WO2020067022A1 - Method for joining metal materials, and metal joining body - Google Patents

Method for joining metal materials, and metal joining body Download PDF

Info

Publication number
WO2020067022A1
WO2020067022A1 PCT/JP2019/037295 JP2019037295W WO2020067022A1 WO 2020067022 A1 WO2020067022 A1 WO 2020067022A1 JP 2019037295 W JP2019037295 W JP 2019037295W WO 2020067022 A1 WO2020067022 A1 WO 2020067022A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
metal
joining
resin
joined
Prior art date
Application number
PCT/JP2019/037295
Other languages
French (fr)
Japanese (ja)
Inventor
公則 和鹿
中村 浩
Original Assignee
株式会社ヒロテック
株式会社シャルマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヒロテック, 株式会社シャルマン filed Critical 株式会社ヒロテック
Priority to CN201980062178.XA priority Critical patent/CN112739538A/en
Priority to JP2020549222A priority patent/JP7264406B2/en
Publication of WO2020067022A1 publication Critical patent/WO2020067022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method

Definitions

  • the present invention relates to a method for joining metal materials and a metal joined body.
  • the heat-affected zone is formed in addition to the melt-solidified structure at the joint, and the mechanical properties of the metal base material (material to be joined) cannot be fully utilized as the joint structure. Furthermore, when joining dissimilar metal materials, a brittle intermetallic compound layer is formed at the joining interface, and it is difficult to ensure the strength and reliability of the joint.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-299138
  • a dissimilar joined body of a steel material and an aluminum alloy material in which the steel material to be joined has a specific composition
  • the aluminum alloy material to be joined has a specific composition Al-Mg-Si-based aluminum alloy of the above
  • the Li and Mn are contained in a specific amount at the bonding interface on the aluminum alloy material side of the dissimilar material joined body, and the Fe interface is regulated.
  • both the outer oxide layer containing Mn and Si on the surface of the steel material and the inner oxide layer containing Mn and Si immediately below the material surface of the steel material include:
  • the joint surface of the aluminum alloy material with the steel material has a surface on the steel material surface.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-139789 discloses a method of joining a metal member and a joining member having a melting point lower than the melting point of the metal member by friction stir welding.
  • a joining member is superimposed on a metal member having a hole having a shape smaller than the diameter of the hole on the opposite side, and (ii) a joining tool is pressed against the joining member above the hole while rotating, and the joining member is pressed into the hole.
  • a friction stir welding method for dissimilar members characterized in that a joint is formed by welding.
  • a hole having a shape in which a hole diameter of a joining surface is smaller than a hole diameter of an opposite side is formed in one metal member, and the inside of the hole is joined.
  • two members having different characteristics for example, an iron-based member such as a plated steel plate or a titanium (alloy) member, and aluminum, magnesium or an alloy thereof, Alternatively, a member made of resin or the like can be firmly joined by friction stir welding.
  • the thickness of the intermetallic compound at the joint interface is smaller than that after fusion welding, it is difficult to completely suppress the formation of the intermetallic compound.
  • different metal materials are closely adhered to the dissimilar metal joint formed by friction stir welding, and it is extremely difficult to suppress electrolytic corrosion.
  • an object of the present invention is a simple method for firmly joining metal materials of various combinations of the same type and different types.
  • An object of the present invention is to provide a joining method capable of suppressing electrolytic corrosion. Further, the present invention also provides a metal joined body having a joint having a joining strength high enough to allow a joint to extend in a metal part in a tensile test, and in which electrolytic corrosion of the joint is extremely efficiently suppressed. The purpose is.
  • the present inventor has conducted intensive studies on a method for joining metal materials in order to achieve the above object, and as a result, has found that it is effective to firmly join metal materials via a resin layer, and the like. Reached.
  • the present invention A first step of bringing one metal material and the other metal material into contact with each other via a resin layer to form a bonded interface; A surface of the one metal material and / or the other metal material is irradiated with a laser to join the resin layer and the one metal material at the interface to be joined, and to bond the resin layer and the other metal material. Joining, and a second step of forming a joint, And a joining method for a metal material.
  • the method for joining metal materials of the present invention does not perform joining in a state where one metal material and the other metal material are directly contacted, but indirectly joins by forming a joining interface via a resin layer. Is to achieve. More specifically, the one metal material and the other metal material are joined by firmly joining the resin layer and the one metal material and also firmly joining the resin layer and the other metal material. Since one metal material does not directly contact the other metal material, electric corrosion can be extremely effectively suppressed.
  • the resin layer and the metal material are joined by a rise in the temperature of the interface between the resin layer and the metal material due to laser irradiation on the surface of the metal material.
  • the resin layer may be formed in advance on the surface of one metal material and / or the other metal material, or may be sandwiched between one metal material and the other metal material during joining.
  • one metal material is brought into contact with the other metal material via a resin layer to form an interface to be joined, and one metal material and / or Or a second step of raising the temperature of the surface of the other metal material, joining the resin layer and the one metal material at the interface to be joined, joining the resin layer and the other metal material, and forming a joint.
  • one metal material is brought into contact with one surface of the resin layer and the other metal material is brought into contact with the other surface, whereby one metal material / An interface to be joined in a three-layer state of the resin layer / the other metal material can be formed.
  • the resin layer for example, a sheet-like or film-like resin material, a liquid resin, or the like can be used.
  • the surface of the one metal material and / or the other metal material is irradiated with a laser to raise the temperature of the interface to be bonded, so that the one metal material is heated. And / or a heating region is formed in a part of the other metal material, and the resin layer overlapping with the heating region is heated to thereby firmly join the resin layer to the one metal material and the resin layer to the other metal material. Then, one metal material and the other metal material can be joined.
  • the temperature of the resin layer surface at the interface to be joined is preferably equal to or higher than the melting point, but the temperature can be lowered by performing an appropriate surface treatment on the metal material.
  • the temperature of the resin layer surface at the interface to be joined is preferably equal to or higher than the glass transition temperature.
  • the resin layer is a resin film.
  • the thickness of the resin layer present at the interface to be joined is preferably uniform, but can be easily achieved by using a resin film having a uniform thickness.
  • the resin film is easy to store and handle, and can be easily processed according to the shape and size of the region to be joined.
  • the thickness of the resin layer is 15 to 500 ⁇ m.
  • the more preferable thickness of the resin layer is 15 to 100 ⁇ m, and by setting the film thickness within this range, the load input to the resin layer at the bonding interface can be made three-dimensional to two-dimensional. As a result, a metal joined body having excellent mechanical properties can be obtained.
  • the resin layer may be made of a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene sulfide resin, a fluorine resin, a polyethylene terephthalate resin, a maleic acid-modified polypropylene resin and a polyether ether ketone resin. It is preferable that any one of them is used. By using these resins, a strong metal / resin bonding region can be formed.
  • the composition of the one metal material and the composition of the other metal material are different. Since the joining method of the metal material in the present invention is a joining of one metal material and the other metal material via the resin layer, a brittle intermetallic compound is generated at the joining interface even if both compositions are different. And a healthy joint can be obtained.
  • the one metal material and the other metal material conventionally known various metal materials can be used as long as the effects of the present invention are not impaired.
  • the joining part is pressurized immediately after the second step and / or immediately after the second step.
  • the joint obtained by the method for joining metal materials of the present invention has a sufficiently high strength
  • the addition of a pressing step can reduce the variation in quality.
  • the pressurization for example, air bubbles introduced into the resin layer of the joint at the time of temperature rise by laser irradiation can be moved to the outside, and a more reliable joint can be obtained.
  • the resin layer softened by the pressure spreads beyond the range of the heat-affected zone of the one metal material and the other metal material the bonding interface between the one metal material and the other metal material and the resin material is reduced. Can be expanded.
  • a new surface is formed on the one metal material and / or the other metal material by electrolytic treatment using a reducing carboxylic acid, and the new surface is coated with the carboxylic acid to obtain a carboxylic acid-coated metal material.
  • a treatment step is performed.
  • a stronger bond is formed by chemically bonding a nascent surface of one metal material and / or the other metal material to a carboxyl group derived from a resin material generated by thermal decomposition. can do.
  • the “new surface” means a state where the outermost surface of the metal material is removed and activated, for example, a state where the oxide film is removed and the metal material is exposed, or the outermost surface of the oxide film. Includes the state after the removal and the cleaning.
  • the number of bonding sites is reduced as compared with the case where reactive functional groups are bonded to each other.
  • the resin layer and the one metal material and the resin layer and the other metal material can be more firmly joined, and the one metal material and the other metal material can be joined.
  • a surface of the one metal material and / or the other metal material to be the interface to be joined is irradiated with a laser, and the surface is coated with oxide particles having a particle size of 1 to 100 nm.
  • the carboxylate is not arranged on the metal surface even if the electrolytic treatment is performed with the carboxylic acid, and the effect of the treatment cannot be expected much.
  • oxide particles having a particle diameter of 1 to 100 nm on the metal surface by laser irradiation the bonding strength can be secured by an anchor effect or the like due to a physical structure.
  • the metal joined body of the present invention can be manufactured by the method of joining metallic materials according to the present invention.
  • One metallic material and the other metallic material are indirectly joined via a resin layer, and are joined by an adhesive or rivet fastening. Not something.
  • the bonding interface obtained by the method for bonding metal materials of the present invention has a high strength, and has a high bonding strength such that one metal material and / or the other metal material is elongated in a tensile test.
  • the one metal material or the other metal material be broken in the tensile test. Since the metal bonded body of the present invention has extremely high bonding interface strength, depending on the combination of one metal material and the other metal material and the resin layer, one metal material or the other metal material may break after elongation. Very high bonding strength.
  • the one metal material and / or the other metal material is a steel material or a titanium material.
  • the steel material includes various carbon steels and stainless steels
  • the titanium material includes pure titanium and various titanium alloys.
  • the metal bonded body of the present invention even if the one metal material and / or the other metal material is a steel material or a titanium material, the metal bonded body has a strong bonding interface such that these metals elongate in a tensile test. In some cases, the reliability of the joint is so high that the steel breaks.
  • the metal material joining method and the metal joined body of the present invention it is a simple method for firmly joining various kinds of metal materials of the same type and different types. Can be provided. Further, it is possible to provide a metal joined body having a joint having a joint strength high enough to extend the joint at the metal part in the tensile test, and suppressing the electrolytic corrosion of the joint extremely efficiently.
  • FIG. 4 is a process chart of a method of joining metal materials in the present embodiment. It is a schematic diagram which shows a mode of a 1st process and a 2nd process.
  • FIG. 3 is a schematic cross-sectional view of a metal joined body 8 in the present embodiment. It is a schematic diagram which shows the state which laminated
  • 3 is an overview photograph of a metal joined body obtained in Example 1 after a tensile test.
  • 5 is an SEM photograph (low magnification) of the surface of a SUS304 plate subjected to a surface treatment in Example 2.
  • 5 is an SEM photograph (high magnification) of the surface of a SUS304 plate subjected to a surface treatment in Example 2.
  • 4 is an overview photograph of a metal joined body obtained in Example 2 after a tensile test.
  • FIG. 1 is a process diagram of a method of joining metal material in the present embodiment
  • FIG. 2 shows first and second steps used in the method of joining metal material in this embodiment. It is a schematic diagram which shows a situation.
  • the method of joining metal materials according to the present embodiment includes a joining interface between a first metal material 2 (one metal material) and a second metal material 4 (the other metal material) via a resin material 6 (resin layer).
  • each step will be described in detail by taking a case where a pretreatment is performed on a metal material and laser irradiation is performed from one metal material as a representative example.
  • a surface treatment step is preferably performed.
  • a new surface is formed on the first metal material 2 and the second metal material 4 by electrolytic treatment using a reducing carboxylic acid, and the new surface is coated with the carboxylic acid to form a carboxylic acid-coated metal material.
  • other acids can be used. For example, an amino acid or the like may be used.
  • a new surface is formed on the first metal material 2 and the second metal material 4 by electrolytic treatment using carboxylic acid, and the new surface that directly contributes to bonding is covered and protected with carboxylic acid. It is possible to obtain a carboxylic acid-coated metal material that can utilize a newly formed surface.
  • the reducing carboxylic acid used in the surface treatment step is preferably oxalic acid or formic acid.
  • oxalic acid or formic acid By subjecting the metal material to electrolytic treatment using oxalic acid or formic acid, formation of a new surface, coating of the new surface, and detachment can smoothly proceed, and an extremely strong joint can be formed smoothly.
  • the carboxylic acids may be used alone or as a mixture.
  • oxalic acid and formic acid it is preferable that oxalic acid and formic acid be 1: 2.
  • iron oxalate When a mixed electrolytic solution of oxalic acid and formic acid is used for steel, iron oxalate has low solubility (0.026% by mass in hot water), and is deposited on the surface of steel to prevent the steel from dissolving. Act as On the other hand, since the surface of the steel material dissolves as iron formate, it is possible to form a good new surface while suppressing excessive dissolution of the surface. Further, a mixed solution containing a carboxylic acid may be used. In addition to oxalic acid and formic acid, for example, phosphoric acid and diammonium hydrogen citrate can be used.
  • the method of subjecting aluminum to electrolytic treatment using oxalic acid or the like is generally known as alumite treatment (anodizing treatment).
  • the purpose of the alumite treatment (anodizing treatment) is to form an oxide film on the surface of the aluminum material, whereas the purpose of the surface treatment step is to form a new surface and protect the new surface, and the electrolytic treatment conditions differ greatly.
  • electrolytic treatment is performed at an oxalic acid concentration of 2% to 3% for 20 minutes to 30 minutes, whereas when oxalic acid is used in the surface treatment step, 10% oxalic acid is used. It is preferable to perform the treatment for a shorter time at an acid concentration.
  • the first metal material 2 and the second metal material 4 have different compositions.
  • various conventionally known metal materials can be used as long as the effects of the present invention are not impaired.
  • various steel materials, galvanized steel materials, aluminum alloys, magnesium alloys Etc. can be used.
  • the joining method of the metal material in the present embodiment is an indirect joining of the first metal material 2 and the second metal material 4 via the resin material 6, even if both compositions are different, the joining interface is fragile. A sound joint can be obtained without generating an intermetallic compound.
  • the metal surface By coating the metal surface with oxide particles having a particle size of 1 to 100 nm, a minute and complicated three-dimensional structure is formed, and the bonding strength between the structure and the resin material 6 is improved by a physical anchor effect or the like. Can be done.
  • the type of laser and irradiation conditions are not particularly limited, and various conventionally known lasers can be used.
  • the laser output, the focus diameter, the scanning speed, the scanning pattern, and the like may be appropriately adjusted according to the type of laser or metal material used.
  • Oxygen in the atmosphere may be used as oxygen necessary for forming oxide particles, or may be mixed in the shielding gas at an arbitrary ratio.
  • the first step (S01) is a step for bringing the first metal material 2 and the second metal material 4 into contact with each other via the resin material 6 to form an interface to be joined.
  • the resin material 6 and the first metal material 2, and the resin material 6 and the second metal material 4 are brought into a general superimposed state by abutting flat surfaces, and more specifically, one of the resin materials 6.
  • the first metal material 2 is brought into contact with the surface and the second metal material 4 is brought into contact with the other surface, so that the first metal material 2 / the resin material 6 / the second metal material 4 have three layers. Configure the bonding interface. Therefore, direct contact between the first metal member 2 and the second metal member 4 is not performed.
  • the resin material 6 various conventionally known resin materials can be used as long as the effects of the present invention are not impaired.
  • polyamide resin (PA) polyimide resin (PI), polycarbonate resin (PC), polyphenylene
  • PPS sulfide resin
  • PTFE fluororesin
  • PET polyethylene terephthalate
  • PP maleic acid-modified polypropylene resin
  • PEEK polyetheretherketone resin
  • the resin material 6 is a resin film and has a thickness of 15 to 500 ⁇ m.
  • the thickness of the resin layer at the interface to be joined can be made uniform, storage and handling are facilitated, and furthermore, processing to match the shape and size of the region to be joined can be easily performed. .
  • Second step (S02: joining step) The second step (S02) is to decompose the resin material 6 by raising the temperature of the interface to be joined formed in the first step (S01) to a temperature equal to or higher than the glass transition temperature of the resin material 6 by laser irradiation. And by removing the carboxylic acid of the first metal material 2 and the second metal material 4 to expose a new surface on the surface of the carboxylic acid-coated metal material, and further cooling the interface to be joined to below the glass transition temperature. This is a step for bonding the carboxyl group of the resin material 6 and the new surfaces of the first metal material 2 and the second metal material 4 to form a joint.
  • the resin material 6 softened by the laser irradiation penetrates into the surface of the metal material having a fine and complicated structure, and a strong bonding is achieved.
  • a case where a carboxylic acid-coated metal material having a more complicated phenomenon is joined will be mainly described.
  • the laser used for raising the temperature is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known lasers can be used. More specifically, a semiconductor laser, a CO 2 laser, a fiber laser, a YAG laser, or the like can be used as long as the temperature of the interface to be joined can be raised to the glass transition temperature of the resin material 6 or higher. It is preferable that the laser is irradiated from one or both surfaces of the first metal material 2 and the second metal material 4. Irradiation from both surfaces is particularly advantageous when joining thick metal materials. In this embodiment, an example in which the first metal 2 is irradiated with a laser will be described as a representative example.
  • the resin material 6 is decomposed by the rise in temperature of the interface to be joined, and a carboxyl group derived from the resin material 6 is generated.
  • the carboxylic acid covering (protecting) the new surface is removed, and the active new surface is exposed.
  • the temperature rise at the interface to be joined is small, the above-described exposure of the new surface and the generation of carboxyl groups become insufficient, and the strength of the interface at the joint cannot be sufficiently increased. If the amount is excessive, the resin material 6 is peeled off from the first metal material 2 and the second metal material 4, resulting in poor formation of the bonding interface. Therefore, it is preferable to select appropriate heating conditions by controlling process parameters such as laser output, scanning speed, and focal length used for laser irradiation.
  • the interface to be joined is cooled to a temperature lower than the glass transition temperature, and a carboxyl group is chemically bonded to the new surface to form a joint. More specifically, by cooling the interface to be joined to a temperature lower than the glass transition temperature, a new surface formed on the outermost surfaces of the first metal material 2 and the second metal material 4, a carboxyl group derived from the resin material 6, Are chemically bonded. As a result, extremely strong direct bonding of the metal resin is achieved at both the resin material 6 / first metal material 2 interface and the resin material 6 / second metal material 4 interface, and the first metal material 2 and the second metal material 4 are joined together. Can be formed indirectly.
  • the bonding method of the metal material according to the present embodiment greatly increases the number of bonding sites between the metal resins, thereby reducing the strength of the bonding portion. It can be dramatically increased.
  • the joint be pressed during and / or immediately after the formation of the joint in the second step (S02).
  • a pressure may be applied from both sides of the first metal material 2 and the second metal material 4 using a substantially transparent pressing member or the like that can transmit laser.
  • pressure may be simply applied from both sides of the first metal material 2 and the second metal material 4. Note that even when the oxidation treatment by laser irradiation is used as the preliminary treatment, the effect of the pressurization is the same.
  • the joint obtained by the method for joining metal materials in the present embodiment has a sufficiently high strength, but the addition of the pressing step can reduce the variation in quality.
  • the pressurization for example, when the temperature of the interface to be joined is raised by laser irradiation, bubbles introduced into the resin material 6 can be moved to the outside, and a more reliable joint can be obtained. Furthermore, since the resin material 6 softened by the pressurization spreads beyond the range of the heat affected zone of the first metal material 2 and the second metal material 4, the resin material 6, the first metal material 2 and the second metal material The joining interface with the material 4 can be enlarged.
  • the molten resin material 6 spreads over the interface to be joined by pressurization, and the joining is achieved even at a portion lower than the melting temperature.
  • the pressure is preferably from 1.40 to 1.85 MPa, more preferably from 1.70 to 1.85 MPa. By setting the pressure to 0.25 MPa or more, it is effective in reducing (moving) bubbles, and by setting the pressure to 1.85 MPa or less, it is possible to suppress the resin material 6 at the joint from becoming too thin.
  • FIG. 3 shows a schematic sectional view of the metal bonded body 8 in the present embodiment.
  • the metal joined body 8 is a lap joining member of the first metal material 12 (one metal material) and the second metal material 14 (the other metal material).
  • the resin material 16 (resin layer) exists at the joining interface of the resin material, the resin material 16 and the first metal material 12 are directly joined, and the resin material 16 and the second metal material 14 are directly joined.
  • the first metal material 12 and / or the second metal material 14 elongate.
  • the resin material 16 and the first metal material 12 are directly connected, and the resin material 16 and the second metal material 14 are directly connected, so that the first metal material 12 and the second metal material 14 are indirectly connected. They are connected, and no adhesive or rivets are used at the joints.
  • the metal joined body 8 can be suitably manufactured by the above-described method for joining metal materials in the present embodiment.
  • the strength of the joining interface is not sufficient, and the metal material does not elongate in a tensile test of the joint.
  • the strength of the bonding interface at the bonding portion is high, and the bonding strength is high enough to extend the first metal material 12 and / or the second metal material 14 in the tensile test.
  • various metal materials can be used without impairing the effects of the present invention.
  • various steel materials including stainless steel and carbon steel, pure titanium , A titanium alloy, a shape memory alloy such as a nickel-titanium alloy, a galvanized steel material, an aluminum alloy, a magnesium alloy, or the like.
  • Various conventionally known resin materials can be used as the resin material 16 as long as the effects of the present invention are not impaired.
  • PPS polysulfide resin
  • PTFE fluororesin
  • PET polyethylene terephthalate
  • PP maleic acid-modified polypropylene resin
  • PEEK polyetheretherketone resin
  • the metal joined body 8 it is preferable that the first metal material 12 and / or the second metal material 14 be broken in the tensile test of the joint. Since the strength of the bonding interface is extremely high, the metal bonded body 8 has extremely high bonding strength such that the first metal material 12 and / or the second metal material 14 breaks after being elongated.
  • the first metal material 12 and / or the second metal material 14 is a steel material or a titanium material.
  • the first metal material 12 and / or the second metal material 14 are a steel material or a titanium material.
  • an inexpensive and strong metal bonded body 8 can be realized, and by using a titanium material, a lightweight and strong metal bonded body 8 is realized. can do.
  • the first metal material 12 and / or the second metal material 14 are a steel material or a titanium material, the first metal material 12 and / or the second metal material 14 have a strong bonding interface such that these metals elongate in a tensile test. In some cases, the reliability of the joint is high enough to cause breakage.
  • the joining interface between the resin material 16 / the first metal material 12 and the joining interface with the resin material 16 / the second metal material 14 extends to the outside of the heat-affected zone.
  • the bonded area is inside the heat-affected zone, but since bonding is achieved over a wider area by pressing, high bonding strength and reliability are achieved. Can be realized.
  • the maximum diameter of the bubbles existing in the joint region is less than 0.1 mm. Since the maximum diameter of the bubble is less than 0.1 mm, the bubble hardly affects the joint properties, and the metal joined body 8 has extremely good mechanical properties. In addition, since bubbles at the joint cannot be clearly confirmed by visual observation, it is possible to suppress a reduction in image due to the presence of a defect at the joint.
  • Example 1 >> SPCC steel plate (25 mm ⁇ 100 mm ⁇ 0.6 mm) as the first metal material, A5052 aluminum alloy plate (25 mm ⁇ 100 mm ⁇ 1.0 mm) as the second metal material, polyamide resin (Reyfan manufactured by Toray Film Processing Co., Ltd.) as the resin material Using a film (25 mm ⁇ 15 mm ⁇ 100 ⁇ m), an SPCC steel plate / polyamide resin film / A5052 aluminum alloy plate was lap-joined by laser irradiation.
  • each of the SPCC plate and the aluminum alloy plate was irradiated at a beam size of 40 mm ⁇ 6 mm and a scanning speed of 2 mm / sec using a semiconductor laser manufactured by Laser Line Co., Ltd. for laser irradiation.
  • the output was set to 410 W for irradiation on the SPCC plate side, and the output was set to 1150 W for irradiation on the A5052 aluminum alloy plate side.
  • an SPCC steel plate and an A5052 alloy plate were subjected to oxalic acid electrolysis using an electrolytic solution having an oxalic acid concentration of 10% for an electrolysis time of 5 minutes (surface treatment step).
  • the oxalic acid electrolytically treated SPCC steel sheet and the A5052 alloy sheet are overlapped with each other via the polyamide resin film in the state shown in FIG. 4 to form a bonded interface (first step), and laser irradiation is performed from the SPCC steel sheet side.
  • the temperature of the interface to be joined was raised to or higher than the glass transition temperature of the polyamide resin, and then cooled to a temperature lower than the glass transition temperature by air cooling (second step) to produce an actual metal joined body.
  • FIG. 6 shows an overview photograph of a representative test piece after the tensile test. It can be confirmed that the SPCC steel sheet has been elongated and has been broken (the breaking strength is 5665 N). In addition, the joint part is maintaining a healthy state. From the results of the tensile test for Example 1, it is understood that a metal joined body having a joint strength high enough to break and / or elongate the SPCC steel sheet is obtained.
  • Example 2 SUS304 plate (25 mm x 100 mm x 0.5 mm) as the first metal material, pure titanium JIS 2 seed plate (25 mm x 100 mm x 0.5 mm) as the second metal material, polyphenylene sulfide resin (Torayna Tolerina) film as the resin material (25 mm ⁇ 15 mm ⁇ 100 ⁇ m), the SUS304 plate / polyphenylene sulfide resin film / pure titanium JIS type 2 plate were joined by laser irradiation. The laser irradiation was performed using a semiconductor laser manufactured by Laser Line Co., Ltd., and the laser output was controlled so that the temperature of the SUS304 plate surface (non-interface) was constant at 380 ° C.
  • the laser irradiation was performed using a semiconductor laser manufactured by Laser Line Co., Ltd., and the laser output was controlled so that the temperature of the SUS304 plate surface (non-interface) was constant at 380 ° C.
  • the interface temperature between SUS304 and the polyphenylene sulfide resin film was 350 to 380 ° C.
  • the interface temperature between pure titanium JIS 2 and the polyphenylene sulfide resin film was 230 to 260 ° C.
  • laser was applied only to the surface of the SUS304 plate.
  • FIGS. 7 and 8 show SEM photographs of the surface of the SUS304 plate as an example of the surface state by the treatment. It can be seen that the surface of the SUS304 plate is covered with oxide particles having a particle size of 1 to 100 nm, and has a fine and complicated three-dimensional structure.
  • Example 3 SUS304 plate (25 mm x 100 mm x 0.5 mm) as the first metal material, pure titanium JIS type 2 plate (25 mm x 100 mm x 0.5 mm) as the second metal material, polyethylene terephthalate resin (Lumirror manufactured by Toray Industries) film as the resin material (25 mm ⁇ 15 mm ⁇ 11 ⁇ m), the SUS304 plate / polyethylene terephthalate resin film / pure titanium JIS type 2 plate were joined by laser irradiation. The laser irradiation was performed using a semiconductor laser manufactured by Laser Line Co., Ltd., and the beam size was 40 mm ⁇ 6 mm, and the laser was applied only to the surface of the SUS304 plate.
  • polyethylene terephthalate resin Limirror manufactured by Toray Industries
  • the tensile shear strength of the obtained metal joined body was 1900 N, and the metal joint was separated from the joint.
  • the conditions under which the highest strength was obtained were again verified, and the tensile shear strength of the obtained metal joined body was 565 N, and the metal joint was peeled off from the joint.
  • the strength varied. It is considered that the reason is that the thickness of the resin film is too thin as 11 ⁇ m.
  • First metal material 4 Second metal material, 6 ... resin material, 8 ... metal joint, 12 ... first metal material, 14 ... second metal material, 16 ... resin material.

