JP6614205B2 - Method of joining metal member and resin member and metal member or resin member used in the method - Google Patents

Method of joining metal member and resin member and metal member or resin member used in the method Download PDF

Info

Publication number
JP6614205B2
JP6614205B2 JP2017117858A JP2017117858A JP6614205B2 JP 6614205 B2 JP6614205 B2 JP 6614205B2 JP 2017117858 A JP2017117858 A JP 2017117858A JP 2017117858 A JP2017117858 A JP 2017117858A JP 6614205 B2 JP6614205 B2 JP 6614205B2
Authority
JP
Japan
Prior art keywords
metal member
resin member
joining
resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017117858A
Other languages
Japanese (ja)
Other versions
JP2019001065A (en
Inventor
勝也 西口
耕二郎 田中
泰博 森田
聡子 島田
幸弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017117858A priority Critical patent/JP6614205B2/en
Publication of JP2019001065A publication Critical patent/JP2019001065A/en
Application granted granted Critical
Publication of JP6614205B2 publication Critical patent/JP6614205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材に関する。   The present invention relates to a method for joining a metal member and a resin member, and a metal member or a resin member used in the method.

従来より、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に軽量化に留まらず、接合部材の高強度化および高剛性化、ならびに生産性の向上を実現させる観点からも重要である。   Conventionally, weight reduction has been demanded in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to reduce the thickness of steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. In this field, the development of joining technology for metal members and resin members is important not only from the viewpoint of weight reduction, but also from the viewpoint of realizing higher strength and higher rigidity of the joining member and improved productivity. .

これまで、金属部材と樹脂部材との接合方法として、摩擦撹拌接合(FSW:friction stir welding)方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等のような、加圧しながら加熱を行う熱圧式接合方法が知られている(例えば、特許文献1、2)。   Up to now, as a joining method between a metal member and a resin member, a friction stir welding (FSW) method, a resistance heating joining method (electric heating joining method), an induction heating joining method, an ultrasonic heating joining method, etc. In addition, a hot-pressure bonding method in which heating is performed while applying pressure is known (for example, Patent Documents 1 and 2).

一方、熱圧式接合方法において、金属部材と樹脂部材との間から漏れ出した溶融樹脂に基づくバリの形成を防止するために、金属部材または樹脂部材の少なくとも一方に、溶融樹脂を流入させるための溜まり溝を形成する技術が開示されている(特許文献3)。   On the other hand, in the hot-pressure bonding method, in order to prevent the formation of burrs based on the molten resin leaking from between the metal member and the resin member, the molten resin is caused to flow into at least one of the metal member or the resin member. A technique for forming a pool groove is disclosed (Patent Document 3).

特開2008−023583号公報JP 2008-023583 A 特開2011−088197号公報JP 2011-088197 A 特開2015−131444号公報JP-A-2015-131444

本発明の発明者等は、従来の熱圧式接合方法による金属部材と樹脂部材との接合に際し、両者間に接着剤およびシール材等のような第3成分が介在すると、十分な接合強度を確保することが困難であることを見い出した。金属部材と樹脂部材との接合領域において接着剤が存在すると、当該接着剤は両者の接合を阻害するため、十分な接合強度が得られないものと考えられる。   The inventors of the present invention ensure sufficient bonding strength when a third component such as an adhesive and a sealing material is interposed between the metal member and the resin member by the conventional hot-pressure bonding method. I found it difficult to do. If an adhesive is present in the joining region between the metal member and the resin member, the adhesive inhibits the joining of the two, and it is considered that sufficient joining strength cannot be obtained.

そこで、本発明の発明者等は、例えば摩擦撹拌接合方法において、図14に示すように、金属部材211と樹脂部材212とを重ね合わせるに際し、接着剤の塗布領域を制御する試みを行った。すなわち、樹脂部材212の金属部材211との対向面2120において、回転ツール216の直下領域Qを回避して接着剤203を線状(ビード状)に塗布し、摩擦撹拌接合を行った。しかしながら、接着剤の接合領域への流動を十分に抑制することはできず、接合強度はやはり低下することがあった。   Therefore, the inventors of the present invention have tried to control the adhesive application area when the metal member 211 and the resin member 212 are overlapped as shown in FIG. 14, for example, in the friction stir welding method. That is, on the surface 2120 of the resin member 212 facing the metal member 211, the adhesive 203 was applied linearly (bead shape) while avoiding the region Q directly below the rotary tool 216, and friction stir welding was performed. However, the flow of the adhesive to the bonding region cannot be sufficiently suppressed, and the bonding strength may also decrease.

本発明の発明者等は、摩擦撹拌接合方法以外の他の熱圧式接合方法において、上記と同様の方法により接着剤の塗布領域を制御してみても、接合強度はやはり低下することがあった。   When the inventors of the present invention control the application area of the adhesive by a method similar to the above in other hot-pressure bonding methods other than the friction stir welding method, the bonding strength may still decrease. .

このように金属部材と樹脂部材との間に接着剤を塗布する熱圧式接合を、フランジ等のような接合面積が限られた部材に対して実施する場合、接合強度低下の問題は特に深刻なものであった。詳しくは、接着剤による接合強度の低下を回避するために、接着剤を回転ツールの直下領域から十分に離れたところに塗布することはできないため、接合強度がやはり低下した。   In this way, when the hot-pressure bonding in which the adhesive is applied between the metal member and the resin member is performed on a member having a limited bonding area such as a flange, the problem of reduction in bonding strength is particularly serious. It was a thing. Specifically, in order to avoid a decrease in bonding strength due to the adhesive, the bonding strength is still decreased because the adhesive cannot be applied sufficiently away from the region immediately below the rotary tool.

本発明は、金属部材と樹脂部材との間に接着剤を塗布する場合であっても、より良好な接合強度が得られる金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材を提供することを目的とする。   The present invention relates to a method for joining a metal member and a resin member that can provide better joint strength even when an adhesive is applied between the metal member and the resin member, and the metal member used in the method. Alternatively, an object is to provide a resin member.

本発明はまた、接合面積が限られた金属部材と樹脂部材との間に接着剤を塗布する場合であっても、より良好な接合強度が得られる金属部材と樹脂部材との接合方法およびその方法において使用される金属部材または樹脂部材を提供することを目的とする。   The present invention also provides a method of joining a metal member and a resin member that can provide better joint strength even when an adhesive is applied between the metal member and the resin member having a limited joint area, and the method thereof. It aims at providing the metal member or resin member used in a method.

本発明は、
金属部材と樹脂部材とを、両者間に接着剤を塗布して、重ね合わせ、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材の前記金属部材との対向面または前記金属部材の前記樹脂部材との対向面の少なくとも一方において、前記重ね合わせ状態における前記接着剤の接合領域への流動を抑制する流動抑制溝が形成されている、金属部材と樹脂部材との接合方法
に関する。
The present invention
A thermo-pressure type in which an adhesive is applied between the metal member and the resin member, and the resin member is melted by applying pressure and heat from the metal member side to melt and joining the metal member and the resin member. A joining method between a metal member and a resin member by a joining method,
At least one of the surface of the resin member facing the metal member or the surface of the metal member facing the resin member is formed with a flow suppression groove that suppresses the flow of the adhesive to the bonding region in the overlapped state. The present invention relates to a method for joining a metal member and a resin member.

本発明はまた、上記接合方法において使用される金属部材または樹脂部材に関する。   The present invention also relates to a metal member or a resin member used in the joining method.

本発明の接合方法によれば、あらゆる熱圧式接合方法において、金属部材と樹脂部材との間に接着剤を塗布する場合であっても、より良好な接合強度を得ることができる。
本発明の接合方法は、施工性にも優れており、フランジ等のような接合面積が限られた金属部材と樹脂部材との間に接着剤を塗布する場合であっても、より良好な接合強度が得られる。
According to the bonding method of the present invention, in any hot-pressure bonding method, even when an adhesive is applied between the metal member and the resin member, better bonding strength can be obtained.
The joining method of the present invention is excellent in workability, and even when an adhesive is applied between a metal member with a limited joining area, such as a flange, and a resin member, better joining is achieved. Strength is obtained.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式的斜視図である。It is a typical perspective view which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明において接着剤が塗布された樹脂部材の一例を示す模式的斜視図である。It is a typical perspective view which shows an example of the resin member to which the adhesive agent was apply | coated in this invention. 本発明において接着剤が塗布された樹脂部材の別の一例を示す模式的斜視図である。It is a typical perspective view which shows another example of the resin member to which the adhesive agent was apply | coated in this invention. 上図は、図1で使用される樹脂部材の一例の概略上面見取り図であり、下図は、上図のA−A断面を矢印方向で見たときの概略断面図である。The upper diagram is a schematic top plan view of an example of the resin member used in FIG. 1, and the lower diagram is a schematic sectional view when the AA section of the upper diagram is viewed in the direction of the arrow. 図4の樹脂部材を用いた本発明の一実施態様に係る接合方法における重ね合わせ工程および予熱工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the superimposition process and the preheating process in the joining method which concerns on one embodiment of this invention using the resin member of FIG. 図4の樹脂部材を用いた本発明の一実施態様に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the pushing stirring process in the joining method which concerns on one embodiment of this invention using the resin member of FIG. 4, a stirring maintenance process, and a holding process. 本発明の接合方法に使用される樹脂部材の一例の概略断面図である。It is a schematic sectional drawing of an example of the resin member used for the joining method of this invention. 上図は、本発明の接合方法に使用される金属部材の一例の概略上面見取り図であり、下図は、上図のA−A断面を矢印方向で見たときの概略断面図である。The upper figure is a schematic top view of an example of a metal member used in the joining method of the present invention, and the lower figure is a schematic sectional view when the AA section of the upper figure is viewed in the direction of the arrow. 図8の金属部材を用いた本発明の一実施態様に係る接合方法における重ね合わせ工程および予熱工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the superimposition process and preheating process in the joining method which concerns on one embodiment of this invention using the metal member of FIG. 本発明の接合方法に使用される回転ツールの一例の先端部近傍の拡大図である。It is an enlarged view near the front-end | tip part of an example of the rotary tool used for the joining method of this invention. 流動抑制溝が有し得る環形状を規定する内側境界線の一例を説明するための、x−y座標である。It is an xy coordinate for demonstrating an example of the inner boundary line which prescribes | regulates the ring shape which a flow suppression groove | channel can have. 流動抑制溝が有し得る楕円形状を規定する内側境界線の一例を説明するための、x−y座標である。It is an xy coordinate for demonstrating an example of the inner side boundary line which prescribes | regulates the ellipse shape which a flow suppression groove | channel can have. 図4の樹脂部材を用い、かつ本発明の一実施態様に係る接合方法で得られた接合体から金属部材を強制的に剥離させて得られた樹脂部材の概略平面図である。FIG. 5 is a schematic plan view of a resin member obtained by forcibly peeling a metal member from a joined body obtained by the joining method according to an embodiment of the present invention using the resin member of FIG. 4. 実施例で得られた結果を示すグラフである。It is a graph which shows the result obtained in the Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための摩擦撹拌接合装置の模式的斜視図である。It is a typical perspective view of the friction stir welding apparatus for demonstrating the joining method of the metal member and resin member in a prior art.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、圧力および熱を、金属部材側から付与することにより、好ましくは金属部材側から局所的に付与することにより、樹脂部材を軟化および溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法に関する。本発明の接合方法において採用される接合方式は、加圧しながら加熱を行う方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等であってもよい。中でも、好ましくは摩擦撹拌接合方法が採用される。   The joining method of the present invention softens the resin member by superimposing the metal member and the resin member and applying pressure and heat from the metal member side, preferably locally from the metal member side. The present invention relates to a hot-pressure bonding method for melting and bonding a metal member and a resin member. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of heating while applying pressure. For example, a friction stir welding method, a resistance heating joining method (electric heating joining method), induction A heat bonding method, an ultrasonic heat bonding method, or the like may be used. Among these, the friction stir welding method is preferably employed.

