CN117774340B - Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint - Google Patents
Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint Download PDFInfo
- Publication number
- CN117774340B CN117774340B CN202410209602.1A CN202410209602A CN117774340B CN 117774340 B CN117774340 B CN 117774340B CN 202410209602 A CN202410209602 A CN 202410209602A CN 117774340 B CN117774340 B CN 117774340B
- Authority
- CN
- China
- Prior art keywords
- metal
- carbon fiber
- fiber composite
- microcapsule
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 147
- 239000002184 metal Substances 0.000 title claims abstract description 147
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 91
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 91
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 239000002131 composite material Substances 0.000 title claims abstract description 75
- 239000003094 microcapsule Substances 0.000 title claims abstract description 73
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000003466 welding Methods 0.000 claims abstract description 70
- 238000012545 processing Methods 0.000 claims abstract description 45
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 239000000835 fiber Substances 0.000 claims description 28
- 239000003995 emulsifying agent Substances 0.000 claims description 26
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 17
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 16
- 239000004677 Nylon Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 15
- 230000004048 modification Effects 0.000 claims description 15
- 238000012986 modification Methods 0.000 claims description 15
- 229920001778 nylon Polymers 0.000 claims description 15
- 239000002952 polymeric resin Substances 0.000 claims description 14
- 229920003002 synthetic resin Polymers 0.000 claims description 14
- 238000004381 surface treatment Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 10
- 238000005538 encapsulation Methods 0.000 claims description 10
- 229920002530 polyetherether ketone Polymers 0.000 claims description 10
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 8
- 235000019253 formic acid Nutrition 0.000 claims description 8
- 150000003904 phospholipids Chemical class 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000002352 surface water Substances 0.000 claims description 5
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 6
- 238000002513 implantation Methods 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
技术领域Technical Field
本发明属于金属/CFRTP的结构件制备技术领域,具体涉及一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法。The invention belongs to the technical field of metal/CFRTP structural parts preparation, and in particular relates to a method for preparing a microcapsule strong-pinning metal/carbon fiber composite material joint.
背景技术Background technique
碳纤维复合材料(CFRP)具有质轻、高强等一系列优异性能,对国防科技、武器装备和民用航空、机械运载等领域的发展有着极其重要的作用。尤其在火箭、飞机、车辆、导弹等轻量化需求的武器装备上都大量使用了碳纤维复合材料,并呈现逐步增大的趋势。此外,金属合金仍是当前主要的轻量化材料,对金属与碳纤维复合材料的复合连接可以很好地发挥金属材料与碳纤维复合材料的各自优势,同时也是复杂工程构件制造和产品结构功能一体化的重要需求。Carbon fiber composite materials (CFRP) have a series of excellent properties such as light weight and high strength, and play an extremely important role in the development of national defense science and technology, weapons and equipment, civil aviation, mechanical transportation and other fields. In particular, carbon fiber composite materials are widely used in weapons and equipment with lightweight requirements such as rockets, aircraft, vehicles, and missiles, and the trend is gradually increasing. In addition, metal alloys are still the main lightweight materials at present. The composite connection of metal and carbon fiber composite materials can give full play to the respective advantages of metal materials and carbon fiber composite materials. It is also an important requirement for the manufacturing of complex engineering components and the integration of product structure and function.
热塑性碳纤维复合材料(CFRTP)作为碳纤维复合材料中的一种,具有可焊接、可回收的特点。相比热固性碳纤维复合材料(CFRTS),CFRTP和金属具有更加丰富的连接方式,主要包括粘接、机械紧固和焊接,然而传统的连接技术存在许多弊端,粘接技术受到固化时间和环境敏感因素的影响,机械紧固技术则存在应力集中等问题。随着焊接技术的发展,激光焊接、搅拌摩擦焊、电阻焊以及超声波焊接等连接技术逐渐应用于金属/CFRTP结构件的制备。其中超声波焊接技术相比其他焊接技术具有焊接时间短、能量输入低的特点,但在传统的超声波焊接工艺下,因金属和CFRTP两种材料相容性差,界面吸附力弱,导致两者无法紧密连接,仅依靠改变工艺参数、材料表面状态无法进一步改善此类问题。As a type of carbon fiber composite material, thermoplastic carbon fiber composite material (CFRTP) is weldable and recyclable. Compared with thermosetting carbon fiber composite material (CFRTS), CFRTP and metal have more abundant connection methods, mainly including bonding, mechanical fastening and welding. However, traditional connection technology has many disadvantages. Bonding technology is affected by curing time and environmental sensitive factors, and mechanical fastening technology has problems such as stress concentration. With the development of welding technology, connection technologies such as laser welding, stir friction welding, resistance welding and ultrasonic welding are gradually applied to the preparation of metal/CFRTP structural parts. Among them, ultrasonic welding technology has the characteristics of short welding time and low energy input compared with other welding technologies. However, under the traditional ultrasonic welding process, due to the poor compatibility of metal and CFRTP materials and weak interface adsorption, the two cannot be tightly connected. Such problems cannot be further improved by simply changing process parameters and material surface conditions.
针对金属/CFRTP两者难以连接的问题,通常采用表面处理的方式来改变两者待连接界面的状态,从而改善两者连接效果,然而不管采用机械处理还是化学处理的方式,最终仍然需要面临金属和CFRTP两种相容性极差的异种材料进行复合。因此,通过添加中间介质来实现金属/CFRTP的连接成为一种可能,这就对中间介质有了苛刻的要求,需要能够同时满足对金属和CFRTP的高度相容。因而本发明提出在金属表面埋植树脂基微胶囊,能够很好地解决这一问题,进一步增强金属和CFRTP的连接效果。In order to solve the problem that metal/CFRTP are difficult to connect, surface treatment is usually used to change the state of the interface to be connected between the two, so as to improve the connection effect between the two. However, no matter whether mechanical treatment or chemical treatment is used, it is still necessary to compound two dissimilar materials with extremely poor compatibility, metal and CFRTP. Therefore, it becomes possible to achieve the connection of metal/CFRTP by adding an intermediate medium, which places stringent requirements on the intermediate medium and needs to be able to meet the high compatibility of metal and CFRTP at the same time. Therefore, the present invention proposes to embed resin-based microcapsules on the metal surface, which can solve this problem well and further enhance the connection effect of metal and CFRTP.
发明内容Summary of the invention
本发明针对现有金属/CFRTP结构件复合制备时,因两者材料难以相容,无法形成高质量的金属/CFRTP连接构件的问题,尤其针对金属/CFRTP的超声波焊接,本发明在传统超声波焊接工艺基础上,增加激光加工金属表面微结构、硅烷偶联剂和微胶囊埋植,以进一步提高金属与碳纤维连接接头的机械锁合以及化学键合强度。The present invention aims to solve the problem that in the composite preparation of existing metal/CFRTP structural parts, the two materials are difficult to be compatible and high-quality metal/CFRTP connecting components cannot be formed, especially for ultrasonic welding of metal/CFRTP. On the basis of traditional ultrasonic welding technology, the present invention adds laser processing of metal surface microstructure, silane coupling agent and microcapsule implantation to further improve the mechanical locking and chemical bonding strength of the metal and carbon fiber connection joints.
