JP6056828B2 - Method of joining metal member and resin member and resin member used in the method - Google Patents

Method of joining metal member and resin member and resin member used in the method Download PDF

Info

Publication number
JP6056828B2
JP6056828B2 JP2014201786A JP2014201786A JP6056828B2 JP 6056828 B2 JP6056828 B2 JP 6056828B2 JP 2014201786 A JP2014201786 A JP 2014201786A JP 2014201786 A JP2014201786 A JP 2014201786A JP 6056828 B2 JP6056828 B2 JP 6056828B2
Authority
JP
Japan
Prior art keywords
resin member
joining
metal member
resin
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201786A
Other languages
Japanese (ja)
Other versions
JP2016068129A (en
Inventor
耕二郎 田中
耕二郎 田中
嗣久 宮本
嗣久 宮本
勝也 西口
勝也 西口
松田 祐之
祐之 松田
宣夫 坂手
宣夫 坂手
小林 めぐみ
めぐみ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014201786A priority Critical patent/JP6056828B2/en
Publication of JP2016068129A publication Critical patent/JP2016068129A/en
Application granted granted Critical
Publication of JP6056828B2 publication Critical patent/JP6056828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法およびその方法において使用される樹脂部材に関する。   The present invention relates to a method for joining a metal member and a resin member, and a resin member used in the method.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図19に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 19, the friction stir welding method is a method in which a metal member 211 and a resin member 212 are overlapped, and the rotary tool 216 is rotated and pressed against the metal member 211 to generate frictional heat. In this method, the resin member 212 is melted and then solidified to join the metal member 211 and the resin member 212 together.

このような摩擦撹拌接合方法においては、例えば、接合強度および簡易接合の観点から、回転ツールの形状や押込み量を特定範囲内に設定する技術(特許文献1)が開示されている。   In such a friction stir welding method, for example, a technique (Patent Document 1) is disclosed in which the shape and push-in amount of the rotary tool are set within a specific range from the viewpoint of joining strength and simple joining.

一方、樹脂部材に強化繊維を含有させて、樹脂部材の強度を向上させる技術が知られている。例えば、圧縮成形方法の分野では、樹脂の劣化防止、生産性の向上、高強度・高弾性率化の観点から、強化繊維と熱可塑性樹脂により構成される繊維強化熱可塑性樹脂複合材料であって、特定繊維長の強化繊維が特定の体積含有率および任意の断面において強化繊維が同一の繊維軸方向を有する最小単位に含まれる特定の強化繊維数で含有される圧縮成形用材料が開示されている(特許文献2)。   On the other hand, a technique for improving the strength of a resin member by adding a reinforcing fiber to the resin member is known. For example, in the field of compression molding methods, it is a fiber reinforced thermoplastic resin composite material composed of reinforced fibers and a thermoplastic resin from the viewpoint of preventing resin deterioration, improving productivity, and increasing strength and elastic modulus. Disclosed is a compression molding material in which a reinforcing fiber having a specific fiber length is contained in a specific volume content and a specific number of reinforcing fibers included in a minimum unit in which the reinforcing fiber has the same fiber axis direction in an arbitrary cross section. (Patent Document 2).

特開2010−158885号公報JP 2010-158885 A 特開2004−142165号公報JP 2004-142165 A

しかしながら、従来の摩擦撹拌接合方法において、従来の繊維強化樹脂部材を用いた場合、接合強度が低下することがあった。   However, in the conventional friction stir welding method, when a conventional fiber reinforced resin member is used, the bonding strength may be reduced.

本発明の発明者等は、このような接合強度の低下の現象を鋭意研究した結果、当該現象は、樹脂部材に含有される強化繊維のスプリングバックに起因することを見い出した。具体的には、図20(A)に示すように、押圧部材216を金属部材211に押し込んで、摩擦熱により、樹脂部材212の押圧部材直下領域221およびその外周領域を溶融させた後、固化させると、樹脂部材212の当該溶融固化領域において強化繊維が露出するスプリングバックが生じた。スプリングバックとは、湾曲した強化繊維が樹脂部材212の溶融時に拘束力から解放され、まっすぐに戻ろうと変形する現象である。このようなスプリングバックが生じると、図20(B)に示すように、樹脂部材212における溶融固化領域において、気泡が混入して、見掛け上、発泡したように見える気泡層222が形成され、強度の低い気泡層222内で層内破断が生じることで接合強度が低下するものと考えられる。   The inventors of the present invention have intensively studied the phenomenon of such a decrease in bonding strength, and as a result, have found that the phenomenon is caused by springback of reinforcing fibers contained in the resin member. Specifically, as shown in FIG. 20A, the pressing member 216 is pushed into the metal member 211, and the region 221 immediately below the pressing member of the resin member 212 and its outer peripheral region are melted by frictional heat, and then solidified. As a result, a springback in which the reinforcing fibers were exposed in the melted and solidified region of the resin member 212 occurred. The spring back is a phenomenon in which the curved reinforcing fiber is released from the restraining force when the resin member 212 is melted and deforms so as to return straight. When such a springback occurs, as shown in FIG. 20B, bubbles are mixed in the melt-solidified region of the resin member 212 to form a bubble layer 222 that appears to be foamed. It is considered that the bonding strength is reduced by the occurrence of intra-layer fracture in the low-bubble cell layer 222.

本発明は、樹脂部材と金属部材との接合を十分な強度で達成することができる金属部材と樹脂部材との接合方法を提供することを目的とする。   An object of this invention is to provide the joining method of the metal member and resin member which can achieve joining with sufficient intensity | strength of a resin member and a metal member.

本発明は、
金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を付与し、樹脂部材を軟化および溶融させた後、固化させ、接合を達成する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
樹脂部材として、少なくとも金属部材との接合部に含有される強化繊維が以下に示す配向度y1/xを有する樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法:
1≦y1/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y1は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合部を表面から厚み方向で500μmの深さまで研磨したときの垂直断面における最大直径の平均値である)。
The present invention
Heat that achieves bonding after overlapping a metal member and a resin member containing reinforcing fibers, applying heat and pressure by pressing from the metal member side by the pressing member, softening and melting the resin member, and solidifying A method of joining a metal member and a resin member by a pressure joining method,
As the resin member, a resin member having a degree of orientation y1 / x of the reinforcing fiber contained in at least the joint portion with the metal member as described below is used:
1 ≦ y1 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y1 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) The average value of the maximum diameter in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction).

本発明はまた、
金属部材と強化繊維を含有する樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ;
を含む摩擦撹拌接合方法による金属部材と樹脂部材との接合方法であって、
樹脂部材として、少なくとも金属部材との接合部に含有される強化繊維が以下に示す配向度y1/xを有する樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法:
1≦y1/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y1は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合部を表面から厚み方向で500μmの深さまで研磨したときの垂直断面における最大直径の平均値である)。
The present invention also provides
A first step of superimposing a metal member and a resin member containing reinforcing fibers; and while rotating the rotary tool as the pressing member, the metal member is pressed against the metal member to generate frictional heat, and the frictional heat softens the resin member. A second step of joining the metal member and the resin member by melting and then solidifying;
A method of joining a metal member and a resin member by a friction stir welding method including:
As the resin member, a resin member having a degree of orientation y1 / x of the reinforcing fiber contained in at least the joint portion with the metal member as described below is used:
1 ≦ y1 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y1 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) The average value of the maximum diameter in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction).

本発明はまた、上記接合方法において使用される樹脂部材に関する。   The present invention also relates to a resin member used in the joining method.