摩擦撹拌接合方法においては、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材として回転ツールを回転させつつ金属部材に対して押圧することにより発生する摩擦熱を利用して、金属部材と樹脂部材との接合を行う。
抵抗加熱接合方法においては、電極(押圧部材)により金属部材側から加圧しながら、金属部材に電流を流すことにより生じる熱を利用して、金属部材と樹脂部材との接合を行う。
誘導加熱接合方法とは、押圧部材により金属部材側から加圧しながら、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して。金属部材と樹脂部材との接合を行う。
超音波加熱接合方法とは、押圧部材により金属部材側から加圧しながら、超音波の印加により板間の微小すべりにより生じる摩擦熱を利用して、金属部材と樹脂部材を行う。
In the friction stir welding method, as will be described in detail later, frictional heat generated by overlapping a metal member and a resin member and pressing the metal member while rotating a rotary tool as a pressing member is used. Then, the metal member and the resin member are joined.
In the resistance heating joining method, the metal member and the resin member are joined by using heat generated by passing an electric current through the metal member while being pressed from the metal member side by an electrode (pressing member).
The induction heating joining method is a method in which an induction current is generated in a metal member by electromagnetic induction while pressing from the metal member side by a pressing member, and heat generated by the current is used. The metal member and the resin member are joined.
In the ultrasonic heating joining method, the metal member and the resin member are performed by using frictional heat generated by micro-slip between the plates by applying ultrasonic waves while applying pressure from the metal member side by the pressing member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図1〜図13を用いて説明する。以下の摩擦撹拌接合方法に関する説明を参照すれば、当該摩擦撹拌接合方法における作用および効果と同様の作用および効果が、他の熱圧式接合方法においても得られることは明らかである。例えば、他の熱圧式接合方法においても、金属部材と樹脂部材とを、両者間に接着剤を塗布して、重ね合わせ、圧力および熱を金属部材側から付与するに際し、樹脂部材または金属部材の少なくとも一方の対向面に予め流動抑制溝を形成しておく。これにより、重ね合わせた状態において、接着剤が流動抑制溝に流入するようになり、接着剤の接合領域への流動が抑制される。その結果、より良好な接合強度が得られる。図1〜図13において、共通する符号は、特記しない限り、同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, the joining method of the present invention employing the friction stir welding method will be described with reference to FIGS. With reference to the following description of the friction stir welding method, it is apparent that the same actions and effects as those in the friction stir welding method can be obtained in other hot-pressure welding methods. For example, also in other hot-pressure bonding methods, when a metal member and a resin member are applied with an adhesive between them, they are overlapped, and pressure and heat are applied from the metal member side. A flow suppression groove is formed in advance on at least one of the opposing surfaces. As a result, in the overlapped state, the adhesive flows into the flow suppression groove, and the flow of the adhesive to the joining region is suppressed. As a result, better bonding strength can be obtained. 1 to 13, common reference numerals indicate the same members, parts, dimensions, or regions unless otherwise specified.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図10参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、樹脂部材12に伝導する。
[Method of joining metal member and resin member by friction stir welding method]
FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member. As shown in the drawing, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, as indicated by an arrow A1 by a drive source not shown. While rotating around the central axis X (see FIG. 10), the metal member 11 is pressed downward in the pressing region P (scheduled pressing region) as indicated by an arrow A2. Frictional heat is generated by the pressing of the rotary tool 16 and is conducted to the resin member 12.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

本発明において金属部材11または樹脂部材12の少なくとも一方は他方の部材との対向面に流動抑制溝5を有している。流動抑制溝は、接着剤の流動を抑制するための溝のことである。本発明において「流動」は「流れながら移動する」という意味である。
例えば、図4および図5に示すように、樹脂部材12は金属部材11との対向面120に流動抑制溝5を有し、かつ金属部材11は樹脂部材12との対向面110に流動抑制溝を有さず、平面形状を有していてもよい(以下、「態様A1」という)。
また例えば、図8及び図9に示すように、金属部材11は樹脂部材12との対向面110に流動抑制溝5を有し、かつ樹脂部材12は金属部材11との対向面120に流動抑制溝を有さず、平面形状を有していてもよい(以下、「態様A2」という)。
また例えば、樹脂部材12は図4および図5に示すように金属部材11との対向面120に流動抑制溝5を有し、かつ金属部材11は図8および図9に示すように樹脂部材12との対向面110に流動抑制溝5を有してもよい(以下、「態様A3」という)。
In the present invention, at least one of the metal member 11 or the resin member 12 has the flow suppression groove 5 on the surface facing the other member. A flow suppression groove | channel is a groove | channel for suppressing the flow of an adhesive agent. In the present invention, “flow” means “moving while flowing”.
For example, as shown in FIGS. 4 and 5, the resin member 12 has the flow suppression groove 5 on the surface 120 facing the metal member 11, and the metal member 11 has the flow suppression groove on the surface 110 facing the resin member 12. May have a planar shape (hereinafter referred to as “Aspect A1”).
Further, for example, as shown in FIGS. 8 and 9, the metal member 11 has the flow suppression groove 5 on the surface 110 facing the resin member 12, and the resin member 12 is flow-suppressed on the surface 120 facing the metal member 11. It may have a planar shape without having a groove (hereinafter referred to as “Aspect A2”).
Further, for example, the resin member 12 has the flow suppression groove 5 on the surface 120 facing the metal member 11 as shown in FIGS. 4 and 5, and the metal member 11 has the resin member 12 as shown in FIGS. 8 and 9. The flow suppressing groove 5 may be provided on the facing surface 110 (hereinafter referred to as “aspect A3”).

接合強度および施工性のさらなる向上の観点から、少なくとも樹脂部材12が流動抑制溝5を有することが好ましい。当該好ましい実施態様においては、上記した態様A1および態様A3が包含される。同様の観点と、製造コストの観点とのバランスから、より好ましくは態様A1である。金属部材11の流動抑制溝5および樹脂部材12の流動抑制溝5の形状、寸法および配置等は、流動抑制溝5の形成面が異なること以外、共通する。   From the viewpoint of further improving the bonding strength and workability, at least the resin member 12 preferably has the flow suppression groove 5. In the preferable embodiment, the above-described aspects A1 and A3 are included. In view of the balance between the same viewpoint and the viewpoint of manufacturing cost, the aspect A1 is more preferable. The shape, size, arrangement, and the like of the flow suppression groove 5 of the metal member 11 and the flow suppression groove 5 of the resin member 12 are common except that the formation surface of the flow suppression groove 5 is different.

本発明において施工性とは、フランジ等のような接合面積が限られた金属部材と樹脂部材との間に接着剤を塗布する場合であっても、より良好な接合強度が得られ得る性能のことである。特に、流動抑制溝5が平面視形状として後述のような環形状を有するとき、施工性は、その内側面積(すなわち内側境界線51により規定される面積)が比較的小さくても、より良好な接合強度を達成し得る性能のことである。接合面積が限られているとは、金属部材と樹脂部材とを重ね合わせたとき、これらの接触面積が比較的小さいために、接合領域が限られているという意味である。平面視とは、押圧部材(例えば後述の回転ツール)の軸方向について上方から見たときの平面図のことである。断面視とは、押圧部材(例えば後述の回転ツール)の軸方向について平行な断面図のことである。   In the present invention, the workability is a performance that can provide better bonding strength even when an adhesive is applied between a metal member with a limited bonding area such as a flange and a resin member. That is. In particular, when the flow suppression groove 5 has a ring shape as described later as a plan view shape, the workability is better even if the inner area (that is, the area defined by the inner boundary line 51) is relatively small. It is the performance that can achieve the bonding strength. The fact that the bonding area is limited means that when the metal member and the resin member are overlapped, the contact area is relatively small, so that the bonding area is limited. The plan view is a plan view when viewed from above in the axial direction of a pressing member (for example, a rotating tool described later). The cross-sectional view is a cross-sectional view parallel to the axial direction of a pressing member (for example, a rotating tool described later).

本発明においては金属部材11または樹脂部材12の少なくとも一方が流動抑制溝5を有するので、図5または図9に示すように、塗布された接着剤3が、少なくとも重ね合わせ時において、接合領域(矢印方向F)へ流動するのが抑制され得る。詳しくは、接着剤3が流動抑制溝5に流入することにより、接着剤の接合領域への流動および移動が抑制される。接合時においても、接着剤の接合領域への流動および移動は抑制される。接合領域とは、金属部材11と樹脂部材12との間において、樹脂部材12の溶融および固化により金属部材11との接合および結合を達成する領域のことである。接合領域は、金属部材11と樹脂部材12との間における少なくとも押圧部材(例えば回転ツール)の直下領域を含む。接合時において樹脂部材11における押圧部材の直下領域の溶融樹脂は、図6に示すように、外周側方向Kに向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動および移動する。このため、接合領域は金属部材11と樹脂部材12との間における押圧部材(例えば回転ツール)の直下領域およびその外周領域を含む。   In the present invention, since at least one of the metal member 11 or the resin member 12 has the flow suppression groove 5, as shown in FIG. 5 or FIG. Flow in the direction of arrow F) can be suppressed. Specifically, when the adhesive 3 flows into the flow suppression groove 5, the flow and movement of the adhesive to the joining region are suppressed. Even at the time of joining, the flow and movement of the adhesive to the joining region are suppressed. The joining region is a region in which joining and joining with the metal member 11 are achieved between the metal member 11 and the resin member 12 by melting and solidifying the resin member 12. The joining region includes at least a region directly below the pressing member (for example, a rotating tool) between the metal member 11 and the resin member 12. At the time of joining, the molten resin in the region immediately below the pressing member in the resin member 11 flows radially toward the outer peripheral side direction K, that is, from the center of the immediately lower region 60 toward the outer peripheral region 61 as shown in FIG. And move. For this reason, the joining region includes a region directly below the pressing member (for example, a rotary tool) between the metal member 11 and the resin member 12 and an outer peripheral region thereof.

流動抑制溝5は、平面視において少なくとも、押圧部材の直下領域と接着剤の塗布領域との間に位置付けられ、さらにその他の領域にも位置付けられてもよい。   The flow suppression groove 5 is positioned at least between the region immediately below the pressing member and the adhesive application region in plan view, and may be positioned in another region.

例えば、図1、図2、図4および図8等に示すように、流動抑制溝5は平面視において、押圧部材の直下領域(例えば、P'、P'')の周りに一定の距離をおいて環状で形成されていてもよい(以下、「態様B1」という)。環状は、直線、曲線またはこれらの混合線において始点と終点とがつながった形状であり、図1および図4に示すような楕円形状であってもよいし、図2および図8に示すような円形状であってもよいし、またはこれらの形状以外の環形状であってもよい。なお、本発明において楕円形状は円形状を包含する概念で用いるものとする。   For example, as shown in FIGS. 1, 2, 4, and 8, the flow suppression groove 5 has a certain distance around a region (for example, P ′, P ″) immediately below the pressing member in plan view. It may be formed in a ring shape (hereinafter referred to as “aspect B1”). The annular shape is a shape in which a start point and an end point are connected in a straight line, a curved line, or a mixed line thereof, and may have an elliptical shape as shown in FIGS. 1 and 4, or as shown in FIGS. A circular shape may be sufficient, or ring shapes other than these shapes may be sufficient. In the present invention, the oval shape is used as a concept including a circular shape.