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Provided is a simple method for firmly joining metal materials in various combinations of similar types of metals and different types of metals, wherein the joining method makes it possible to suppress electrolytic corrosion of a joining part in a case where metals of different types are joined. Also provided is a metal joining body having a joining part that has high joining strength such that a joint extends to a metal part in a tension test, the metal joining body being such that electrolytic corrosion of the joining part is very effectively suppressed. This method for joining metal materials is characterized by having: a first step in which one metal material and another metal material are brought into contact with a resin layer interposed therebetween, thus forming a joining interface; and a second step in which the surface of the one metal material and/or the other metal material is irradiated with a laser, the one metal material is joined to the resin layer at the joining interface, and the other metal is joined to the resin layer, thus forming the joining part.

Description

金属材の接合方法及び金属接合体Metal joining method and metal joined body
 本発明は金属材同士を接合する方法及び金属接合体に関する。 The present invention relates to a method for joining metal materials and a metal joined body.
 従来、金属材同士の接合には、リベット締結等の機械的な接合やアーク溶接及びレーザ溶接等の溶融溶接が用いられてきた。しかしながら、リベット締結を用いる場合、締結部の大きさや重量によって部品が大型化・重量化することに加え、設計の自由度も低下することから、適用できる部品が限定されてしまう。 Conventionally, mechanical joining such as riveting and fusion welding such as arc welding and laser welding have been used for joining metal materials. However, when rivet fastening is used, the size and weight of the fasteners are increased and the design flexibility is reduced in addition to the increase in the size and weight of the fasteners, which limits the applicable components.
 また、溶融溶接では接合部が溶融凝固組織となることに加えて熱影響部が形成され、接合構造体として金属母材(被接合材)の機械的性質を十分に活用することができない。更に、異種金属材を接合する場合は接合界面に脆弱な金属間化合物層が形成し、継手の強度及び信頼性を担保することが困難である。 溶 融 Furthermore, in the fusion welding, the heat-affected zone is formed in addition to the melt-solidified structure at the joint, and the mechanical properties of the metal base material (material to be joined) cannot be fully utilized as the joint structure. Furthermore, when joining dissimilar metal materials, a brittle intermetallic compound layer is formed at the joining interface, and it is difficult to ensure the strength and reliability of the joint.
 これに対し、近年では金属材を固相で接合する方法が注目されており、摩擦圧接や摩擦攪拌接合を用いた金属材の接合方法が検討されている。例えば、特許文献1(特開2009-299138号公報)においては、鋼材とアルミニウム合金材との異材接合体であって、接合する鋼材を特定組成とする一方で、接合するアルミニウム合金材を特定組成のAl-Mg-Si系アルミニウム合金とし、異材接合体のアルミニウム合金材側の接合界面において、Li、Mnを特定量含有させるとともに、Feの含有量を規制した上で、異材接合体の接合界面にFeとAlとの反応層が形成されている異材接合体を得る金属材の接合方法、が提案されている。 On the other hand, in recent years, a method of joining metal materials in a solid phase has attracted attention, and methods of joining metal materials using friction welding or friction stir welding have been studied. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-299138), a dissimilar joined body of a steel material and an aluminum alloy material, in which the steel material to be joined has a specific composition, and the aluminum alloy material to be joined has a specific composition Al-Mg-Si-based aluminum alloy of the above, the Li and Mn are contained in a specific amount at the bonding interface on the aluminum alloy material side of the dissimilar material joined body, and the Fe interface is regulated. A method of joining metal materials to obtain a dissimilar material joined body in which a reaction layer of Fe and Al is formed.
 前記特許文献1に記載の金属材の接合方法では、鋼材の生地表面のMn、Siを含む外部酸化物層と、鋼材の生地表面直下のMn、Siを含む内部酸化物層との両者によって、スポット溶接時のFe、Alの拡散を抑えて、接合界面のAl-Fe系の脆い反応層の過剰生成を抑制することに加え、アルミニウム合金材の鋼材との接合面側に、鋼材表面上に存在する外部酸化物層を還元する機能を有する元素として、Li、Mnの1種または2種を予め存在させることで、鋼材の破壊されにくい外部酸化物層を、Li、Mnによる還元作用によって破壊して、スポット溶接時のFe、Alの拡散を必要なだけ、かつ過剰に抑制しないように、効果的に制御することができる。この結果、接合界面における、Al-Fe系の脆い反応層(金属間化合物層)の過剰生成を抑制する一方で、高い接合強度を得るための必要最小限のAl-Fe系の反応層(金属間化合物層)は確保して、高い接合強度を得ることができる、としている。 In the method of joining metal materials described in Patent Document 1, both the outer oxide layer containing Mn and Si on the surface of the steel material and the inner oxide layer containing Mn and Si immediately below the material surface of the steel material include: In addition to suppressing the diffusion of Fe and Al during spot welding and suppressing the excessive formation of a brittle reaction layer of the Al-Fe system at the joint interface, the joint surface of the aluminum alloy material with the steel material has a surface on the steel material surface. By pre-existing one or two types of Li and Mn as elements having a function of reducing the existing external oxide layer, the external oxide layer which is hard to break the steel material is broken by the reduction action of Li and Mn. Thus, it is possible to effectively control the diffusion of Fe and Al at the time of spot welding so that it is necessary and not excessively suppressed. As a result, while suppressing the excessive generation of the Al-Fe-based brittle reaction layer (intermetallic compound layer) at the bonding interface, the minimum necessary Al-Fe-based reaction layer (metal Inter-compound layer) can be secured and high bonding strength can be obtained.
 また、特許文献2(特開2015-139789号公報)では、金属部材と、金属部材の融点より低い融点を有する接合部材を摩擦攪拌接合で接合する方法において、(i)接合面の穴径が反対側の穴径よりも小さい形状の孔を備える金属部材に、接合部材を重ね、(ii)上記孔の上部の接合部材に、接合工具を回転しつつ押し当て、接合部材を上記孔に圧入して接合継手を形成することを特徴とする異質部材の摩擦攪拌接合方法、が提案されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2015-139789) discloses a method of joining a metal member and a joining member having a melting point lower than the melting point of the metal member by friction stir welding. A joining member is superimposed on a metal member having a hole having a shape smaller than the diameter of the hole on the opposite side, and (ii) a joining tool is pressed against the joining member above the hole while rotating, and the joining member is pressed into the hole. A friction stir welding method for dissimilar members, characterized in that a joint is formed by welding.
 前記特許文献2に記載の異質部材の摩擦攪拌接合方法では、一方の金属部材に、接合面の穴径が反対側の穴径よりも小さい形状の孔を形成し、その孔の内部に、接合しようとする他方の部材を圧入して充填することで、特性(融点)が異なる二つの部材、例えば、めっき鋼板などの鉄系部材やチタン(合金)部材と、アルミニウム、マグネシウム又はそれらの合金、又は、樹脂等からなる部材を、摩擦攪拌接合で強固に接合することができる、としている。 In the friction stir welding method for a foreign material described in Patent Document 2, a hole having a shape in which a hole diameter of a joining surface is smaller than a hole diameter of an opposite side is formed in one metal member, and the inside of the hole is joined. By press-fitting the other member to be filled, two members having different characteristics (melting points), for example, an iron-based member such as a plated steel plate or a titanium (alloy) member, and aluminum, magnesium or an alloy thereof, Alternatively, a member made of resin or the like can be firmly joined by friction stir welding.
特開2009-299138号公報JP 2009-299138 A 特開2015-139789号公報JP-A-2013-139789
 ここで、摩擦攪拌接合では高速回転するツールを被接合領域に圧入する必要があるため、被接合材の種類やサイズ、及び継手形状等が制限されてしまう。また、通常の摩擦攪拌接合では接合終了端にツールを引き抜いた穴が形成されてしまうことに加え、接合部の表面にツールマークやバリ等が形成されてしまう。更に、被接合材の種類によってはツールへの負荷が大きくなることから、例えば、鋼材を接合する場合にはツール寿命が深刻な問題となる。 Here, in the friction stir welding, it is necessary to press-fit a tool rotating at high speed into the region to be welded, so that the type and size of the material to be welded and the shape of the joint are limited. In addition, in normal friction stir welding, a hole from which a tool is pulled out is formed at the end of welding, and a tool mark, a burr, and the like are formed on the surface of the welded portion. Furthermore, since the load on the tool increases depending on the type of the material to be welded, the tool life becomes a serious problem when, for example, a steel material is joined.
 また、溶融溶接後と比較すると接合界面における金属間化合物の厚さは薄くなるが、当該金属間化合物の形成を完全に抑制することは困難である。加えて、摩擦攪拌接合で形成された異種金属接合部は異なる金属材が密着しており、電解腐食を抑制することが極めて困難である。 Although the thickness of the intermetallic compound at the joint interface is smaller than that after fusion welding, it is difficult to completely suppress the formation of the intermetallic compound. In addition, different metal materials are closely adhered to the dissimilar metal joint formed by friction stir welding, and it is extremely difficult to suppress electrolytic corrosion.
 前記特許文献1の接合方法では高い接合強度を得ることができるが、適用できる被接合材の組成及び組合せが厳密に限定され、汎用性が極めて乏しい。また、前記特許文献2の接合方法でも強固な異材接合部が形成されるが、融点や塑性変形抵抗の観点から適用できる被接合材の組合せが限定され、被接合材に孔を設ける必要がある等、接合プロセスが煩雑となる。 接合 Although the high bonding strength can be obtained by the bonding method of Patent Document 1, the composition and combination of applicable materials to be bonded are strictly limited, and the versatility is extremely poor. In addition, although a strong dissimilar material joint is formed by the joining method of Patent Document 2, the combinations of materials to be applied that can be applied from the viewpoint of melting point and plastic deformation resistance are limited, and it is necessary to provide holes in the material to be joined. For example, the joining process becomes complicated.
 以上のような従来技術における問題点に鑑み、本発明の目的は、同種及び異種の様々な組み合わせの金属材を強固に接合する簡便な方法であって、異種金属を接合する場合は接合部の電解腐食を抑制することができる接合方法を提供することにある。また、本発明は、引張試験において継手が金属部で伸長する程度に高い接合強度の接合部を有し、当該接合部の電解腐食が極めて効率的に抑制された金属接合体を提供することも目的としている。 In view of the problems in the prior art as described above, an object of the present invention is a simple method for firmly joining metal materials of various combinations of the same type and different types. An object of the present invention is to provide a joining method capable of suppressing electrolytic corrosion. Further, the present invention also provides a metal joined body having a joint having a joining strength high enough to allow a joint to extend in a metal part in a tensile test, and in which electrolytic corrosion of the joint is extremely efficiently suppressed. The purpose is.
 本発明者は上記目的を達成すべく、金属材の接合方法について鋭意研究を重ねた結果、樹脂層を介して金属材同士を強固に接合させること等が効果的であることを見出し、本発明に到達した。 The present inventor has conducted intensive studies on a method for joining metal materials in order to achieve the above object, and as a result, has found that it is effective to firmly join metal materials via a resin layer, and the like. Reached.
 即ち、本発明は、
 樹脂層を介して一方の金属材と他方の金属材とを当接させ、被接合界面を形成する第一工程と、
 前記一方の金属材及び/又は前記他方の金属材の表面にレーザを照射し、前記被接合界面において前記樹脂層と前記一方の金属材を接合すると共に、前記樹脂層と前記他方の金属材を接合し、接合部を形成する第二工程と、を有すること、
 を特徴とする金属材の接合方法、を提供する。
That is, the present invention
A first step of bringing one metal material and the other metal material into contact with each other via a resin layer to form a bonded interface;
A surface of the one metal material and / or the other metal material is irradiated with a laser to join the resin layer and the one metal material at the interface to be joined, and to bond the resin layer and the other metal material. Joining, and a second step of forming a joint,
And a joining method for a metal material.
 本発明の金属材の接合方法は、一方の金属材と他方の金属材とを直接接触させた状態で接合を行うものではなく、樹脂層を介した接合界面を形成することによって間接的に接合を達成するものである。より具体的には、樹脂層と一方の金属材を強固に接合すると共に、樹脂層と他方の金属材も強固に接合することで、一方の金属材と他方の金属材を接合する。一方の金属材と他方の金属材が直接接触しないため、電気腐食を極めて効果的に抑制することができる。 The method for joining metal materials of the present invention does not perform joining in a state where one metal material and the other metal material are directly contacted, but indirectly joins by forming a joining interface via a resin layer. Is to achieve. More specifically, the one metal material and the other metal material are joined by firmly joining the resin layer and the one metal material and also firmly joining the resin layer and the other metal material. Since one metal material does not directly contact the other metal material, electric corrosion can be extremely effectively suppressed.
 また、本発明の金属材の接合方法では、金属材表面へのレーザ照射による樹脂層/金属材界面の温度上昇により、樹脂層と金属材が接合されるため、接合工程は容易かつ短時間で完了する。樹脂層は一方の金属材及び/又は他方の金属材の表面に予め形成させてもよく、接合時に一方の金属材と他方の金属材の間に挟み込んでもよい。 In the method for joining metal materials according to the present invention, the resin layer and the metal material are joined by a rise in the temperature of the interface between the resin layer and the metal material due to laser irradiation on the surface of the metal material. Complete. The resin layer may be formed in advance on the surface of one metal material and / or the other metal material, or may be sandwiched between one metal material and the other metal material during joining.