本発明の接合方法によれば、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を十分な強度で達成することができる。   According to the joining method of the present invention, even when the reinforcing fiber is contained in the resin member, the joining of the resin member and the metal member can be achieved with sufficient strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. (A)は本発明の接合方法に使用される樹脂部材の一例(凸型)の概略斜視図であり、(B)は(A)の樹脂部材の概略上面見取り図および接合用柱状リブにおける高さ方向に対する垂直断面の拡大模式図であり、(C)は(B)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図および接合用柱状リブにおける高さ方向に平行な断面の拡大模式図である。(A) is a schematic perspective view of an example (convex type) of a resin member used in the bonding method of the present invention, and (B) is a schematic top view of the resin member of (A) and the height in the columnar rib for bonding. It is an expansion schematic diagram of the vertical cross section with respect to a direction, (C) is a schematic cross section when the WW cross section of the resin member of (B) is seen in the arrow direction, and a cross section parallel to the height direction of the columnar rib for joining FIG. (A)は本発明の接合方法に使用される樹脂部材の別の一例(平型)の概略斜視図および接合部における厚み方向に対する垂直断面の拡大模式図であり、(B)は(A)の樹脂部材の概略上面見取り図であり、(C)は(B)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図および接合部における高さ方向に平行な断面の拡大模式図である。(A) is a schematic perspective view of another example (flat type) of the resin member used for the joining method of the present invention, and an enlarged schematic view of a vertical cross section with respect to the thickness direction at the joint, (B) is (A) FIG. 5C is a schematic top view of the resin member of FIG. 5C, and FIG. 5C is a schematic cross-sectional view of the resin member of FIG. FIG. (A)は本発明の接合方法に使用される凸型樹脂部材の一実施態様の概略上面見取り図であり、(B)は(A)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図であり、(C)は(B)の樹脂部材を射出成形により製造するときの製造方法を説明するための概略断面図である。(A) is a schematic top view of one embodiment of a convex resin member used in the bonding method of the present invention, and (B) is a view of the WW cross section of the resin member of (A) in the arrow direction. (C) is a schematic sectional drawing for demonstrating the manufacturing method when manufacturing the resin member of (B) by injection molding. (A)は本発明の接合方法に使用される凸型樹脂部材の別の一実施態様の概略斜視図であり、(B)は(A)の樹脂部材の概略上面見取り図であり、(C)は(B)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図である。(A) is a schematic perspective view of another embodiment of the convex resin member used in the bonding method of the present invention, (B) is a schematic top view of the resin member of (A), (C) FIG. 5 is a schematic cross-sectional view of the resin member of FIG. 図5の樹脂部材を射出成形により製造するときの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method when manufacturing the resin member of FIG. 5 by injection molding. (A)は本発明の接合方法に使用される平型樹脂部材の一実施態様の概略斜視図であり、(B)は(A)の樹脂部材の概略上面見取り図であり、(C)は(B)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図である。(A) is a schematic perspective view of one embodiment of the flat resin member used in the bonding method of the present invention, (B) is a schematic top view of the resin member of (A), and (C) is ( It is a schematic sectional drawing when the WW cross section of the resin member of B) is seen in the arrow direction. 図7の樹脂部材を射出成形により製造するときの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method when manufacturing the resin member of FIG. 7 by injection molding. (A)は本発明の接合方法に使用される平型樹脂部材の別の一実施態様の概略斜視図であり、(B)は(A)の樹脂部材の概略上面見取り図であり、(C)は(B)の樹脂部材のW−W断面を矢印方向で見たときの概略断面図である。(A) is a schematic perspective view of another embodiment of the flat resin member used in the bonding method of the present invention, (B) is a schematic top plan view of the resin member of (A), (C) FIG. 5 is a schematic cross-sectional view of the resin member of FIG. 図9の樹脂部材を射出成形により製造するときの製造方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the manufacturing method when manufacturing the resin member of FIG. 9 by injection molding. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 図2の凸型樹脂部材を用いた本発明の予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process of this invention using the convex resin member of FIG. 図2の凸型樹脂部材を用いた本発明の押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process of this invention using the convex resin member of FIG. 2, a stirring maintenance process, and a holding process. 図2の凸型樹脂部材を用いた本発明の方法により接合された金属部材と樹脂部材との接合体の一例の概略断面図である。It is a schematic sectional drawing of an example of the joined body of the metal member and resin member joined by the method of this invention using the convex resin member of FIG. 図3の平型樹脂部材を用いた本発明の予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process of this invention using the flat resin member of FIG. 図3の平型樹脂部材を用いた本発明の押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process of this invention using the flat resin member of FIG. 3, a stirring maintenance process, and a holding process. 図3の平型樹脂部材を用いた本発明の方法により接合された金属部材と樹脂部材との接合体の一例の概略断面図である。It is a schematic sectional drawing of an example of the joined body of the metal member and resin member joined by the method of this invention using the flat resin member of FIG. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. (A)は従来技術における金属部材と樹脂部材との接合方法を説明するための概略断面図であり、(B)は、(A)の方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。(A) is a schematic sectional drawing for demonstrating the joining method of the metal member and resin member in a prior art, (B) is the metal member and resin member in the joined_body | zygote obtained by the method of (A). It is an enlarged view of the joining boundary surface.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側または樹脂部材側からの押圧により、好ましくは押圧部材による金属部材側からの局所的押圧により、熱および圧力を付与し、樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。本発明の接合方法において採用される接合方式は、熱および圧力を付与する方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, the metal member and the resin member are overlapped, and heat and pressure are applied by pressing from the metal member side or the resin member side by the pressing member, preferably by local pressing from the metal member side by the pressing member. Is applied, and the resin member is softened and melted and then solidified to join the metal member and the resin member. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of applying heat and pressure. For example, friction stir welding method, ultrasonic heating joining method, laser heating joining method, resistance A heat bonding method, an induction heat bonding method, or the like may be used. A method of applying heat and pressure locally from the metal member side is preferable, and a friction stir welding method is more preferably used.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   As will be described in detail later, the friction stir welding method is a method in which a metal member and a resin member are overlapped and a rotating tool as a pressing member is rotated to press the metal member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により樹脂部材を加圧しながら、押圧部材及び樹脂部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heating bonding method is a resin member / metal member produced by superposing a metal member and a resin member and causing the pressing member and the resin member to ultrasonically vibrate while pressing the resin member with the pressing member. In this method, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧した状態で、レーザーを金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。   The laser heating joining method is a method in which a metal member and a resin member are overlapped, heat is generated by irradiating the metal member with a laser in a state where the metal member is pressed by the pressing member, and the resin member is softened by this heat. Further, after melting, the metal member and the resin member are joined by solidifying. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して接合する方法である。   The resistance heating bonding method is a method of bonding using heat generated by flowing a current directly through a metal member in a state where the metal member and the resin member are superposed and restrained.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して接合する方法である。   The induction heating bonding method is a method in which an induction current is generated in a metal member by an electromagnetic induction action in a state where the metal member and the resin member are superposed and restrained, and bonding is performed using heat generated by the current.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、後述する樹脂部材を用いる限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。   Hereinafter, the joining method of the present invention that employs the friction stir welding method will be described in detail with reference to the drawings. However, as long as the resin member described later is used, the effects of the present invention can be obtained even if other joining methods described above are used. It is clear.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1〜図17を用いて具体的に説明する。これらの図において、共通する符号は、特記しない限り、同じ部材、部位、寸法または領域を示すものとする。
[Method of joining metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS. In these drawings, common reference numerals indicate the same members, parts, dimensions, or regions unless otherwise specified.

まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図11参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。図1は、本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。   First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device that friction stir welds a metal member 11 and a resin member 12, and includes a cylindrical rotary tool 16. As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 11), the metal member 11 is pressed downward in the pressing region P (scheduled pressing region) as indicated by an arrow A2. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined. FIG. 1 is a schematic diagram showing an example of a part of a friction stir welding apparatus suitable for a method for joining a metal member and a resin member according to the present invention.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(1)樹脂部材
本発明において樹脂部材12は、熱可塑性ポリマーおよび強化繊維を含有する複合樹脂部材であり、少なくとも金属部材11との接合部において強化繊維128が厚み方向(すなわち、回転ツール16による押圧方向A2(図1参照))に配向している。
(1) Resin Member In the present invention, the resin member 12 is a composite resin member containing a thermoplastic polymer and reinforcing fibers, and the reinforcing fibers 128 are at least in the thickness direction (that is, depending on the rotary tool 16) at the joint with the metal member 11. It is oriented in the pressing direction A2 (see FIG. 1).

接合部は、樹脂部材12における金属部材11との接合部であり、樹脂部材表面において接合を達成しようとする領域(所定の接合予定領域)の少なくとも表層部、好ましくは当該所定の接合予定領域の表層部のことである。当該接合部は、詳しくは、樹脂部材12表面において、接合後、溶融および固化が起こる溶融固化領域を含む領域の少なくとも表層部、好ましくは当該溶融固化領域の表層部である。接合を達成しようとする領域は、通常、樹脂部材の片面における一部の領域であるが、例えば、樹脂部材が平板形状を有する場合、当該樹脂部材の片面全面または両面全面の領域であってもよい。   The joint portion is a joint portion between the resin member 12 and the metal member 11, and at least the surface layer portion of the region (predetermined joint planned region) to be joined on the resin member surface, preferably the predetermined joint planned region. It is a surface layer part. Specifically, the joint portion is at least a surface layer portion of a region including a melt-solidified region where melting and solidification occurs after joining on the surface of the resin member 12, and preferably a surface layer portion of the melt-solidified region. The region to be joined is usually a partial region on one side of the resin member. For example, when the resin member has a flat plate shape, the entire region of one surface or both surfaces of the resin member may be used. Good.

例えば、樹脂部材12が図2(A)〜(C)に示すように本体部124および接合用柱状リブ125を有する凸型樹脂部材12Aである場合、接合部は、接合用柱状リブ125の先端平面領域における表面から深さL1までの部分122(図2(C)の斜線部)である。深さL1は、接合用柱状リブ125の高さをH(mm)としたとき、通常はH/5〜Hである。Hは通常、2.5〜20mmであり、好ましくは3〜10mmである。本体部124の厚みt1は通常、1〜10mmであり、好ましくは2〜5mmである。   For example, when the resin member 12 is a convex resin member 12 </ b> A having a main body portion 124 and a joining columnar rib 125 as shown in FIGS. 2A to 2C, the joining portion is the tip of the joining columnar rib 125. This is a portion 122 (shaded portion in FIG. 2C) from the surface to the depth L1 in the planar region. The depth L1 is normally H / 5 to H, where H (mm) is the height of the columnar rib 125 for bonding. H is usually 2.5 to 20 mm, preferably 3 to 10 mm. The thickness t1 of the main body 124 is usually 1 to 10 mm, preferably 2 to 5 mm.

接合用柱状リブ125は、該リブ自身の溶融および固化により接合を達成するものである。接合用柱状リブ125の形状は柱状であれば特に限定されるものではく、例えば、図2(A)〜(C)に示すような円柱形、四角柱形等の多角柱形等であってよい。接合用柱状リブ125が円柱形の場合、当該リブ125の円形先端平面領域は回転ツールによる金属部材の押圧領域Pと同心円形状であることが好ましい。接合用柱状リブの幅(接合用柱状リブ125が円柱形の場合は直径)R1は、回転ツール16の直径をD1(mm)としたとき、通常は0.5×D1〜5×D1であり、好ましくは0.5×D1〜2×D1である。D1は通常、後述する範囲内である。   The joining columnar rib 125 achieves joining by melting and solidifying the rib itself. The shape of the joining columnar rib 125 is not particularly limited as long as it is a columnar shape, and is, for example, a polygonal columnar shape such as a columnar shape or a quadrangular columnar shape as shown in FIGS. Good. When the joining columnar ribs 125 are cylindrical, it is preferable that the circular tip plane region of the ribs 125 be concentric with the pressing region P of the metal member by the rotating tool. The width of the joining columnar rib (diameter when the joining columnar rib 125 is cylindrical) R1 is usually 0.5 × D1 to 5 × D1 when the diameter of the rotary tool 16 is D1 (mm). , Preferably 0.5 × D1 to 2 × D1. D1 is usually within the range described below.

また例えば、樹脂部材12が図3(A)〜(C)に示すように接合用柱状リブを有さない平型樹脂部材12Bである場合、接合部は、当該樹脂部材表面の所定の接合予定領域Eにおける表面から深さL2までの部分122(図3(C)の斜線部)である。深さL2は、樹脂部材の厚みをt2(mm)としたとき、通常はt2/5〜t2/2である。t2は通常、5〜20mmであり、好ましくは8〜15mmである。   Further, for example, when the resin member 12 is a flat resin member 12B that does not have the columnar ribs for bonding as shown in FIGS. 3A to 3C, the bonding portion is a predetermined bonding schedule on the surface of the resin member. This is a portion 122 (shaded portion in FIG. 3C) from the surface to the depth L2 in the region E. The depth L2 is usually t2 / 5 to t2 / 2 when the thickness of the resin member is t2 (mm). t2 is usually 5 to 20 mm, preferably 8 to 15 mm.

接合予定領域Eの形状は特に限定されるものではなく、例えば、図3(A)〜(C)に示すような円形、四角形等の多角形等であってよいが、スプリングバックをより一層、十分に防止する観点から、好ましくは円形である。接合予定領域Eが円形の場合、接合予定領域Eは回転ツールによる金属部材の押圧領域Pと同心円形状であることが好ましい。接合予定領域Eの幅(接合予定領域Eが円形の場合は直径)R2は、回転ツールの直径をD1(mm)としたとき、通常はD1超5×D1以下であり、好ましくは1.2×D1〜3×D1である。D1は通常、後述する範囲内である。   The shape of the region to be joined E is not particularly limited, and may be, for example, a circular shape such as a circle or a quadrangle as shown in FIGS. From the viewpoint of preventing sufficiently, it is preferably circular. When the joining area | region E is circular, it is preferable that the joining area | region E is concentric with the press area | region P of the metal member by a rotary tool. The width R2 of the planned joining region E (diameter when the joining planned region E is circular) is usually greater than D1 and not more than 5 × D1, preferably 1.2, when the diameter of the rotary tool is D1 (mm). XD1-3xD1. D1 is usually within the range described below.