また例えば、図3に示すように、流動抑制溝5は平面視において、押圧部材の直下領域(例えば、P'、P'')の周りに一定の距離をおいて、曲線形状および直線形状を含む複合線形状で形成されていてもよい(以下、「態様B2」という)。   For example, as shown in FIG. 3, the flow suppression groove 5 has a curved shape and a linear shape with a certain distance around a region (for example, P ′, P ″) immediately below the pressing member in plan view. It may be formed in a composite line shape including the following (hereinafter referred to as “aspect B2”).

また例えば、流動抑制溝5は平面視において、押圧部材の直下領域から一定の距離をおいて曲線形状または直線形状のみで形成されていてもよい(以下、「態様B3」という)。   Further, for example, the flow suppression groove 5 may be formed in only a curved shape or a linear shape at a certain distance from a region directly below the pressing member in plan view (hereinafter referred to as “aspect B3”).

接合強度および施工性のさらなる向上の観点から、態様B1およびB3が好ましく、同様の観点と、製造コストの観点とのバランスから、より好ましくは態様1である。   Aspects B1 and B3 are preferable from the viewpoint of further improving the bonding strength and workability, and Aspect 1 is more preferable from the balance between the same viewpoint and the viewpoint of manufacturing cost.

流動抑制溝5と押圧部材の直下領域(例えば、P'、P'')との距離L1(図4および図8)は通常、押圧部材(例えば、回転ツール16)の最大幅(直径)D1(mm)について、0.1×D1〜5×D1である。当該距離L1は、接合強度および施工性のさらなる向上の観点から、好ましくは0.2×D1〜3×D1であり、より好ましくは0.25×D1〜1×D1である。流動抑制溝5と押圧部材の直下領域との距離L1は、流動抑制溝5と押圧部材の直下領域との距離のうち、最短の距離のことである。   The distance L1 (FIGS. 4 and 8) between the flow suppression groove 5 and the region immediately below the pressing member (for example, P ′, P ″) is usually the maximum width (diameter) D1 of the pressing member (for example, the rotary tool 16). About (mm), it is 0.1 * D1-5 * D1. The distance L1 is preferably 0.2 × D1 to 3 × D1, more preferably 0.25 × D1 to 1 × D1, from the viewpoint of further improving the bonding strength and workability. The distance L1 between the flow suppression groove 5 and the region directly below the pressing member is the shortest distance among the distances between the flow suppression groove 5 and the region directly below the pressing member.

押圧部材(回転ツール16)の最大幅(直径)D1は通常、後で詳述する回転ツール16の直径と同様の範囲内である。   The maximum width (diameter) D1 of the pressing member (rotating tool 16) is usually in the same range as the diameter of the rotating tool 16 described in detail later.

流動抑制溝5の幅W1および深さt1(図4および図8)は、接着剤3の接合領域への流動を抑制できる限り特に限定されない。例えば、流動抑制溝5は必ずしも接合領域へ流動する全ての接着剤3を収容しなければならないという訳ではない。また例えば、流動抑制溝5の幅W1および深さt1がそれぞれ、たとえ0.5mmおよび0.5mmであって、当該流動抑制溝5が接合領域へ流動する全ての接着剤3を到底、収容できない場合であっても、当該流動抑制溝5は接着剤の接合領域への流動を阻害し、結果として当該流動の抑制が達成される。   The width W1 and the depth t1 (FIGS. 4 and 8) of the flow suppression groove 5 are not particularly limited as long as the flow of the adhesive 3 to the joining region can be suppressed. For example, the flow suppression groove 5 does not necessarily have to accommodate all the adhesive 3 that flows to the joining region. Further, for example, the width W1 and the depth t1 of the flow suppression groove 5 are 0.5 mm and 0.5 mm, respectively, and the flow suppression groove 5 cannot completely accommodate all the adhesive 3 that flows to the joining region. Even if it is a case, the said flow suppression groove | channel 5 will inhibit the flow to the joining area | region of an adhesive agent, and the suppression of the said flow is achieved as a result.

従って、流動抑制溝5の幅W1は、特に限定されず、例えば、押圧部材(例えば、回転ツール16)の最大幅(直径)D1(mm)について、通常0.01×D1以上、特に0.01×D1〜0.5×D1である。接合強度および施工性のさらなる向上の観点から、流動抑制溝5の幅W1は、0.1×D1〜0.5×D1の幅を有することが好ましい。幅W1は通常、一定であるが、上記範囲内で変化してもよい。   Accordingly, the width W1 of the flow suppression groove 5 is not particularly limited. For example, the maximum width (diameter) D1 (mm) of the pressing member (for example, the rotary tool 16) is usually 0.01 × D1 or more, particularly preferably 0. 01 × D1 to 0.5 × D1. From the viewpoint of further improving the bonding strength and workability, the width W1 of the flow suppression groove 5 preferably has a width of 0.1 × D1 to 0.5 × D1. The width W1 is normally constant, but may vary within the above range.

流動抑制溝5の深さt1は、特に限定されず、例えば、押圧部材(例えば、回転ツール16)の最大幅(直径)D1(mm)について、通常0.01×D1以上、特に0.01×D1〜0.5×D1である。接合強度および施工性のさらなる向上の観点から、流動抑制溝5の深さt1は、0.1×D1〜0.5×D1の幅を有することが好ましい。深さt1は通常、一定であるが、上記範囲内で変化してもよい。   The depth t1 of the flow suppression groove 5 is not particularly limited. For example, the maximum width (diameter) D1 (mm) of the pressing member (for example, the rotary tool 16) is usually 0.01 × D1 or more, particularly 0.01. × D1 to 0.5 × D1. From the viewpoint of further improving the bonding strength and workability, the depth t1 of the flow suppression groove 5 preferably has a width of 0.1 × D1 to 0.5 × D1. The depth t1 is usually constant, but may vary within the above range.

流動抑制溝5が平面視において楕円形状を有する場合、流動抑制溝5を規定する内側境界線51に規定される楕円形状は、接合強度および施工性のさらなる向上の観点から、以下の寸法を有することが好ましい:
短径dsは0.5×D1〜4.5×D1、好ましくは1×D1〜4×D1、より好ましくは1.5×D1〜3×D1である;
長径dLは1.5×D1〜6.5×D1、好ましくは2×D1〜6×D1、より好ましくは2.5×D1〜5×D1である。
When the flow suppression groove 5 has an elliptical shape in plan view, the elliptical shape defined by the inner boundary line 51 that defines the flow suppression groove 5 has the following dimensions from the viewpoint of further improving the bonding strength and workability. Preferably:
The minor axis ds is 0.5 × D1 to 4.5 × D1, preferably 1 × D1 to 4 × D1, more preferably 1.5 × D1 to 3 × D1;
The major axis dL is 1.5 × D1 to 6.5 × D1, preferably 2 × D1 to 6 × D1, and more preferably 2.5 × D1 to 5 × D1.

流動抑制溝5の断面視形状は、接着剤の流動を抑制できる形状であれば特に限定されず、例えば、図4および図8に示すような略矩形状であってもよいし、略半円形状であってもよいし、または略三角形状であってもよい。   The cross-sectional shape of the flow suppression groove 5 is not particularly limited as long as it is a shape that can suppress the flow of the adhesive. For example, the flow suppression groove 5 may have a substantially rectangular shape as shown in FIGS. The shape may be sufficient, or a substantially triangular shape may be sufficient.

流動抑制溝5が樹脂部材12に備わっている場合、当該流動抑制溝5は樹脂部材12の一体成形により形成されることが好ましい。流動抑制溝5を有さない樹脂部材12を製造した後で、流動抑制溝5を切削により形成してもよい。
流動抑制溝5が金属部材11に備わっている場合、当該流動抑制溝5を有さない金属部材11を製造した後で、流動抑制溝5を切削により形成することが好ましい。流動抑制溝5は金属部材11の一体成形により形成されてもよい。
When the flow suppression groove 5 is provided in the resin member 12, the flow suppression groove 5 is preferably formed by integral molding of the resin member 12. After manufacturing the resin member 12 that does not have the flow suppression groove 5, the flow suppression groove 5 may be formed by cutting.
When the flow suppression groove 5 is provided in the metal member 11, it is preferable to form the flow suppression groove 5 by cutting after manufacturing the metal member 11 that does not have the flow suppression groove 5. The flow suppression groove 5 may be formed by integral molding of the metal member 11.

接着剤3は、金属部材11と樹脂部材12との間に塗布されれば、いずれの部材に塗布されてもよい。例えば、接着剤は、例えば、図1〜図3に示すように樹脂部材12のみに塗布されてもよいし、金属部材11のみに塗布されてもよいし、または金属部材11と樹脂部材12との両方に塗布されてもよい。接合強度および施工性のさらなる向上と、製造コストとのバランスの観点から、接着剤は樹脂部材12のみに塗布されることが好ましい。   The adhesive 3 may be applied to any member as long as it is applied between the metal member 11 and the resin member 12. For example, the adhesive may be applied only to the resin member 12 as shown in FIGS. 1 to 3, or may be applied only to the metal member 11, or the metal member 11 and the resin member 12 It may be applied to both. It is preferable that the adhesive is applied only to the resin member 12 from the viewpoint of further improving the bonding strength and workability and the manufacturing cost.

接着剤3の塗布方法および塗布形状は、所望の領域に接着剤を塗布できる限り特に限定されない。接着剤3の塗布方法および塗布形状は通常、流動抑制溝5と接着剤3の塗布領域との距離L2が確保されつつ、あらゆる方法において、あらゆる形状で塗布されてもよい。例えば、接着剤3は、ライン塗布法、ドット塗布法、面塗布法またはロール塗布法等により、線状(ビード状)(直線状、曲線状またはこれらの複合線状)(図1〜図3)、点状、面状またはこれらの複合形状で塗布されてもよい。   The application method and application shape of the adhesive 3 are not particularly limited as long as the adhesive can be applied to a desired region. The application method and the application shape of the adhesive 3 may be applied in any shape in any method while ensuring the distance L2 between the flow suppression groove 5 and the application region of the adhesive 3. For example, the adhesive 3 is linear (bead-shaped) (straight, curved or complex linear) by a line coating method, a dot coating method, a surface coating method, or a roll coating method (FIGS. 1 to 3). ), Dot shape, planar shape, or a composite shape thereof.

流動抑制溝5と接着剤3の塗布領域との距離L2は通常、押圧部材(例えば、回転ツール16)の最大幅(直径)D1(mm)について、0.5×D1〜10×D1である。当該距離L2は、接合強度および施工性のさらなる向上の観点から、好ましくは0.5×D1〜5×D1であり、より好ましくは0.5×D1〜3×D1である。流動抑制溝5と接着剤3の塗布領域との距離L2は、流動抑制溝5と接着剤3の塗布領域との距離のうち、最短の距離のことである。   The distance L2 between the flow suppression groove 5 and the application region of the adhesive 3 is normally 0.5 × D1 to 10 × D1 with respect to the maximum width (diameter) D1 (mm) of the pressing member (for example, the rotary tool 16). . The distance L2 is preferably 0.5 × D1 to 5 × D1, and more preferably 0.5 × D1 to 3 × D1, from the viewpoint of further improving the bonding strength and workability. The distance L2 between the flow suppression groove 5 and the application region of the adhesive 3 is the shortest distance among the distances between the flow suppression groove 5 and the application region of the adhesive 3.