为达到上述目的本发明采用了以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法,包括以下步骤:A method for preparing a microcapsule strong pinning metal/carbon fiber composite material joint comprises the following steps:
步骤1,选取板材:选取所需金属板和碳纤维复合材料板,并将金属板和碳纤维复合材料板加工成实际所需的形状、尺寸;Step 1, selecting plates: selecting the required metal plates and carbon fiber composite plates, and processing the metal plates and carbon fiber composite plates into the actual required shapes and sizes;
步骤2,板材表面处理:去除金属板和碳纤维复合材料板表面的油污和氧化膜;Step 2, plate surface treatment: removing oil stains and oxide films on the surface of metal plates and carbon fiber composite plates;
步骤3,金属板表面激光加工:对表面处理过的金属板进行激光打孔处理,加工出微米级多孔结构;Step 3, laser processing of the metal plate surface: performing laser drilling on the surface-treated metal plate to produce a micron-level porous structure;
步骤4,金属板表面硅烷偶联剂改性:将激光加工后的金属板表面附着硅烷偶联剂,并进行高温改性处理;Step 4, silane coupling agent modification of the metal plate surface: a silane coupling agent is attached to the surface of the metal plate after laser processing, and a high-temperature modification treatment is performed;
步骤5,微胶囊制备:将高分子树脂材料加入溶剂中,搅拌均匀后添加乳化剂,形成均匀的包壳液,随后将短切纤维束浸泡在包壳液中,使用液氮冷却固化后将溶剂分离,并进行干燥制得包埋短切纤维束的树脂基微胶囊;Step 5, microcapsule preparation: adding a polymer resin material to a solvent, stirring evenly, and then adding an emulsifier to form a uniform encapsulation liquid, then immersing the chopped fiber bundle in the encapsulation liquid, cooling and solidifying with liquid nitrogen, separating the solvent, and drying to obtain a resin-based microcapsule encapsulating the chopped fiber bundle;
步骤6,微胶囊埋植:将包埋短切纤维束的树脂基微胶囊埋植进改性后金属板上的微米级多孔结构中;Step 6, microcapsule embedding: embedding the resin-based microcapsules encapsulating the chopped fiber bundles into the micron-scale porous structure on the modified metal plate;
步骤7,超声波焊接:将表面处理后的碳纤维复合材料板与微胶囊埋植后的金属板的待连接部位按单边搭接方式叠放固定,进行超声波焊接;Step 7, ultrasonic welding: the surface treated carbon fiber composite material plate and the metal plate with embedded microcapsules are stacked and fixed in a single-side overlap manner to be connected, and ultrasonic welding is performed;
步骤8,冷却成品。Step 8: Cool the finished product.
进一步,所述步骤1中金属板的材质为铝合金、镁合金或不锈钢。Furthermore, the material of the metal plate in step 1 is aluminum alloy, magnesium alloy or stainless steel.
进一步,所述步骤2中板材表面处理使用无水乙醇。Furthermore, in step 2, anhydrous ethanol is used for the surface treatment of the plate.
进一步,所述步骤3中金属板表面激光加工采用纳秒激光加工系统,所述纳秒激光加工系统的参数设置为:速度为200~500mm/s,频率为25kHz,功率为75~155W。Furthermore, in step 3, the metal plate surface laser processing adopts a nanosecond laser processing system, and the parameters of the nanosecond laser processing system are set as follows: speed is 200-500 mm/s, frequency is 25 kHz, and power is 75-155 W.
进一步,所述步骤3中微米级多孔结构的宽度或直径为300~400μm,深度为200~600μm。Furthermore, in step 3, the width or diameter of the micron-scale porous structure is 300-400 μm, and the depth is 200-600 μm.
进一步,所述步骤4中金属板表面硅烷偶联剂改性的具体步骤为:Furthermore, the specific steps of modifying the metal plate surface with a silane coupling agent in step 4 are:
用清水完全浸润金属板,产生无缝水膜,并立即浸到硅烷偶联剂中1~2min;取出金属板后烘干表面水膜,然后在120℃的高温下保持20min,完成金属板表面硅烷偶联剂改性。The metal plate is completely soaked with clean water to produce a seamless water film, and then immediately immersed in the silane coupling agent for 1 to 2 minutes; after the metal plate is taken out, the surface water film is dried, and then maintained at a high temperature of 120°C for 20 minutes to complete the silane coupling agent modification of the metal plate surface.
进一步,所述步骤4中硅烷偶联剂为KH-550型硅烷偶联剂。Furthermore, the silane coupling agent in step 4 is KH-550 type silane coupling agent.
进一步,所述步骤5中高分子树脂材料为尼龙或聚醚醚酮,当高分子树脂材料为尼龙时,溶剂选择甲酸,乳化剂选择质量分数为1%的磷脂类乳化剂,尼龙、短切纤维束、甲酸和磷脂类乳化剂的重量百分比为40%:10%:20%:30%;当高分子树脂材料为聚醚醚酮时,溶剂选择二氯甲烷,乳化剂选择质量分数为5%的聚乙烯醇乳化剂,聚醚醚酮、短切纤维束、二氯甲烷和聚乙烯醇乳化剂的重量百分比40%:5%:25%:30%。Furthermore, in step 5, the polymer resin material is nylon or polyetheretherketone. When the polymer resin material is nylon, formic acid is selected as the solvent, and a phospholipid emulsifier with a mass fraction of 1% is selected as the emulsifier. The weight percentages of nylon, chopped fiber bundles, formic acid and phospholipid emulsifier are 40%:10%:20%:30%. When the polymer resin material is polyetheretherketone, dichloromethane is selected as the solvent, and a polyvinyl alcohol emulsifier with a mass fraction of 5% is selected as the emulsifier. The weight percentages of polyetheretherketone, chopped fiber bundles, dichloromethane and polyvinyl alcohol emulsifier are 40%:5%:25%:30%.
进一步,所述步骤5中包埋短切纤维束的树脂基微胶囊为球形微胶囊,其直径为80~150μm。Furthermore, the resin-based microcapsules that embed the chopped fiber bundles in step 5 are spherical microcapsules with a diameter of 80 to 150 μm.
进一步,所述步骤7中超声波焊接在超声波焊接设备上进行,所述超声波焊接设备的参数设置为:额定功率为4kW,额定频率为20kHz,最大焊接振幅为52μm,焊接时间为2500~4000ms,焊接压力为0.3~0.6MPa。Furthermore, in step 7, the ultrasonic welding is performed on an ultrasonic welding device, and the parameters of the ultrasonic welding device are set as follows: rated power of 4 kW, rated frequency of 20 kHz, maximum welding amplitude of 52 μm, welding time of 2500-4000 ms, and welding pressure of 0.3-0.6 MPa.