 本発明の金属材の接合方法は、樹脂層を介して一方の金属材と他方の金属材とを当接させ、被接合界面を形成する第一工程と、レーザ照射により一方の金属材及び/又は他方の金属材の表面を昇温し、被接合界面において樹脂層と一方の金属材を接合すると共に、樹脂層と他方の金属材を接合し、接合部を形成する第二工程と、を有している。 According to the method for joining metal materials of the present invention, one metal material is brought into contact with the other metal material via a resin layer to form an interface to be joined, and one metal material and / or Or a second step of raising the temperature of the surface of the other metal material, joining the resin layer and the one metal material at the interface to be joined, joining the resin layer and the other metal material, and forming a joint. Have.
 本発明の金属材の接合方法における第一工程では、樹脂層の一方の面に一方の金属材を当接させ、他方の面に他方の金属材を当接させることにより、一方の金属材/樹脂層/他方の金属材の三層状態となる被接合界面を構成することができる。なお、樹脂層には、例えばシート状又はフィルム状の樹脂材や液体樹脂等を用いることができる。 In the first step in the method for joining metal materials according to the present invention, one metal material is brought into contact with one surface of the resin layer and the other metal material is brought into contact with the other surface, whereby one metal material / An interface to be joined in a three-layer state of the resin layer / the other metal material can be formed. Note that, for the resin layer, for example, a sheet-like or film-like resin material, a liquid resin, or the like can be used.
 次に、本発明の金属材の接合方法における第二工程で、一方の金属材及び/又は他方の金属材の表面からレーザを照射して被接合界面を昇温することにより、一方の金属材及び/又は他方の金属材の一部に加熱領域が形成され、当該加熱領域と重畳した樹脂層が昇温することで樹脂層と一方の金属材及び樹脂層と他方の金属材を強固に接合し、一方の金属材と他方の金属材を接合することができる。ここで、被接合界面における樹脂層表面の温度は融点以上となることが好ましいが、金属材に適当な表面処理を施すことで当該温度を低下せることができる。金属材に適当な表面処理を施す場合、被接合界面における樹脂層表面の温度はガラス転移温度以上とすることが好ましい。 Next, in the second step of the metal material bonding method of the present invention, the surface of the one metal material and / or the other metal material is irradiated with a laser to raise the temperature of the interface to be bonded, so that the one metal material is heated. And / or a heating region is formed in a part of the other metal material, and the resin layer overlapping with the heating region is heated to thereby firmly join the resin layer to the one metal material and the resin layer to the other metal material. Then, one metal material and the other metal material can be joined. Here, the temperature of the resin layer surface at the interface to be joined is preferably equal to or higher than the melting point, but the temperature can be lowered by performing an appropriate surface treatment on the metal material. When an appropriate surface treatment is performed on the metal material, the temperature of the resin layer surface at the interface to be joined is preferably equal to or higher than the glass transition temperature.
 また、本発明の金属材の接合方法では、前記樹脂層が樹脂フィルムであること、が好ましい。被接合界面に存在する樹脂層の厚さは均一であることが好ましいが、均一な厚さを有する樹脂フィルムを用いることで容易に達成できる。また、樹脂フィルムは保存及び取り扱いが容易であり、更に被接合領域の形状及びサイズに合わせて容易に加工することができる。 In the method for joining metal materials of the present invention, it is preferable that the resin layer is a resin film. The thickness of the resin layer present at the interface to be joined is preferably uniform, but can be easily achieved by using a resin film having a uniform thickness. The resin film is easy to store and handle, and can be easily processed according to the shape and size of the region to be joined.
 また、本発明の金属材の接合方法では、前記樹脂層の厚さが15~500μmであること、が好ましい。樹脂層の厚さを15μm以上とすることで被接合界面に均質な接合層を形成することができ、500μm以下とすることで樹脂層を起点とする接合部の破断を抑制することができる。ここで、より好ましい樹脂層の厚さは15~100μmであり、膜厚をこの範囲内とすることで、接合界面の樹脂層に対する荷重入力を三次元から二次元とすることができる。その結果、優れた機械的性質を有する金属接合体を得ることができる。 In the method for bonding metal materials of the present invention, it is preferable that the thickness of the resin layer is 15 to 500 μm. By setting the thickness of the resin layer to 15 μm or more, a uniform bonding layer can be formed at the interface to be bonded, and by setting the thickness to 500 μm or less, it is possible to suppress breakage of the bonding portion starting from the resin layer. Here, the more preferable thickness of the resin layer is 15 to 100 μm, and by setting the film thickness within this range, the load input to the resin layer at the bonding interface can be made three-dimensional to two-dimensional. As a result, a metal joined body having excellent mechanical properties can be obtained.
 また、本発明の金属材の接合方法では、前記樹脂層がポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、マレイン酸変性ポリプロピレン樹脂及びポリエーテルエーテルケトン樹脂のうちの何れかであること、が好ましい。これらの樹脂を用いることで、強固な金属/樹脂接合領域を形成させることができる。 In the method for bonding a metal material according to the present invention, the resin layer may be made of a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene sulfide resin, a fluorine resin, a polyethylene terephthalate resin, a maleic acid-modified polypropylene resin and a polyether ether ketone resin. It is preferable that any one of them is used. By using these resins, a strong metal / resin bonding region can be formed.
 また、本発明の金属材の接合方法では、前記一方の金属材と前記他方の金属材の組成が異なること、が好ましい。本発明における金属材の接合方法は、樹脂層を介した一方の金属材と他方の金属材との接合であるから、双方の組成を異にしても接合界面に脆弱な金属間化合物が生じることなく健全な接合部を得ることができる。なお、一方の金属材及び他方の金属材としては、本発明の効果を損なわない範囲で従来公知の種々の金属材を用いることができる。 In the method for joining metal materials of the present invention, it is preferable that the composition of the one metal material and the composition of the other metal material are different. Since the joining method of the metal material in the present invention is a joining of one metal material and the other metal material via the resin layer, a brittle intermetallic compound is generated at the joining interface even if both compositions are different. And a healthy joint can be obtained. As the one metal material and the other metal material, conventionally known various metal materials can be used as long as the effects of the present invention are not impaired.
 また、本発明の金属材の接合方法では、前記第二工程及び/又は前記第二工程の直後に前記接合部を加圧すること、が好ましい。本発明の金属材の接合方法によって得られる接合部は十分に高い強度を有しているが、加圧工程を加えることで、品質のばらつきを小さくすることができる。当該加圧により、例えば、レーザ照射による昇温時において接合部の樹脂層内に導入される気泡を外部に移動させることができ、より信頼性の高い接合部を得ることができる。更に、当該加圧によって軟化した樹脂層が一方の金属材及び他方の金属材の熱影響部の範囲を超えて広がることから、一方の金属材及び他方の金属材と樹脂材との接合界面を拡大することができる。 In addition, in the metal material joining method of the present invention, it is preferable that the joining part is pressurized immediately after the second step and / or immediately after the second step. Although the joint obtained by the method for joining metal materials of the present invention has a sufficiently high strength, the addition of a pressing step can reduce the variation in quality. By the pressurization, for example, air bubbles introduced into the resin layer of the joint at the time of temperature rise by laser irradiation can be moved to the outside, and a more reliable joint can be obtained. Furthermore, since the resin layer softened by the pressure spreads beyond the range of the heat-affected zone of the one metal material and the other metal material, the bonding interface between the one metal material and the other metal material and the resin material is reduced. Can be expanded.
 また、本発明の金属材の接合方法では、
 前記第一工程の予備処理として、
 還元性を有するカルボン酸を用いた電解処理によって前記一方の金属材及び/又は前記他方の金属材に新生面を形成すると共に、前記カルボン酸によって前記新生面を被覆し、カルボン酸被覆金属材を得る表面処理工程を施すこと、が好ましい。
In the method for joining metal materials of the present invention,
As a preliminary treatment of the first step,
A new surface is formed on the one metal material and / or the other metal material by electrolytic treatment using a reducing carboxylic acid, and the new surface is coated with the carboxylic acid to obtain a carboxylic acid-coated metal material. Preferably, a treatment step is performed.
 本発明の金属材の接合方法では、一方の金属材及び/又は他方の金属材の新生面と熱分解によって生成する樹脂材由来のカルボキシル基とを化学結合させることで、より強固な接合部を形成することができる。なお、本願明細書において「新生面」とは、金属材の最表面が除去されて活性化した状態を意味し、例えば、酸化皮膜が除去されて金属材が露出した状態や、酸化皮膜の最表面が除去・清浄された状態を含むものである。 In the method for joining metal materials of the present invention, a stronger bond is formed by chemically bonding a nascent surface of one metal material and / or the other metal material to a carboxyl group derived from a resin material generated by thermal decomposition. can do. In the specification of the present application, the “new surface” means a state where the outermost surface of the metal material is removed and activated, for example, a state where the oxide film is removed and the metal material is exposed, or the outermost surface of the oxide film. Includes the state after the removal and the cleaning.
 一方の金属材及び/又は他方の金属材の新生面と樹脂材由来のカルボキシル基とを化学結合させるため、例えば、反応性を有する官能基同士を結合する場合と比較して、結合サイトの数を飛躍的に増加させ、極めて強固な金属樹脂直接接合を達成することができる。即ち、樹脂層と一方の金属材及び樹脂層と他方の金属材を更に強固に接合し、一方の金属材と他方の金属材を接合することができる。 In order to chemically bond the nascent surface of one metal material and / or the other metal material with the carboxyl group derived from the resin material, for example, the number of bonding sites is reduced as compared with the case where reactive functional groups are bonded to each other. By dramatically increasing, it is possible to achieve extremely strong direct bonding of the metal resin. That is, the resin layer and the one metal material and the resin layer and the other metal material can be more firmly joined, and the one metal material and the other metal material can be joined.
 また、本発明の金属材の接合方法では、
 前記第一工程の予備処理として、
 前記被接合界面となる前記一方の金属材及び/又は前記他方の金属材の表面にレーザを照射し、前記表面を粒径が1~100nmの酸化物粒子で被覆すること、が好ましい。
In the method for joining metal materials of the present invention,
As a preliminary treatment of the first step,
It is preferable that a surface of the one metal material and / or the other metal material to be the interface to be joined is irradiated with a laser, and the surface is coated with oxide particles having a particle size of 1 to 100 nm.
 一方の金属材及び/又は他方の金属材がステンレス鋼やチタン材の場合、カルボン酸で電解処理を施してもカルボン酸塩が金属表面に配置されず、当該処理の効果があまり期待できない。これに対し、レーザ照射によって金属表面に粒径が1~100nmの酸化物粒子を生成させることで、物理的な構造によるアンカー効果等によって接合強度を担保することができる。 When one of the metal materials and / or the other metal material is a stainless steel or a titanium material, the carboxylate is not arranged on the metal surface even if the electrolytic treatment is performed with the carboxylic acid, and the effect of the treatment cannot be expected much. On the other hand, by generating oxide particles having a particle diameter of 1 to 100 nm on the metal surface by laser irradiation, the bonding strength can be secured by an anchor effect or the like due to a physical structure.
 更に、本発明では、
 一方の金属材と他方の金属材との重ね接合部材であって、
 前記一方の金属材と前記他方の金属材との接合界面に樹脂層が存在し、
 前記樹脂層と前記一方の金属材が直接接合されており、
 前記樹脂層と前記他方の金属材が直接接合されており、
 接合部の引張試験において前記一方の金属材及び/又は前記他方の金属材が伸長すること、
 を特徴とする金属接合体を提供する。
Further, in the present invention,
A lap joint member of one metal material and the other metal material,
A resin layer is present at a bonding interface between the one metal material and the other metal material,
The resin layer and the one metal material are directly joined,
The resin layer and the other metal material are directly joined,
The one metal material and / or the other metal material elongate in a tensile test of the joint,
A metal joined body characterized by the following.
 本発明の金属接合体は、本発明における金属材の接合方法によって製造可能で、一方の金属材と他方の金属材は樹脂層を介して間接接合されており、接着剤やリベット締結によって接合されたものではない。 The metal joined body of the present invention can be manufactured by the method of joining metallic materials according to the present invention. One metallic material and the other metallic material are indirectly joined via a resin layer, and are joined by an adhesive or rivet fastening. Not something.
 従来公知の接合方法を用いて樹脂材と金属材とを直接接合する場合、接合界面の強度が十分ではなく、接合部の引張試験において金属材が伸長することはない。これに対し、本発明の金属材の接合方法で得られる接合界面は強度が高く、引張試験において一方の金属材及び/又は他方の金属材が伸長する程度の高い接合強度を有する。 (4) When a resin material and a metal material are directly joined using a conventionally known joining method, the strength of the joining interface is not sufficient, and the metal material does not elongate in a tensile test of the joint. On the other hand, the bonding interface obtained by the method for bonding metal materials of the present invention has a high strength, and has a high bonding strength such that one metal material and / or the other metal material is elongated in a tensile test.
 本発明の金属接合体においては、前記引張試験において前記一方の金属材又は前記他方の金属材が破断すること、が好ましい。本発明の金属接合体は接合界面の強度が極めて高いことから、一方の金属材及び他方の金属材と樹脂層との組み合わせによっては、一方の金属材又は前記他方の金属材が伸長後に破断に至る程度の極めて高い接合強度を有する。 に お い て In the metal joined body of the present invention, it is preferable that the one metal material or the other metal material be broken in the tensile test. Since the metal bonded body of the present invention has extremely high bonding interface strength, depending on the combination of one metal material and the other metal material and the resin layer, one metal material or the other metal material may break after elongation. Very high bonding strength.