接着剤3は、従来から金属部材11と樹脂部材12との接着に寄与し得るあらゆる材料を包含する。従って、接着剤3は、当該分野において接着剤として使用される材料だけでなく、金属部材11と樹脂部材12との間のシーリングに使用されているシール材等も包含する概念で用いるものとする。接着剤3を構成する材料として、例えば、エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂およびこれらの混合物等の熱硬化性樹脂、合成ゴム系樹脂、ポリ塩化ビニル系樹脂、およびこれらの混合物等の熱可塑性樹脂が挙げられる。接着剤3として、熱硬化性樹脂を用いる場合、通常は樹脂部材12の軟化点よりも低い硬化温度を有する熱硬化性樹脂が使用される。   The adhesive 3 conventionally includes any material that can contribute to the adhesion between the metal member 11 and the resin member 12. Therefore, the adhesive 3 is used in a concept including not only a material used as an adhesive in the field but also a sealing material used for sealing between the metal member 11 and the resin member 12. . Examples of the material constituting the adhesive 3 include thermosetting resins such as epoxy resins, urethane resins, acrylic resins, and mixtures thereof, synthetic rubber resins, polyvinyl chloride resins, and mixtures thereof. A thermoplastic resin is mentioned. When a thermosetting resin is used as the adhesive 3, a thermosetting resin having a curing temperature lower than the softening point of the resin member 12 is usually used.

接着剤3の使用量(塗布量)は通常、接合後の接着層の厚みが0.1〜1.5mm、特に0.2〜0.5mmとなるような量である。接着剤3の使用量(塗布量)は通常、10〜500mg/mであり、接合強度のさらなる向上の観点から、好ましくは50〜300mg/mである。 The amount of adhesive 3 used (applied amount) is usually such that the thickness of the adhesive layer after bonding is 0.1 to 1.5 mm, particularly 0.2 to 0.5 mm. The use amount (application amount) of the adhesive 3 is usually 10 to 500 mg / m 2 , and preferably 50 to 300 mg / m 2 from the viewpoint of further improving the bonding strength.

接着剤3は、上記構成材料のみからなっていてもよいし、または上記構成材料および有機溶剤、その他の添加剤を含んでいてもよい。   The adhesive 3 may be made of only the above constituent material, or may contain the above constituent material, an organic solvent, and other additives.

以下、好ましい実施態様1および2について説明する。実施態様1および2は、接合強度および施工性のさらなる向上の観点から好ましく、同様の観点からは実施態様2がより好ましい。実施態様1は実施態様2を包含する。   Hereinafter, preferred embodiments 1 and 2 will be described. Embodiments 1 and 2 are preferable from the viewpoint of further improving the bonding strength and workability, and Embodiment 2 is more preferable from the same viewpoint. Embodiment 1 includes embodiment 2.

(1)実施態様1
本実施態様において、流動抑制溝5は、押圧部材16の直下領域の周りに、一定の距離をおいて環形状で形成されている。当該環形状の流動抑制溝5を規定する内側境界線51および外側境界線52のうち、内側境界線51は以下の領域内に表され得る環形状および寸法を有する:
押圧部材の最大幅(直径)D1(mm)について、図11Aに示すように、短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
図11Aは、流動抑制溝5が有し得る環形状を規定する内側境界線の一例を説明するための、x−y座標である。
(1) Embodiment 1
In the present embodiment, the flow suppression groove 5 is formed in an annular shape around a region immediately below the pressing member 16 with a certain distance. Of the inner boundary line 51 and the outer boundary line 52 that define the annular flow restricting groove 5, the inner boundary line 51 has an annular shape and dimensions that can be represented in the following regions:
For the maximum width (diameter) D1 (mm) of the pressing member, as shown in FIG. 11A, the minor axis = 1.5 × D1 and the major axis = 2.5 × D1, the ellipse Es and the minor axis = 3 × D1, and the major axis = A region formed between the ellipse Es and the ellipse Eb when the 5 × D1 ellipse Eb is represented on the xy coordinates with the midpoint between the two focal points of each ellipse as the origin.
FIG. 11A is an xy coordinate for explaining an example of an inner boundary line that defines an annular shape that the flow suppressing groove 5 may have.

内側境界線51の環形状は上記領域内において表すことができるあらゆる環形状および寸法であってもよい。ただし、当該環形状は上記領域のx−y座標上、第1象限、第2象限、第3象限および第4象限を必ず通るものである。当該環形状に対する接線の傾きは通常、連続的に変化してもよい。このような環形状の具体例として、例えば、図11Aに示す環形状E1が挙げられる。   The ring shape of the inner boundary line 51 may be any ring shape and size that can be represented in the region. However, the ring shape always passes through the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant on the xy coordinates of the region. The slope of the tangent to the ring shape may usually vary continuously. As a specific example of such a ring shape, for example, a ring shape E1 shown in FIG.

流動抑制溝5の外側境界線52は通常、上記内側境界線51から、前記した幅W1の分だけ距離をあけて規定される。   The outer boundary line 52 of the flow suppression groove 5 is usually defined with a distance from the inner boundary line 51 by the width W1 described above.

金属部材11または樹脂部材12の少なくとも一方が本実施態様において規定される環形状の流動抑制溝5を有する場合、押圧部材16は通常、以下の重複が起こるように、金属部材11を押圧する:
平面視における、押圧部材16による金属部材11表面の押圧領域P(または押圧部材の直下領域(例えば、P'、P''))の中心と、上記x−y座標の原点との重複。ここで平面視は、透視を含む平面視である。
上記重複は、必ずしも厳密に起こらなければならないというわけではなく、例えば、±1×D1のズレは許容される。
When at least one of the metal member 11 or the resin member 12 has the annular flow suppression groove 5 defined in this embodiment, the pressing member 16 normally presses the metal member 11 so that the following overlap occurs:
The overlap between the center of the pressing region P (or the region immediately below the pressing member (for example, P ′, P ″)) on the surface of the metal member 11 by the pressing member 16 and the origin of the xy coordinates in plan view. Here, the plan view is a plan view including fluoroscopy.
The overlap does not necessarily have to occur strictly. For example, a deviation of ± 1 × D1 is allowed.

流動抑制溝5が本実施態様のように環形状を有し、かつ接着剤が全体として主軸を有する塗布形状を有する場合、当該環形状を規定するx−y座標上の楕円EsおよびEbの長径方向が、塗布形状の主軸方向と平行になるように、接着剤は塗布されることが好ましい。主軸を有する塗布形状とは、図1〜図2および図8に示すような直線状を含む線状(ビード状)のことである。このような主軸を有する塗布形状を構成する最も長い直線状部分の軸方向が主軸方向である。   When the flow suppression groove 5 has a ring shape as in the present embodiment and the adhesive has a coating shape having a main axis as a whole, the major axes of the ellipses Es and Eb on the xy coordinates that define the ring shape The adhesive is preferably applied so that the direction is parallel to the main axis direction of the applied shape. The application shape having the main axis is a linear shape (bead shape) including a linear shape as shown in FIGS. The axial direction of the longest linear portion constituting the coating shape having such a main axis is the main axis direction.

(2)実施態様2
本実施態様において、流動抑制溝5は、押圧部材16の直下領域の周りに、一定の距離をおいて環形状で形成されている。当該環形状の流動抑制溝5を規定する内側境界線51および外側境界線52のうち、内側境界線51は以下の領域内に表され得る楕円形状および寸法を有する:
押圧部材の最大幅(直径)D1(mm)について、図11Bに示すように、短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
図11Bは、流動抑制溝5が有し得る楕円形状を規定する内側境界線の一例を説明するための、x−y座標である。
(2) Embodiment 2
In the present embodiment, the flow suppression groove 5 is formed in an annular shape around a region immediately below the pressing member 16 with a certain distance. Of the inner boundary line 51 and the outer boundary line 52 that define the annular flow restricting groove 5, the inner boundary line 51 has an elliptical shape and dimensions that can be represented in the following regions:
For the maximum width (diameter) D1 (mm) of the pressing member, as shown in FIG. 11B, the ellipse Es and the minor axis = 3 × D1 and the major axis = 1.5 × D1 and major axis = 2.5 × D1 A region formed between the ellipse Es and the ellipse Eb when the 5 × D1 ellipse Eb is represented on the xy coordinates with the midpoint between the two focal points of each ellipse as the origin.
FIG. 11B is an xy coordinate for explaining an example of an inner boundary line that defines an elliptical shape that the flow suppressing groove 5 may have.

内側境界線51の楕円形状は上記領域内において表すことができるあらゆる楕円形状および寸法であってもよい。ただし、当該楕円形状は上記領域のx−y座標上、第1象限、第2象限、第3象限および第4象限を必ず通るものである。このような楕円形状の具体例として、例えば、図11Bに示す環形状E2〜E4が挙げられる。   The elliptical shape of the inner boundary line 51 may be any elliptical shape and size that can be represented in the region. However, the elliptical shape always passes through the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant on the xy coordinates of the region. Specific examples of such elliptical shapes include, for example, ring shapes E2 to E4 shown in FIG. 11B.

流動抑制溝5の外側境界線52は通常、上記内側境界線51から、前記した幅W1の分だけ距離をあけて規定される。   The outer boundary line 52 of the flow suppression groove 5 is usually defined with a distance from the inner boundary line 51 by the width W1 described above.

金属部材11または樹脂部材12の少なくとも一方が本実施態様において規定される楕円形状の流動抑制溝5を有する場合、押圧部材16は通常、以下の重複が起こるように、金属部材11を押圧する:
平面視における、押圧部材16による金属部材11表面の押圧領域P(または押圧部材の直下領域(例えば、P'、P''))の中心と、上記x−y座標の原点との重複。ここで平面視は、透視を含む平面視である。
上記重複は、必ずしも厳密に起こらなければならないというわけではなく、例えば、±1×D1のズレは許容される。
When at least one of the metal member 11 or the resin member 12 has the elliptical flow suppression groove 5 defined in this embodiment, the pressing member 16 normally presses the metal member 11 so that the following overlap occurs:
The overlap between the center of the pressing region P (or the region immediately below the pressing member (for example, P ′, P ″)) on the surface of the metal member 11 by the pressing member 16 and the origin of the xy coordinates in plan view. Here, the plan view is a plan view including fluoroscopy.
The overlap does not necessarily have to occur strictly. For example, a deviation of ± 1 × D1 is allowed.

流動抑制溝5が本実施態様のように楕円形状を有し、かつ接着剤が全体として主軸を有する塗布形状を有する場合、当該楕円形状の長径方向が、塗布形状の主軸方向と平行になるように、接着剤は塗布されることが好ましい。主軸を有する塗布形状とは、図1〜図2および図8に示すような直線状を含む線状(ビード状)のことである。このような主軸を有する塗布形状を構成する最も長い直線状部分の軸方向が主軸方向である。   When the flow suppression groove 5 has an elliptical shape as in this embodiment and the adhesive has a coating shape having a main axis as a whole, the major axis direction of the elliptical shape is parallel to the main axis direction of the coating shape. In addition, the adhesive is preferably applied. The application shape having the main axis is a linear shape (bead shape) including a linear shape as shown in FIGS. The axial direction of the longest linear portion constituting the coating shape having such a main axis is the main axis direction.

(3)樹脂部材
樹脂部材12は、流動抑制溝5を有する場合であっても、有さない場合であっても、例えば、射出成形法、プレス成形法、押出成形法、引抜成形法、オートクレーブ成形法等のあらゆる公知の溶融成形方法により製造することができる。樹脂部材12が流動抑制溝5を有する場合、使用される金型の成形面を転写させることにより、樹脂部材12を流動抑制溝5とともに一体的に成形することができる。
(3) Resin member Whether the resin member 12 has the flow suppression groove 5 or not, for example, an injection molding method, a press molding method, an extrusion molding method, a pultrusion molding method, an autoclave It can be produced by any known melt molding method such as a molding method. When the resin member 12 has the flow suppression groove 5, the resin member 12 can be integrally formed with the flow suppression groove 5 by transferring the molding surface of the mold used.

