and the first pressurizing time is a value of 0.5 second or more and less than 2.0 seconds,
The second applied pressure is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is a value of 0.1 second or more and less than 0.5 second,
The method of joining different types of members, wherein the third pressure is a value of 100 N or more and less than 700 N, and the third pressurizing time is a value of 1.0 second or more and less than 10 seconds.
請求項1または2に記載の異種部材の接合方法において、
上記第2ステップは、上記攪拌維持工程の後に、上記回転ツールの回転を停止し、その状態で上記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程を含むことを特徴とする異種部材の接合方法。
In the joining method of the dissimilar member of Claim 1 or 2 ,
The second step includes a holding step of stopping the rotation of the rotary tool after the stirring maintaining step and holding the rotary tool for a predetermined pressurizing time with a predetermined pressure in that state. To join different kinds of members.
請求項1から3のいずれか1項に記載の異種部材の接合方法において、
前記官能基は、N,O,F,Si,S,Cl,Br,Iの少なくとも1つの元素を含有することを特徴とする異種部材の接合方法。
In the joining method of the dissimilar member of any one of Claim 1 to 3 ,
The functional group contains at least one element of N, O, F, Si, S, Cl, Br, and I.
請求項4に記載の異種部材の接合方法において、
前記官能基として、O,S,Clの少なくとも1つの元素を含有するものを用いることを特徴とする異種部材の接合方法。
In the joining method of the dissimilar member of Claim 4 ,
A method for joining different types of members, wherein the functional group contains at least one element of O, S, and Cl.
請求項1から5のいずれか1項に記載の異種部材の接合方法において、
上記樹脂製部材の樹脂は、ポリアミド樹脂、ポリエチレンテレフタレート、又はポリ乳酸であることを特徴とする異種部材の接合方法。
In the joining method of the dissimilar member of any one of Claim 1 to 5 ,
The resin for the resin member is a polyamide resin, polyethylene terephthalate, or polylactic acid.
JP2014057926A 2013-03-22 2014-03-20 Dissimilar member joining method Active JP6102806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057926A JP6102806B2 (en) 2013-03-22 2014-03-20 Dissimilar member joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013060632 2013-03-22
JP2013060632 2013-03-22
JP2014057926A JP6102806B2 (en) 2013-03-22 2014-03-20 Dissimilar member joining method

Publications (2)

Publication Number Publication Date
JP2014208461A JP2014208461A (en) 2014-11-06
JP6102806B2 true JP6102806B2 (en) 2017-03-29

Family

ID=51903038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057926A Active JP6102806B2 (en) 2013-03-22 2014-03-20 Dissimilar member joining method

Country Status (1)

Country Link
JP (1) JP6102806B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098526B2 (en) * 2014-01-14 2017-03-22 マツダ株式会社 Method of joining metal member and resin member
JP6384408B2 (en) * 2015-06-22 2018-09-05 マツダ株式会社 Friction stir welding method and joining apparatus therefor
JP6384411B2 (en) * 2015-06-29 2018-09-05 マツダ株式会社 Method of joining metal member and resin member, and metal member used in the method
US10899897B2 (en) 2015-08-11 2021-01-26 Showa Denko K.K. Resin composition, cured product thereof, and friction stir welding method
JP6330760B2 (en) * 2015-08-25 2018-05-30 マツダ株式会社 Method of joining metal member and resin member
JP6319352B2 (en) * 2016-03-22 2018-05-09 マツダ株式会社 Method of joining metal member and resin member and metal member used in the method
JP6327280B2 (en) 2016-03-29 2018-05-23 マツダ株式会社 Method for joining metal member and thermosetting resin member, metal member used in the method, thermosetting resin member, and thermoplastic resin sheet
JP6704768B2 (en) * 2016-03-29 2020-06-03 株式会社総合車両製作所 Friction stir welding method
JP6614204B2 (en) * 2017-06-14 2019-12-04 マツダ株式会社 Method of joining metal member and resin member and metal member or resin member used in the method
CN109834383B (en) * 2019-03-22 2020-11-10 上海交通大学 Method and device for lap friction spot welding of titanium alloy/ultrahigh molecular weight polyethylene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729921B2 (en) * 2004-12-24 2011-07-20 マツダ株式会社 Friction spot welding method and apparatus
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
EP2329905B1 (en) * 2009-12-03 2012-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining metal and plastic workpieces

Also Published As

Publication number Publication date
JP2014208461A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6102806B2 (en) Dissimilar member joining method
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
JP6102805B2 (en) Dissimilar member joining method
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6102877B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6098551B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6098607B2 (en) Method of joining metal member and resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP7156086B2 (en) METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150