与现有技术相比本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、采用传统超声波焊接方法时,由于树脂熔融状态的高粘度,导致短切碳纤维束运动受阻,无法进入金属板表面的孔洞中。而本发明利用激光加工工艺,将金属板表面加工出微米级多孔结构,并将包埋短切碳纤维的树脂基微胶囊埋植进金属板表面的微米级多孔结构中,在超声波焊接过程中,高温熔化微胶囊表面树脂薄膜,释放出微胶囊中的短切碳纤维束,形成显著的钉扎效应;在压力的作用下,碳纤维复合材料板熔化的树脂填充进金属板表面的微米级多孔结构,与熔化的微胶囊表面树脂薄膜相融,挤压熔化的微胶囊与金属板紧密接触,同时有助于树脂在金属板表面润湿铺展,为金属/碳纤维复合材料的连接界面产生化学键合作用提供有利环境,形成了牢固可靠的连接接头。可适用于L形、T形等简单结构件以及点阵等复杂结构件的接头连接。1. When using the traditional ultrasonic welding method, the high viscosity of the resin in the molten state causes the movement of the chopped carbon fiber bundles to be hindered and unable to enter the holes on the surface of the metal plate. The present invention uses laser processing technology to process the metal plate surface into a micron-level porous structure, and embeds the resin-based microcapsules that embed the chopped carbon fibers into the micron-level porous structure on the surface of the metal plate. During the ultrasonic welding process, the resin film on the surface of the microcapsules is melted at high temperature, and the chopped carbon fiber bundles in the microcapsules are released, forming a significant pinning effect; under the action of pressure, the melted resin of the carbon fiber composite material plate is filled into the micron-level porous structure on the surface of the metal plate, and is melted with the melted resin film on the surface of the microcapsules, squeezing the melted microcapsules into close contact with the metal plate, and at the same time helps the resin to wet and spread on the surface of the metal plate, providing a favorable environment for the chemical bonding reaction at the connection interface of the metal/carbon fiber composite material, and forming a firm and reliable connection joint. It can be applied to the joint connection of simple structural parts such as L-shaped and T-shaped parts and complex structural parts such as lattices.
2、本发明是微胶囊辅助金属/碳纤维复合材料强钉扎超声焊接,具有良好的界面连接强度的特点。2. The present invention is a microcapsule-assisted metal/carbon fiber composite material strong pinning ultrasonic welding, which has the characteristics of good interface connection strength.
3、本发明采用的激光加工微结构以及微胶囊埋植技术,先进合理,具有可行性,可用于高强度和高质量金属/CFRTP结构件的复合制备。3. The laser processing microstructure and microcapsule embedding technology adopted by the present invention are advanced, reasonable, feasible, and can be used for the composite preparation of high-strength and high-quality metal/CFRTP structural parts.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例1中金属/碳纤维复合材料接头连接界面的微观形貌图;FIG1 is a microscopic morphology of the connection interface of the metal/carbon fiber composite material joint in Example 1;
图2为实施例1中使用激光加工得到的微米级多孔结构的形貌图;FIG2 is a morphology of a micrometer-scale porous structure obtained by laser processing in Example 1;
图3为实施例1中使用激光加工得到的微米级多孔结构的三维轮廓形貌图;FIG3 is a three-dimensional profile image of a micrometer-scale porous structure obtained by laser processing in Example 1;
图4为未埋植微胶囊情况下的金属/碳纤维复合材料接头连接界面微观形貌图。FIG4 is a microscopic morphology of the metal/carbon fiber composite material joint connection interface without embedded microcapsules.
具体实施方式Detailed ways
为了进一步阐述本发明的技术方案,下面通过实施例对本发明进行进一步说明。In order to further illustrate the technical solution of the present invention, the present invention is further described below through embodiments.
实施例1Example 1
一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法,包括以下步骤:A method for preparing a microcapsule strong pinning metal/carbon fiber composite material joint comprises the following steps:
步骤1,选取板材:选取所需金属板和碳纤维复合材料板,并将金属板和碳纤维复合材料板加工成实际所需的形状、尺寸;Step 1, selecting plates: selecting the required metal plates and carbon fiber composite plates, and processing the metal plates and carbon fiber composite plates into the actual required shapes and sizes;
本实施例选取长度为60mm,宽度为20mm,厚度为1mm的5052铝合金板以及相同尺寸的短切碳纤维增强尼龙板(SCF-PA),即本实施例的金属板为5052铝合金板,碳纤维复合材料板为短切碳纤维增强尼龙板。In this embodiment, a 5052 aluminum alloy plate with a length of 60 mm, a width of 20 mm, and a thickness of 1 mm and a short-cut carbon fiber reinforced nylon plate (SCF-PA) of the same size are selected, that is, the metal plate in this embodiment is a 5052 aluminum alloy plate, and the carbon fiber composite material plate is a short-cut carbon fiber reinforced nylon plate.
步骤2,板材表面处理:使用无水乙醇去除金属板和碳纤维复合材料板表面的油污和氧化膜;Step 2, plate surface treatment: use anhydrous ethanol to remove oil stains and oxide films on the surface of metal plates and carbon fiber composite plates;
步骤3,金属板表面激光加工:采用纳秒激光加工系统对表面处理过的金属板进行激光打孔处理,加工出微米级多孔结构;Step 3, laser processing of the metal plate surface: using a nanosecond laser processing system to perform laser drilling on the surface-treated metal plate to produce a micron-level porous structure;
所述纳秒激光加工系统的参数设置为:速度为200mm/s,频率为25kHz,功率为75W,加工出的微米级多孔结构为圆柱状,宽度或直径为300μm,深度为200μm。The parameters of the nanosecond laser processing system are set as follows: speed of 200 mm/s, frequency of 25 kHz, power of 75 W, and the processed micron-scale porous structure is cylindrical, with a width or diameter of 300 μm and a depth of 200 μm.
步骤4,金属板表面硅烷偶联剂改性:将激光加工后的金属板表面附着硅烷偶联剂,并进行高温改性处理,具体步骤为:Step 4: Silane coupling agent modification of the metal plate surface: Silane coupling agent is attached to the surface of the metal plate after laser processing, and high-temperature modification treatment is performed. The specific steps are as follows:
用清水完全浸润金属板,产生无缝水膜,并立即浸到硅烷偶联剂中1~2min;取出金属板后烘干表面水膜,放入箱式加热炉,然后在120℃的高温下保持20min,完成金属板表面硅烷偶联剂改性,本实施例的硅烷偶联剂为KH-550型硅烷偶联剂。The metal plate is completely soaked with clean water to produce a seamless water film, and then immediately immersed in the silane coupling agent for 1 to 2 minutes; after taking out the metal plate, the surface water film is dried, placed in a box-type heating furnace, and then maintained at a high temperature of 120°C for 20 minutes to complete the silane coupling agent modification of the metal plate surface. The silane coupling agent in this embodiment is KH-550 type silane coupling agent.