樹脂部材12が上記のような凸型樹脂部材12Aまたは平型樹脂部材12Bのいずれの樹脂部材であっても、所定の接合部122に含有される強化繊維128は厚み方向に配向している。強化繊維が厚み方向に配向しているとは、当該強化繊維が式(I)、好ましくは式(II)、より好ましくは式(III)に示す配向度(y/x)を有するという意味である:
1≦y/x≦1.3 (I)
1≦y/x≦1.2 (II)
1≦y/x≦1.1 (III)
Regardless of whether the resin member 12 is a convex resin member 12A or a flat resin member 12B as described above, the reinforcing fibers 128 contained in the predetermined joining portion 122 are oriented in the thickness direction. That the reinforcing fiber is oriented in the thickness direction means that the reinforcing fiber has the degree of orientation (y / x) represented by the formula (I), preferably the formula (II), more preferably the formula (III). is there:
1 ≦ y / x ≦ 1.3 (I)
1 ≦ y / x ≦ 1.2 (II)
1 ≦ y / x ≦ 1.1 (III)

式(I)〜(III)中、xは、強化繊維の軸方向に対する垂直断面の平均径(μm))であり、以下の方法により得られた値を用いている。
接合部を垂直方向に研磨し、得られた断面の顕微鏡写真(SEM写真)を撮影する。この写真において、繊維断面が真円である任意の100本の繊維直径を測定し平均値を求める。xは、一般的ないわゆる平均径であるので、樹脂部材、特に接合部の製造時に使用される強化繊維の仕様データを用いてもよい。
xは通常、2〜20μmであり、好ましくは6〜15μmである。
In the formulas (I) to (III), x is an average diameter (μm) of a vertical section with respect to the axial direction of the reinforcing fiber, and a value obtained by the following method is used.
The joint is polished in the vertical direction, and a micrograph (SEM photograph) of the obtained cross section is taken. In this photograph, the diameter of an arbitrary 100 fibers whose fiber cross section is a perfect circle is measured, and the average value is obtained. Since x is a general so-called average diameter, specification data of a reinforcing fiber used at the time of manufacturing a resin member, particularly a joint portion may be used.
x is usually 2 to 20 μm, preferably 6 to 15 μm.

yは、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であり、以下の方法により得られた値を用いている。
接合部を表面から厚み方向で所定の深さまで研磨し、樹脂部材厚み方向に対する垂直断面の顕微鏡写真(SEM写真)を撮影する。この写真において、図2(B)および図3(B)の拡大図に示すように、任意の100本の強化繊維の最大直径(矢印方向の長さ)を測定し、平均値を求める。
y is the average value (μm) of the maximum diameter of the reinforcing fibers in the vertical cross section with respect to the resin member thickness direction of the joint portion, and a value obtained by the following method is used.
The joint portion is polished from the surface to a predetermined depth in the thickness direction, and a micrograph (SEM photograph) of a vertical section with respect to the resin member thickness direction is taken. In this photograph, as shown in the enlarged views of FIG. 2 (B) and FIG. 3 (B), the maximum diameter (length in the arrow direction) of any 100 reinforcing fibers is measured, and the average value is obtained.

配向度y/xは、図2(C)および図3(C)の一部拡大図に示すように、強化繊維128の厚み方向に対する傾斜角をθと表したとき、1/cosθに相当する値であり、1に近いほど、当該強化繊維が厚み方向によく配向していることを意味する配向の指標である。   The degree of orientation y / x corresponds to 1 / cos θ when the inclination angle of the reinforcing fiber 128 with respect to the thickness direction is expressed as θ, as shown in the partially enlarged views of FIGS. 2 (C) and 3 (C). The value is an index of orientation meaning that the closer to 1, the better the reinforcing fiber is oriented in the thickness direction.

本発明において樹脂部材は、接合部の表面から500μmの深さでの強化繊維の配向度y1/xが上記式(I)〜(III)を満たせばよい。詳しくは、接合部を表面から厚み方向で500μmの深さまで研磨したときの垂直断面における強化繊維の最大直径の平均値y1(μm)についての配向度y1/x(xは上記式においてと同様である)が上記式(I)〜(III)の範囲を満たせばよい。具体的には、本発明において配向度y1/xは以下の式を満たす:
1≦y1/x≦1.3;
好ましくは1≦y1/x≦1.2;
より好ましくは1≦y1/x≦1.1。
In the present invention, the resin member only needs to satisfy the above formulas (I) to (III) in the orientation degree y1 / x of the reinforcing fiber at a depth of 500 μm from the surface of the joint. Specifically, the degree of orientation y1 / x (x is the same as that in the above formula) with respect to the average value y1 (μm) of the maximum diameter of the reinforcing fibers in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction. May satisfy the range of the above formulas (I) to (III). Specifically, in the present invention, the degree of orientation y1 / x satisfies the following formula:
1 ≦ y1 / x ≦ 1.3;
Preferably 1 ≦ y1 / x ≦ 1.2;
More preferably, 1 ≦ y1 / x ≦ 1.1.

本発明においてスプリングバックをより一層、十分に防止する観点から、樹脂部材は、接合部の表面から500μmの深さでの強化繊維の配向度y1/xが上記範囲内であるだけでなく、さらに深い所定の深さでの強化繊維の配向度y2/x(xは上記式において同様である;y2はさらに深い所定の深さまで研磨したときの垂直断面における強化繊維の最大直径の平均値(μm)である)が上記範囲内であることが好ましい。「さらに深い所定の深さ」とは、凸型樹脂部材12Aの場合は、接合用柱状リブ125の高さをH(mm)としたとき、L1=H/3の深さであり、平型樹脂部材12Bの場合は、樹脂部材12Bの厚みをt2(mm)としたとき、L2=t2/5の深さである。従って、接合部を表面から厚み方向で500μmの深さおよび上記所定の深さのそれぞれまで研磨したときの垂直断面における強化繊維の最大直径の平均値y1(μm)およびy2(μm)についての配向度y1/xおよびy2/xが上記式(I)〜(III)の範囲を満たすことが好ましい。具体的には、配向度y1/xおよび配向度y2/xは以下の式を満たすことが好ましい;
1≦y1/x≦1.3かつ1≦y2/x≦1.3;
より好ましくは1≦y1/x≦1.2かつ1≦y2/x≦1.2;
さらに好ましくは1≦y1/x≦1.1かつ1≦y2/x≦1.1。
In the present invention, from the viewpoint of further sufficiently preventing the spring back, the resin member has not only the orientation degree y1 / x of the reinforcing fiber at a depth of 500 μm from the surface of the joint portion within the above range, Orientation degree y2 / x of reinforcing fibers at a predetermined depth deep (x is the same as in the above formula; y2 is an average value of the maximum diameter of reinforcing fibers in a vertical cross section when polished to a deeper predetermined depth (μm ) Is preferably within the above range. In the case of the convex resin member 12A, the “further predetermined depth” is a depth of L1 = H / 3, where the height of the joining columnar rib 125 is H (mm), and is flat. In the case of the resin member 12B, when the thickness of the resin member 12B is t2 (mm), L2 = depth of t2 / 5. Accordingly, the orientations of the average values y1 (μm) and y2 (μm) of the maximum diameter of the reinforcing fibers in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction and the predetermined depth, respectively. The degrees y1 / x and y2 / x preferably satisfy the ranges of the above formulas (I) to (III). Specifically, the orientation degree y1 / x and the orientation degree y2 / x preferably satisfy the following formulas:
1 ≦ y1 / x ≦ 1.3 and 1 ≦ y2 / x ≦ 1.3;
More preferably 1 ≦ y1 / x ≦ 1.2 and 1 ≦ y2 / x ≦ 1.2;
More preferably, 1 ≦ y1 / x ≦ 1.1 and 1 ≦ y2 / x ≦ 1.1.

上記のように接合部122において強化繊維を厚み方向に平行に配向させることにより、樹脂部材12の接合時におけるスプリングバックを十分に防止することができる。スプリングバック防止のメカニズムの詳細は明らかではないが、以下の現象に基づくものと考えられる。従来の樹脂部材において強化繊維は成形時の圧力および周囲の熱可塑性ポリマーの固化により湾曲されたまま拘束されており、接合時に熱可塑性ポリマーの溶融により、拘束から解放されると、繊維の湾曲が緩和されることで厚み方向で嵩高くなるため、スプリングバックが発生するものと考えられる。本発明においては、接合部で強化繊維が厚み方向に十分に平行に配向しているので、溶融時に嵩高くなることはほとんどない。また溶融時においても繊維の湾曲はほとんど起こらない。これらの結果、スプリングバックが十分に防止されるものと考えられる。接合部において強化繊維を厚み方向に十分に配向させないと、すなわちy1/xが大きすぎると、スプリングバックが発生し、結果として接合強度が低下する。   As described above, by orienting the reinforcing fibers in the joining portion 122 in parallel to the thickness direction, the spring back at the time of joining the resin member 12 can be sufficiently prevented. The details of the mechanism for preventing springback are not clear, but are thought to be based on the following phenomenon. In the conventional resin member, the reinforcing fiber is restrained while being bent due to pressure during molding and solidification of the surrounding thermoplastic polymer. When the thermoplastic fiber is released from restraint due to melting of the thermoplastic polymer during bonding, the fiber is bent. Since it becomes bulky in the thickness direction by being relaxed, it is considered that springback occurs. In the present invention, the reinforcing fibers are oriented sufficiently parallel to the thickness direction at the joint, so that they hardly become bulky at the time of melting. In addition, the fiber is hardly bent even during melting. As a result, it is considered that springback is sufficiently prevented. If the reinforcing fibers are not sufficiently oriented in the thickness direction at the joint, that is, if y1 / x is too large, springback occurs, resulting in a decrease in joint strength.

樹脂部材12(12Aおよび12B)を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12 (12A and 12B), any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンおよびポリアミド系樹脂が好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin-based resin, particularly polypropylene and polyamide-based resin, which are inexpensive and excellent in mechanical properties are preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

強化繊維128は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に含有される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、特に不連続繊維を意味するものとする。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。   In the field of polymer-containing composite materials, the reinforcing fiber 128 is a fiber that is contained in a polymer for the purpose of improving the strength. Generally, the reinforcing fiber 128 is roughly classified into a continuous fiber and a discontinuous fiber. Means in particular discontinuous fibers. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

樹脂部材全体において強化繊維は平均繊維長が通常、50mm以下、特に0.1〜50mm、好ましくは1〜50mmである。接合部において強化繊維は平均繊維長が通常、50mm以下、特に0.1〜50mm、好ましくは1〜50mmである。樹脂部材全体においても、接合部においても、強化繊維の平均繊維径は特に制限されるものではなく、通常は前記xと同様の範囲内である。   In the entire resin member, the reinforcing fiber has an average fiber length of usually 50 mm or less, particularly 0.1 to 50 mm, preferably 1 to 50 mm. The average fiber length of the reinforcing fiber at the joint is usually 50 mm or less, particularly 0.1 to 50 mm, preferably 1 to 50 mm. The average fiber diameter of the reinforcing fibers is not particularly limited in the resin member as a whole or in the joint, and is usually in the same range as x.