 本発明の金属接合体においては、前記一方の金属材及び/又は前記他方の金属材が鋼材又はチタン材であること、が好ましい。一方の金属材及び/又は他方の金属材を鋼とすることで安価かつ強固な金属接合体を実現することができる。また、一方の金属材及び/又は他方の金属材をチタン材とすることで、軽量かつ強固な金属接合体を実現することができる。ここで、鋼材は種々の炭素鋼やステンレス鋼等を含み、チタン材は純チタン及び種々のチタン合金を含む。なお、本発明の金属接合体では、前記一方の金属材及び/又は前記他方の金属材が鋼材やチタン材であっても、引張試験においてこれらの金属が伸長する程に強固な接合界面を有しており、場合によっては当該鋼が破断に至る程に接合部の信頼性が高い。 に お い て In the metal joined body of the present invention, it is preferable that the one metal material and / or the other metal material is a steel material or a titanium material. By using one metal material and / or the other metal material as steel, an inexpensive and strong metal joint can be realized. Further, by using one metal material and / or the other metal material as a titanium material, a lightweight and strong metal joined body can be realized. Here, the steel material includes various carbon steels and stainless steels, and the titanium material includes pure titanium and various titanium alloys. In addition, in the metal bonded body of the present invention, even if the one metal material and / or the other metal material is a steel material or a titanium material, the metal bonded body has a strong bonding interface such that these metals elongate in a tensile test. In some cases, the reliability of the joint is so high that the steel breaks.
 本発明における金属材の接合方法及び金属接合体によれば、同種及び異種の様々な組み合わせの金属材を強固に接合する簡便な方法であって、異種金属を接合する場合は接合部の電解腐食を抑制することができる接合方法を提供することができる。また、引張試験において継手が金属部で伸長する程度に高い接合強度の接合部を有し、当該接合部の電解腐食が極めて効率的に抑制された金属接合体を提供することができる。 ADVANTAGE OF THE INVENTION According to the metal material joining method and the metal joined body of the present invention, it is a simple method for firmly joining various kinds of metal materials of the same type and different types. Can be provided. Further, it is possible to provide a metal joined body having a joint having a joint strength high enough to extend the joint at the metal part in the tensile test, and suppressing the electrolytic corrosion of the joint extremely efficiently.
本実施形態における金属材の接合方法の工程図である。FIG. 4 is a process chart of a method of joining metal materials in the present embodiment. 第一工程及び第二工程の様子を示す模式図である。It is a schematic diagram which shows a mode of a 1st process and a 2nd process. 本実施形態における金属接合体8の概略断面図である。FIG. 3 is a schematic cross-sectional view of a metal joined body 8 in the present embodiment. 樹脂材を介して第一金属材と第二金属材を重ね合わせた状態を示す模式図である。It is a schematic diagram which shows the state which laminated | stacked the 1st metal material and the 2nd metal material via the resin material. 引張試験の態様を示す模式図である。It is a schematic diagram which shows the aspect of a tensile test. 実施例1で得られた金属接合体の引張試験後の概観写真である。3 is an overview photograph of a metal joined body obtained in Example 1 after a tensile test. 実施例2で表面処理を施したSUS304板表面のSEM写真(低倍率)である。5 is an SEM photograph (low magnification) of the surface of a SUS304 plate subjected to a surface treatment in Example 2. 実施例2で表面処理を施したSUS304板表面のSEM写真(高倍率)である。5 is an SEM photograph (high magnification) of the surface of a SUS304 plate subjected to a surface treatment in Example 2. 実施例2で得られた金属接合体の引張試験後の概観写真である。4 is an overview photograph of a metal joined body obtained in Example 2 after a tensile test.
 以下、図面を参照しながら本発明の金属材の接合方法及び金属接合体の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of the method for joining metal materials and the metal joined body of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or corresponding parts are denoted by the same reference characters, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, dimensions of components shown and ratios thereof may be different from actual ones.
(1)金属材の接合方法
 図1は、本実施形態における金属材の接合方法の工程図であり、図2は、本実施形態における金属材の接合方法に用いる第一工程及び第二工程の様子を示す模式図である。本実施形態における金属材の接合方法は、第一金属材2(一方の金属材)と第二金属材4(他方の金属材)との間に樹脂材6(樹脂層)を介した接合界面を形成することによって接合を達成するものであって、樹脂材6を介して第一金属材2と第二金属材4とを当接させ、被接合界面を形成する第一工程(S01)と、レーザ照射により第一金属材2及び/又は第二金属材4の表面を昇温し、被接合界面において樹脂材6と第一金属材2を接合すると共に、樹脂材6と第二金属材4を接合し、接合部を形成する第二工程(S02)と、を有している。以下、金属材に予備処理を施し、一方の金属材からレーザ照射する場合を代表例として、各工程について詳述する。
(1) Method of Joining Metal Material FIG. 1 is a process diagram of a method of joining metal material in the present embodiment, and FIG. 2 shows first and second steps used in the method of joining metal material in this embodiment. It is a schematic diagram which shows a situation. The method of joining metal materials according to the present embodiment includes a joining interface between a first metal material 2 (one metal material) and a second metal material 4 (the other metal material) via a resin material 6 (resin layer). And a first step (S01) of forming the interface to be joined by bringing the first metal material 2 and the second metal material 4 into contact with each other via the resin material 6 and The temperature of the surface of the first metal material 2 and / or the second metal material 4 is increased by laser irradiation to join the resin material 6 and the first metal material 2 at the interface to be joined. 4 and a second step (S02) of forming a joint. Hereinafter, each step will be described in detail by taking a case where a pretreatment is performed on a metal material and laser irradiation is performed from one metal material as a representative example.
(1-1)表面処理工程
(1-1-1)カルボン酸を用いた電解処理
 なお、第一工程(S01)の予備処理として、表面処理工程を施すことが好ましい。表面処理工程は、還元性を有するカルボン酸を用いた電解処理によって第一金属材2及び第二金属材4に新生面を形成すると共に、当該カルボン酸によって新生面を被覆し、カルボン酸被覆金属材を得るための工程である。ここで、金属材の表面を還元及び被覆が可能であれば他の酸の使用も可能であり、例えば、アミノ酸等を用いてもよい。
(1-1) Surface treatment step (1-1-1) Electrolytic treatment using carboxylic acid As a preliminary treatment in the first step (S01), a surface treatment step is preferably performed. In the surface treatment step, a new surface is formed on the first metal material 2 and the second metal material 4 by electrolytic treatment using a reducing carboxylic acid, and the new surface is coated with the carboxylic acid to form a carboxylic acid-coated metal material. This is the step to obtain. Here, as long as the surface of the metal material can be reduced and coated, other acids can be used. For example, an amino acid or the like may be used.
 カルボン酸を用いた電解処理によって第一金属材2及び第二金属材4に新生面を形成すると共に、接合に直接寄与する新生面をカルボン酸によって被覆し保護することで、第二工程(S02)で新生面を活用できるカルボン酸被覆金属材を得ることができる。 In the second step (S02), a new surface is formed on the first metal material 2 and the second metal material 4 by electrolytic treatment using carboxylic acid, and the new surface that directly contributes to bonding is covered and protected with carboxylic acid. It is possible to obtain a carboxylic acid-coated metal material that can utilize a newly formed surface.
 表面処理工程で用いる還元性を有するカルボン酸は、シュウ酸又はギ酸であること、が好ましい。シュウ酸又はギ酸を用いて金属材を電解処理することで、新生面の形成、新生面への被覆及び脱離が円滑に進行し、極めて強固な接合部を円滑に形成させることができる。なお、カルボン酸はそれぞれ単独で使用してもよく、混合して使用してもよい。ここで、シュウ酸とギ酸を混合する場合、シュウ酸とギ酸を1:2とすることが好ましい。鋼材に対してシュウ酸とギ酸の混合電解液を使用する場合、シュウ酸鉄は溶解度が小さく(熱水で0.026質量%)、鋼材の表面に析出して鋼材の溶解を抑制する保護被膜として作用する。これに対し、鋼材の表面はギ酸鉄として溶解することから、表面の過剰な溶解を抑制しつつ良好な新生面を形成することができる。また、カルボン酸を含む混合溶液を使用してもよい。シュウ酸及びギ酸以外には、例えば、リン酸やクエン酸水素二アンモニウム等を用いることができる。 カ ル ボ ン The reducing carboxylic acid used in the surface treatment step is preferably oxalic acid or formic acid. By subjecting the metal material to electrolytic treatment using oxalic acid or formic acid, formation of a new surface, coating of the new surface, and detachment can smoothly proceed, and an extremely strong joint can be formed smoothly. The carboxylic acids may be used alone or as a mixture. Here, when oxalic acid and formic acid are mixed, it is preferable that oxalic acid and formic acid be 1: 2. When a mixed electrolytic solution of oxalic acid and formic acid is used for steel, iron oxalate has low solubility (0.026% by mass in hot water), and is deposited on the surface of steel to prevent the steel from dissolving. Act as On the other hand, since the surface of the steel material dissolves as iron formate, it is possible to form a good new surface while suppressing excessive dissolution of the surface. Further, a mixed solution containing a carboxylic acid may be used. In addition to oxalic acid and formic acid, for example, phosphoric acid and diammonium hydrogen citrate can be used.
 なお、シュウ酸等を用いてアルミニウムに対して電解処理を施す手法は、一般的にアルマイト処理(陽極酸化処理)として知られている。当該アルマイト処理(陽極酸化処理)はアルミニウム材表面への酸化皮膜の形成が目的であることに対し、表面処理工程の目的は新生面の形成及び当該新生面の保護であり、電解処理条件が大きく異なる。例えば、アルマイト処理でシュウ酸を用いる場合、2%~3%のシュウ酸濃度にて20分~30分の電解処理を施すのに対し、表面処理工程でシュウ酸を用いる場合、10%のシュウ酸濃度にてより短時間の処理を施すことが好ましい。 The method of subjecting aluminum to electrolytic treatment using oxalic acid or the like is generally known as alumite treatment (anodizing treatment). The purpose of the alumite treatment (anodizing treatment) is to form an oxide film on the surface of the aluminum material, whereas the purpose of the surface treatment step is to form a new surface and protect the new surface, and the electrolytic treatment conditions differ greatly. For example, when oxalic acid is used in the alumite treatment, electrolytic treatment is performed at an oxalic acid concentration of 2% to 3% for 20 minutes to 30 minutes, whereas when oxalic acid is used in the surface treatment step, 10% oxalic acid is used. It is preferable to perform the treatment for a shorter time at an acid concentration.
 第一金属材2と第二金属材4の組成は異なることが好ましい。第一金属材2及び第二金属材4としては、本発明の効果を損なわない範囲で従来公知の種々の金属材を用いることができ、例えば、各種鋼材、亜鉛めっき鋼材、アルミニウム合金、マグネシウム合金等を用いることができる。また、本実施形態における金属材の接合方法は、樹脂材6を介した第一金属材2と第二金属材4の間接接合であるから、双方の組成を異にしても接合界面に脆弱な金属間化合物が生じることなく健全な接合部を得ることができる。 組成 It is preferable that the first metal material 2 and the second metal material 4 have different compositions. As the first metal material 2 and the second metal material 4, various conventionally known metal materials can be used as long as the effects of the present invention are not impaired. For example, various steel materials, galvanized steel materials, aluminum alloys, magnesium alloys Etc. can be used. In addition, since the joining method of the metal material in the present embodiment is an indirect joining of the first metal material 2 and the second metal material 4 via the resin material 6, even if both compositions are different, the joining interface is fragile. A sound joint can be obtained without generating an intermetallic compound.
(1-1-2)レーザ照射による酸化処理
 第一金属材2及び/又は第二金属材4がステンレス鋼材やチタン材の場合、カルボン酸で電解処理を施してもカルボン酸塩が金属表面に配置されず、当該処理の効果があまり期待できない。この場合、カルボン酸による電解処理の代替として、レーザ照射によって金属表面に微細な酸化物粒子を生成させることが好ましい。
(1-1-2) Oxidation treatment by laser irradiation When the first metal material 2 and / or the second metal material 4 is a stainless steel material or a titanium material, the carboxylate remains on the metal surface even when subjected to electrolytic treatment with carboxylic acid. It is not arranged and the effect of the processing cannot be expected much. In this case, as an alternative to the electrolytic treatment with carboxylic acid, it is preferable to generate fine oxide particles on the metal surface by laser irradiation.
 金属表面を粒径が1~100nmの酸化物粒子で被覆することにより、微小かつ複雑な三次元構造が形成され、当該構造と樹脂材6との物理的なアンカー効果等によって、接合強度を向上させることができる。 By coating the metal surface with oxide particles having a particle size of 1 to 100 nm, a minute and complicated three-dimensional structure is formed, and the bonding strength between the structure and the resin material 6 is improved by a physical anchor effect or the like. Can be done.
 金属表面が粒径1~100nmの酸化物粒子で被覆される限りにおいて、レーザの種類や照射条件は特に限定されず、従来公知の種々のレーザを用いることができる。また、使用するレーザや金属材の種類等に応じて、レーザ出力、フォーカス径、走査速度、走査パターン等を適宜調節すればよい。また、酸化物粒子生成に必要な酸素は大気中の酸素を利用してもよく、シールドガス中に任意の割合で混合させてもよい。 種類 As long as the metal surface is covered with oxide particles having a particle size of 1 to 100 nm, the type of laser and irradiation conditions are not particularly limited, and various conventionally known lasers can be used. In addition, the laser output, the focus diameter, the scanning speed, the scanning pattern, and the like may be appropriately adjusted according to the type of laser or metal material used. Oxygen in the atmosphere may be used as oxygen necessary for forming oxide particles, or may be mixed in the shielding gas at an arbitrary ratio.
(1-2)第一工程(S01:被接合界面形成工程)
 第一工程(S01)は、樹脂材6を介して第一金属材2と第二金属材4とを当接させ、被接合界面を形成するための工程である。
(1-2) First Step (S01: Step of Forming Interface to be Joined)
The first step (S01) is a step for bringing the first metal material 2 and the second metal material 4 into contact with each other via the resin material 6 to form an interface to be joined.
 樹脂材6と第一金属材2、及び樹脂材6と第二金属材4は、平面同士を当接させて一般的な重ね合わせの状態とし、より具体的には、樹脂材6の一方の面に第一金属材2を当接させ、他方の面に第二金属材4を当接させることにより、第一金属材2/樹脂材6/第二金属材4の三層状態となる被接合界面を構成する。よって、第一金属材2と第二金属材4との直接接触は行わない。 The resin material 6 and the first metal material 2, and the resin material 6 and the second metal material 4 are brought into a general superimposed state by abutting flat surfaces, and more specifically, one of the resin materials 6. The first metal material 2 is brought into contact with the surface and the second metal material 4 is brought into contact with the other surface, so that the first metal material 2 / the resin material 6 / the second metal material 4 have three layers. Configure the bonding interface. Therefore, direct contact between the first metal member 2 and the second metal member 4 is not performed.