樹脂部材12は、ポリマーおよびその他所望の添加剤からなっている。ポリマーとしては、熱可塑性ポリマーが使用されてもよいし、または熱硬化性ポリマーが使用されてもよい。   The resin member 12 is made of a polymer and other desired additives. As the polymer, a thermoplastic polymer may be used, or a thermosetting polymer may be used.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA))などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA));
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

熱可塑性ポリマーの分子量は、接合時に軟化・溶融可能な限り特に限定されるものではなく、通常はメルトフローレート(MFR)が2〜200、好ましくは2〜55の熱可塑性ポリマーが使用される。   The molecular weight of the thermoplastic polymer is not particularly limited as long as it can be softened and melted at the time of joining. Usually, a thermoplastic polymer having a melt flow rate (MFR) of 2 to 200, preferably 2 to 55, is used.

本明細書中、MFRはメルトフローレートであって、JIS K7210に基づいて230℃で測定された値(g/10分間)を用いている。   In the present specification, MFR is a melt flow rate, and a value (g / 10 minutes) measured at 230 ° C. based on JIS K7210 is used.

熱硬化性ポリマーとしては、自動車の分野で使用されている熱硬化性ポリマーが好ましく使用される。そのような熱硬化性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
エポキシ樹脂(EP);
フェノール樹脂(PF);
不飽和ポリエステル樹脂(UP);
メラミン樹脂(MF);
ポリウレタン(PUR)。
As the thermosetting polymer, a thermosetting polymer used in the field of automobiles is preferably used. Specific examples of such thermosetting polymers include, for example, the following polymers and mixtures thereof:
Epoxy resin (EP);
Phenolic resin (PF);
Unsaturated polyester resin (UP);
Melamine resin (MF);
Polyurethane (PUR).

樹脂部材12に含まれる添加剤としては、タルク等のフィラー、炭素繊維、ガラス繊維等の強化繊維が挙げられる。   Examples of the additive contained in the resin member 12 include fillers such as talc, and reinforcing fibers such as carbon fibers and glass fibers.

以上、樹脂部材12は接合部分が略平板形状を有するものについて説明したが、これに限定されるものではなく、少なくとも押圧部材直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12の厚みtは特に限定されず、通常は1mm以上、特に1〜20mmである。   As described above, the resin member 12 has been described in which the joining portion has a substantially flat plate shape. However, the present invention is not limited to this, and as long as at least the portion immediately below the pressing member has a substantially flat plate shape, the resin member 12 has any shape. Also good. The thickness t of the resin member 12 is not particularly limited, and is usually 1 mm or more, particularly 1 to 20 mm.

樹脂部材12が流動抑制溝5を有する場合、樹脂部材12は、図7に示すように、樹脂部材12の強度向上の観点から、少なくとも押圧部材の直下領域60を肉厚化することが好ましい。肉厚化部分の厚みt2は、上記厚みtと同様の範囲内で選択されてもよい。   When the resin member 12 has the flow suppression groove 5, as shown in FIG. 7, it is preferable that the resin member 12 thickens at least the region 60 directly below the pressing member from the viewpoint of improving the strength of the resin member 12. The thickness t2 of the thickened portion may be selected within the same range as the thickness t.

(4)金属部材
金属部材11は、ダイカスト鋳造等のあらゆる公知の成形方法により製造することができるが、通常は市販品として入手可能である。金属部材11は、流動抑制溝5を有する場合、流動抑制溝5を切削により形成することができる。
(4) Metal member The metal member 11 can be manufactured by any known forming method such as die casting, but is usually available as a commercial product. When the metal member 11 has the flow suppression groove 5, the flow suppression groove 5 can be formed by cutting.

金属部材11は接合部分が略平板形状を有するものについて説明するが、これに限定されるものではなく、少なくとも押圧部材直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11の厚みTは特に制限されるものではなく、通常、0.6〜3.0mm程度である。   The metal member 11 will be described in which the joining portion has a substantially flat plate shape. However, the present invention is not limited to this, and may have any shape as long as at least the portion directly below the pressing member has a substantially flat plate shape. . The thickness T of the metal member 11 is not particularly limited, and is usually about 0.6 to 3.0 mm.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成するポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などのアルミニウム合金;
スチール;軟鋼板、高張力鋼板など
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and aluminum alloys such as 5000 series and 6000 series;
Steel; mild steel, high-strength steel, etc. Magnesium and its alloys;
Titanium and its alloys.

(5)回転ツール
図10は、回転ツール16の先端部近傍の拡大図である。図10において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図10に示すように、円柱状の回転ツール16は、先端部(図10では下端部)にピン部16a及びショルダ面16bを有している。ショルダ面16bは、回転ツール16の円形の先端面のことである。回転ツール16はショルダ面16bにピン部16aを有する。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図10では下方)に突設された、ショルダ面16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
(5) Rotating Tool FIG. 10 is an enlarged view of the vicinity of the tip of the rotating tool 16. In FIG. 10, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 10, the columnar rotary tool 16 has a pin portion 16 a and a shoulder surface 16 b at the distal end portion (lower end portion in FIG. 10). The shoulder surface 16 b is a circular tip surface of the rotary tool 16. The rotary tool 16 has a pin portion 16a on the shoulder surface 16b. The pin portion 16a is a columnar portion having a smaller diameter than the shoulder surface 16b and projecting outward (downward in FIG. 10) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ面16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ面16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、回転ツール16の直径は通常、ショルダ面16bの直径D1のことであり、通常、5〜100mm、特に5〜20mmである。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder surface 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder surface 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter of the rotating tool 16 is usually the diameter D1 of the shoulder surface 16b, and is usually 5 to 100 mm, particularly 5 to 20 mm.

(6)摩擦撹拌接合方法に基づく金属部材と樹脂部材との接合方法の具体例
本発明に係る摩擦撹拌接合方法に基づく接合方法は少なくとも以下のステップを含むものである:
接着剤3を金属部材11または樹脂部材12の少なくとも一方に塗布し、金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
押圧部材としての回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材12を軟化・溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ。
なお、第1ステップにおいて得られる金属部材11と樹脂部材12とが重ね合わされたものを「ワーク」10と呼ぶ。
(6) Specific example of joining method of metal member and resin member based on friction stir welding method The joining method based on the friction stir welding method according to the present invention includes at least the following steps:
A first step of applying the adhesive 3 to at least one of the metal member 11 or the resin member 12 and superimposing the metal member 11 and the resin member 12; and the metal member 11 while rotating the rotary tool 16 as a pressing member. A second step of generating frictional heat by pressing, softening and melting the resin member 12 with this frictional heat, and solidifying the resin member 12 to join the metal member 11 and the resin member 12.
The metal member 11 and the resin member 12 obtained in the first step are called “work” 10.

第1ステップ:
第1ステップにおける接着剤3の塗布については前記した通りであるため、ここでの説明を省略する。
First step:
Since the application of the adhesive 3 in the first step is as described above, a description thereof is omitted here.

接着剤3の塗布後、金属部材11と樹脂部材12とを、例えば図5および図9に示すように、それらの対向面110および120が相互に対向するように重ね合わせる。このとき、接着剤3の接合領域への流動は、流動抑制溝5への接着剤3の流入により抑制される。   After the application of the adhesive 3, the metal member 11 and the resin member 12 are overlapped so that their facing surfaces 110 and 120 face each other, as shown in FIGS. 5 and 9, for example. At this time, the flow of the adhesive 3 to the joining region is suppressed by the inflow of the adhesive 3 into the flow suppression groove 5.

第2ステップ:
第2ステップにおいては、図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面130に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
Second step:
In the second step, as shown in FIG. 6, at least a push-in stirring step C2 in which the rotary tool 16 is pushed into the metal member 11 and entered to a depth that does not reach the joining boundary surface 130 between the metal member 11 and the resin member 12 is performed. Do.

本発明においては、第2ステップにおいて、押込み撹拌工程の前に、回転ツール16のショルダー面16b(先端部(ピン部およびショルダー面)のみ)を金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the present invention, in the second step, the shoulder surface 16b (only the tip portion (pin portion and shoulder surface) only) of the rotary tool 16 is in contact with the surface portion of the metal member 11 before the pushing stirring step. Although it is preferable to perform the preheating process C1 which rotates the rotary tool 16, it does not necessarily have to be performed.
After the indentation stirring step, it is preferable to perform the stirring maintenance step C3 in which the rotation operation of the rotary tool 16 is continued at the position where the rotary tool 16 has entered to a depth that does not reach the joining boundary surface. It doesn't have to be.

以下、各工程について詳しく説明する。   Hereinafter, each step will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図5および図9に示すように、回転ツール16のピン部16aおよびショルダー面16bのみ(先端部のみ)を金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図5および図9は、図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、本発明の接合方法における予熱工程を説明するための概略断面図である。
(Preheating process C1)
In the preheating step C1, the rotating tool 16 and the receiving member 17 are brought close to each other, so that only the pin portion 16a and the shoulder surface 16b (only the tip portion) of the rotating tool 16 are made of metal as shown in FIGS. In this step, the rotary tool 16 is rotated while being in contact with the surface portion (upper surface portion in the example) of the member 11. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N). 5 and 9 are schematic cross-sectional views when the ZZ cross-section in FIG. 1 is viewed in the direction of the arrow, and are schematic cross-sectional views for explaining a preheating step in the joining method of the present invention.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。本工程において接着剤3の流動が起こったとしても、接着剤3の接合領域への流動は、流動抑制溝5への接着剤3の流入により抑制される。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2. Even if the flow of the adhesive 3 occurs in this step, the flow of the adhesive 3 to the joining region is suppressed by the flow of the adhesive 3 into the flow suppression groove 5.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との境界面を介して樹脂部材12に伝導する。接着剤が熱硬化性樹脂を含む場合、本工程において、接着剤の熱硬化が起こってもよい。   In the preheating step C <b> 1, the frictional heat is conducted to the resin member 12 through the boundary surface between the metal member 11 and the resin member 12. When the adhesive contains a thermosetting resin, thermosetting of the adhesive may occur in this step.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は、700N以上1200N未満の値、第1の加圧時間は、0.5秒以上2.0秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoint of ease of pushing in the rotary tool 16 and the ease of softening / melting of the resin member 12, and values thereof. Varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressure in the preheating step C1 is 700 N or more and less than 1200 N, and the first pressurizing time is 0.5 seconds. A value of not less than 2.0 seconds and a rotation speed of the rotary tool is preferably not less than 500 rotations / minute and not more than 10,000 rotations / minute.