樹脂部材12(12Aおよび12B)全量に対する強化繊維128の含有量は通常、10〜50重量%であり、好ましくは20〜40重量%である。特に接合部122における強化繊維128の含有量は、当該接合部全量に対して、通常、10〜50重量%であり、好ましくは20〜40重量%である。   The content of the reinforcing fibers 128 with respect to the total amount of the resin member 12 (12A and 12B) is usually 10 to 50% by weight, preferably 20 to 40% by weight. In particular, the content of the reinforcing fiber 128 in the joint 122 is usually 10 to 50% by weight, preferably 20 to 40% by weight, based on the total amount of the joint.

樹脂部材全量に対する強化繊維128の含有量は、樹脂部材の製造時における各材料の使用量に基づく値を使用することができるし、以下の方法により測定される値を使用することもできる。
まず、樹脂部材全体を、電気炉等により、熱可塑性ポリマーの分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを取り出す。加熱前後の重量測定により、強化繊維の含有量を加熱前の重量に対する割合として算出することができる。または、比重を測定することによっても、含有量の測定ができる。
As the content of the reinforcing fiber 128 with respect to the total amount of the resin member, a value based on the amount of each material used at the time of manufacturing the resin member can be used, or a value measured by the following method can be used.
First, the entire resin member is heated by an electric furnace or the like at a temperature not lower than the decomposition temperature of the thermoplastic polymer and not higher than the decomposition temperature of the reinforcing fiber, thereby removing the thermoplastic polymer and taking out only the reinforcing fiber. By measuring the weight before and after heating, the content of reinforcing fibers can be calculated as a ratio to the weight before heating. Alternatively, the content can be measured by measuring the specific gravity.

接合部における強化繊維128の含有量は、接合部のみを切り出して測定を行うこと以外、樹脂部材全量に対する強化繊維の含有量の測定方法と同様の方法により測定することができる   The content of the reinforcing fiber 128 in the joint can be measured by the same method as the method for measuring the content of the reinforcing fiber with respect to the total amount of the resin member, except that only the joint is cut out and measured.

樹脂部材全体における強化繊維の平均繊維長および平均繊維径は、上記樹脂部材全量に対する強化繊維の含有量の測定方法において、得られる強化繊維の平均繊維長および平均繊維径を直接測定する方法によって測定することができる。   The average fiber length and average fiber diameter of the reinforcing fibers in the entire resin member are measured by a method of directly measuring the average fiber length and average fiber diameter of the obtained reinforcing fibers in the method for measuring the content of reinforcing fibers with respect to the total amount of the resin member. can do.

接合部に含有される強化繊維の平均繊維長および平均繊維径は、上記接合部における強化繊維の含有量の測定方法において、得られる強化繊維の平均繊維長および平均繊維径を直接測定する方法によって測定することができる。   The average fiber length and average fiber diameter of the reinforcing fibers contained in the joint are determined by directly measuring the average fiber length and average fiber diameter of the reinforcing fibers obtained in the method for measuring the content of reinforcing fibers in the joint. Can be measured.

以下、樹脂部材12の第1〜第4実施態様およびその製造方法を、図面を用いて説明する。   Hereinafter, the 1st-4th embodiment of the resin member 12 and its manufacturing method are demonstrated using drawing.

図4(A)および(B)に示す樹脂部材は、図2(A)〜(C)に示す凸型樹脂部材12Aの具体例のひとつであって、第1実施態様の樹脂部材12A−1である。   The resin member shown in FIGS. 4A and 4B is one of specific examples of the convex resin member 12A shown in FIGS. 2A to 2C, and is the resin member 12A-1 of the first embodiment. It is.

樹脂部材12A−1は、当該樹脂部材の形状に対応する成形面を備えた金型151Aおよび151Bを用いて射出成形法により簡便に製造することができる。詳しくは、図4(C)に示すように所定の熱可塑性ポリマーおよび強化繊維を射出機150内で予め溶融および混合しておき、閉じられた所定の金型151Aおよび151Bの中に、溶融混合物を射出注入する。このとき、溶融混合物の流路として接合用柱状リブ125が流動末端になるように射出注入口151の位置を選択することにより、図4(C)中、矢印方向の流れを促進させ、接合部122において強化繊維を厚み方向に配向させることができる。図4(B)において接合用柱状リブ125の高さHおよび幅R1および本体部124の厚みt1はそれぞれ図2においてと同様の範囲内である。接合部122における強化繊維の配向の観点から、R1/t1は1〜20が好ましく、より好ましくは1〜10である。同様の観点から、H/R1は0.2〜5が好ましく、より好ましくは0.5〜4である。   The resin member 12A-1 can be easily manufactured by an injection molding method using the molds 151A and 151B having a molding surface corresponding to the shape of the resin member. Specifically, as shown in FIG. 4C, a predetermined thermoplastic polymer and reinforcing fiber are previously melted and mixed in the injection machine 150, and the molten mixture is put into the closed predetermined molds 151A and 151B. Inject injection. At this time, by selecting the position of the injection inlet 151 so that the joining columnar rib 125 becomes the flow end as the flow path of the molten mixture, the flow in the arrow direction in FIG. At 122, the reinforcing fibers can be oriented in the thickness direction. In FIG. 4B, the height H and the width R1 of the joining columnar rib 125 and the thickness t1 of the main body 124 are within the same ranges as in FIG. From the viewpoint of the orientation of the reinforcing fibers in the joint portion 122, R1 / t1 is preferably 1-20, more preferably 1-10. From the same viewpoint, H / R1 is preferably 0.2 to 5, and more preferably 0.5 to 4.

図5(A)〜(C)に示す樹脂部材は、図2(A)〜(C)に示す凸型樹脂部材12Aの具体例のひとつであって、第2実施態様の樹脂部材12A−2である。樹脂部材12A−2において、接合用柱状リブ125は溝部126を有する。リブ125に溝部126を形成することにより、接合時において、リブ125の溶融物が溝部126に収容されるので、金属部材11と樹脂部材12A−2の本体部124とを接触させることができる。図5(B)において溝部126は環状または点状で形成され、その結果、リブ125は、外側円筒状リブ125Aと内側円筒状リブ125Bとに分割されているが、これに限定されるものではなく、例えば、1またはそれ以上の直線状溝部により分割されてもよい。   The resin member shown in FIGS. 5A to 5C is one of specific examples of the convex resin member 12A shown in FIGS. 2A to 2C, and the resin member 12A-2 of the second embodiment. It is. In the resin member 12 </ b> A- 2, the joining columnar rib 125 has a groove 126. By forming the groove portion 126 in the rib 125, the melt of the rib 125 is accommodated in the groove portion 126 at the time of joining, so that the metal member 11 and the main body portion 124 of the resin member 12A-2 can be brought into contact with each other. In FIG. 5B, the groove 126 is formed in an annular shape or a dot shape. As a result, the rib 125 is divided into an outer cylindrical rib 125A and an inner cylindrical rib 125B, but the present invention is not limited to this. For example, it may be divided by one or more linear grooves.

樹脂部材12A−2は、当該樹脂部材の形状に対応する成形面を備えた金型151Aおよび151Bを用いて射出成形法により簡便に製造することができる。詳しくは、図6に示すように所定の熱可塑性ポリマーおよび強化繊維を射出機150内で予め溶融および混合しておき、閉じられた所定の金型151Aおよび151Bの中に、溶融混合物を射出注入する。このとき、溶融混合物の流路として分割リブ125A,125Bが流動末端になるように射出注入口151の位置を選択することにより、図6中、矢印方向の流れを促進させ、接合部122において強化繊維を厚みt方向に配向させることができる。図5(C)においてリブ125(分割リブ125A,125B)の高さHおよび幅(全幅)R1および本体部124の厚みt1はそれぞれ図2においてと同様の範囲内である。分割リブ125A,125Bの幅R3は通常、1〜10mmであり、好ましくは2〜8mmである。溝部126の幅R4は通常、1〜8mmであり、好ましくは1〜5mmである。溝部126の深さL3は通常、0〜3mmであり、好ましくは0.3〜2mmである。接合部122における強化繊維の配向の観点から、R3/t1は0.1〜5が好ましく、より好ましくは0.2〜2である。同様の観点から、H/R3は0.5〜20が好ましく、より好ましくは1〜10である。   The resin member 12A-2 can be easily manufactured by an injection molding method using the molds 151A and 151B having a molding surface corresponding to the shape of the resin member. Specifically, as shown in FIG. 6, a predetermined thermoplastic polymer and reinforcing fiber are previously melted and mixed in the injection machine 150, and the molten mixture is injected and injected into the closed molds 151A and 151B. To do. At this time, by selecting the position of the injection inlet 151 so that the divided ribs 125A and 125B become the flow ends as the flow path of the molten mixture, the flow in the arrow direction in FIG. The fibers can be oriented in the thickness t direction. In FIG. 5C, the height H and width (full width) R1 of the rib 125 (divided ribs 125A and 125B) and the thickness t1 of the main body 124 are within the same ranges as in FIG. The width R3 of the dividing ribs 125A and 125B is usually 1 to 10 mm, preferably 2 to 8 mm. The width R4 of the groove 126 is usually 1 to 8 mm, preferably 1 to 5 mm. The depth L3 of the groove part 126 is 0-3 mm normally, Preferably it is 0.3-2 mm. From the viewpoint of the orientation of the reinforcing fibers in the joint portion 122, R3 / t1 is preferably 0.1 to 5, and more preferably 0.2 to 2. From the same viewpoint, H / R3 is preferably 0.5 to 20, and more preferably 1 to 10.

図7(A)〜(C)に示す樹脂部材は、図3(A)〜(C)に示す平型樹脂部材12Bの具体例のひとつであって、第3実施態様の樹脂部材12B−1である。   The resin member shown in FIGS. 7A to 7C is one of specific examples of the flat resin member 12B shown in FIGS. 3A to 3C, and is the resin member 12B-1 of the third embodiment. It is.