 なお、樹脂材6としては、本発明の効果を損なわない範囲で従来公知の種々の樹脂材を用いることができるが、ポリアミド樹脂(PA)、ポリイミド樹脂(PI)、ポリカーボネート樹脂(PC)、ポリフェニレンサルファイド樹脂(PPS)、フッ素樹脂(PTFE)、ポリエチレンテレフタレート(PET)、マレイン酸変性ポリプロピレン樹脂(PP)及びポリエーテルエーテルケトン樹脂(PEEK)のうちの何れかを用いることが好ましい。また、樹脂材6は樹脂フィルムとし、厚さを15~500μmとすることが好ましい。 As the resin material 6, various conventionally known resin materials can be used as long as the effects of the present invention are not impaired. However, polyamide resin (PA), polyimide resin (PI), polycarbonate resin (PC), polyphenylene It is preferable to use any one of sulfide resin (PPS), fluororesin (PTFE), polyethylene terephthalate (PET), maleic acid-modified polypropylene resin (PP), and polyetheretherketone resin (PEEK). It is preferable that the resin material 6 is a resin film and has a thickness of 15 to 500 μm.
 樹脂材6を樹脂フィルムとすれば被接合界面における樹脂層の厚さを均一にできることに加え、保存及び取り扱いが容易となり、更に被接合領域の形状及びサイズに合わせる加工を簡便に行うことができる。 When the resin material 6 is a resin film, the thickness of the resin layer at the interface to be joined can be made uniform, storage and handling are facilitated, and furthermore, processing to match the shape and size of the region to be joined can be easily performed. .
(1-3)第二工程(S02:接合工程)
 第二工程(S02)は、第一工程(S01)で形成させた被接合界面を、レーザ照射で樹脂材6のガラス転移温度以上に昇温することにより、樹脂材6を分解してカルボキシル基を生成し、かつ第一金属材2及び第二金属材4のカルボン酸を除去してカルボン酸被覆金属材の表面に新生面を露出させ、更に被接合界面をガラス転移温度未満に冷却することにより樹脂材6のカルボキシル基と、第一金属材2及び第二金属材4の新生面と、を結合させて接合部を形成するための工程である。なお、予備処理としてレーザ照射による酸化処理を用いた場合、レーザ照射で軟化した樹脂材6が微細複雑構造を有する金属材の表面に侵入し、強固な接合が達成される。なお、以下では、主として現象がより複雑な、カルボン酸被覆金属材を接合する場合について説明する。
(1-3) Second step (S02: joining step)
The second step (S02) is to decompose the resin material 6 by raising the temperature of the interface to be joined formed in the first step (S01) to a temperature equal to or higher than the glass transition temperature of the resin material 6 by laser irradiation. And by removing the carboxylic acid of the first metal material 2 and the second metal material 4 to expose a new surface on the surface of the carboxylic acid-coated metal material, and further cooling the interface to be joined to below the glass transition temperature. This is a step for bonding the carboxyl group of the resin material 6 and the new surfaces of the first metal material 2 and the second metal material 4 to form a joint. When the oxidation treatment by laser irradiation is used as the preliminary treatment, the resin material 6 softened by the laser irradiation penetrates into the surface of the metal material having a fine and complicated structure, and a strong bonding is achieved. In the following, a case where a carboxylic acid-coated metal material having a more complicated phenomenon is joined will be mainly described.
 昇温に用いるレーザは本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のレーザを用いることができる。より具体的には、被接合界面の温度を樹脂材6のガラス転移温度以上に昇温することができればよく、半導体レーザ、COレーザ、ファイバーレーザ及びYAGレーザ等を用いることができる。なおレーザは、第一金属材2もしくは第二金属材4のどちらか一方、又は両方の面から照射することが好ましい。当該両方の面からの照射は特に厚板の金属材を接合する場合に有利である。なお、本実施形態では、第一金属2にレーザ照射を行う例を代表として記載する。 The laser used for raising the temperature is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known lasers can be used. More specifically, a semiconductor laser, a CO 2 laser, a fiber laser, a YAG laser, or the like can be used as long as the temperature of the interface to be joined can be raised to the glass transition temperature of the resin material 6 or higher. It is preferable that the laser is irradiated from one or both surfaces of the first metal material 2 and the second metal material 4. Irradiation from both surfaces is particularly advantageous when joining thick metal materials. In this embodiment, an example in which the first metal 2 is irradiated with a laser will be described as a representative example.
 また、被接合界面を樹脂材6のガラス転移温度以上に昇温することで、当該接合界面から水を除去することもできる。例えば、接着剤を用いて得られた接合界面のように、接合界面に水が存在する場合は使用環境が氷点下になると継手特性が大幅に低下する。これに対し、本発明の金属材の接続方法では接合界面から水を除去することができるため、当該継手特性の低下を効果的に抑制することができる。 水 In addition, by raising the temperature of the interface to be joined to the glass transition temperature of the resin material 6 or higher, water can be removed from the joining interface. For example, when water is present at the bonding interface, such as a bonding interface obtained using an adhesive, the joint characteristics are significantly reduced when the operating environment is below freezing. On the other hand, in the method of connecting a metal material according to the present invention, since water can be removed from the joint interface, the deterioration of the joint characteristics can be effectively suppressed.
 また、被接合界面の昇温によって樹脂材6が分解し、当該樹脂材6由来のカルボキシル基が生成される。一方で、第一金属材2及び第二金属材4においては新生面を被覆(保護)していたカルボン酸が除去され、活性な新生面が露出する。 {Circle around (4)} The resin material 6 is decomposed by the rise in temperature of the interface to be joined, and a carboxyl group derived from the resin material 6 is generated. On the other hand, in the first metal material 2 and the second metal material 4, the carboxylic acid covering (protecting) the new surface is removed, and the active new surface is exposed.
 なお、被接合界面の温度上昇が小さな場合は、上述した新生面の露出やカルボキシル基の生成が不十分になり、接合界面の強度を十分に高くすることができず、被接合界面の温度上昇が過剰な場合は、第一金属材2及び第二金属材4から樹脂材6が剥離し、接合界面の形成不良を生じることになる。よって、レーザ照射に用いるレーザ出力、走査速度及び焦点距離等のプロセスパラメータを制御することにより、適当な加熱条件を選択することが好ましい。 If the temperature rise at the interface to be joined is small, the above-described exposure of the new surface and the generation of carboxyl groups become insufficient, and the strength of the interface at the joint cannot be sufficiently increased. If the amount is excessive, the resin material 6 is peeled off from the first metal material 2 and the second metal material 4, resulting in poor formation of the bonding interface. Therefore, it is preferable to select appropriate heating conditions by controlling process parameters such as laser output, scanning speed, and focal length used for laser irradiation.
 続いて、被接合界面をガラス転移温度未満に冷却し、カルボキシル基と新生面とを化学結合することにより接合部を形成する。より具体的には、被接合界面をガラス転移温度未満に冷却することにより、第一金属材2及び第二金属材4の最表面に形成された新生面と、樹脂材6由来のカルボキシル基と、が化学結合する。この結果、樹脂材6/第一金属材2界面及び樹脂材6/第二金属材4界面の双方で極めて強固な金属樹脂直接接合が達成され、第一金属材2と第二金属材4とを間接的に接合する接合部を形成することができる。 Subsequently, the interface to be joined is cooled to a temperature lower than the glass transition temperature, and a carboxyl group is chemically bonded to the new surface to form a joint. More specifically, by cooling the interface to be joined to a temperature lower than the glass transition temperature, a new surface formed on the outermost surfaces of the first metal material 2 and the second metal material 4, a carboxyl group derived from the resin material 6, Are chemically bonded. As a result, extremely strong direct bonding of the metal resin is achieved at both the resin material 6 / first metal material 2 interface and the resin material 6 / second metal material 4 interface, and the first metal material 2 and the second metal material 4 are joined together. Can be formed indirectly.
 反応性を有する官能基同士を結合させる従来の金属樹脂接合方法と比較して、本実施形態における金属材の接合方法では金属樹脂間の結合サイト数が大幅に増加するため、接合部の強度を飛躍的に高めることができる。 Compared to the conventional metal resin bonding method in which reactive functional groups are bonded to each other, the bonding method of the metal material according to the present embodiment greatly increases the number of bonding sites between the metal resins, thereby reducing the strength of the bonding portion. It can be dramatically increased.
 なお、第二工程(S02)による接合部形成中及び/又は接合部形成直後に接合部を加圧することが好ましい。接合部形成中に加圧を行う場合は、例えばレーザを透過可能な略透明の押圧部材等を用いて第一金属材2及び第二金属材4の両側から圧力を印加すればよく、接合部形成直後の加圧を行う場合は、単純に第一金属材2及び第二金属材4の両側から圧力を印加すればよい。なお、予備処理としてレーザ照射による酸化処理を用いた場合であっても、当該加圧による効果は同様である。 It is preferable that the joint be pressed during and / or immediately after the formation of the joint in the second step (S02). When pressure is applied during the formation of the joint, for example, a pressure may be applied from both sides of the first metal material 2 and the second metal material 4 using a substantially transparent pressing member or the like that can transmit laser. When pressure is applied immediately after the formation, pressure may be simply applied from both sides of the first metal material 2 and the second metal material 4. Note that even when the oxidation treatment by laser irradiation is used as the preliminary treatment, the effect of the pressurization is the same.
 本実施形態における金属材の接合方法によって得られる接合部は十分に高い強度を有しているが、加圧工程を加えることで、品質のばらつきを小さくすることができる。当該加圧により、例えば、レーザ照射による被接合界面の昇温時において樹脂材6の内部に導入される気泡を外部に移動させることができ、より信頼性の高い接合部を得ることができる。更に、当該加圧によって軟化した樹脂材6が第一金属材2及び第二金属材4の熱影響部の範囲を超えて広がることから、樹脂材6と、第一金属材2及び第二金属材4と、の接合界面を拡大することができる。 接合 The joint obtained by the method for joining metal materials in the present embodiment has a sufficiently high strength, but the addition of the pressing step can reduce the variation in quality. By the pressurization, for example, when the temperature of the interface to be joined is raised by laser irradiation, bubbles introduced into the resin material 6 can be moved to the outside, and a more reliable joint can be obtained. Furthermore, since the resin material 6 softened by the pressurization spreads beyond the range of the heat affected zone of the first metal material 2 and the second metal material 4, the resin material 6, the first metal material 2 and the second metal material The joining interface with the material 4 can be enlarged.
 なお、被接合界面において、溶融した樹脂材6が僅かにでも存在する場合、当該溶融樹脂材6が加圧によって被接合界面に濡れ広がり、溶融温度よりも低い部位についても接合が達成される。加圧は1.40~1.85MPaとすることが好ましく、1.70~1.85MPaとすることがより好ましい。加圧を0.25MPa以上とすることで、気泡の低減(移動)に効果があり、1.85MPa以下とすることで、接合部における樹脂材6が薄くなり過ぎることを抑制することができる。 In the case where even a small amount of the molten resin material 6 exists at the interface to be joined, the molten resin material 6 spreads over the interface to be joined by pressurization, and the joining is achieved even at a portion lower than the melting temperature. The pressure is preferably from 1.40 to 1.85 MPa, more preferably from 1.70 to 1.85 MPa. By setting the pressure to 0.25 MPa or more, it is effective in reducing (moving) bubbles, and by setting the pressure to 1.85 MPa or less, it is possible to suppress the resin material 6 at the joint from becoming too thin.
(2)金属接合体
 本実施形態における金属接合体8の概略断面図を図3に示す。金属接合体8は、第一金属材12(一方の金属材)と第二金属材14(他方の金属材)との重ね接合部材であって、第一金属材12と第二金属材14との接合界面に樹脂材16(樹脂層)が存在し、樹脂材16と第一金属材12が直接接合されており、樹脂材16と第二金属材14が直接接合されており、接合部の引張試験において第一金属材12及び/又は第二金属材14が伸長すること、を特徴とするものである。金属接合体8は、樹脂材16と第一金属材12が直接接続され、また樹脂材16と第二金属材14が直接接続されることにより第一金属材12と第二金属材14が間接接続されたものであり、接合部に接着剤やリベット等は使用されていない。金属接合体8は、上述した本実施形態における金属材の接合方法によって好適に製造することができる。
(2) Metal bonded body FIG. 3 shows a schematic sectional view of the metal bonded body 8 in the present embodiment. The metal joined body 8 is a lap joining member of the first metal material 12 (one metal material) and the second metal material 14 (the other metal material). The resin material 16 (resin layer) exists at the joining interface of the resin material, the resin material 16 and the first metal material 12 are directly joined, and the resin material 16 and the second metal material 14 are directly joined. In the tensile test, the first metal material 12 and / or the second metal material 14 elongate. In the metal joined body 8, the resin material 16 and the first metal material 12 are directly connected, and the resin material 16 and the second metal material 14 are directly connected, so that the first metal material 12 and the second metal material 14 are indirectly connected. They are connected, and no adhesive or rivets are used at the joints. The metal joined body 8 can be suitably manufactured by the above-described method for joining metal materials in the present embodiment.
 従来公知の接合方法を用いて樹脂材と金属材とを直接接合する場合、接合界面の強度が十分ではなく、接合部の引張試験において金属材が伸長することはない。これに対し、本実施形態では接合部における接合界面の強度が高く、引張試験において第一金属材12及び/又は第二金属材14が伸長する程度の高い接合強度を有する。 (4) When a resin material and a metal material are directly joined using a conventionally known joining method, the strength of the joining interface is not sufficient, and the metal material does not elongate in a tensile test of the joint. On the other hand, in the present embodiment, the strength of the bonding interface at the bonding portion is high, and the bonding strength is high enough to extend the first metal material 12 and / or the second metal material 14 in the tensile test.