步骤5,微胶囊制备:将高分子树脂材料加入溶剂中,搅拌均匀后添加乳化剂,形成均匀的包壳液,随后将短切纤维束浸泡在包壳液中,使用液氮冷却固化后将溶剂分离,并进行干燥制得包埋短切纤维束的树脂基微胶囊;Step 5, microcapsule preparation: adding a polymer resin material to a solvent, stirring evenly, and then adding an emulsifier to form a uniform encapsulation liquid, then immersing the chopped fiber bundle in the encapsulation liquid, cooling and solidifying with liquid nitrogen, separating the solvent, and drying to obtain a resin-based microcapsule encapsulating the chopped fiber bundle;
本实施例的高分子树脂材料为尼龙,溶剂选择甲酸,乳化剂选择质量分数为1%的磷脂类乳化剂,所述尼龙、短切纤维束、甲酸和磷脂类乳化剂的重量百分比为40%:10%:20%:30%,所述包埋短切纤维束的树脂基微胶囊为球形微胶囊,其直径为80~120μm。The polymer resin material of this embodiment is nylon, the solvent is formic acid, and the emulsifier is a phospholipid emulsifier with a mass fraction of 1%. The weight percentages of nylon, chopped fiber bundles, formic acid and phospholipid emulsifier are 40%:10%:20%:30%, and the resin-based microcapsules that embed the chopped fiber bundles are spherical microcapsules with a diameter of 80~120μm.
步骤6,微胶囊埋植:将包埋短切纤维束的树脂基微胶囊埋植进改性后金属板上的微米级多孔结构中;Step 6, microcapsule embedding: embedding the resin-based microcapsules encapsulating the chopped fiber bundles into the micron-scale porous structure on the modified metal plate;
步骤7,超声波焊接:将表面处理后的碳纤维复合材料板与微胶囊埋植后的金属板的待连接部位按单边搭接方式叠放固定,进行超声波焊接;Step 7, ultrasonic welding: the surface treated carbon fiber composite material plate and the metal plate with embedded microcapsules are stacked and fixed in a single-side overlap manner to be connected, and ultrasonic welding is performed;
本实施例的超声波焊接在超声波焊接设备上进行,所述超声波焊接设备的参数设置为:额定功率为4kW,额定频率为20kHz,最大焊接振幅为52μm,焊接时间为2500ms,焊接压力为0.3MPa。本实施例超声波焊接的实际能耗范围为600~1000J。The ultrasonic welding of this embodiment is performed on an ultrasonic welding device, and the parameters of the ultrasonic welding device are set as follows: rated power of 4 kW, rated frequency of 20 kHz, maximum welding amplitude of 52 μm, welding time of 2500 ms, and welding pressure of 0.3 MPa. The actual energy consumption range of ultrasonic welding of this embodiment is 600-1000 J.
步骤8,冷却成品。Step 8: Cool the finished product.
对实施例1制得的金属/碳纤维复合材料接头进行显微组织观察,其结果如图1至3所示,其中图1为金属/碳纤维复合材料接头连接界面的微观形貌图,图2为使用激光加工得到的微米级多孔结构的形貌图,图3为使用激光加工得到的微米级多孔结构的三维轮廓形貌图,而图4为未埋植微胶囊情况下的金属/碳纤维复合材料接头连接界面微观形貌图。The metal/carbon fiber composite material joint prepared in Example 1 was observed for its microstructure, and the results are shown in Figures 1 to 3, wherein Figure 1 is a microscopic morphology of the connection interface of the metal/carbon fiber composite material joint, Figure 2 is a morphology of the micron-scale porous structure obtained by laser processing, Figure 3 is a three-dimensional contour morphology of the micron-scale porous structure obtained by laser processing, and Figure 4 is a microscopic morphology of the connection interface of the metal/carbon fiber composite material joint without embedded microcapsules.
本实施例得到的单边搭接金属/碳纤维复合材料接头具有良好的形貌,观察到连接界面处,高温熔化的微胶囊释放出大量短切碳纤维束,充分地填满了金属板表面微米级多孔结构,形成显著的钉扎效应;碳纤维复合材料板熔化的树脂在压力的作用下填充进金属板表面微米级多孔结构中,与微胶囊熔化的树脂薄膜相融,挤压熔化的微胶囊与金属板紧密接触,同时有助于树脂在金属板表面润湿铺展;借助高温、压力以及熔化树脂在微米级多孔结构中的挤压等有利条件,在金属板与碳纤维复合材料板连接界面形成化学键合作用,这种化学键合作用尤其集中出现在微米级多孔结构中;采用英斯特朗5900电子万能试验机测试金属/碳纤维复合材料接头最大拉剪力为1997.86N。在相同表面处理条件下采用传统超声波焊接方法时,金属/碳纤维复合材料接头最大拉剪力为144.36N。The single-sided lapped metal/carbon fiber composite material joint obtained in this embodiment has a good morphology. It is observed that at the connection interface, the high-temperature melted microcapsules release a large number of chopped carbon fiber bundles, which fully fill the micron-level porous structure on the surface of the metal plate, forming a significant pinning effect; the melted resin of the carbon fiber composite plate is filled into the micron-level porous structure on the surface of the metal plate under the action of pressure, and melts with the melted resin film of the microcapsules, and the melted microcapsules are squeezed into close contact with the metal plate, which helps the resin to wet and spread on the surface of the metal plate; with the help of favorable conditions such as high temperature, pressure and extrusion of the molten resin in the micron-level porous structure, a chemical bonding reaction is formed at the connection interface between the metal plate and the carbon fiber composite material plate, and this chemical bonding reaction is particularly concentrated in the micron-level porous structure; the maximum tensile shear force of the metal/carbon fiber composite joint tested by the Instron 5900 electronic universal testing machine is 1997.86N. When the traditional ultrasonic welding method is used under the same surface treatment conditions, the maximum tensile shear force of the metal/carbon fiber composite joint is 144.36N.
实施例2Example 2
一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法,包括以下步骤:A method for preparing a microcapsule strong pinning metal/carbon fiber composite material joint comprises the following steps:
步骤1,选取板材:选取所需金属板和碳纤维复合材料板,并将金属板和碳纤维复合材料板加工成实际所需的形状、尺寸;Step 1, selecting plates: selecting the required metal plates and carbon fiber composite plates, and processing the metal plates and carbon fiber composite plates into the actual required shapes and sizes;
本实施例选取长度为60mm,宽度为20mm,厚度为1mm的AZ318镁合金板以及相同尺寸的短切碳纤维增强尼龙板(SCF-PA),即本实施例的金属板为AZ318镁合金板,碳纤维复合材料板为短切碳纤维增强尼龙板。In this embodiment, an AZ318 magnesium alloy plate with a length of 60 mm, a width of 20 mm, and a thickness of 1 mm and a short-cut carbon fiber reinforced nylon plate (SCF-PA) of the same size are selected, that is, the metal plate in this embodiment is an AZ318 magnesium alloy plate, and the carbon fiber composite material plate is a short-cut carbon fiber reinforced nylon plate.