樹脂部材12B−1は、接合部122において強化繊維が厚み方向に配向した前記樹脂部材12A−1および樹脂部材12B−1の形状に対応する成形面を備えた金型を用いて射出成形法により簡便に製造することができる。詳しくは、図8に示すように予め成形した樹脂部材12A−1を予備成形体127Aとして、所定の金型151Aおよび151Bの中に挿入する。所定の熱可塑性ポリマーおよび所望により含有される強化繊維を射出機150内で予め溶融および混合しておき、閉じられた金型151Aおよび151Bの中に、溶融混合物を射出注入し、予備成形体以外の部分129Aを形成する。図7(C)において接合部の深さL2、樹脂部材の厚みt2および接合予定領域Eの幅R2それぞれ図3においてと同様の範囲内である。   The resin member 12B-1 is obtained by an injection molding method using a mold having a molding surface corresponding to the shape of the resin member 12A-1 and the resin member 12B-1 in which the reinforcing fibers are oriented in the thickness direction at the joint portion 122. It can be easily manufactured. Specifically, as shown in FIG. 8, a pre-molded resin member 12A-1 is inserted into predetermined molds 151A and 151B as a preformed body 127A. A predetermined thermoplastic polymer and a reinforcing fiber that is optionally contained are previously melted and mixed in the injection machine 150, and the molten mixture is injected and injected into the closed molds 151A and 151B. Part 129A of the substrate is formed. In FIG. 7C, the depth L2 of the joining portion, the thickness t2 of the resin member, and the width R2 of the planned joining region E are within the same ranges as in FIG.

樹脂部材12B−1において、予備成形体以外の部分129Aは熱可塑性ポリマーを含有し、樹脂部材の強度向上の観点から、強化繊維を含有することが好ましい。予備成形体以外の部分129Aにおける強化繊維の平均繊維長は通常、0.1〜50mmであり、好ましくは1〜50mmである。予備成形体以外の部分129Aにおける強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。予備成形体以外の部分129Aにおける強化繊維の種類は、予備成形体127Aとしての樹脂部材12A−1における前記強化繊維128と同様のものが使用可能である。予備成形体以外の部分129Aにおいて、強化繊維の含有量は特に限定されないが、強度の向上の観点から、該予備成形体以外の部分129A全量に対して、10〜50重量%であることが好ましく、より好ましくは20〜40重量%である。   In the resin member 12B-1, the portion 129A other than the preform includes a thermoplastic polymer, and preferably includes reinforcing fibers from the viewpoint of improving the strength of the resin member. The average fiber length of the reinforcing fibers in the portion 129A other than the preform is usually 0.1 to 50 mm, preferably 1 to 50 mm. The average fiber diameter of the reinforcing fibers in the portion 129A other than the preform is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm. The kind of the reinforcing fiber in the portion 129A other than the preformed body can be the same as that of the reinforcing fiber 128 in the resin member 12A-1 as the preformed body 127A. In the portion 129A other than the preform, the content of the reinforcing fiber is not particularly limited, but is preferably 10 to 50% by weight based on the total amount of the portion 129A other than the preform from the viewpoint of improving the strength. More preferably, it is 20 to 40% by weight.

本明細書中、予備成形体以外の部分129Aに含有される強化繊維の平均繊維長、平均繊維径および量は、樹脂部材12B−1の製造時における各材料の物性値および使用量に基づく値を使用することができる。
予備成形体以外の部分における強化繊維の含有量は、予備成形体以外の部分のみを切り出して測定を行うこと以外、樹脂部材全量に対する強化繊維の含有量の測定方法と同様の方法により測定することができる。
予備成形体以外の部分に含有される強化繊維の平均繊維長および平均繊維径は、上記予備成形体以外の部分における強化繊維の含有量の測定方法において、得られる強化繊維の平均繊維長および平均繊維径を直接測定する方法によって測定することができる。
In the present specification, the average fiber length, average fiber diameter, and amount of the reinforcing fibers contained in the portion 129A other than the preform are values based on physical properties and usage amounts of the respective materials at the time of manufacturing the resin member 12B-1. Can be used.
The content of the reinforcing fiber in the portion other than the preform is measured by the same method as the method for measuring the content of the reinforcing fiber with respect to the total amount of the resin member, except that only the portion other than the preform is cut out and measured. Can do.
The average fiber length and average fiber diameter of the reinforcing fibers contained in the portion other than the preform are the average fiber length and average of the reinforcing fibers obtained in the method for measuring the content of reinforcing fibers in the portion other than the preform. It can be measured by a method of directly measuring the fiber diameter.

予備成形体127Aを構成する熱可塑性ポリマーおよび予備成形体以外の部分129Aを構成する熱可塑性ポリマーはそれぞれ独立して前記熱可塑性ポリマーから選択される。予備成形体127Aを構成する熱可塑性ポリマーおよび予備成形体以外の部分129Aを構成する熱可塑性ポリマーはそれぞれ2種類以上組み合わせて含有されてもよい。   The thermoplastic polymer constituting the preform 127A and the thermoplastic polymer constituting the portion 129A other than the preform are independently selected from the thermoplastic polymers. Two or more types of the thermoplastic polymer constituting the preformed body 127A and the thermoplastic polymer constituting the portion 129A other than the preformed body may be contained in combination.

予備成形体127Aに含有される強化繊維および予備成形体以外の部分129Aに含有される強化繊維はそれぞれ独立して前記強化繊維から選択される。予備成形体127Aに含有される強化繊維および予備成形体以外の部分129Aに含有される強化繊維はそれぞれ2種類以上組み合わせて含有されてもよい。   The reinforcing fibers contained in the preformed body 127A and the reinforcing fibers contained in the portion 129A other than the preformed body are independently selected from the reinforcing fibers. The reinforcing fiber contained in the preformed body 127A and the reinforcing fiber contained in the portion 129A other than the preformed body may be contained in combination of two or more kinds.

図9(A)〜(C)に示す樹脂部材は、図3(A)〜(C)に示す平型樹脂部材12Bの具体例のひとつであって、第4実施態様の樹脂部材12B−2である。   The resin member shown in FIGS. 9A to 9C is one of specific examples of the flat resin member 12B shown in FIGS. 3A to 3C, and is the resin member 12B-2 of the fourth embodiment. It is.

樹脂部材12B−2は、予め強化繊維を一方向に配向させた成形体および樹脂部材12B−2の形状に対応する成形面を備えた金型を用いて射出成形法により簡便に製造することができる。詳しくは、図10に示すように予め強化繊維を略一方向に配向させた成形体を予備成形体127Bとして、所定の金型151Aおよび151Bの中に挿入する。予備成形体127Bは強化繊維の押出成形体を切断することにより製造することができる。所定の熱可塑性ポリマーおよび所望により含有される強化繊維を射出機150内で予め溶融および混合しておき、閉じられた金型151Aおよび151Bの中に、溶融混合物を射出注入し、予備成形体以外の部分129Bを形成する。する。図9(C)において接合部の深さL2、樹脂部材の厚みt2および接合予定領域Eの幅R2それぞれ図3においてと同様の範囲内である。   The resin member 12B-2 can be easily manufactured by an injection molding method using a molded body in which reinforcing fibers are oriented in one direction in advance and a mold having a molding surface corresponding to the shape of the resin member 12B-2. it can. Specifically, as shown in FIG. 10, a molded body in which reinforcing fibers are oriented in one direction in advance is inserted into predetermined molds 151A and 151B as a preformed body 127B. The preformed body 127B can be manufactured by cutting an extruded body of reinforcing fibers. A predetermined thermoplastic polymer and a reinforcing fiber that is optionally contained are previously melted and mixed in the injection machine 150, and the molten mixture is injected and injected into the closed molds 151A and 151B. The portion 129B is formed. To do. In FIG. 9C, the depth L2 of the joint, the thickness t2 of the resin member, and the width R2 of the planned joining region E are within the same ranges as in FIG.

樹脂部材12B−2において、予備成形体以外の部分129Bは、樹脂部材12B−1における予備成形体以外の部分129Aと同様である。   In the resin member 12B-2, the part 129B other than the preform is the same as the part 129A other than the preform in the resin member 12B-1.

(2)金属部材
金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、少なくとも樹脂部材12との重ね合わせ部分、特に回転ツール16の直下部分近傍、が略平板形状を有する限り、いかなる形状を有していてもよい。
(2) Metal member Although the metal member 11 has a substantially flat plate shape as a whole in FIG. 1 and the like, it is not limited to this, and at least a portion overlapping with the resin member 12, particularly a rotary tool. As long as the vicinity of the portion immediately below 16 has a substantially flat plate shape, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(図12参照)は特に制限されるものではなく、通常、2〜10mmである。   The thickness T (see FIG. 12) of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is not particularly limited, and is usually 2 to 10 mm.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

(3)回転ツール
図11は、回転ツール16の先端部の拡大図である。図11において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図11に示すように、円柱状の回転ツール16は、先端部(図11では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図11では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
(3) Rotating Tool FIG. 11 is an enlarged view of the tip portion of the rotating tool 16. In FIG. 11, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 11, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 11). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outward (downward in FIG. 11) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

(4)本発明に係る接合方法の一実施態様(摩擦撹拌接合方法)
本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
押圧部材として回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
(4) One embodiment of the joining method according to the present invention (friction stir welding method)
The method of joining the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16 as the pressing member, the metal member 11 is pressed against the metal member 11 to generate frictional heat. The frictional heat softens the resin member 12 and After melting, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

第1ステップ:
第1ステップにおいては、図1に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。詳しくは、樹脂部材12における前記金属部材11との接合部122の表面が金属部材11と接触するように、金属部材11と樹脂部材12とを重ね合わせる。
First step:
In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are overlapped at a desired joint portion. Specifically, the metal member 11 and the resin member 12 are overlapped so that the surface of the joint portion 122 of the resin member 12 with the metal member 11 is in contact with the metal member 11.

第2ステップ:
第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
Second step:
In the second step, at least a push-in stirring step C2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12.

第2ステップにおいて、押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the second step, it is preferable to perform the preheating step C1 in which the rotating tool 16 is rotated in a state where only the front end portion of the rotating tool 16 is in contact with the surface portion of the metal member 11 before the pushing and stirring step. It doesn't have to be done.
After the indentation stirring step, it is preferable to perform the stirring maintenance step C3 in which the rotation operation of the rotary tool 16 is continued at the position where the rotary tool 16 has entered to a depth that does not reach the joining boundary surface. It doesn't have to be.