 第一金属材12及び第二金属材14としては、本発明の効果を損なわない範囲で従来公知の種々の金属材を用いることができ、例えば、ステンレス鋼や炭素鋼を含む各種鋼材、純チタン、チタン合金、ニッケル-チタン合金等の形状記憶合金、亜鉛めっき鋼材、アルミニウム合金、マグネシウム合金等を用いることができる。 As the first metal material 12 and the second metal material 14, conventionally known various metal materials can be used without impairing the effects of the present invention. For example, various steel materials including stainless steel and carbon steel, pure titanium , A titanium alloy, a shape memory alloy such as a nickel-titanium alloy, a galvanized steel material, an aluminum alloy, a magnesium alloy, or the like.
 また、樹脂材16としては、本発明の効果を損なわない範囲で従来公知の種々の樹脂材を用いることができるが、ポリアミド樹脂(PA)、ポリイミド樹脂(PI)、ポリカーボネート樹脂(PC)、ポリフェニレンサルファイド樹脂(PPS)、フッ素樹脂(PTFE)、ポリエチレンテレフタレート(PET)、マレイン酸変性ポリプロピレン樹脂(PP)及びポリエーテルエーテルケトン樹脂(PEEK)のうちの何れかを用いることが好ましい。 Various conventionally known resin materials can be used as the resin material 16 as long as the effects of the present invention are not impaired. Polyamide resin (PA), polyimide resin (PI), polycarbonate resin (PC), polyphenylene It is preferable to use any one of sulfide resin (PPS), fluororesin (PTFE), polyethylene terephthalate (PET), maleic acid-modified polypropylene resin (PP), and polyetheretherketone resin (PEEK).
 また、金属接合体8においては、接合部の引張試験において第一金属材12及び/又は第二金属材14が破断すること、が好ましい。金属接合体8は接合界面の強度が極めて高いことから、第一金属材12及び/又は第二金属材14が伸長後に破断に至る程度の極めて高い接合強度を有する。 In addition, in the metal joined body 8, it is preferable that the first metal material 12 and / or the second metal material 14 be broken in the tensile test of the joint. Since the strength of the bonding interface is extremely high, the metal bonded body 8 has extremely high bonding strength such that the first metal material 12 and / or the second metal material 14 breaks after being elongated.
 また、金属接合体8においては、第一金属材12及び/又は第二金属材14が鋼材又はチタン材であること、が好ましい。第一金属材12及び/又は第二金属材14を鋼材とすることで安価かつ強固な金属接合体8を実現することができ、チタン材とすることで軽量かつ強固な金属接合体8を実現することができる。なお、金属接合体8では、第一金属材12及び/又は第二金属材14が鋼材又はチタン材であっても、引張試験においてこれらの金属が伸長する程に強固な接合界面を有しており、場合によっては破断に至る程に接合部の信頼性が高い。 に お い て In the metal joined body 8, it is preferable that the first metal material 12 and / or the second metal material 14 is a steel material or a titanium material. By using the first metal material 12 and / or the second metal material 14 as a steel material, an inexpensive and strong metal bonded body 8 can be realized, and by using a titanium material, a lightweight and strong metal bonded body 8 is realized. can do. In addition, in the metal joined body 8, even if the first metal material 12 and / or the second metal material 14 is a steel material or a titanium material, the first metal material 12 and / or the second metal material 14 have a strong bonding interface such that these metals elongate in a tensile test. In some cases, the reliability of the joint is high enough to cause breakage.
 また、接合工程に加圧を有する場合、樹脂材16/第一金属材12接合界面及び樹脂材16/第二金属材14接合界面との接合界面は熱影響部の外側にまで広がっている。従来の金属材と樹脂材の直接接合体においては、接合されている領域は熱影響部の内側であるが、加圧によってより広い面積で接合が達成されるため、高い接合強度及び信頼性を実現することができる。 (4) When a pressure is applied to the joining process, the joining interface between the resin material 16 / the first metal material 12 and the joining interface with the resin material 16 / the second metal material 14 extends to the outside of the heat-affected zone. In the conventional direct bonding of metal and resin materials, the bonded area is inside the heat-affected zone, but since bonding is achieved over a wider area by pressing, high bonding strength and reliability are achieved. Can be realized.
 金属接合体8の接合部においては、接合領域に存在する気泡の最大直径が0.1mm未満であること、が好ましい。気泡の最大直径が0.1mm未満であることから、当該気泡は継手特性に殆ど影響を及ぼすことがなく、金属接合体8は極めて良好な機械的特性を有している。また、目視では接合部の気泡を明瞭に確認することができないことから、接合部に欠陥が存在することによるイメージの低下を抑制することができる。 At the joint of the metal joint 8, it is preferable that the maximum diameter of the bubbles existing in the joint region is less than 0.1 mm. Since the maximum diameter of the bubble is less than 0.1 mm, the bubble hardly affects the joint properties, and the metal joined body 8 has extremely good mechanical properties. In addition, since bubbles at the joint cannot be clearly confirmed by visual observation, it is possible to suppress a reduction in image due to the presence of a defect at the joint.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As described above, the representative embodiments of the present invention have been described. However, the present invention is not limited thereto, and various design changes are possible, and all of the design changes are included in the technical scope of the present invention. It is.
≪実施例1≫
 第一金属材としてSPCC鋼板(25mm×100mm×0.6mm)、第二金属材としてA5052アルミニウム合金板(25mm×100mm×1.0mm)、樹脂材としてポリアミド樹脂(東レフィルム加工社製レイファン)フィルム(25mm×15mm×100μm)を用い、レーザ照射によるSPCC鋼板/ポリアミド樹脂フィルム/A5052アルミニウム合金板の重ね接合を行った。なお、レーザ照射にはレーザライン社製の半導体レーザを用い、ビームサイズ:40mm×6mm、走査速度:2mm/秒にて、SPCC板及びアルミニウム合金板それぞれの表面を照射した。SPCC板側への照射では出力を410Wとし、A5052アルミニウム合金板側への照射では出力を1150Wとした。
<< Example 1 >>
SPCC steel plate (25 mm × 100 mm × 0.6 mm) as the first metal material, A5052 aluminum alloy plate (25 mm × 100 mm × 1.0 mm) as the second metal material, polyamide resin (Reyfan manufactured by Toray Film Processing Co., Ltd.) as the resin material Using a film (25 mm × 15 mm × 100 μm), an SPCC steel plate / polyamide resin film / A5052 aluminum alloy plate was lap-joined by laser irradiation. The surface of each of the SPCC plate and the aluminum alloy plate was irradiated at a beam size of 40 mm × 6 mm and a scanning speed of 2 mm / sec using a semiconductor laser manufactured by Laser Line Co., Ltd. for laser irradiation. The output was set to 410 W for irradiation on the SPCC plate side, and the output was set to 1150 W for irradiation on the A5052 aluminum alloy plate side.
 接合の予備処理として、シュウ酸濃度10%の電解液を用い、電解時間を5分としてSPCC鋼板及びA5052合金板にシュウ酸電解処理を施した(表面処理工程)。次に、ポリアミド樹脂フィルムを介してシュウ酸電解処理後のSPCC鋼板とA5052合金板を図4に示す状態に重ね合わせて被接合界面を形成し(第一工程)、SPCC鋼板側からレーザ照射を行って被接合界面の温度をポリアミド樹脂のガラス転移温度以上に昇温した後、空冷によって当該ガラス転移温度未満に冷却(第二工程)することにより実施金属接合体を製造した。 (4) As a pretreatment for bonding, an SPCC steel plate and an A5052 alloy plate were subjected to oxalic acid electrolysis using an electrolytic solution having an oxalic acid concentration of 10% for an electrolysis time of 5 minutes (surface treatment step). Next, the oxalic acid electrolytically treated SPCC steel sheet and the A5052 alloy sheet are overlapped with each other via the polyamide resin film in the state shown in FIG. 4 to form a bonded interface (first step), and laser irradiation is performed from the SPCC steel sheet side. The temperature of the interface to be joined was raised to or higher than the glass transition temperature of the polyamide resin, and then cooled to a temperature lower than the glass transition temperature by air cooling (second step) to produce an actual metal joined body.
 また、上記工程で製造した実施金属接合体に対し、図5に示す態様で引張試験を行った。引張試験後の代表的な試験片の概観写真を図6に示す。SPCC鋼板が伸長し、破断に至っていることが確認できる(破断強度は5665N)。なお、接合部は健全な状態を保っている。実施例1に対する引張試験の結果から、SPCC鋼板が破断及び/又は伸長する程度に高い接合強度を有する金属接合体が得られていることが分かる。 引 張 Further, a tensile test was performed on the working metal joined body manufactured in the above process in the mode shown in FIG. FIG. 6 shows an overview photograph of a representative test piece after the tensile test. It can be confirmed that the SPCC steel sheet has been elongated and has been broken (the breaking strength is 5665 N). In addition, the joint part is maintaining a healthy state. From the results of the tensile test for Example 1, it is understood that a metal joined body having a joint strength high enough to break and / or elongate the SPCC steel sheet is obtained.
≪実施例2≫
 第一金属材としてSUS304板(25mm×100mm×0.5mm)、第二金属材として純チタンJIS2種板(25mm×100mm×0.5mm)、樹脂材としてポリフェニレンサルファイド樹脂(東レ社製トレリナ)フィルム(25mm×15mm×100μm)を用い、レーザ照射によるSUS304板/ポリフェニレンサルファイド樹脂フィルム/純チタンJIS2種板の重ね接合を行った。なお、レーザ照射にはレーザライン社製の半導体レーザを用い、ビームサイズ:40mm×6mmでSUS304板表面(非界面)の温度が380℃一定となるようにレーザ出力制御を行ない、走査速度は0.5mm/秒とした。この際、SUS304とポリフェニレンサルファイド樹脂フィルムの界面温度は350~380℃であり、純チタンJIS2種とポリフェニレンサルファイド樹脂フィルムの界面温度は230~260℃であった。なお、本実施例においては、SUS304板表面にのみレーザを照射した。
Example 2
SUS304 plate (25 mm x 100 mm x 0.5 mm) as the first metal material, pure titanium JIS 2 seed plate (25 mm x 100 mm x 0.5 mm) as the second metal material, polyphenylene sulfide resin (Torayna Tolerina) film as the resin material (25 mm × 15 mm × 100 μm), the SUS304 plate / polyphenylene sulfide resin film / pure titanium JIS type 2 plate were joined by laser irradiation. The laser irradiation was performed using a semiconductor laser manufactured by Laser Line Co., Ltd., and the laser output was controlled so that the temperature of the SUS304 plate surface (non-interface) was constant at 380 ° C. with a beam size of 40 mm × 6 mm. 0.5 mm / sec. At this time, the interface temperature between SUS304 and the polyphenylene sulfide resin film was 350 to 380 ° C., and the interface temperature between pure titanium JIS 2 and the polyphenylene sulfide resin film was 230 to 260 ° C. In this example, laser was applied only to the surface of the SUS304 plate.
 ここで、接合の前処理として、SUS304板及び純チタンJIS2種板の表面に短パルスレーザを照射して微細な酸化物粒子を生成させた。当該処理による表面状態の一例として、SUS304板表面のSEM写真を図7及び図8に示す。SUS304板表面は粒径が1~100nmの酸化物粒子で被覆されており、微細かつ複雑な三次元構造を有していることが分かる。 Here, as a pretreatment for bonding, the surfaces of the SUS304 plate and the pure titanium JIS second plate were irradiated with a short pulse laser to generate fine oxide particles. FIGS. 7 and 8 show SEM photographs of the surface of the SUS304 plate as an example of the surface state by the treatment. It can be seen that the surface of the SUS304 plate is covered with oxide particles having a particle size of 1 to 100 nm, and has a fine and complicated three-dimensional structure.
 実施例1と同様の方法で引張試験を行ったところ、純チタンJIS2種板が伸長の後、4985Nにて破断した。当該結果より、SUS304板/ポリフェニレンサルファイド樹脂フィルム/純チタンJIS2種板は極めて強固に接合されていることが分かる。 (4) When a tensile test was performed in the same manner as in Example 1, the pure titanium JIS second seed plate was broken at 4,985 N after elongation. From the results, it can be seen that the SUS304 plate / polyphenylene sulfide resin film / pure titanium JIS type 2 plate are extremely strongly bonded.
≪実施例3≫
 第一金属材としてSUS304板(25mm×100mm×0.5mm)、第二金属材として純チタンJIS2種板(25mm×100mm×0.5mm)、樹脂材としてポリエチレンテレフタレート樹脂(東レ社製ルミラー)フィルム(25mm×15mm×11μm)を用い、レーザ照射によるSUS304板/ポリエチレンテレフタレート樹脂フィルム/純チタンJIS2種板の重ね接合を行った。なお、レーザ照射にはレーザライン社製の半導体レーザを用い、ビームサイズは40mm×6mmとしてSUS304板表面にのみレーザを照射した。
Example 3
SUS304 plate (25 mm x 100 mm x 0.5 mm) as the first metal material, pure titanium JIS type 2 plate (25 mm x 100 mm x 0.5 mm) as the second metal material, polyethylene terephthalate resin (Lumirror manufactured by Toray Industries) film as the resin material (25 mm × 15 mm × 11 μm), the SUS304 plate / polyethylene terephthalate resin film / pure titanium JIS type 2 plate were joined by laser irradiation. The laser irradiation was performed using a semiconductor laser manufactured by Laser Line Co., Ltd., and the beam size was 40 mm × 6 mm, and the laser was applied only to the surface of the SUS304 plate.
 SUS304板表面(非界面)の温度が430℃一定となるようにレーザ出力制御を行ったところ、得られた金属接合体の引張せん断強度は725Nとなり、接合部からの剥離となった。また、SUS304板表面(非界面)の温度が325℃一定となるようにレーザ出力制御を行ったところ、得られた金属接合体の引張せん断強度は4795Nとなり、チタンJIS2種板の伸長が認められた。また、SUS304板表面(非界面)の温度が315℃一定となるようにレーザ出力制御を行ったところ、得られた金属接合体の引張せん断強度は1900Nとなり、接合部からの剥離となった。ここで、最も高い強度が得られた条件(SUS304板表面(非界面)の温度が325℃一定)について再度検証したところ、得られた金属接合体の引張せん断強度は565Nで接合部からの剥離となり、強度がばらつく結果となった。樹脂フィルムの膜厚が11μmと薄過ぎることが原因であると考えられる。 レ ー ザ When the laser output was controlled so that the temperature of the SUS304 plate surface (non-interface) was constant at 430 ° C., the tensile shear strength of the obtained metal joined body was 725 N, and the metal joint was separated from the joint. Further, when the laser output was controlled so that the temperature of the SUS304 plate surface (non-interface) became constant at 325 ° C., the tensile shear strength of the obtained metal joined body was 4795 N, and the elongation of the titanium JIS second class plate was recognized. Was. When the laser output was controlled so that the temperature of the surface (non-interface) of the SUS304 plate was constant at 315 ° C., the tensile shear strength of the obtained metal joined body was 1900 N, and the metal joint was separated from the joint. Here, the conditions under which the highest strength was obtained (the temperature of the SUS304 plate surface (non-interface) was constant at 325 ° C.) were again verified, and the tensile shear strength of the obtained metal joined body was 565 N, and the metal joint was peeled off from the joint. As a result, the strength varied. It is considered that the reason is that the thickness of the resin film is too thin as 11 μm.
2・・・第一金属材、
4・・・第二金属材、
6・・・樹脂材、
8・・・金属接合体、
12・・・第一金属材、
14・・・第二金属材、
16・・・樹脂材。
2 First metal material,
4 Second metal material,
6 ... resin material,
8 ... metal joint,
12 ... first metal material,
14 ... second metal material,
16 ... resin material.