(押込み撹拌工程C2)
押込み撹拌工程C2は、回転ツール16と受け具17とを相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む工程である。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込む。すなわち、回転ツール16を金属部材11と樹脂部材12との境界面130に達しない深さまで進入させる。これにより、溶融樹脂を、平面視で、矢印方向K(図6)において回転ツール16の直下領域60からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動する。
(Indentation stirring step C2)
The pushing agitation step C2 is a step of pushing the rotating tool 16 into the metal member 11 as shown in FIG. 6 by bringing the rotating tool 16 and the receiving member 17 close to each other. When the pushing and stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. That is, the rotary tool 16 is advanced to a depth that does not reach the boundary surface 130 between the metal member 11 and the resin member 12. As a result, the molten resin is radiated from the region 60 directly below the rotary tool 16 toward the outer peripheral side in the arrow direction K (FIG. 6), that is, from the center of the region 60 directly toward the outer peripheral region 61 in a plan view. To flow.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。この回転ツール16の押込みにより、図6に示すように、金属部材11の回転ツール直下部115において、金属部材11と樹脂部材12との接合境界面130が受け具17側(図例では下側)に移動し、当該直下部115が樹脂部材12側に突出変形する。これによっても、接合境界面130において回転ツールの直下領域60の溶融樹脂が、平面視で、矢印方向Kにおいて、回転ツール16の直下領域60からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動する。溶融樹脂は、回転ツール直下領域60を中心とする略円形状で広がる。流動する溶融樹脂は流動抑制溝5に流入してもよい。本工程において接着剤3の流動が起こったとしても、接着剤3の接合領域への流動は、流動抑制溝5への接着剤3の流入により抑制される。接着剤が熱硬化性樹脂を含む場合、本工程において、接着剤の熱硬化が起こってもよい。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. As shown in FIG. 6, by pressing the rotary tool 16, the joint boundary surface 130 between the metal member 11 and the resin member 12 is placed on the support 17 side (lower side in the illustrated example) in the lower portion 115 of the metal member 11. ), And the immediately lower part 115 is projected and deformed toward the resin member 12 side. Also in this manner, the molten resin in the region 60 immediately below the rotary tool on the joining boundary surface 130 in the arrow direction K from the region 60 directly below the rotary tool 16 toward the outer peripheral side in the arrow direction K, that is, in the region 60 directly below. It flows radially from the center toward the outer peripheral region 61. The molten resin spreads in a substantially circular shape centering on the region 60 directly below the rotary tool. The molten resin that flows may flow into the flow suppression groove 5. Even if the flow of the adhesive 3 occurs in this step, the flow of the adhesive 3 to the joining region is suppressed by the flow of the adhesive 3 into the flow suppression groove 5. When the adhesive contains a thermosetting resin, thermosetting of the adhesive may occur in this step.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ面16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is pushed further (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder surface 16b of the rotary tool 16 exceeds the joint boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本発明では、この押込み撹拌工程C2において、回転ツール16のショルダ面16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の溶融および流動(移動)が促進される。   Therefore, in the present invention, in the indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder surface 16b of the rotation tool 16 enters a depth that does not reach the joint boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and the melting and flow (movement) of the resin member 12 is promoted. .

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値、第2の加圧時間は、0.1秒以上0.5秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is 0.1. A value of at least 2 seconds and less than 0.5 seconds, and a rotation speed of the rotating tool is preferably at least 500 rotations / minute and not more than 10,000 rotations / minute.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図6に示すように、上記接合境界面130に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、5.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual proximity of the rotary tool 16 and the receiving member 17 and, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the stirring maintaining step C3, the rotary tool 16 is moved to a third pressurizing time (for example, 5.75) longer than the first pressurizing time with a third pressurizing force (for example, 500 N) smaller than the first pressurizing force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の領域60の範囲を超えて、広い範囲で十分に軟化・溶融し、平面視で、より一層、有効に矢印方向Kにおいて、回転ツール16の直下領域60からその外周側に向けて、すなわち該直下領域60の中心から外周領域61に向けて、放射状に流動および移動する。本工程において接着剤3の流動が起こったとしても、接着剤3の接合領域への流動は、流動抑制溝5への接着剤3の流入により抑制される。接着剤が熱硬化性樹脂を含む場合、本工程において、接着剤の熱硬化が起こってもよい。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the region 60 directly below the pressing region P, and more effectively in the arrow direction K in plan view, directly below the rotary tool 16. It flows and moves radially from the region 60 toward the outer peripheral side, that is, from the center of the region 60 directly below to the outer peripheral region 61. Even if the flow of the adhesive 3 occurs in this step, the flow of the adhesive 3 to the joining region is suppressed by the flow of the adhesive 3 into the flow suppression groove 5. When the adhesive contains a thermosetting resin, thermosetting of the adhesive may occur in this step.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値、第3の加圧時間は、1.0秒以上10秒未満の値、回転ツールの回転数は500回転/分以上10000回転/分以下の値が好ましい。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring maintaining step C3 is a value of 100 N or more and less than 700 N, and the third pressurizing time is 1.0. A value of not less than 10 seconds and less than 10 seconds and a rotation speed of the rotary tool are preferably not less than 500 rotations / minute and not more than 10,000 rotations / minute.

(保持工程C4)
押込み撹拌工程C2または撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図6に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
(Holding process C4)
After the indentation stirring step C2 or the stirring maintaining step C3, a holding step C4 is performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held at a predetermined pressure for a predetermined pressurizing time. Also good.
Similarly, as shown in FIG. 6, the holding step C <b> 4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12とを受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation is stopped due to the pressure force being smaller than the indentation stirring step C 2 but larger than the stirring maintaining step C 3 is the metal member 11, the resin member 12, and the receiving member 17. And clamp between. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の押圧領域Pの密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値が好ましい。第4の加圧時間は、例えば1秒以上の値が好ましい。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion strength of the pressing region P during the cooling period as described above, and the values thereof are, for example, those of the material of the metal member 11 It varies depending on the type. For example, when the aluminum alloy metal member 11 is used, the fourth pressing force in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, for example. The fourth pressurization time is preferably, for example, a value of 1 second or longer.

本発明では、少なくとも前記した工程C2を経て、好ましくは前記した工程C1およびC2を経て、より好ましくは前記した工程C1〜C3を経て、最も好ましくは前記した工程C1〜C4を経て、最終的に、金属部材11と樹脂部材12とが広い範囲で高強度に接合された金属部材11と樹脂部材12との接合体20が得られる。   In the present invention, at least through the above-described steps C2, preferably through the above-described steps C1 and C2, more preferably through the above-described steps C1 to C3, and most preferably through the above-described steps C1 to C4, finally. In addition, a joined body 20 of the metal member 11 and the resin member 12 in which the metal member 11 and the resin member 12 are joined with high strength in a wide range is obtained.

第2ステップにおいて所定の工程を行った後、通常は冷却を行い、溶融樹脂を固化させる。冷却方法は特に限定されず、例えば、放置冷却法等が挙げられる。   After performing a predetermined process in the second step, cooling is usually performed to solidify the molten resin. The cooling method is not particularly limited, and examples thereof include a standing cooling method.

第2ステップにおいて所定の工程を行った後、冷却を行う前において、または冷却後において、接着剤3の熱硬化を行ってもよい。熱硬化温度は、接着剤3の硬化温度に応じて適宜、決定されればよい。   After performing the predetermined process in the second step, the adhesive 3 may be thermally cured before or after cooling. The thermosetting temperature may be appropriately determined according to the curing temperature of the adhesive 3.

(7)接合体
本発明の接合方法により接合された金属部材11と樹脂部材12との接合体は、図12に示すように、樹脂部材12の回転ツール直下領域60およびその外周領域において接合領域を有し、金属部材11と樹脂部材12との接合が達成されている。このことは、接合体の接合境界面において、溶融樹脂が固化してなる溶融固化域が回転ツール直下領域60を中心とする略円形状で広がっていることを確認することにより、検知できる。図12は、図4の樹脂部材を用い、かつ本発明の一実施態様に係る接合方法で得られた接合体から金属部材を強制的に剥離させて得られた樹脂部材の概略平面図である。
(7) Bonded Body As shown in FIG. 12, the bonded body of the metal member 11 and the resin member 12 bonded by the bonding method of the present invention is a bonded area in the region 60 directly below the rotary tool of the resin member 12 and its outer peripheral region. The metal member 11 and the resin member 12 are joined to each other. This can be detected by confirming that the melted and solidified region obtained by solidifying the molten resin spreads out in a substantially circular shape centering on the region 60 directly below the rotary tool at the joint interface of the joined body. 12 is a schematic plan view of a resin member obtained by forcibly peeling a metal member from a joined body obtained by the joining method according to one embodiment of the present invention using the resin member of FIG. .

具体的には、接合体から金属部材11を強制的に剥離させると、例えば、図12に示すような、樹脂部材12における金属部材11との接触面122aが観察できる。このような樹脂部材12の接触面122a(溶融固化域)は回転ツール直下領域60にある樹脂溶融域131A(斜線領域)と、その外周領域にある溶融樹脂流動域132A(格子領域)とからなっている。   Specifically, when the metal member 11 is forcibly separated from the joined body, for example, a contact surface 122a of the resin member 12 with the metal member 11 as shown in FIG. 12 can be observed. Such a contact surface 122a (melting and solidifying region) of the resin member 12 is composed of a resin melting region 131A (shaded region) in the region 60 immediately below the rotary tool and a molten resin flow region 132A (lattice region) in the outer peripheral region. ing.

樹脂溶融域131Aは、その表面に、金属部材11の突出変形により、回転ツール径と略同等の径の凹形状が形成されている。また、金属部材11表面の微小形状が転写されており、接合強度によっては変色する場合もあることから、元の樹脂部材12の表面性状(表面粗さ、色他)との比較により、目視による認識は容易に可能である。   The resin melting region 131 </ b> A has a concave shape with a diameter substantially equal to the diameter of the rotating tool due to the protruding deformation of the metal member 11 on the surface thereof. Further, since the minute shape on the surface of the metal member 11 is transferred and may be discolored depending on the bonding strength, it is visually confirmed by comparison with the surface properties (surface roughness, color, etc.) of the original resin member 12. Recognition is easily possible.

溶融樹脂流動域132Aは、その表面に、金属部材11表面の微小形状が転写されており、接合強度によっては変色する場合もあることから、元の樹脂部材12の表面性状(表面粗さ、色他)との比較により、目視による認識は容易に可能である。   Since the fine shape of the surface of the metal member 11 is transferred to the surface of the molten resin flow region 132A and the color may be changed depending on the bonding strength, the surface properties (surface roughness, color, etc.) of the original resin member 12 may be changed. By comparison with others, visual recognition is easily possible.

流動抑制溝5には、図12に示すように、接着剤3が流入しており、溶融樹脂も流入していてもよい。   As shown in FIG. 12, the adhesive 3 flows into the flow suppression groove 5, and the molten resin may also flow in.

[実施例1]
(樹脂部材)
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、平面視において、図4に示すような、楕円形状を有する流動抑制溝5を備えた樹脂部材12を製造した。流動抑制溝5は射出成形法で使用される金型の成形面を転写させることにより形成した。
樹脂部材12の寸法は以下の通りであった(図4参照):
全体寸法;縦100mm×横60mm
流動抑制溝5の幅W1(一定)=1mm;
流動抑制溝5の深さt1=1mm;
流動抑制溝5の内側境界線51(楕円形状)の長径dL=30mm;
流動抑制溝5の内側境界線51(楕円形状)の短径ds=30mm;
厚みt=3mm;
流動抑制溝5と押圧部材の直下領域P'との距離L1=10mm。
[Example 1]
(Resin member)
With a flow control groove 5 having an elliptical shape as shown in FIG. 4 in a plan view by injection molding using polypropylene pellets (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.) containing 40% by weight of carbon fiber A resin member 12 was produced. The flow suppression groove 5 was formed by transferring the molding surface of a mold used in the injection molding method.
The dimensions of the resin member 12 were as follows (see FIG. 4):
Overall dimensions: 100mm length x 60mm width
Width W1 (constant) of the flow suppression groove 5 = 1 mm;
The depth t1 of the flow suppression groove 5 = 1 mm;
Major axis dL = 30 mm of the inner boundary line 51 (elliptical shape) of the flow suppression groove 5;
Minor axis ds of inner boundary line 51 (elliptical shape) of flow suppression groove 5 = 30 mm;
Thickness t = 3 mm;
The distance L1 between the flow suppression groove 5 and the region P ′ immediately below the pressing member is 10 mm.