以下、各工程について詳しく説明する。凸型樹脂部材12Aを用いた場合の各工程については図12〜図14を用いて、平型樹脂部材12Bを用いた場合の各工程については図15〜図17を用いて、並行して説明する。   Hereinafter, each step will be described in detail. Each process when the convex resin member 12A is used will be described in parallel with reference to FIGS. 12 to 14, and each process when the flat resin member 12B is used will be described with reference to FIGS. To do.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図12および図15に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図12は、図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、凸型樹脂部材12Aを用いた本発明の接合方法における予熱工程を説明するための概略断面図である。図15は、平型樹脂部材12Bを用いた本発明の接合方法における予熱工程を説明するための概略断面図である。
(Preheating process C1)
In the preheating step C1, as shown in FIGS. 12 and 15, only the tip of the rotary tool 16 is placed on the surface portion of the metal member 11 (upper surface in the illustrated example) by bringing the rotary tool 16 and the receiving member 17 close to each other. This is a step of rotating the rotary tool 16 in a state where it is in contact with the part). In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N). 12 is a schematic cross-sectional view of the ZZ cross-section in FIG. 1 as viewed in the direction of the arrow, and is a schematic cross-sectional view for explaining a preheating step in the bonding method of the present invention using the convex resin member 12A. It is. FIG. 15 is a schematic cross-sectional view for explaining a preheating step in the joining method of the present invention using the flat resin member 12B.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12(以下、樹脂部材12Aおよび12Bを包含して意味するものとする)との接合境界面13を介して、樹脂部材12にも伝わる。摩擦熱は樹脂部材12の内部に伝わり、樹脂部材12における上記押圧領域P直下の領域の範囲(以下、単に「領域P'」ということがある)及び当該領域P’の近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、樹脂部材12が軟化および溶融し易くなる。   In the preheating step C1, the frictional heat is also transmitted to the resin member 12 via a joint boundary surface 13 between the metal member 11 and the resin member 12 (hereinafter referred to as including the resin members 12A and 12B). . The frictional heat is transmitted to the inside of the resin member 12, and the range of the region immediately below the pressing region P in the resin member 12 (hereinafter sometimes simply referred to as “region P ′”) and the range in the vicinity of the region P ′ are preheated. The Thereby, the resin member 12 becomes easy to soften and melt in the next indentation stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化および溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は700N以上1200N未満の値、第1の加圧時間は0.5秒以上2.0秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoints of ease of pushing in the rotary tool 16 as described above and from the viewpoints of softening and melting of the resin member 12, and their values. Varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressure in the preheating step C1 is 700 N or more and less than 1200 N, and the first pressurizing time is 0.5 seconds or more and 2 A value of less than 0 seconds and a rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2は、回転ツール16と受け具17とを相互に近接させることにより、図13および図16に示すように、回転ツール16を金属部材11に押し込む工程である。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図13および図16に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を樹脂部材12側に突出変形させることが好ましい。これにより、接合境界面13において回転ツールの直下領域P’で溶融している樹脂部材表面の溶融樹脂121を該直下領域P’の外周領域まで流動させることができる(図13および図16の矢印方向)。図13は、図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、凸型樹脂部材を用いた本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。図16は、平型樹脂部材を用いた本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。
(Indentation stirring step C2)
The pushing agitation step C2 is a step of pushing the rotating tool 16 into the metal member 11 as shown in FIGS. 13 and 16 by bringing the rotating tool 16 and the receiving member 17 close to each other. When the indentation stirring step C2 is performed after the preheating step C1, the rotary tool 16 and the receiving member 17 are further brought closer to each other, so that the rotary tool 16 is attached to the metal member 11 as shown in FIGS. Push in. Thereby, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable to project and deform the lower part 110 of the metal member 11 directly to the resin member 12 side. As a result, the molten resin 121 on the surface of the resin member melted in the region P ′ immediately below the rotary tool at the joint boundary surface 13 can flow to the outer peripheral region of the region P ′ directly below (arrows in FIGS. 13 and 16). direction). FIG. 13 is a schematic cross-sectional view when the ZZ cross section in FIG. 1 is viewed in the direction of the arrow, and shows the indentation stirring process, stirring maintaining process and holding process in the joining method of the present invention using a convex resin member. It is a schematic sectional drawing for demonstrating. FIG. 16 is a schematic cross-sectional view for explaining an indentation stirring process, a stirring maintenance process, and a holding process in the joining method of the present invention using a flat resin member.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。好ましくは、この回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。これにより、接合境界面13において回転ツールの直下領域P’で溶融している樹脂部材表面の溶融樹脂121が該直下領域P’を超えて、その外周領域まで流動する。溶融樹脂は回転ツール直下領域P’を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、また、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化域(接合領域)も拡大されるため、樹脂部材と金属部材との接合をより一層、十分な強度で達成することがでる。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. Preferably, when the rotary tool 16 is pressed, the joining boundary surface 13 between the metal member 11 and the resin member 12 moves to the support 17 side (lower side in the illustrated example) in the lower portion 110 of the metal member 11. The right lower part 110 projects and deforms toward the resin member 12 side. As a result, the molten resin 121 on the surface of the resin member melted in the region P ′ immediately below the rotary tool at the joining interface 13 flows over the region P ′ immediately below and flows to the outer peripheral region. The molten resin spreads in a substantially circular shape centering on the region P ′ immediately below the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonding region) formed by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Bonding with the member can be achieved with sufficient strength.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本発明では、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化および溶融および流動が促進される。   Therefore, in the present invention, in the indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters a depth that does not reach the joining boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and softening, melting, and flow of the resin member 12 are promoted.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は1200N以上1800N未満の値、第2の加圧時間は0.1秒以上0.5秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is 0.1 second or more. The value of less than 0.5 seconds and the rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図13および図16に示すように、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual proximity of the rotary tool 16 and the receiving member 17 and, as shown in FIGS. 13 and 16, similarly, the position (this is approached to a depth that does not reach the joint interface 13). Is referred to as “reference position”), and the rotation operation of the rotary tool 16 is continued. In the agitation maintaining step C3, the rotary tool 16 is moved to a third pressurization time (for example, 6.75) longer than the first pressurization time with a third pressurization force (for example, 500 N) smaller than the first pressurization force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の領域P’の範囲を超えて、広い範囲で十分に軟化および溶融する。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the region P ′ immediately below the pressing region P.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化および溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は100N以上700N未満の値、特に100N以上600N以下の値が好ましい。第3の加圧時間は1.0秒以上10秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring and maintaining step C3 is preferably a value of 100 N or more and less than 700 N, particularly a value of 100 N or more and 600 N or less. The third pressurizing time is preferably 1.0 to less than 10 seconds, and the rotation speed of the rotary tool is preferably 500 to 10000 rpm.

(保持工程C4)
押込み撹拌工程C2または撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図13および図16に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
(Holding process C4)
After the indentation stirring step C2 or the stirring maintaining step C3, a holding step C4 is performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held at a predetermined pressure for a predetermined pressurizing time. Also good.
Similarly, as shown in FIGS. 13 and 16, the holding step C4 is a step of stopping the rotation of the rotary tool 16 and holding the rotary tool 16 with a predetermined pressure for a predetermined time. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12とを押圧領域Pで受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation has been stopped presses the metal member 11 and the resin member 12 in the pressing region P because the applied pressure is smaller than the indentation agitation step C2 but greater than the agitation maintenance step C3. And clamp with the receiving member 17. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の少なくとも押圧領域P’での密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion force at least in the pressing region P ′ during the cooling period as described above, and the values thereof are, for example, the metal member 11 It depends on the type of material. For example, when the aluminum alloy metal member 11 is used, the fourth pressure in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, and the fourth pressurization time is preferably a value of 1 second or more, for example.

本発明では、少なくとも前記した工程C2を経て、好ましくは前記した工程C1およびC2を経て、より好ましくは前記した工程C1〜C3を経て、その後、必要に応じてさらに工程C4を経て、最終的に、図14および図17に示すように、金属部材11と樹脂部材12とが、スプリングバックの発生なしに、高強度に接合された接合体20Aおよび20Bが得られる。   In the present invention, at least through the above-described step C2, preferably through the above-described steps C1 and C2, more preferably through the above-described steps C1 to C3, and then further through step C4 as necessary, finally. As shown in FIGS. 14 and 17, joined bodies 20 </ b> A and 20 </ b> B are obtained in which the metal member 11 and the resin member 12 are joined with high strength without the occurrence of springback.

第2ステップにおいて所定の工程を行った後、通常は冷却を行い、溶融樹脂を固化させる。冷却方法は特に限定されず、例えば、放置冷却法、空冷等が挙げられる。   After performing a predetermined process in the second step, cooling is usually performed to solidify the molten resin. The cooling method is not particularly limited, and examples thereof include a standing cooling method and air cooling.

以上、回転ツールを金属部材の接触面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, the case where the metal member and the resin member are joined in a point shape without moving the rotary tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly while being moved (line joining).

<実施例1>
(樹脂部材)
図4(A)および(B)に示すような凸型樹脂部材12A−1を製造した。
詳しくはまず、図4(C)に示すように、射出機150内で、強化繊維として重量平均繊維長3mmおよび平均繊維径13μmのガラス繊維を30重量%含むナイロン66ペレット(プラストロンPA66-CF30;ダイセルポリマー社製)を280℃で溶融し、溶融物を金型(40℃)151A,151B内に射出速度100mm/秒で射出注入した後、冷却・固化させ、凸型樹脂部材12A−1を得た。凸型樹脂部材12A−1の寸法は以下の通りであった。
R1(図4(B)参照);12mm;
H(図4(B)参照);10mm;
本体部124のt1(図4(B)参照);3mm。
本体部124の縦;100mm;
本体部124の横;(幅)100mm。
<Example 1>
(Resin member)
A convex resin member 12A-1 as shown in FIGS. 4A and 4B was manufactured.
Specifically, as shown in FIG. 4C, first, nylon 66 pellets (Plastotron PA66-CF30) containing 30% by weight of glass fibers having a weight average fiber length of 3 mm and an average fiber diameter of 13 μm as reinforcing fibers are used in the injection machine 150. Manufactured by Daicel Polymer Co., Ltd.) at 280 ° C., and the melt is injected and injected into the molds (40 ° C.) 151A and 151B at an injection speed of 100 mm / second, then cooled and solidified, and the convex resin member 12A-1 Got. The dimensions of the convex resin member 12A-1 were as follows.
R1 (see FIG. 4B); 12 mm;
H (see FIG. 4B); 10 mm;
T1 of the main body portion 124 (see FIG. 4B); 3 mm.
Length of the main body 124; 100 mm;
Next to the main body 124; (width) 100 mm.

凸型樹脂部材12A−1において、接合用柱状リブ125の先端平面領域における表面から深さ500μmおよびH/3それぞれでの配向度y1/xおよびy2/xを前記した方法により測定した。   In the convex resin member 12A-1, the orientation degrees y1 / x and y2 / x at a depth of 500 μm and H / 3 from the surface in the tip plane region of the bonding columnar rib 125 were measured by the method described above.

(金属部材)
金属部材としては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)を用いた。
(Metal member)
As the metal member, a flat plate member (thickness: 1.2 mm) made of a 6000 series aluminum alloy was used.

(回転ツール)
回転ツールとしては、図11の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 11 of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11と樹脂部材12A−1とを、樹脂部材12A−1のリブ125の先端平面領域が金属部材12と接触するように、重ね合わせた(図1)。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The metal member 11 and the resin member 12A-1 were overlapped so that the tip flat area of the rib 125 of the resin member 12A-1 was in contact with the metal member 12 (FIG. 1).