Claims (11)

  1.  樹脂層を介して一方の金属材と他方の金属材とを当接させ、被接合界面を形成する第一工程と、
     前記一方の金属材及び/又は前記他方の金属材の表面にレーザを照射し、前記被接合界面において前記樹脂層と前記一方の金属材を接合すると共に、前記樹脂層と前記他方の金属材を接合し、接合部を形成する第二工程と、を有すること、
     を特徴とする金属材の接合方法。
    A first step of bringing one metal material and the other metal material into contact with each other via a resin layer to form a bonded interface;
    A surface of the one metal material and / or the other metal material is irradiated with a laser to join the resin layer and the one metal material at the interface to be joined, and to bond the resin layer and the other metal material. Joining, and a second step of forming a joint,
    A method for joining metal materials, characterized in that:
  2.  前記樹脂層が樹脂フィルムであること、
     を特徴とする請求項1に記載の金属材の接合方法。
    The resin layer is a resin film,
    The method for joining metal materials according to claim 1, wherein:
  3.  前記樹脂層の厚さが15~500μmであること、
     を特徴とする請求項1又は2に記載の金属材の接合方法。
    The thickness of the resin layer is 15 to 500 μm,
    The method for joining metal materials according to claim 1 or 2, wherein:
  4.  前記樹脂層がポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂、ポリエチレンテレフタレート樹脂、マレイン酸変性ポリプロピレン樹脂及びポリエーテルエーテルケトン樹脂のうちの何れかであること、
     を特徴とする請求項1~3のうちのいずれかに記載の金属材の接合方法。
    The resin layer is any one of a polyamide resin, a polyimide resin, a polycarbonate resin, a polyphenylene sulfide resin, a fluorine resin, a polyethylene terephthalate resin, a maleic acid-modified polypropylene resin and a polyether ether ketone resin,
    The method for joining metal materials according to any one of claims 1 to 3, characterized in that:
  5.  前記一方の金属材と前記他方の金属材の組成が異なること、
     を特徴とする請求項1~4のうちのいずれかに記載の金属材の接合方法。
    The composition of the one metal material and the other metal material is different,
    The method for joining metal materials according to any one of claims 1 to 4, characterized in that:
  6.  前記第二工程及び/又は前記第二工程の直後に前記接合部を加圧すること、
     を特徴とする請求項1~5のうちのいずれかに記載の金属材の接合方法。
    Pressurizing the joint immediately after the second step and / or the second step;
    The method for bonding metal materials according to any one of claims 1 to 5, characterized in that:
  7.  前記第一工程の予備処理として、
     還元性を有するカルボン酸を用いた電解処理によって前記一方の金属材及び/又は前記他方の金属材に新生面を形成すると共に、前記カルボン酸によって前記新生面を被覆し、カルボン酸被覆金属材を得る表面処理工程を施すこと、
     を特徴とする請求項1~6のうちのいずれかに記載の金属材の接合方法。
    As a preliminary treatment of the first step,
    A new surface is formed on the one metal material and / or the other metal material by electrolytic treatment using a reducing carboxylic acid, and the new surface is coated with the carboxylic acid to obtain a carboxylic acid-coated metal material. Performing a processing step,
    The method for joining metal materials according to any one of claims 1 to 6, characterized in that:
  8.  前記第一工程の予備処理として、
     前記被接合界面となる前記一方の金属材及び/又は前記他方の金属材の表面にレーザを照射し、前記表面を粒径が1~100nmの酸化物粒子で被覆すること、
     を特徴とする請求項1~6のうちのいずれかに記載の金属材の接合方法。
    As a preliminary treatment of the first step,
    Irradiating a laser to the surface of the one metal material and / or the other metal material to be the interface to be joined, and covering the surface with oxide particles having a particle size of 1 to 100 nm;
    The method for joining metal materials according to any one of claims 1 to 6, characterized in that:
  9.  一方の金属材と他方の金属材との重ね接合部材であって、
     前記一方の金属材と前記他方の金属材との接合界面に樹脂層が存在し、
     前記樹脂層と前記一方の金属材が直接接合されており、
     前記樹脂層と前記他方の金属材が直接接合されており、
     接合部の引張試験において前記一方の金属材及び/又は前記他方の金属材が伸長すること、
     を特徴とする金属接合体。
    A lap joint member of one metal material and the other metal material,
    A resin layer is present at a bonding interface between the one metal material and the other metal material,
    The resin layer and the one metal material are directly joined,
    The resin layer and the other metal material are directly joined,
    The one metal material and / or the other metal material elongate in a tensile test of the joint,
    A metal joined body characterized by the above.
  10.  前記引張試験において前記一方の金属材又は前記他方の金属材が破断すること、
     を特徴とする請求項9に記載の金属接合体。
    In the tensile test, the one metal material or the other metal material is broken,
    The metal joined body according to claim 9, wherein:
  11.  前記一方の金属材及び/又は前記他方の金属材が鋼材又はチタン材であること、
     を特徴とする請求項9又は10に記載の金属接合体。
    The one metal material and / or the other metal material is a steel material or a titanium material,
    The metal joined body according to claim 9, wherein:
PCT/JP2019/037295 2018-09-25 2019-09-24 Method for joining metal materials, and metal joining body WO2020067022A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980062178.XA CN112739538A (en) 2018-09-25 2019-09-24 Method for joining metal materials and metal joined body
JP2020549222A JP7264406B2 (en) 2018-09-25 2019-09-24 METHOD FOR JOINING METAL MATERIAL AND METAL JOINT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178515 2018-09-25
JP2018178515 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020067022A1 true WO2020067022A1 (en) 2020-04-02