(金属部材)
金属部材11としては、6000系のアルミニウム合金製の平板部材を用いた。
金属部材11の寸法は以下の通りであった:
全体寸法;縦100mm×横60mm×厚み(T)(接合部)1.2mm
(Metal member)
As the metal member 11, a flat plate member made of 6000 series aluminum alloy was used.
The dimensions of the metal member 11 were as follows:
Overall dimensions: Length 100mm x Width 60mm x Thickness (T) (Junction) 1.2mm

(回転ツール)
回転ツールとしては、図10の各部の寸法がD1=10mm、D2=2mm、h=0.25mmの工具鋼製のものを用いた。
(Rotation tool)
As the rotating tool, a tool tool having dimensions of D1 = 10 mm, D2 = 2 mm, and h = 0.25 mm in each part of FIG. 10 was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
図1および図4に示すように、樹脂部材12における流動抑制溝5の形成面120において、当該流動抑制溝5を規定する外側境界線52に沿って接着剤3(エポキシ系樹脂;BF9050L;ダウ・ケミカル社製)を、接合後の接着層3の厚みが0.2mm(塗布量100mg/m)となるように、線状(ビード状)で塗布した。流動抑制溝5と接着剤3の塗布領域との距離(一定)L2=5mm。金属部材11と樹脂部材12とを図5に示すように重ね合わせた。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
As shown in FIG. 1 and FIG. 4, the adhesive 3 (epoxy resin; BF9050L; Dow) is formed along the outer boundary line 52 defining the flow suppression groove 5 on the formation surface 120 of the flow suppression groove 5 in the resin member 12. (Chemical Co., Ltd.) was applied in a linear form (bead form) so that the thickness of the adhesive layer 3 after joining was 0.2 mm (application amount 100 mg / m 2 ). Distance (constant) between the flow suppression groove 5 and the application region of the adhesive 3 L2 = 5 mm. The metal member 11 and the resin member 12 were superposed as shown in FIG.

第2ステップ:
平面視において、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材12表面上の領域P’(図4参照)の中心が、流動抑制溝5の内側境界線51の楕円形状における2つの焦点の中点(=x−y座標の原点)と重複するように、回転ツール16を金属部材11に押し込んだ。
詳しくは、図5に示すように、回転ツール16のピン部16aのみを金属部材11に押し込み、かつ回転ツール16のショルダー面16bを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000r)。
次いで、図6に示すように、回転ツール16を金属部材11にさらに押し込んで金属部材11と樹脂部材12との接合境界面130に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図6に示すように、回転ツール16を接合境界面130に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpm)。
次いで、金属部材11から回転ツール16を抜き取り、80℃に加熱することにより、接着剤3の硬化を行った。
最後に、放置冷却した。
Second step:
In plan view, the center of the region P ′ (see FIG. 4) on the surface of the resin member 12 corresponding to the region immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11 is the inner side of the flow suppressing groove 5. The rotating tool 16 was pushed into the metal member 11 so as to overlap with the midpoint of the two focal points in the elliptical shape of the boundary line 51 (= the origin of the xy coordinates).
Specifically, as shown in FIG. 5, the rotary tool 16 is pressed in a state where only the pin portion 16 a of the rotary tool 16 is pushed into the metal member 11 and the shoulder surface 16 b of the rotary tool 16 is in contact with the surface portion of the metal member 11. It was rotated (preheating step C1: pressing force 900 N, pressurizing time 1.00 seconds, tool rotation speed 3000 r).
Next, as shown in FIG. 6, the rotary tool 16 is further pushed into the metal member 11 to a depth that does not reach the joining boundary surface 130 between the metal member 11 and the resin member 12 (pushing stirring step C2: applied pressure 1500 N). , Pressurization time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 6, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 130 (stirring maintenance step C3: pressurizing force 500 N, pressurization) Time 5.75 seconds, tool rotation speed 3000 rpm).
Next, the rotary tool 16 was extracted from the metal member 11 and heated to 80 ° C. to cure the adhesive 3.
Finally, it was left to cool.

(接合強度)
JIS Z 3136に規定されている方法により、金属部材と樹脂部材とが接合された接合体を図1の矢印Y−Yに示す方向に引っ張り、せん断引張試験を行った。せん断強度Sに基づいて評価した。
◎;5.0kN≦S(優);
○;3.0kN≦S<5.0kN(良);
△;1.0kN≦S<3.0kN(実用上問題なし);
×;S<1.0kN(実用上問題あり)。
(Joint strength)
The joined body in which the metal member and the resin member were joined by a method defined in JIS Z 3136 was pulled in the direction indicated by arrows Y-Y in FIG. 1, and a shear tensile test was performed. Evaluation was based on the shear strength S.
A: 5.0 kN ≦ S (excellent);
○: 3.0 kN ≦ S <5.0 kN (good);
Δ: 1.0 kN ≦ S <3.0 kN (no problem in practical use);
X: S <1.0 kN (problem in practical use).

(施工性)
実施例では、施工性は、流動抑制溝を規定する内側境界線内の面積の縮小化の達成度により、以下の基準に従って評価し、最高ランクを示した。
◎:ds/D1≦2かつdL/D1≦4;
○:ds/D1≦3かつdL/D1≦5;
△:ds/D1≦4かつdL/D1≦6;
×:4<ds/D1または6<dL/D1。
(Workability)
In the examples, the workability was evaluated according to the following criteria according to the achievement degree of reduction of the area in the inner boundary line defining the flow suppression groove, and the highest rank was shown.
A: ds / D1 ≦ 2 and dL / D1 ≦ 4;
○: ds / D1 ≦ 3 and dL / D1 ≦ 5;
Δ: ds / D1 ≦ 4 and dL / D1 ≦ 6;
X: 4 <ds / D1 or 6 <dL / D1.

(総合評価)
接合強度の評価結果および施工性の評価結果のうち、低い方の評価結果を総合評価結果として用いた。
(Comprehensive evaluation)
Of the evaluation results of the bonding strength and the evaluation results of workability, the lower evaluation result was used as the comprehensive evaluation result.

[実施例2〜8および比較例1]
樹脂部材において、流動抑制溝5の平面視形状としての楕円形状の寸法を表に示すように変更したこと以外、実施例1と同様の方法により、金属部材と樹脂部材との接合および評価を行った。
比較例1で使用された樹脂部材は流動抑制溝を有さない。
[Examples 2 to 8 and Comparative Example 1]
In the resin member, the metal member and the resin member were joined and evaluated by the same method as in Example 1 except that the dimension of the elliptical shape as the planar shape of the flow suppression groove 5 was changed as shown in the table. It was.
The resin member used in Comparative Example 1 does not have a flow suppression groove.

Figure 0006614205
Figure 0006614205

接合強度の評価結果および施工性の評価結果を図13のグラフに示した。当該グラフにおいて、プロットされた評価結果は接合強度に基づくものであり、太線による領域で表される結果は施工性に基づくものである。   The evaluation results of the bonding strength and the evaluation results of workability are shown in the graph of FIG. In the graph, the plotted evaluation results are based on the bonding strength, and the results represented by the area with bold lines are based on the workability.

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
3:接着剤
5:流動抑制溝
10:ワーク
11:金属部材
12:12':12'':樹脂部材
16:回転ツール
17:受け具
20:接合体
120:樹脂部材における金属部材との接合側の表面
P:金属部材表面における回転ツールによる押圧領域(押圧予定領域)
P’:押圧領域Pの直下に対応する樹脂部材表面の領域
1: Friction stir welding device 3: Adhesive 5: Flow suppression groove 10: Workpiece 11: Metal member 12: 12 ′: 12 ″: Resin member 16: Rotating tool 17: Receiving tool 20: Joined body 120: Resin member Surface on the joining side with the metal member P: Pressing area (scheduled pressing area) by the rotating tool on the metal member
P ′: a region on the surface of the resin member corresponding to directly below the pressing region P

Claims (20)