第2ステップ:
まず、図12に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpm)。このとき、樹脂部材12−1におけるリブ125の先端平面領域(円形)の中心は回転ツール16の回転軸上にあった。
Second step:
First, as shown in FIG. 12, the rotary tool 16 was rotated in a state where only the tip portion of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1.. 00 seconds, tool rotation speed 3000 rpm). At this time, the center of the tip plane area (circular shape) of the rib 125 in the resin member 12-1 was on the rotation axis of the rotary tool 16.

その後、図13に示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12A−1との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図13に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間6.75秒、ツール回転数3000rpm)。
次いで、図14に示すように、接合体20Aから回転ツール16を抜き取り、放置冷却した。
Thereafter, as shown in FIG. 13, the rotary tool 16 was pushed into the metal member 11 to a depth not reaching the joining boundary surface 13 between the metal member 11 and the resin member 12 </ b> A- 1 (indentation stirring step C <b> 2: pressure force 1500N, pressurization time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 13, the rotation operation of the rotary tool 16 was continued at the position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintenance step C3: pressurizing force 500 N, pressurization) (Time 6.75 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 14, the rotary tool 16 was extracted from the joined body 20A and allowed to cool.

(接合強度)
図18に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎;4.00≦S;
○;3.00≦S<4.00(実用上問題なし);
×;S<3.00。
(Joint strength)
As shown in FIG. 18, the joined body of the metal member 11 and the resin member 12 was placed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
A: 4.00 ≦ S;
○: 3.00 ≦ S <4.00 (no problem in practical use);
X: S <3.00.

<実施例2>
以下に示す方法で製造された樹脂部材12A−2を用いたこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合およびその評価を行った。
<Example 2>
The resin member and the metal member were joined and evaluated by the same method as in Example 1 except that the resin member 12A-2 produced by the method described below was used.

図5(A)〜(C)に示すような凸型樹脂部材12A−2を製造した。
詳しくはまず、図6に示すように、射出機150内で、強化繊維として重量平均繊維長3mmおよび平均繊維径13μmのガラス繊維を30重量%含むナイロン66ペレット(プラストロンPA66-CF30;ダイセルポリマー社製)を280℃で溶融し、溶融物を金型(40℃)151A,151B内に射出速度100mm/秒で射出注入した後、冷却・固化させ、凸型樹脂部材12A−2を得た。凸型樹脂部材12A−2の寸法は以下の通りであった。
R1(図5(C)参照);12mm;
H(図5(C)参照);10mm;
本体部124のt1;(図5(C)参照)3mm。
本体部124の縦;100mm;
本体部124の横;(幅)100mm;
分割リブ125A,125Bの幅R3;2mm;
溝部126の幅R4;1.3mm;
溝部126の深さL3;0.3mm。
A convex resin member 12A-2 as shown in FIGS. 5A to 5C was manufactured.
Specifically, first, as shown in FIG. 6, in an injection machine 150, nylon 66 pellets (Plastotron PA66-CF30; Daicel Polymer) containing 30% by weight of glass fibers having a weight average fiber length of 3 mm and an average fiber diameter of 13 μm as reinforcing fibers. The product was melted at 280 ° C., and the melt was injected and injected into the molds (40 ° C.) 151A and 151B at an injection speed of 100 mm / second, and then cooled and solidified to obtain a convex resin member 12A-2. . The dimensions of the convex resin member 12A-2 were as follows.
R1 (see FIG. 5C); 12 mm;
H (see FIG. 5C); 10 mm;
T1 of the main body portion 124; (see FIG. 5C) 3 mm.
Length of the main body 124; 100 mm;
Next to the main body 124; (width) 100 mm;
Width R3 of the dividing ribs 125A and 125B; 2 mm;
Width R4 of groove 126; 1.3 mm;
The depth L3 of the groove part 126; 0.3 mm.

凸型樹脂部材12A−2において、接合用柱状リブ125の先端平面領域における表面から深さ500μmおよびH/3それぞれでの配向度y1/xおよびy2/xを前記した方法により測定した。   In the convex resin member 12A-2, the degree of orientation y1 / x and y2 / x at a depth of 500 μm and H / 3 from the surface in the tip plane region of the joining columnar rib 125 was measured by the method described above.

<実施例3>
以下に示す方法で製造された樹脂部材12B−1を用いたこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合およびその評価を行った。
<Example 3>
The resin member and the metal member were joined and evaluated by the same method as in Example 1 except that the resin member 12B-1 produced by the method described below was used.

図7(A)〜(C)に示すような平型樹脂部材12B−1を製造した。
詳しくはまず、以下に示す寸法を有する凸型樹脂部材12A−1を実施例1と同様の方法により製造し、当該凸型樹脂部材12A−1を、図8に示すように、予備成形体127Aとして用いて、射出成形法により平型樹脂部材12B−1を得た。
予備成形体127A:
R1(図4(B)参照);12mm;
H(図4(B)参照);10mm;
本体部124のt1;(図4(B)参照)3mm。
本体部124の縦;100mm;
本体部124の横;(幅)100mm。
A flat resin member 12B-1 as shown in FIGS. 7A to 7C was manufactured.
Specifically, first, a convex resin member 12A-1 having the following dimensions is manufactured by the same method as in Example 1, and the convex resin member 12A-1 is preliminarily molded body 127A as shown in FIG. As a result, a flat resin member 12B-1 was obtained by an injection molding method.
Preliminary body 127A:
R1 (see FIG. 4B); 12 mm;
H (see FIG. 4B); 10 mm;
T1 of the main body portion 124; (see FIG. 4B) 3 mm.
Length of the main body 124; 100 mm;
Next to the main body 124; (width) 100 mm.

予備成形体127Aを用いた射出成形法による平型樹脂部材12B−1の製造に際しては、図8に示すように、予備成形体127Aを金型151Aおよび151B内に挿入した。次いで、射出機150内で、強化繊維として重量平均繊維長3mmおよび平均繊維径13μmのガラス繊維を30重量%含むナイロン66ペレット(プラストロンPA66-CF30;ダイセルポリマー社製)を280℃で溶融し、溶融物を金型(40℃)151A,151B内に射出速度100mm/秒で射出注入した後、冷却・固化させ、平型樹脂部材12B−1を得た。平型樹脂部材12B−1の寸法は以下の通りであった。
t2(=H+t1)(図7(C)および図4(B)参照);13mm;
R2(=R1)(図7(C)および図4(B)参照);12mm。
When manufacturing the flat resin member 12B-1 by the injection molding method using the preformed body 127A, the preformed body 127A was inserted into the molds 151A and 151B as shown in FIG. Next, in the injection machine 150, nylon 66 pellets (Plastotron PA66-CF30; manufactured by Daicel Polymer Co., Ltd.) containing 30% by weight of glass fibers having a weight average fiber length of 3 mm and an average fiber diameter of 13 μm as reinforcing fibers were melted at 280 ° C. The melt was injected and injected into the molds (40 ° C.) 151A and 151B at an injection speed of 100 mm / second, and then cooled and solidified to obtain a flat resin member 12B-1. The dimensions of the flat resin member 12B-1 were as follows.
t2 (= H + t1) (see FIG. 7C and FIG. 4B); 13 mm;
R2 (= R1) (see FIG. 7C and FIG. 4B); 12 mm.

平型樹脂部材12B−1において、接合部122の表面から深さ500μmおよびt2/5それぞれでの配向度y1/xおよびy2/xを前記した方法により測定した。   In the flat resin member 12B-1, the degree of orientation y1 / x and y2 / x at a depth of 500 μm and t2 / 5 from the surface of the joint 122 was measured by the method described above.

<比較例1>
Hを2mmに変更したこと以外、実施例1と同様の方法により、樹脂部材の製造、当該樹脂部材と金属部材との接合およびその評価を行った。
<Comparative Example 1>
Except that H was changed to 2 mm, the production of the resin member, the joining of the resin member and the metal member, and the evaluation were performed in the same manner as in Example 1.

<比較例2>
Hを0.8mmに変更したこと以外、実施例2と同様の方法により、樹脂部材の製造、当該樹脂部材と金属部材との接合およびその評価を行った。
<Comparative example 2>
Except that H was changed to 0.8 mm, the resin member was manufactured, the resin member and the metal member were joined, and the evaluation was performed in the same manner as in Example 2.

<比較例3>
Hを2mmに変更したこと以外、実施例3と同様の方法により、樹脂部材の製造、当該樹脂部材と金属部材との接合およびその評価を行った。
<Comparative Example 3>
Except that H was changed to 2 mm, the production of the resin member, the joining of the resin member and the metal member, and the evaluation were performed in the same manner as in Example 3.

<測定方法>
樹脂部材全体および接合部における強化繊維の含有量、平均繊維長および平均繊維径を前記した方法に従って測定した。
<Measurement method>
The content of reinforcing fibers, the average fiber length, and the average fiber diameter in the entire resin member and the joint were measured according to the method described above.

Figure 0006056828
Figure 0006056828

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
121:回転ツールの直下領域で溶融している溶融樹脂
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 12: Resin member 13: Joining interface between metal member and resin member 16: Rotating tool 17: Receiving tool 100: Jig for measuring joint strength 110: Directly below the rotating tool 121 of the metal member: Molten resin melted in the region immediately below the rotating tool

Claims (17)