Family

ID=69952151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037295 WO2020067022A1 (en) 2018-09-25 2019-09-24 Method for joining metal materials, and metal joining body

Country Status (3)

Country Link
JP (1) JP7264406B2 (en)
CN (1) CN112739538A (en)
WO (1) WO2020067022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230566A1 (en) 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
EP4151356A4 (en) * 2020-05-13 2024-02-28 Hirotec Corp Method of bonding thermoplastic resin and metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2009269401A (en) * 2008-04-09 2009-11-19 Okayama Prefecture Bonding process using laser beam
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together
WO2012020531A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Laser bonding method
JP2018103548A (en) * 2016-12-28 2018-07-05 株式会社ヒロテック Metal-resin joint method and metal-resin joint body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009150A1 (en) * 2006-10-05 2010-01-14 Okayama Prefectural Government Intermediate member for laser bonding and method of bonding using the same
JP2009119807A (en) * 2007-11-19 2009-06-04 Dainippon Printing Co Ltd Laser fusible laminated material, laser fusing method, and packaging body
JP5342286B2 (en) * 2008-05-16 2013-11-13 日東電工株式会社 Manufacturing method of sheet joined body and sheet joined body
JP5475421B2 (en) * 2009-12-04 2014-04-16 株式会社神戸製鋼所 Copper material or copper alloy material for laser welding
KR20140141583A (en) * 2012-03-29 2014-12-10 데이진 가부시키가이샤 Method for manufacturing joint member, and joint member
JP6199655B2 (en) 2013-08-07 2017-09-20 アイシン精機株式会社 Composite molded product
JP2016132155A (en) 2015-01-19 2016-07-25 オムロン株式会社 Laser welding method and joint structure
JP6451421B2 (en) 2015-03-12 2019-01-16 オムロン株式会社 Manufacturing method of bonded structure
DE102016215493A1 (en) 2016-08-18 2018-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hybrid composite material between a metal surface and a polymeric material surface and method for producing the hybrid composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2009269401A (en) * 2008-04-09 2009-11-19 Okayama Prefecture Bonding process using laser beam
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together
WO2012020531A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Laser bonding method
JP2018103548A (en) * 2016-12-28 2018-07-05 株式会社ヒロテック Metal-resin joint method and metal-resin joint body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151356A4 (en) * 2020-05-13 2024-02-28 Hirotec Corp Method of bonding thermoplastic resin and metal
WO2022230566A1 (en) 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
KR20230162669A (en) 2021-04-27 2023-11-28 도꾜 다이가꾸 Bonding body, substrate, method of manufacturing the bonding body, and method of manufacturing the substrate

Also Published As

Publication number Publication date
CN112739538A (en) 2021-04-30
JP7264406B2 (en) 2023-04-25
JPWO2020067022A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4961532B2 (en) Method and apparatus for joining dissimilar metals
JP5468350B2 (en) Dissimilar metal plate joining method
JP5187712B2 (en) Joining method
JP5376391B2 (en) Dissimilar metal joining method and joining structure
CN108248058B (en) Metal resin joining method and metal resin joined body
WO2020067022A1 (en) Method for joining metal materials, and metal joining body
JP4780526B2 (en) Joining method, joining apparatus and joining structure of different materials
JP4656495B2 (en) Joining method and joining structure of oxide film forming material
JP2008006465A (en) Method for joining dissimilar metals
JP2009000700A (en) Different-mental joining method and joined sructure
US20200108468A1 (en) Hybrid ultrasonic and resistance spot welding system
JP2007136525A (en) Method for joining dissimilar materials
JP2006239745A (en) Method for joining aluminum member
JP5119458B2 (en) Method for forming joints of dissimilar metal materials having excellent sealing properties
JP5597946B2 (en) Low-temperature metal joining method
JP2005111489A (en) Structure and method for joining dissimilar material
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
JP4962907B2 (en) Dissimilar metal joining method and joining structure
Thapliyal Ultrasonic welding—a modern welding technology for metals and plastics
JP6096016B2 (en) Method of joining metal body and resin body
JP2005288465A (en) Friction stir spot welding method and equipment
Ikeuchi et al. Effect of Interfacial Reaction Layer on Bond Strength of Friction-Bonded Joint of A1 Alloys to Steel
JP6014879B2 (en) Method of joining metal member and resin member
WO2022113436A1 (en) Bonded member and method for manufacturing same
JP2013154399A (en) Dissimilar metal joined body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867492

Country of ref document: EP

Kind code of ref document: A1