金属部材と樹脂部材とを、両者間に接着剤を塗布して、重ね合わせ、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材の前記金属部材との対向面または前記金属部材の前記樹脂部材との対向面の少なくとも一方において、前記重ね合わせ状態における前記接着剤の接合領域への流動を抑制する流動抑制溝が形成されており
前記圧力は押圧部材により付与され、
前記流動抑制溝は、前記押圧部材の直下領域の周りに環状で形成されており、
前記環状の前記流動抑制溝を規定する内側境界線は以下の領域内に表され得る環形状および寸法を有する、金属部材と樹脂部材との接合方法
前記押圧部材の最大幅(直径)をD1とし、かつ短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
A thermo-pressure type in which an adhesive is applied between the metal member and the resin member, and the resin member is melted by applying pressure and heat from the metal member side to melt and joining the metal member and the resin member. A joining method between a metal member and a resin member by a joining method,
At least one of the surface of the resin member facing the metal member or the surface of the metal member facing the resin member is formed with a flow suppression groove that suppresses the flow of the adhesive to the bonding region in the overlapped state. Has been
The pressure is applied by a pressing member,
The flow suppression groove is formed in an annular shape around a region immediately below the pressing member,
The joining method of the metal member and the resin member , wherein the inner boundary line defining the annular flow suppressing groove has a ring shape and dimensions that can be expressed in the following region :
The maximum width (diameter) of the pressing member is D1, and an ellipse Es having a minor axis = 1.5 × D1 and a major axis = 2.5 × D1, and an ellipse Eb having a minor axis = 3 × D1 and a major axis = 5 × D1. , An area formed between the ellipse Es and the ellipse Eb when expressed with the midpoint between the two focal points of each ellipse as the origin on the xy coordinates.
金属部材と樹脂部材とを、両者間に接着剤を塗布して、重ね合わせ、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材の前記金属部材との対向面または前記金属部材の前記樹脂部材との対向面の少なくとも一方において、前記重ね合わせ状態における前記接着剤の接合領域への流動を抑制する流動抑制溝が形成されており
前記圧力は押圧部材により付与され、
前記流動抑制溝は、前記押圧部材の直下領域の周りに環状で形成されており、
前記環状の前記流動抑制溝を規定する内側境界線は以下の領域内に表され得る楕円形状および寸法を有する、金属部材と樹脂部材との接合方法
前記押圧部材の最大幅(直径)をD1とし、かつ短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
A thermo-pressure type in which an adhesive is applied between the metal member and the resin member, and the resin member is melted by applying pressure and heat from the metal member side to melt and joining the metal member and the resin member. A joining method between a metal member and a resin member by a joining method,
At least one of the surface of the resin member facing the metal member or the surface of the metal member facing the resin member is formed with a flow suppression groove that suppresses the flow of the adhesive to the bonding region in the overlapped state. Has been
The pressure is applied by a pressing member,
The flow suppression groove is formed in an annular shape around a region immediately below the pressing member,
The joining method of the metal member and the resin member , wherein the inner boundary line defining the annular flow suppressing groove has an elliptical shape and dimensions that can be expressed in the following region :
The maximum width (diameter) of the pressing member is D1, and an ellipse Es having a minor axis = 1.5 × D1 and a major axis = 2.5 × D1, and an ellipse Eb having a minor axis = 3 × D1 and a major axis = 5 × D1. , An area formed between the ellipse Es and the ellipse Eb when expressed with the midpoint between the two focal points of each ellipse as the origin on the xy coordinates.
前記押圧部材は、前記押圧部材による前記金属部材表面の押圧領域の中心が、平面視において、前記x−y座標の原点と重複するように、金属部材を押圧する、請求項またはに記載の金属部材と樹脂部材との接合方法。 The pressing member, the center of the pressing area of the surface of the metal member by the pressing member, in plan view, so as to overlap the origin of the x-y coordinate, to press the metal member, according to claim 1 or 2 Joining method of metal member and resin member. 前記流動抑制溝は0.01×D1〜0.5×D1の幅を有する、請求項のいずれかに記載の金属部材と樹脂部材との接合方法。 The flow suppressing groove has a width of 0.01 × D1~0.5 × D1, method of joining the metal member and the resin member according to any one of claims 1 to 3. 前記流動抑制溝は0.01×D1〜0.5×D1の深さを有する、請求項のいずれかに記載の金属部材と樹脂部材との接合方法。 The flow suppressing grooves have a depth of 0.01 × D1~0.5 × D1, method of joining the metal member and the resin member according to any one of claims 1 to 4. 熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法:
前記金属部材と前記樹脂部材とを重ね合わせる第1ステップ;および
押圧部材としての回転ツールを回転させつつ、前記金属部材に押圧して摩擦熱を発生させ、この摩擦熱で前記樹脂部材を溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ。
The hot-pressure bonding method is a friction stir welding method,
The method for joining a metal member and a resin member according to any one of claims 1 to 5 , wherein the friction stir welding method includes the following steps:
A first step of superimposing the metal member and the resin member; and while rotating a rotary tool as a pressing member, the metal member is pressed to generate frictional heat, and the resin member is melted by the frictional heat. And then solidifying and joining the metal member and the resin member.
金属部材と樹脂部材とを、両者間に接着剤を塗布して、重ね合わせ、圧力および熱を金属部材側から付与することにより樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップ:
前記金属部材と前記樹脂部材とを重ね合わせる第1ステップ;および
押圧部材としての回転ツールを回転させつつ、前記金属部材に押圧して摩擦熱を発生させ、この摩擦熱で前記樹脂部材を溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ
を含み、
前記樹脂部材の前記金属部材との対向面または前記金属部材の前記樹脂部材との対向面の少なくとも一方において、前記重ね合わせ状態における前記接着剤の接合領域への流動を抑制する流動抑制溝が形成されている、金属部材と樹脂部材との接合方法。
A thermo-pressure type in which an adhesive is applied between the metal member and the resin member, and the resin member is melted by applying pressure and heat from the metal member side to melt and joining the metal member and the resin member. A joining method between a metal member and a resin member by a joining method,
The hot press bonding method is a friction stir welding method,
The friction stir welding method includes the following steps:
A first step of superimposing the metal member and the resin member; and
While rotating the rotary tool as a pressing member, the metal member is pressed to generate frictional heat, the resin member is melted by the frictional heat, and then solidified to join the metal member and the resin member. 2 steps
Including
At least one of the surface of the resin member facing the metal member or the surface of the metal member facing the resin member is formed with a flow suppression groove that suppresses the flow of the adhesive to the bonding region in the overlapped state. A joining method of a metal member and a resin member.
前記流動抑制溝は、前記重ね合わせ時および前記接合時において、前記接着剤の接合領域への流動を抑制する、請求項1〜7のいずれかに記載の金属部材と樹脂部材との接合方法。 The said flow suppression groove | channel is the joining method of the metal member and resin member in any one of Claims 1-7 which suppresses the flow to the joining area | region of the said adhesive agent at the time of the said superimposition and the said joining. 前記接着剤が前記流動抑制溝に流入することにより、前記流動抑制溝は前記流動を抑制する、請求項1〜8のいずれかに記載の金属部材と樹脂部材との接合方法。 The joining method of the metal member and resin member in any one of Claims 1-8 with which the said flow suppression groove suppresses the said flow, when the said adhesive agent flows in into the said flow suppression groove. 前記圧力は押圧部材により付与され、
前記流動抑制溝は、平面視において少なくとも、前記押圧部材の直下領域と前記接着剤の塗布領域との間に位置付けられている、請求項1〜のいずれかに記載の金属部材と樹脂部材との接合方法。
The pressure is applied by a pressing member,
The flow suppressing grooves is at least in plan view, the region immediately below the pressing member and is positioned between the coating region of the adhesive, and the metal member and a resin member according to any one of claims 1-9 Joining method.
前記圧力は押圧部材により付与され、
前記流動抑制溝は、前記押圧部材の直下領域の周りに環状で形成されており、
前記環状の前記流動抑制溝を規定する内側境界線は以下の領域内に表され得る環形状および寸法を有する、請求項10のいずれかに記載の金属部材と樹脂部材との接合方法:
前記押圧部材の最大幅(直径)をD1とし、かつ短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
The pressure is applied by a pressing member,
The flow suppression groove is formed in an annular shape around a region immediately below the pressing member,
Inner boundary defining the flow suppressing the annular groove has an annular shape and dimensions can be represented within the following ranges, method of joining the metal member and the resin member according to any of claims 7-10:
The maximum width (diameter) of the pressing member is D1, and an ellipse Es having a minor axis = 1.5 × D1 and a major axis = 2.5 × D1, and an ellipse Eb having a minor axis = 3 × D1 and a major axis = 5 × D1. , An area formed between the ellipse Es and the ellipse Eb when expressed with the midpoint between the two focal points of each ellipse as the origin on the xy coordinates.
前記圧力は押圧部材により付与され、
前記流動抑制溝は、前記押圧部材の直下領域の周りに環状で形成されており、
前記環状の前記流動抑制溝を規定する内側境界線は以下の領域内に表され得る楕円形状および寸法を有する、請求項11のいずれかに記載の金属部材と樹脂部材との接合方法:
前記押圧部材の最大幅(直径)をD1とし、かつ短径=1.5×D1および長径=2.5×D1の楕円Esおよび短径=3×D1および長径=5×D1の楕円Ebを、x−y座標上、各楕円の2つの焦点間の中点を原点として、それぞれ表したとき、前記楕円Esと前記楕円Ebとの間に形成される領域。
The pressure is applied by a pressing member,
The flow suppression groove is formed in an annular shape around a region immediately below the pressing member,
The method for joining a metal member and a resin member according to any one of claims 7 to 11 , wherein an inner boundary line defining the annular flow suppression groove has an elliptical shape and dimensions that can be expressed in the following region:
The maximum width (diameter) of the pressing member is D1, and an ellipse Es having a minor axis = 1.5 × D1 and a major axis = 2.5 × D1, and an ellipse Eb having a minor axis = 3 × D1 and a major axis = 5 × D1. , An area formed between the ellipse Es and the ellipse Eb when expressed with the midpoint between the two focal points of each ellipse as the origin on the xy coordinates.
前記押圧部材は、前記押圧部材による前記金属部材表面の押圧領域の中心が、平面視において、前記x−y座標の原点と重複するように、金属部材を押圧する、請求項11または12に記載の金属部材と樹脂部材との接合方法。 The pressing member, the center of the pressing area of the surface of the metal member by the pressing member, in plan view, so as to overlap the origin of the x-y coordinate, to press the metal member, according to claim 11 or 12 Joining method of metal member and resin member. 前記流動抑制溝は0.01×D1〜0.5×D1の幅を有する、請求項1113のいずれかに記載の金属部材と樹脂部材との接合方法。 The flow suppressing groove has a width of 0.01 × D1~0.5 × D1, method of joining the metal member and the resin member according to any one of claims 11 to 13. 前記流動抑制溝は0.01×D1〜0.5×D1の深さを有する、請求項1114のいずれかに記載の金属部材と樹脂部材との接合方法。 The flow suppressing grooves have a depth of 0.01 × D1~0.5 × D1, method of joining the metal member and the resin member according to any one of claims 11 to 14. 前記第2ステップが、前記回転ツールを前記金属部材に押し込んで前記金属部材と前記樹脂部材との境界面に達しない深さまで進入させる押込み撹拌工程を備えている請求項6または7に記載の金属部材と樹脂部材との接合方法。 8. The metal according to claim 6 , wherein the second step includes a pushing stirring step of pushing the rotating tool into the metal member to enter a depth that does not reach a boundary surface between the metal member and the resin member. A method of joining a member and a resin member. 前記第2ステップが、押込み撹拌工程の前に、前記回転ツールのショルダー面を前記金属部材の表面部に接触させた状態で前記回転ツールを回転させる予熱工程をさらに備えている請求項16に記載の金属部材と樹脂部材との接合方法。 The second step is, before the pushing stirring step, wherein the shoulder surface of the rotary tool to the metal member according to claim 16, in a state in contact with the surface portion further comprises a preheating step of rotating the rotating tool Joining method of metal member and resin member. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる請求項17に記載の金属部材と樹脂部材との接合方法。
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
Wherein the pushing stirring step of claim 17 is rotated only between the rotary tool is shorter than between the pressed while the first pressurization in the first pressure is greater than the second pressure second pressurization A method of joining a metal member and a resin member.
前記第2ステップが、前記回転ツールを前記境界面に達しない深さまで進入させた位置で、前記回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項18に記載の金属部材と樹脂部材との接合方法。
The second step further comprises an agitation maintaining step of continuing the rotation operation of the rotary tool at a position where the rotary tool has entered to a depth that does not reach the boundary surface,
Wherein the agitation maintains process of claim 18 which rotates only between the rotating the tool first longer than between the first pressurization while pressing under a pressure less than the third pressure third pressurization A method of joining a metal member and a resin member.
前記第2ステップが、撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で前記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項19に記載の金属部材と樹脂部材との接合方法。 The said 2nd step is further equipped with the holding process which stops rotation of the said rotation tool after a stirring maintenance process, and hold | maintains the said rotation tool with a predetermined pressurizing force for a predetermined pressurization time in the state. 19. A method for joining the metal member and the resin member according to 19 .
JP2017117858A 2017-06-15 2017-06-15 Method of joining metal member and resin member and metal member or resin member used in the method Active JP6614205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117858A JP6614205B2 (en) 2017-06-15 2017-06-15 Method of joining metal member and resin member and metal member or resin member used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117858A JP6614205B2 (en) 2017-06-15 2017-06-15 Method of joining metal member and resin member and metal member or resin member used in the method

Publications (2)

Publication Number Publication Date
JP2019001065A JP2019001065A (en) 2019-01-10
JP6614205B2 true JP6614205B2 (en) 2019-12-04

Family

ID=65007113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117858A Active JP6614205B2 (en) 2017-06-15 2017-06-15 Method of joining metal member and resin member and metal member or resin member used in the method

Country Status (1)

Country Link
JP (1) JP6614205B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488518A (en) * 1977-12-24 1979-07-13 Sansutaa Kagaku Kougiyou Kk Method of bonding lace to automobile
JP4846329B2 (en) * 2005-10-05 2011-12-28 住友軽金属工業株式会社 Friction stir welding products for stepped polymer materials
JP4864913B2 (en) * 2008-02-25 2012-02-01 アール・ビー・コントロールズ株式会社 Watertight structure of waterproof case
US7857191B2 (en) * 2008-06-16 2010-12-28 Embraer-Empresa Brasileira De Aeronautica S.A. Friction stir welding (FSW) methods and systems and friction stir welded components made thereby
JP6098527B2 (en) * 2014-01-14 2017-03-22 マツダ株式会社 Method of joining metal member and resin member
JP6102813B2 (en) * 2014-03-28 2017-03-29 マツダ株式会社 Method of joining metal member and resin member
JP6515654B2 (en) * 2014-12-18 2019-05-22 株式会社Ihi Lap joint, method of manufacturing the same, and method of designing the same

Also Published As

Publication number Publication date
JP2019001065A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
US10183356B2 (en) Welding tool comprising a shoulder, welding method and workpiece
JP6102813B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098527B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP2016068467A (en) Method for bonding metallic member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098551B2 (en) Method of joining metal member and resin member
JP6098607B2 (en) Method of joining metal member and resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6614205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150