金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を付与し、樹脂部材を軟化および溶融させた後、固化させ、接合を達成する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
樹脂部材として、少なくとも金属部材との接合部に含有される強化繊維が以下に示す配向度y1/xを有する樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法:
1≦y1/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y1は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合部を表面から厚み方向で500μmの深さまで研磨したときの垂直断面における最大直径の平均値である)。
Heat that achieves bonding after overlapping a metal member and a resin member containing reinforcing fibers, applying heat and pressure by pressing from the metal member side by the pressing member, softening and melting the resin member, and solidifying A method of joining a metal member and a resin member by a pressure joining method,
As the resin member, a resin member having a degree of orientation y1 / x of the reinforcing fiber contained in at least the joint portion with the metal member as described below is used:
1 ≦ y1 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y1 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) The average value of the maximum diameter in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction).
前記樹脂部材が接合用柱状リブを有する凸型樹脂部材であり、該接合用柱状リブの幅R1が、押圧部材の幅をD1(mm)としたとき、0.5×D1〜5×D1であり、
前記接合部が、接合用リブの先端平面領域における表面から深さL1までの部分であり、
前記深さL1が、接合用リブの高さをH(mm)としたとき、H/5〜Hである請求項1に記載の金属部材と樹脂部材との接合方法。
The resin member is a convex resin member having a joining columnar rib, and the width R1 of the joining columnar rib is 0.5 × D1 to 5 × D1 when the width of the pressing member is D1 (mm). Yes,
The joint is a portion from the surface in the tip flat region of the joining rib to the depth L1,
The method for joining a metal member and a resin member according to claim 1, wherein the depth L1 is H / 5 to H when the height of the joining rib is H (mm).
前記樹脂部材が以下に示す配向度y2/xをさらに有する請求項2に記載の金属部材と樹脂部材との接合方法:
1≦y2/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y2は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合用柱状リブの高さをH(mm)としたとき、接合部を表面から厚み方向でH/3の深さまで研磨したときの垂直断面における最大直径の平均値である)。
The method for joining a metal member and a resin member according to claim 2, wherein the resin member further has an orientation degree y2 / x as shown below:
1 ≦ y2 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y2 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) When the height of the columnar ribs for bonding is H (mm), the average value of the maximum diameter in the vertical section when the bonding portion is polished from the surface to the depth of H / 3 in the thickness direction).
前記樹脂部材が平型樹脂部材であり、
前記接合部が、平型樹脂部材表面の所定の接合予定領域における表面から深さL2までの部分であり、
前記深さL2が、樹脂部材の厚みをt2(mm)としたとき、t2/5〜t2/2である請求項1に記載の金属部材と樹脂部材との接合方法。
The resin member is a flat resin member;
The joining portion is a portion from the surface in a predetermined joining scheduled region on the surface of the flat resin member to the depth L2,
The method for joining a metal member and a resin member according to claim 1, wherein the depth L2 is t2 / 5 to t2 / 2 when the thickness of the resin member is t2 (mm).
前記樹脂部材が以下に示す配向度y2/xをさらに有する請求項4に記載の金属部材と樹脂部材との接合方法:
1≦y2/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y2は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、樹脂部材の厚みをt2(mm)としたとき、接合部を表面から厚み方向でt2/5の深さまで研磨したときの垂直断面における最大直径の平均値である)。
The method for joining the metal member and the resin member according to claim 4, wherein the resin member further has an orientation degree y2 / x shown below:
1 ≦ y2 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y2 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) In addition, when the thickness of the resin member is t2 (mm), the average value of the maximum diameters in the vertical cross section when the joint portion is polished from the surface to the depth of t2 / 5).
金属部材と強化繊維を含有する樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ;
を含む摩擦撹拌接合方法による金属部材と樹脂部材との接合方法であって、
樹脂部材として、少なくとも金属部材との接合部に含有される強化繊維が以下に示す配向度y1/xを有する樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法:
1≦y1/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y1は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合部を表面から厚み方向で500μmの深さまで研磨したときの垂直断面における最大直径の平均値である)。
A first step of superimposing a metal member and a resin member containing reinforcing fibers; and while rotating the rotary tool as the pressing member, the metal member is pressed against the metal member to generate frictional heat, and the frictional heat softens the resin member. A second step of joining the metal member and the resin member by melting and then solidifying;
A method of joining a metal member and a resin member by a friction stir welding method including:
As the resin member, a resin member having a degree of orientation y1 / x of the reinforcing fiber contained in at least the joint portion with the metal member as described below is used:
1 ≦ y1 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y1 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) The average value of the maximum diameter in the vertical cross section when the bonded portion is polished from the surface to a depth of 500 μm in the thickness direction).
前記樹脂部材が接合用柱状リブを有する凸型樹脂部材であり、該接合用柱状リブの幅R1が、回転ツールの直径をD1(mm)としたとき、0.5×D1〜5×D1であり、
前記接合部が、接合用柱状リブの先端平面領域における表面から深さL1までの部分であり、
前記深さL1が、接合用柱状リブの高さをH(mm)としたとき、H/5〜Hである請求項6に記載の金属部材と樹脂部材との接合方法。
The resin member is a convex resin member having a columnar rib for bonding, and the width R1 of the columnar rib for bonding is 0.5 × D1 to 5 × D1 when the diameter of the rotary tool is D1 (mm). Yes,
The joining portion is a portion from the surface in the tip flat region of the joining columnar rib to the depth L1,
The method for joining a metal member and a resin member according to claim 6, wherein the depth L1 is H / 5 to H, where H (mm) is the height of the joining columnar rib.
前記樹脂部材が以下に示す配向度y2/xをさらに有する請求項7に記載の金属部材と樹脂部材との接合方法:
1≦y2/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y2は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、接合用柱状リブの高さをH(mm)としたとき、接合部を表面から厚み方向でH/3の深さまで研磨したときの垂直断面における最大直径の平均値である)。
The method for joining a metal member and a resin member according to claim 7, wherein the resin member further has an orientation degree y2 / x shown below:
1 ≦ y2 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y2 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) When the height of the columnar ribs for bonding is H (mm), the average value of the maximum diameter in the vertical section when the bonding portion is polished from the surface to the depth of H / 3 in the thickness direction).
前記樹脂部材が平型樹脂部材であり、
前記接合部が、回転ツールによる金属部材の押圧領域Pと同心円形状の、樹脂部材表面上の接合予定領域Eにおける表面から深さL2までの部分であり、
前記領域Eの直径R2が、回転ツールの直径をD1(mm)としたとき、D1超5×D1以下であり、
前記深さL2が、樹脂部材の厚みをt2(mm)としたとき、t2/5〜t2/2である請求項6に記載の金属部材と樹脂部材との接合方法。
The resin member is a flat resin member;
The joining portion is a portion from the surface to the depth L2 in the joining planned region E on the resin member surface, which is concentric with the pressing region P of the metal member by the rotary tool,
The diameter R2 of the region E is more than D1 and not more than 5 × D1 when the diameter of the rotary tool is D1 (mm).
The method for joining a metal member and a resin member according to claim 6, wherein the depth L2 is t2 / 5 to t2 / 2 when the thickness of the resin member is t2 (mm).
前記樹脂部材が以下に示す配向度y2/xをさらに有する請求項9に記載の金属部材と樹脂部材との接合方法:
1≦y2/x≦1.3
(式中、xは強化繊維の軸方向に対する垂直断面の平均径(μm)である;y2は、接合部の樹脂部材厚み方向に対する垂直断面における強化繊維の最大直径の平均値(μm)であって、樹脂部材の厚みをt2(mm)としたとき、接合部を表面から厚み方向でt2/5の深さまで研磨したときの垂直断面における最大直径の平均値である)。
The method for joining the metal member and the resin member according to claim 9, wherein the resin member further has an orientation degree y2 / x shown below:
1 ≦ y2 / x ≦ 1.3
(Wherein x is the average diameter (μm) of the vertical cross section with respect to the axial direction of the reinforcing fiber; y2 is the average value (μm) of the maximum diameter of the reinforcing fiber in the vertical cross section with respect to the resin member thickness direction of the joint portion) In addition, when the thickness of the resin member is t2 (mm), the average value of the maximum diameters in the vertical cross section when the joint portion is polished from the surface to the depth of t2 / 5).
前記第2ステップが、回転ツールを金属部材に押し込んで金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を備えている請求項6〜10のいずれかに記載の金属部材と樹脂部材との接合方法。   The metal according to any one of claims 6 to 10, wherein the second step includes a pressing and stirring step of pressing the rotary tool into the metal member to enter a depth that does not reach the joining interface between the metal member and the resin member. A method of joining a member and a resin member. 前記第2ステップが、押込み撹拌工程の前に、回転ツールの先端部のみを金属部材の表面部に接触させた状態で前記回転ツールを回転させる予熱工程をさらに備えている請求項11に記載の金属部材と樹脂部材との接合方法。   The said 2nd step is further equipped with the pre-heating process which rotates the said rotation tool in the state which made the front-end | tip part of a rotation tool contact the surface part of a metal member before an indentation stirring process. A method of joining a metal member and a resin member. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる請求項12に記載の金属部材と樹脂部材との接合方法。
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
13. The rotation according to claim 12, wherein, in the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force. A method of joining a metal member and a resin member.
前記第2ステップが、回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項13に記載の金属部材と樹脂部材との接合方法。
The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth that does not reach the joining boundary surface,
The said stirring maintenance process WHEREIN: The said rotating tool is rotated only for the 3rd pressurization time longer than the said 1st pressurization time, pressing with the 3rd pressurization force smaller than the said 1st pressurization force. A method of joining a metal member and a resin member.
前記第2ステップが、撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で前記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項14に記載の金属部材と樹脂部材との接合方法。   The said 2nd step is further equipped with the holding process which stops rotation of the said rotation tool after a stirring maintenance process, and hold | maintains the said rotation tool with a predetermined pressurizing force for a predetermined pressurization time in the state. 14. A method for joining the metal member and the resin member according to 14. 前記樹脂部材における接合部に含有される強化繊維が1〜50mmの平均繊維長および2〜20μmの平均繊維径を有し、該接合部に含有される強化繊維の量が接合部全量に対して10〜50重量%である請求項1〜15のいずれかに記載の金属部材と樹脂部材との接合方法。   The reinforcing fiber contained in the joint part in the resin member has an average fiber length of 1 to 50 mm and an average fiber diameter of 2 to 20 μm, and the amount of the reinforcing fiber contained in the joint part is based on the total amount of the joint part. It is 10 to 50 weight%, The joining method of the metal member and resin member in any one of Claims 1-15. 請求項1〜16のいずれかに記載の金属部材と樹脂部材との接合方法において使用される樹脂部材。   The resin member used in the joining method of the metal member and resin member in any one of Claims 1-16.
JP2014201786A 2014-09-30 2014-09-30 Method of joining metal member and resin member and resin member used in the method Active JP6056828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201786A JP6056828B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member and resin member used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201786A JP6056828B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member and resin member used in the method

Publications (2)

Publication Number Publication Date
JP2016068129A JP2016068129A (en) 2016-05-09
JP6056828B2 true JP6056828B2 (en) 2017-01-11

Family

ID=55865585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201786A Active JP6056828B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member and resin member used in the method

Country Status (1)

Country Link
JP (1) JP6056828B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117774340B (en) * 2024-02-26 2024-04-23 太原理工大学 Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733080B2 (en) * 2002-04-02 2006-01-11 新日本製鐵株式会社 Printing resin film for laminating high-design decorative metal plates and metal plates coated therewith
JP4729921B2 (en) * 2004-12-24 2011-07-20 マツダ株式会社 Friction spot welding method and apparatus
JP5153258B2 (en) * 2007-08-24 2013-02-27 アイシン化工株式会社 Thick resin product and manufacturing method thereof
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
EP2329905B1 (en) * 2009-12-03 2012-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining metal and plastic workpieces
JP5833323B2 (en) * 2011-03-11 2015-12-16 帝人株式会社 Manufacturing method of carbon fiber composite material joining member
EP2762731B1 (en) * 2013-02-01 2018-05-02 Airbus Operations GmbH Method for joining at least two parts and overlap joint
JP6036350B2 (en) * 2013-02-01 2016-11-30 王子ホールディングス株式会社 Aluminum coated composite panel

Also Published As

Publication number Publication date
JP2016068129A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098563B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098607B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP2016068130A (en) Method of joining metal member with resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6314935B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150