步骤2,板材表面处理:使用无水乙醇去除金属板和碳纤维复合材料板表面的油污和氧化膜;Step 2, plate surface treatment: use anhydrous ethanol to remove oil stains and oxide films on the surface of metal plates and carbon fiber composite plates;
步骤3,金属板表面激光加工:采用纳秒激光加工系统对表面处理过的金属板进行激光打孔处理,加工出微米级多孔结构;Step 3, laser processing of the metal plate surface: using a nanosecond laser processing system to perform laser drilling on the surface-treated metal plate to produce a micron-level porous structure;
所述纳秒激光加工系统的参数设置为:速度为300mm/s,频率为25kHz,功率为110W,加工出的微米级多孔结构为圆柱状,宽度或直径为350μm,深度为500μm。The parameters of the nanosecond laser processing system are set as follows: speed of 300 mm/s, frequency of 25 kHz, power of 110 W, and the processed micron-scale porous structure is cylindrical, with a width or diameter of 350 μm and a depth of 500 μm.
步骤4,金属板表面硅烷偶联剂改性:将激光加工后的金属板表面附着硅烷偶联剂,并进行高温改性处理,具体步骤为:Step 4: Silane coupling agent modification of the metal plate surface: Silane coupling agent is attached to the surface of the metal plate after laser processing, and high-temperature modification treatment is performed. The specific steps are as follows:
用清水完全浸润金属板,产生无缝水膜,并立即浸到硅烷偶联剂中1~2min;取出金属板后烘干表面水膜,放入箱式加热炉,然后在120℃的高温下保持20min,完成金属板表面硅烷偶联剂改性,本实施例的硅烷偶联剂为KH-550型硅烷偶联剂。The metal plate is completely soaked with clean water to produce a seamless water film, and then immediately immersed in the silane coupling agent for 1 to 2 minutes; after taking out the metal plate, the surface water film is dried, placed in a box-type heating furnace, and then maintained at a high temperature of 120°C for 20 minutes to complete the silane coupling agent modification of the metal plate surface. The silane coupling agent in this embodiment is KH-550 type silane coupling agent.
步骤5,微胶囊制备:将高分子树脂材料加入溶剂中,搅拌均匀后添加乳化剂,形成均匀的包壳液,随后将短切纤维束浸泡在包壳液中,使用液氮冷却固化后将溶剂分离,并进行干燥制得包埋短切纤维束的树脂基微胶囊;Step 5, microcapsule preparation: adding a polymer resin material to a solvent, stirring evenly, and then adding an emulsifier to form a uniform encapsulation liquid, then immersing the chopped fiber bundle in the encapsulation liquid, cooling and solidifying with liquid nitrogen, separating the solvent, and drying to obtain a resin-based microcapsule encapsulating the chopped fiber bundle;
本实施例的高分子树脂材料为尼龙,溶剂选择甲酸,乳化剂选择质量分数为1%的磷脂类乳化剂,所述尼龙、短切纤维束、甲酸和磷脂类乳化剂的重量百分比为40%:10%:20%:30%,所述包埋短切纤维束的树脂基微胶囊为球形微胶囊,其直径为80~120μm。The polymer resin material of this embodiment is nylon, the solvent is formic acid, and the emulsifier is a phospholipid emulsifier with a mass fraction of 1%. The weight percentages of nylon, chopped fiber bundles, formic acid and phospholipid emulsifier are 40%:10%:20%:30%, and the resin-based microcapsules that embed the chopped fiber bundles are spherical microcapsules with a diameter of 80~120μm.
步骤6,微胶囊埋植:将包埋短切纤维束的树脂基微胶囊埋植进改性后金属板上的微米级多孔结构中;Step 6, microcapsule embedding: embedding the resin-based microcapsules encapsulating the chopped fiber bundles into the micron-scale porous structure on the modified metal plate;
步骤7,超声波焊接:将表面处理后的碳纤维复合材料板与微胶囊埋植后的金属板的待连接部位按单边搭接方式叠放固定,进行超声波焊接;Step 7, ultrasonic welding: the surface treated carbon fiber composite material plate and the metal plate with embedded microcapsules are stacked and fixed in a single-side overlap manner to be connected, and ultrasonic welding is performed;
本实施例的超声波焊接在超声波焊接设备上进行,所述超声波焊接设备的参数设置为:额定功率为4kW,额定频率为20kHz,最大焊接振幅为52μm,焊接时间为3000ms,焊接压力为0.4MPa。本实施例超声波焊接的实际能耗范围为1000~1500J。The ultrasonic welding of this embodiment is performed on an ultrasonic welding device, and the parameters of the ultrasonic welding device are set as follows: rated power of 4 kW, rated frequency of 20 kHz, maximum welding amplitude of 52 μm, welding time of 3000 ms, and welding pressure of 0.4 MPa. The actual energy consumption range of ultrasonic welding of this embodiment is 1000-1500 J.
步骤8,冷却成品。Step 8: Cool the finished product.
本实施例得到的单边搭接金属/碳纤维复合材料接头具有良好的形貌,观察到连接部位,熔化的树脂和短切碳纤维束填满金属板表面微米级多孔结构中,形成显著的钉扎效应,提高其结合强度;采用英斯特朗5900电子万能试验机测试金属/碳纤维复合材料接头最大拉剪力为1020.93N。在相同表面处理条件下采用传统超声波焊接方法时,金属/碳纤维复合材料接头最大拉剪力为123.78N。The single-sided overlapped metal/carbon fiber composite material joint obtained in this embodiment has a good morphology. It is observed that the molten resin and the chopped carbon fiber bundles fill the micron-level porous structure on the surface of the metal plate at the connection part, forming a significant pinning effect, which improves its bonding strength; the maximum tensile shear force of the metal/carbon fiber composite material joint tested by the Instron 5900 electronic universal testing machine is 1020.93N. When the traditional ultrasonic welding method is used under the same surface treatment conditions, the maximum tensile shear force of the metal/carbon fiber composite material joint is 123.78N.
实施例3Example 3
一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法,包括以下步骤:A method for preparing a microcapsule strong pinning metal/carbon fiber composite material joint comprises the following steps:
步骤1,选取板材:选取所需金属板和碳纤维复合材料板,并将金属板和碳纤维复合材料板加工成实际所需的形状、尺寸;Step 1, selecting plates: selecting the required metal plates and carbon fiber composite plates, and processing the metal plates and carbon fiber composite plates into the actual required shapes and sizes;
本实施例选取长度为60mm,宽度为20mm,厚度为1mm的SS304不锈钢板以及相同尺寸的短切碳纤维增强聚醚醚酮板(SCF-PEEK),即本实施例的金属板为SS304不锈钢板,碳纤维复合材料板为短切碳纤维增强聚醚醚酮板。In this embodiment, a SS304 stainless steel plate with a length of 60 mm, a width of 20 mm, and a thickness of 1 mm and a short-cut carbon fiber reinforced polyetheretherketone plate (SCF-PEEK) of the same size are selected, that is, the metal plate in this embodiment is a SS304 stainless steel plate, and the carbon fiber composite material plate is a short-cut carbon fiber reinforced polyetheretherketone plate.
步骤2,板材表面处理:使用无水乙醇去除金属板和碳纤维复合材料板表面的油污和氧化膜;Step 2, plate surface treatment: use anhydrous ethanol to remove oil stains and oxide films on the surface of metal plates and carbon fiber composite plates;
步骤3,金属板表面激光加工:采用纳秒激光加工系统对表面处理过的金属板进行激光打孔处理,加工出微米级多孔结构;Step 3, laser processing of the metal plate surface: using a nanosecond laser processing system to perform laser drilling on the surface-treated metal plate to produce a micron-level porous structure;
所述纳秒激光加工系统的参数设置为:速度为500mm/s,频率为25kHz,功率为155W,加工出的微米级多孔结构为圆柱状,宽度或直径为400μm,深度为600μm。The parameters of the nanosecond laser processing system are set as follows: speed of 500 mm/s, frequency of 25 kHz, power of 155 W, and the processed micron-scale porous structure is cylindrical, with a width or diameter of 400 μm and a depth of 600 μm.
步骤4,金属板表面硅烷偶联剂改性:将激光加工后的金属板表面附着硅烷偶联剂,并进行高温改性处理,具体步骤为:Step 4: Silane coupling agent modification of the metal plate surface: Silane coupling agent is attached to the surface of the metal plate after laser processing, and high-temperature modification treatment is performed. The specific steps are as follows:
用清水完全浸润金属板,产生无缝水膜,并立即浸到硅烷偶联剂中1~2min;取出金属板后烘干表面水膜,放入箱式加热炉,然后在120℃的高温下保持20min,完成金属板表面硅烷偶联剂改性,本实施例的硅烷偶联剂为KH-550型硅烷偶联剂。The metal plate is completely soaked with clean water to produce a seamless water film, and then immediately immersed in the silane coupling agent for 1 to 2 minutes; after taking out the metal plate, the surface water film is dried, placed in a box-type heating furnace, and then maintained at a high temperature of 120°C for 20 minutes to complete the silane coupling agent modification of the metal plate surface. The silane coupling agent in this embodiment is KH-550 type silane coupling agent.
步骤5,微胶囊制备:将高分子树脂材料加入溶剂中,搅拌均匀后添加乳化剂,形成均匀的包壳液,随后将短切纤维束浸泡在包壳液中,使用液氮冷却固化后将溶剂分离,并进行干燥制得包埋短切纤维束的树脂基微胶囊;Step 5, microcapsule preparation: adding a polymer resin material to a solvent, stirring evenly, and then adding an emulsifier to form a uniform encapsulation liquid, then immersing the chopped fiber bundle in the encapsulation liquid, cooling and solidifying with liquid nitrogen, separating the solvent, and drying to obtain a resin-based microcapsule encapsulating the chopped fiber bundle;
本实施例的高分子树脂材料为聚醚醚酮,溶剂选择二氯甲烷,乳化剂选择质量分数为5%的聚乙烯醇乳化剂,所述聚醚醚酮、短切纤维束、二氯甲烷和聚乙烯醇乳化剂的重量百分比为40%:5%:25%:30%,所述包埋短切纤维束的树脂基微胶囊为球形微胶囊,其直径为120~150μm。The polymer resin material of this embodiment is polyetheretherketone, the solvent is dichloromethane, and the emulsifier is a polyvinyl alcohol emulsifier with a mass fraction of 5%. The weight percentages of the polyetheretherketone, the chopped fiber bundles, dichloromethane and the polyvinyl alcohol emulsifier are 40%:5%:25%:30%, and the resin-based microcapsules that embed the chopped fiber bundles are spherical microcapsules with a diameter of 120~150μm.
步骤6,微胶囊埋植:将包埋短切纤维束的树脂基微胶囊埋植进改性后金属板上的微米级多孔结构中;Step 6, microcapsule embedding: embedding the resin-based microcapsules encapsulating the chopped fiber bundles into the micron-scale porous structure on the modified metal plate;
步骤7,超声波焊接:将表面处理后的碳纤维复合材料板与微胶囊埋植后的金属板的待连接部位按单边搭接方式叠放固定,进行超声波焊接;Step 7, ultrasonic welding: the surface treated carbon fiber composite material plate and the metal plate with embedded microcapsules are stacked and fixed in a single-side overlap manner to be connected, and ultrasonic welding is performed;
本实施例的超声波焊接在超声波焊接设备上进行,所述超声波焊接设备的参数设置为:额定功率为4kW,额定频率为20kHz,最大焊接振幅为52μm,焊接时间为4000ms,焊接压力为0.6MPa。本实施例超声波焊接的实际能耗最高可达2000J。The ultrasonic welding of this embodiment is performed on an ultrasonic welding device, and the parameters of the ultrasonic welding device are set as follows: rated power of 4 kW, rated frequency of 20 kHz, maximum welding amplitude of 52 μm, welding time of 4000 ms, and welding pressure of 0.6 MPa. The actual energy consumption of ultrasonic welding of this embodiment can reach up to 2000 J.
步骤8,冷却成品。Step 8: Cool the finished product.
本实施例得到的单边搭接金属/碳纤维复合材料接头具有良好的形貌,观察到连接部位,熔化的树脂和短切碳纤维束填满金属板表面微米级多孔结构中,形成显著的钉扎效应,提高其结合强度;采用英斯特朗5900电子万能试验机测试金属/碳纤维复合材料接头最大拉剪力为983.57N。在相同表面处理条件下采用传统超声波焊接方法时,金属/碳纤维复合材料接头最大拉剪力为110.12N。The single-sided overlapped metal/carbon fiber composite material joint obtained in this embodiment has a good morphology. It is observed that the molten resin and the chopped carbon fiber bundles fill the micron-level porous structure on the surface of the metal plate at the connection part, forming a significant pinning effect, which improves its bonding strength; the maximum tensile shear force of the metal/carbon fiber composite material joint tested by the Instron 5900 electronic universal testing machine is 983.57N. When the traditional ultrasonic welding method is used under the same surface treatment conditions, the maximum tensile shear force of the metal/carbon fiber composite material joint is 110.12N.
对比例1Comparative Example 1
铝合金/SCF-PA的超声增强连接方法,步骤如下:The ultrasonic enhanced connection method of aluminum alloy/SCF-PA is as follows:
步骤1,实验板材的选取:选取长度为60mm,宽度20mm,厚度1mm的5052铝合金板以及相同尺寸的短切碳纤维增强尼龙板(SCF-PA)。Step 1, selection of experimental plates: select 5052 aluminum alloy plates with a length of 60 mm, a width of 20 mm, and a thickness of 1 mm, and short-cut carbon fiber reinforced nylon plates (SCF-PA) of the same size.
步骤2,板材表面处理:对铝板及SCF-PA板采用无水乙醇清洗液擦洗。Step 2, plate surface treatment: scrub the aluminum plate and SCF-PA plate with anhydrous ethanol cleaning solution.
步骤3,铝板表面电解加工:电解加工工艺采用恒电流方式进行加工,电流为5A,选择电解液为2mol/LNaOH溶液,通过电解加工持续时间控制小孔加工深度。加工出6*6微米级多孔状、倾斜圆柱状点阵结构,微米结构直径为300μm,深度为500μm,间距为200μm,倾斜角度为60°。Step 3, electrolytic processing of aluminum plate surface: The electrolytic processing technology adopts constant current processing, the current is 5A, the electrolyte is selected as 2mol/LNaOH solution, and the depth of small hole processing is controlled by the duration of electrolytic processing. A 6*6 micron-level porous, inclined cylindrical lattice structure is processed, the micron structure has a diameter of 300μm, a depth of 500μm, a spacing of 200μm, and an inclination angle of 60°.
步骤4,铝板表面硅烷偶联剂处理:用清水完全浸润铝板,产生无缝水膜,并立即浸到硅烷处理剂中,增强结合效果。Step 4: Silane coupling agent treatment on the surface of the aluminum plate: completely soak the aluminum plate with clean water to produce a seamless water film, and immediately immerse it in the silane treatment agent to enhance the bonding effect.
步骤5,超声波焊接:将去除表面油污的SCF-PA板材与电解加工所得铝板的待连接部位按单边搭接方式组合,进行超声波焊接,超声波设备额定功率为4kW,额定频率为20kHz,焊接时间为2500ms,最大焊接振幅为52μm,焊接压力为0.3MPa。本实施例超声波焊接的实际能耗约为1000J。Step 5, ultrasonic welding: The SCF-PA plate from which the surface oil has been removed is combined with the portion to be connected of the aluminum plate obtained by electrolytic processing in a single-side overlap manner, and ultrasonic welding is performed. The rated power of the ultrasonic equipment is 4kW, the rated frequency is 20kHz, the welding time is 2500ms, the maximum welding amplitude is 52μm, and the welding pressure is 0.3MPa. The actual energy consumption of ultrasonic welding in this embodiment is about 1000J.
步骤6,冷却成品。Step 6: Cool the finished product.
本实施例是通过金属表面电解加工,加工出微米级多孔状、倾斜圆柱状点阵结构,利用超声能场的作用,将熔化的树脂以及短切碳纤维束挤压进金属表面,能够促进金属/碳纤维复合材料的紧密结合,然而制备得到的界面区域存在碳纤维复合材料损伤的问题。采用英斯特朗5900电子万能试验机测试金属/碳纤维复合材料接头最大拉剪力为1087.64N。而本发明的实施例1则采用“金属表面激光加工微结构+硅烷偶联剂预处理+微胶囊埋植”的方法,将包埋短切纤维束的树脂基微胶囊埋植进金属板表面的微米级多孔结构中,在超声波焊接过程中熔化微胶囊,释放出微胶囊内的短切碳纤维束,使熔化的树脂和短切碳纤维束紧密吸附在金属板表面。本发明采用激光加工出微米级多孔结构,相比电解加工,其具有更高的精度,有利于特定尺寸微胶囊的埋植,进一步地增强了树脂、碳纤维束与金属三者间的密切接触,所制备得到的结合界面更加紧密,结合强度更高,形态更加良好。在连接强度方面,使用相同的材质,本发明方法获得的最大抗拉剪力增加了910.22N。This embodiment uses electrolytic processing on the metal surface to process a micron-scale porous and inclined cylindrical lattice structure, and uses the effect of the ultrasonic energy field to squeeze the molten resin and chopped carbon fiber bundles into the metal surface, which can promote the close bonding of the metal/carbon fiber composite material. However, the prepared interface area has the problem of damage to the carbon fiber composite material. The maximum tensile shear force of the metal/carbon fiber composite joint tested by the Instron 5900 electronic universal testing machine is 1087.64N. Example 1 of the present invention adopts the method of "metal surface laser processing microstructure + silane coupling agent pretreatment + microcapsule implantation" to embed the resin-based microcapsules embedded with chopped fiber bundles into the micron-scale porous structure on the surface of the metal plate, melt the microcapsules during ultrasonic welding, release the chopped carbon fiber bundles in the microcapsules, and make the molten resin and chopped carbon fiber bundles tightly adsorbed on the surface of the metal plate. The present invention uses laser processing to produce a micron-level porous structure. Compared with electrolytic processing, it has higher precision, is conducive to the embedding of microcapsules of specific sizes, and further enhances the close contact between the resin, carbon fiber bundles and metal. The prepared bonding interface is tighter, the bonding strength is higher, and the morphology is better. In terms of connection strength, using the same material, the maximum tensile shear force obtained by the method of the present invention increases by 910.22N.
综上:本发明采用微胶囊辅助金属/碳纤维复合材料强钉扎超声焊接方法,能够实现不同金属材料(铝合金、镁合金、不锈钢等)与碳纤维复合材料(SCF-PA、SCF-PEEK等)的高强结构件制备,其实验数据如表1所示。In summary: The present invention adopts a microcapsule-assisted metal/carbon fiber composite material strong pinning ultrasonic welding method, which can realize the preparation of high-strength structural parts of different metal materials (aluminum alloy, magnesium alloy, stainless steel, etc.) and carbon fiber composite materials (SCF-PA, SCF-PEEK, etc.), and its experimental data are shown in Table 1.
表1实施例中金属/碳纤维复合材料接头的实验数据Table 1 Experimental data of metal/carbon fiber composite material joints in the embodiment
以上显示和描述了本发明的主要特征和优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。The above shows and describes the main features and advantages of the present invention. It is obvious to those skilled in the art that the present invention is not limited to the details of the above exemplary embodiments, and that the present invention can be implemented in other specific forms without departing from the spirit or essential features of the present invention. Therefore, no matter from which point of view, the embodiments should be regarded as exemplary and non-restrictive. The scope of the present invention is defined by the appended claims rather than the above description, and it is intended that all changes that fall within the meaning and scope of the equivalent elements of the claims are included in the present invention.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although the present specification is described according to implementation modes, not every implementation mode contains only one independent technical solution. This narrative method of the specification is only for the sake of clarity. Those skilled in the art should regard the specification as a whole. The technical solutions in each embodiment can also be appropriately combined to form other implementation modes that can be understood by those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410209602.1A CN117774340B (en) | 2024-02-26 | 2024-02-26 | Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410209602.1A CN117774340B (en) | 2024-02-26 | 2024-02-26 | Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117774340A CN117774340A (en) | 2024-03-29 |
CN117774340B true CN117774340B (en) | 2024-04-23 |
Family
ID=90396620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410209602.1A Active CN117774340B (en) | 2024-02-26 | 2024-02-26 | Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117774340B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1177832A (en) * | 1997-08-29 | 1999-03-23 | Nagoya Yuka Kk | Jig for ultrasonic spot welding, ultrasonic spot welding method and masking material |
JP2007307778A (en) * | 2006-05-18 | 2007-11-29 | Toyota Motor Corp | Laminated structure made of fiber reinforced resin and method for producing the laminated structure |
CN101104324A (en) * | 2006-07-11 | 2008-01-16 | 丰田纺织株式会社 | Thermally expandable sheet, molded product for vehicle using the thermally expandable sheet, and method for manufacturing the sheet and product |
JP2016068129A (en) * | 2014-09-30 | 2016-05-09 | マツダ株式会社 | Method of joining metal member with resin member and resin member used for the same |
CN106062052A (en) * | 2014-03-25 | 2016-10-26 | 宝理塑料株式会社 | Composite molded article and method for manufacturing same |
WO2017060646A1 (en) * | 2015-10-07 | 2017-04-13 | Centre Technique Des Industries Mecaniques | Method for securing a composite element with a rigid element |
KR20170136707A (en) * | 2016-06-02 | 2017-12-12 | 김택석 | A machine for producing Micro and Nano capsule |
CN111958979A (en) * | 2020-07-06 | 2020-11-20 | 华南理工大学 | Friction lap welding method for metal and thermoplastic resin material |
CN114571056A (en) * | 2022-02-28 | 2022-06-03 | 太原理工大学 | Method for connecting metal and carbon fiber composite material by using electric activation assisted ultrasonic wave |
CN114571736A (en) * | 2022-02-28 | 2022-06-03 | 太原理工大学 | Method for ultrasonically reinforcing and connecting metal/chopped carbon fiber composite material |
CN115091767A (en) * | 2022-06-17 | 2022-09-23 | 哈尔滨工业大学 | A kind of welding metal and resin or resin matrix composite material method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011519980A (en) * | 2008-04-04 | 2011-07-14 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Composite panels with improved fluid impermeability |
US20180326674A1 (en) * | 2015-12-17 | 2018-11-15 | GM Global Technology Operations LLC | Jointed member and method of joining |
EP4215346A1 (en) * | 2022-01-20 | 2023-07-26 | Airbus Operations GmbH | Cryogenic storage tank, aircraft with a cryogenic storage tank and method for forming a hybrid metal polymer joint |
JP2023157675A (en) * | 2022-04-15 | 2023-10-26 | 新東工業株式会社 | Composite member manufacturing method and composite member |
-
2024
- 2024-02-26 CN CN202410209602.1A patent/CN117774340B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1177832A (en) * | 1997-08-29 | 1999-03-23 | Nagoya Yuka Kk | Jig for ultrasonic spot welding, ultrasonic spot welding method and masking material |
JP2007307778A (en) * | 2006-05-18 | 2007-11-29 | Toyota Motor Corp | Laminated structure made of fiber reinforced resin and method for producing the laminated structure |
CN101104324A (en) * | 2006-07-11 | 2008-01-16 | 丰田纺织株式会社 | Thermally expandable sheet, molded product for vehicle using the thermally expandable sheet, and method for manufacturing the sheet and product |
CN106062052A (en) * | 2014-03-25 | 2016-10-26 | 宝理塑料株式会社 | Composite molded article and method for manufacturing same |
JP2016068129A (en) * | 2014-09-30 | 2016-05-09 | マツダ株式会社 | Method of joining metal member with resin member and resin member used for the same |
WO2017060646A1 (en) * | 2015-10-07 | 2017-04-13 | Centre Technique Des Industries Mecaniques | Method for securing a composite element with a rigid element |
KR20170136707A (en) * | 2016-06-02 | 2017-12-12 | 김택석 | A machine for producing Micro and Nano capsule |
CN111958979A (en) * | 2020-07-06 | 2020-11-20 | 华南理工大学 | Friction lap welding method for metal and thermoplastic resin material |
CN114571056A (en) * | 2022-02-28 | 2022-06-03 | 太原理工大学 | Method for connecting metal and carbon fiber composite material by using electric activation assisted ultrasonic wave |
CN114571736A (en) * | 2022-02-28 | 2022-06-03 | 太原理工大学 | Method for ultrasonically reinforcing and connecting metal/chopped carbon fiber composite material |
CN115091767A (en) * | 2022-06-17 | 2022-09-23 | 哈尔滨工业大学 | A kind of welding metal and resin or resin matrix composite material method |
Non-Patent Citations (2)
Title |
---|
硅烷偶联剂改性金属加热元件提高碳纤维/聚苯硫醚热塑性复合材料电阻焊接强度;王涣翔;《复合材料科学与工程》;20230919;第1-11页 * |
碳纳米管与金属的焊接及复合材料研究;赵波;《中国博士学位论文全文数据库》;20130430;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN117774340A (en) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5554483B2 (en) | Metal-resin composite and method for producing the same | |
CN110653479B (en) | Friction stir and ultrasonic hybrid welding method of light alloy and resin matrix composite material | |
JP4965649B2 (en) | Copper alloy composite and manufacturing method thereof | |
JP5129903B2 (en) | Magnesium alloy composite and manufacturing method thereof | |
CN108297443A (en) | A method of promoting thermoplastic composite and metal connection intensity | |
CN110722802A (en) | Ultrasonic-assisted joining method of lightweight alloys and thermoplastic composites | |
JP2020513044A (en) | Method for recovering carbon fibers from composite waste | |
CN117774340B (en) | Preparation method of microcapsule strong pinning metal/carbon fiber composite material joint | |
WO2021254256A1 (en) | Method for reprocessing recycled carbon fibers | |
JP5295738B2 (en) | Adhesive composite containing metal alloy and method for producing the same | |
US9387655B2 (en) | Nano-engineered structural joints: materials, procedures and applications thereof | |
CN116141686A (en) | Ultrasonic composite riveting welding method of continuous fiber reinforced thermoplastic composite material and metal | |
CN113695731B (en) | Method for performing metal/alloy low-temperature diffusion connection by utilizing electrodeposited nanocrystalline nickel intermediate layer | |
CN108436244A (en) | The connection method of carbon fibre composite and aluminum alloy plate materials | |
CN109648185B (en) | Ultrasonic-assisted instantaneous liquid phase diffusion connection method for high-strength and corrosion-resistant Mg/Al connection joints | |
WO2020067022A1 (en) | Method for joining metal materials, and metal joining body | |
CN114799475B (en) | A method for direct brazing of non-metal and metal using commercial inactive brazing filler metal at low temperature | |
KR102109127B1 (en) | Method of joining metal and plastic using hot metal pressing | |
CN113182631B (en) | Method for preparing high-strength C/C composite material and TC4 alloy joint | |
CN107043269B (en) | Method for modifying ceramic by low-temperature rapid welding | |
CN117841370B (en) | A method for welding carbon fiber thermoplastic composite material and metal | |
Zhao et al. | Study on effect of injection temperature on shear strength of the direct bond between polyphenylene sulfide and anodized aluminum alloy | |
CN112899539B (en) | Magnesium-based composite material with microporous skeleton connection layer on the surface and surface in-situ preparation method | |
CN111496414B (en) | A kind of joint of graphite and copper and preparation method thereof | |
CN109604811A (en) | Method for friction stir welding of aluminium alloys and nylon dissimilar materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |