JP5597946B2 - Low-temperature metal joining method - Google Patents

Low-temperature metal joining method Download PDF

Info

Publication number
JP5597946B2
JP5597946B2 JP2009155830A JP2009155830A JP5597946B2 JP 5597946 B2 JP5597946 B2 JP 5597946B2 JP 2009155830 A JP2009155830 A JP 2009155830A JP 2009155830 A JP2009155830 A JP 2009155830A JP 5597946 B2 JP5597946 B2 JP 5597946B2
Authority
JP
Japan
Prior art keywords
joining
bonding
copper
joined
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009155830A
Other languages
Japanese (ja)
Other versions
JP2010105043A (en
Inventor
健二 宮本
義貴 上原
俊和 南部
成幸 中川
宏規 坂元
明夫 廣瀬
智一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009155830A priority Critical patent/JP5597946B2/en
Publication of JP2010105043A publication Critical patent/JP2010105043A/en
Application granted granted Critical
Publication of JP5597946B2 publication Critical patent/JP5597946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、例えば、半導体素子、モーター、センサー等の各種電子部品や機械部品、構造部品等の接合に用いられる接合方法に係り、さらに詳しくは、被接合材を構成する金属材料の融点よりも低い温度で接合することができる低温接合方法と、当該方法に用いる接合装置に関するものである。   The present invention relates to a joining method used for joining, for example, various electronic parts such as semiconductor elements, motors, and sensors, mechanical parts, structural parts, and more specifically, more specifically than the melting point of a metal material constituting a material to be joined. The present invention relates to a low-temperature bonding method capable of bonding at a low temperature and a bonding apparatus used in the method.

従来、例えば自動車用電動部品などのパワーエレクトロニクス用の実装基板の構造、特に半導体チップと基板配線層の接合を行う際には、限られたスペースに半導体チップを収めるためには、内部に発生する熱に起因する諸問題を解決する必要がある。その課題の1つとして、半導体チップと基板との接合時の熱衝撃性がある。   Conventionally, for example, when a semiconductor chip and a substrate wiring layer are bonded to each other, for example, when a semiconductor chip and a substrate wiring layer are bonded to each other, for example, an electric component for an automobile is generated inside. It is necessary to solve various problems caused by heat. As one of the problems, there is a thermal shock property at the time of joining the semiconductor chip and the substrate.

また、チップの密度や電流が増し、温度環境が苛酷になると、Pb−Sn合金のような低融点ろう材を使ったろう付けによる接合については、耐熱性の観点から採用することができない。一方、より高融点のろう材、例えばアルミニウム系ろう材を用いた場合には、融点が高過ぎて、ろう付け接合時のヒートショックが大きく、接合時に割れや剥離といった不具合が生じる虞れがある。
そもそも、これらのろう付け部は一般に延性に乏しく、接合できたとしても使用時の温度サイクルや部位間の温度差による熱応力に対し耐久性が不足する。また、接合時に配線層であるCuやAlと反応して、脆弱な金属間化合物を生成する虞れもある。
Further, when the density and current of the chip increase and the temperature environment becomes severe, bonding by brazing using a low melting point brazing material such as a Pb—Sn alloy cannot be adopted from the viewpoint of heat resistance. On the other hand, when a higher melting point brazing material, such as an aluminum-based brazing material, is used, the melting point is too high, heat shock during brazing joining is large, and problems such as cracking and peeling may occur during joining. .
In the first place, these brazed portions are generally poor in ductility, and even if they can be joined, they are insufficient in durability against thermal stress due to temperature cycles during use and temperature differences between parts. Moreover, it may react with Cu or Al which is a wiring layer at the time of bonding to generate a fragile intermetallic compound.

このような低温度での接合方法として、例えば特許文献1には、被接合物の接合面にアルゴンイオンビームを照射して、清浄化処理した後、接合を行う方法が提案されている。   As a bonding method at such a low temperature, for example, Patent Document 1 proposes a method of performing bonding after irradiating a bonding surface of an object to be bonded with an argon ion beam and performing a cleaning process.

特開平08−118043号公報Japanese Patent Application Laid-Open No. 08-118043

しかし、上記特許文献1に記載の方法においては、試料表面の清浄化処置後、常温で加圧、接合するに際して、接触面積を確保するために大きな加圧力が必要であり、加圧によって試料全体に塑性変形を生ずる結果、望ましい接合強度が得られない場合がある。   However, in the method described in Patent Document 1, a large pressing force is required to secure a contact area when pressing and joining at normal temperature after cleaning the sample surface. As a result of plastic deformation, desired joint strength may not be obtained.

本発明は、ろう付けを始めとする低温度域での接合における上記のような問題点に鑑みてなされたものであって、その目的とするところは、比較的低温で良好な接合強度が得られ低温接合方法を提供することにある。また、このような低温接合に好適に用いることができる接合装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems in joining in a low temperature range such as brazing, and the object is to obtain good joining strength at a relatively low temperature. Another object is to provide a low-temperature bonding method. Moreover, it aims at providing the joining apparatus which can be used suitably for such low temperature joining.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、接合しようとする被接合材の接合面に予め微細な凹凸を形成しておくことによって上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by forming fine irregularities in advance on the bonding surfaces of the materials to be bonded, The present invention has been completed.

すなわち、本発明は上記知見に基づくものであって、本発明の金属の低温接合方法は、銅製の被接合材における接合面の少なくとも一方に、隣接する凸部間又は凹部間の距離が200〜1000nmの間の任意の値であると共に、隣接する凹凸部間の高低差が40〜300nmの間の任意の値の微細凹凸を形成した状態で接合面同士を突き合わせ、銅製の被接合材の融点よりも低い温度に加熱することによって上記被接合材を接合することを特徴とする。 That is, this invention is based on the said knowledge, Comprising: As for the low-temperature joining method of the metal of this invention, the distance between adjacent convex parts or the distance between recessed parts is 200- at least one of the joining surfaces in copper to- be-joined materials. The joining surfaces are abutted with each other in a state in which fine unevenness having an arbitrary value between 1000 nm and an elevation difference between adjacent unevenness portions of 40 to 300 nm is formed, and the melting point of the copper joining material The material to be joined is joined by heating to a lower temperature.

また、本発明の接合装置は、上記低温接合方法に好適に用いられるものであって、銅製の被接合材を収納する雰囲気制御可能な密閉炉と、密閉炉内の温度を調整する熱制御手段と、銅製の被接合材の接合面の少なくとも一方に隣接する凸部間又は凹部間の距離が200〜1000nmの間の任意の値であって、隣接する凹凸部間の高低差が40〜300nmの間の任意の値である微細凹凸形状加工を施すレーザ加工手段と、銅製の被接合材の接合面同士を突き合わせる加圧手段を備えたことを特徴としている。 Further, the joining apparatus of the present invention is suitably used for the above-described low-temperature joining method, and includes a closed furnace capable of controlling the atmosphere containing the copper-made material to be bonded, and a heat control means for adjusting the temperature in the closed furnace. And the distance between the convex portions adjacent to at least one of the bonding surfaces of the copper workpiece or the concave portion is an arbitrary value between 200 and 1000 nm, and the height difference between the adjacent concave and convex portions is 40 to 300 nm. It is characterized by comprising a laser processing means for performing fine uneven shape processing which is an arbitrary value between and a pressurizing means for abutting the joining surfaces of copper to- be-joined materials.

本発明によれば、接合面の少なくとも一方に、ナノオーダーの微細な凹凸を形成するようにしたため、被接合材の融点よりも低い温度で、被接合材同士を良好な接合強度で接合することができるようになる。   According to the present invention, since nano-order fine irregularities are formed on at least one of the bonding surfaces, the bonded materials can be bonded with good bonding strength at a temperature lower than the melting point of the bonded materials. Will be able to.

本発明の実施例において微細凹凸加工に用いたフェムト秒レーザ加工装置のセッティング状態を示す説明図である。It is explanatory drawing which shows the setting state of the femtosecond laser processing apparatus used for the fine unevenness | corrugation processing in the Example of this invention. 本発明において被接合材の接合面に形成される微細凹凸形状の一例を示すSEM(走査型電子顕微鏡)画像である。It is a SEM (scanning electron microscope) image which shows an example of the fine uneven | corrugated shape formed in the joining surface of a to-be-joined material in this invention. 微細凹凸を備えた純銅材を600℃(b)、500℃(c)及び400℃(d)に加熱した時の表面状態を加熱前(a)と比較して示すSEM画像である。It is a SEM image which shows the surface state at the time of heating the pure copper material provided with the fine unevenness | corrugation to 600 degreeC (b), 500 degreeC (c), and 400 degreeC (d) before a heating (a). 本発明の接合装置の一例を示す概略図である。It is the schematic which shows an example of the joining apparatus of this invention. 本発明の実施例1,2における被接合材の配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the to-be-joined material in Example 1, 2 of this invention. 本発明の実施例1により得られた引張試験片の破断面のSEM画像である。It is a SEM image of the fracture surface of the tensile test piece obtained by Example 1 of this invention. 本発明の参考例3における被接合材の配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the to-be-joined material in the reference example 3 of this invention. 本発明の実施例4による接合面における中心部(a)、高倍率による中心部(b)、同じく周辺部(c)の微細凹凸形状を示すSEM画像である。It is a SEM image which shows the fine uneven | corrugated shape of the center part (a) in the joint surface by Example 4 of this invention, the center part (b) by high magnification, and a periphery part (c) similarly. 本発明の実施例4において400℃(a)及び700℃(b)で接合された引張試験片における破断面のSEM画像である。It is a SEM image of the fracture surface in the tension test piece joined at 400 degreeC (a) and 700 degreeC (b) in Example 4 of this invention. 比較例2における被接合材の配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the to-be-joined material in the comparative example 2.

以下に、本発明の低温接合方法について、さらに詳細、かつ具体的に説明する。   Hereinafter, the low-temperature bonding method of the present invention will be described in more detail and specifically.

金属粒子の溶融開始温度は、粒径が小さくなると低下することが知られているが、このような効果が現れ始める粒径は100nm以下であり、20nm以下の粒径になるとその効果が顕著となる。特に、金属によっては、その粒径が10nm以下になると、バルク状態の金属が持つ融点よりもかなり低い温度で溶融し、互いに結合する。   The melting start temperature of the metal particles is known to decrease as the particle size decreases, but the particle size at which such an effect starts to appear is 100 nm or less, and the effect becomes significant when the particle size is 20 nm or less. Become. In particular, depending on the metal, when the particle size is 10 nm or less, the metal melts at a temperature considerably lower than the melting point of the metal in the bulk state and bonds to each other.

このことは、熱力学的には次のように説明される。ここでは、仮に半径r、密度ρ、表面エネルギーEsを持つ球状微粒子の一部が溶ける場合を考えてみる。
この粒子の構成物質の融解熱をΔHm、融解エントロピーをΔSmとし、dWの重量が溶解したことによってdAの表面積減少があったとすると、次式(1)が成立する。
ΔHmdW−ΔSmTsdW−EsdA=0 ・・・(1)
式(1)において、Tsが相変化の温度(融点)である。
This is explained thermodynamically as follows. Here, let us consider a case where a part of spherical fine particles having a radius r, a density ρ, and a surface energy Es are melted.
If the heat of fusion of the constituents of the particles is ΔHm, the entropy of fusion is ΔSm, and the surface area of dA is reduced due to dissolution of the weight of dW, the following equation (1) is established.
ΔHmdW−ΔSmTsdW−EsdA = 0 (1)
In the formula (1), Ts is a phase change temperature (melting point).

一方、融解に伴う表面積の減少が無視しうる程度に大きなバルク固体では、融解時のエネルギーバランスは次式(2)で表される。
ΔHmdW−ΔSmTsdW=0 ・・・(2)
On the other hand, in the case of a bulk solid that has a negligible decrease in surface area due to melting, the energy balance at the time of melting is expressed by the following equation (2).
ΔHmdW−ΔSmTsdW = 0 (2)

このように表面エネルギーの減少の寄与により融点降下現象が生じるとされている(日本化学会編「化学総説48 超微粒子−科学と応用」学会出版センター、p.47−56参照)。   It is said that the melting point lowering phenomenon is caused by the contribution of the decrease of the surface energy in this way (refer to the Chemical Society 48 “Chemical Review 48 Ultrafine Particles—Science and Application” Society of Science Publishing Center, p. 47-56).

さらに、溶融に先立って、粒子の焼結現象が起きるが、この焼結開始温度もバルクの場合よりも著しく低下し、低温焼結によって結合が生じる。
例えば、平均粒径が20nmのAg超微粒子の場合、60〜80℃の低温で焼結が開始するという公表データ(佐藤稔雄「日本金属学会シンポジウム予稿 金属超微粒子の製作から応用まで」、1975年、p.26参照)がある。
Furthermore, a particle sintering phenomenon occurs prior to melting, but this sintering start temperature is also significantly lower than in the case of bulk, and bonding occurs by low temperature sintering.
For example, in the case of Ag ultrafine particles with an average particle size of 20 nm, published data that sintering starts at a low temperature of 60 to 80 ° C. (Yasuo Sato “Preliminary Proceedings of the Metallurgical Society of Japan, from production to application of metal ultrafine particles”, 1975 , P.26).

このような現象は、次のように説明されている。
固体の粒子同士が接触すると、高温下や圧力下では、時間と共に次第に接触面積が増大する。この現象は、複数の粒子とそれらを取り囲む環境からなる系が、全体としてより安定な系へと移行するために、その自由エネルギー(または化学ポテンシャル)を減少させようとする駆動力(Driving force)に基づいている。最初の粒子系の表面エネルギーは,粒子の大きさが小さいほど大きいので、微粒の原料粉体を用いるほど焼結の駆動力が大きいとされている(社団法人日本セラミックス協会編「セラミック工学ハンドブック第2版」技報堂出版、p.109−121参照)。
Such a phenomenon is explained as follows.
When solid particles come into contact with each other, the contact area gradually increases with time under high temperature or pressure. This phenomenon is caused by a driving force (Driving force) that reduces the free energy (or chemical potential) of a system consisting of a plurality of particles and the environment surrounding them in order to shift to a more stable system as a whole. Based on. Since the surface energy of the first particle system is larger as the particle size is smaller, the driving force of sintering is said to be larger as finer raw material powder is used (“Ceramic Engineering Handbook No. 1 edited by Japan Ceramic Society) 2nd edition ", Gihodo Publishing, p. 109-121).

被接合材の表面に微細な凹凸が存在すると、表面が低弾性化され、被接合材同士の接触が促進され、互いの密着度が向上する。さらに接触部が増加することにより金属原子の拡散パスも増加することから拡散反応が促進され、その結果、低温、短時間での接合が可能となる。
また、微細凹凸を設けることで凸先端には大きな荷重が発生し、これによって表面酸化皮膜が破壊される。表面酸化皮膜は、接合を阻害する要因であるため、その破壊によって相互の被接合材の新生面同士が直接接触し、良好な接合部が形成される。さらに、副次的効果として微細凹凸同士がかしまることによるアンカー効果も引き出せる。
When fine irregularities are present on the surface of the materials to be joined, the surfaces are made less elastic, the contact between the materials to be joined is promoted, and the degree of close contact with each other is improved. Further, the increase in the contact portion increases the diffusion path of metal atoms, so that the diffusion reaction is promoted. As a result, bonding at a low temperature and in a short time becomes possible.
In addition, by providing fine irregularities, a large load is generated at the convex tip, thereby destroying the surface oxide film. Since the surface oxide film is a factor that hinders bonding, the new surfaces of the materials to be bonded come into direct contact with each other due to the destruction, and a good bonded portion is formed. Furthermore, as a secondary effect, it is possible to bring out an anchor effect due to the fact that the fine irregularities are bitten.

微細形状がさらに細かくなると、上記の低弾性化による密着度の向上や、拡散パスの増大以外の効果による、融点降下現象を誘発することが可能となる。   When the finer shape becomes finer, it becomes possible to induce the melting point lowering phenomenon due to the effects other than the improvement of the adhesion degree due to the low elasticity and the increase of the diffusion path.

本発明の低温接合方法においては、上記したように、少なくとも一方の被接合材の接合面に、頂部間又は谷底間距離が200〜1000nmであって、40〜300nmの高低差を有する微細凹凸を形成し、被接合材の融点よりも低い温度に加熱して接合するようにしている。
すなわち、本発明の低温接合方法の特徴は、接合面を形成する被接合材の相対する少なくとも一方の表面に微細凹凸形状を形成することによる表面エネルギーの減少を積極的に利用し、微粒子に見られるような融点降下現象、凝集現象を発現させ、融点よりも低温にて接合を実現するところにある。したがって、熱変形や接合時の加圧などに起因する変形を伴うことなく、被接合材同士を接合することができる。また、溶融溶接のような母材の変質層(熱影響部)もほとんど存在しない。
In the low-temperature bonding method of the present invention, as described above, fine unevenness having a height difference of 40 to 300 nm with a distance between tops or valleys of 200 to 1000 nm is formed on the bonding surface of at least one material to be bonded. It is formed and bonded by heating to a temperature lower than the melting point of the materials to be bonded.
That is, the low-temperature bonding method of the present invention is characterized by positively utilizing the decrease in surface energy due to the formation of fine irregularities on at least one of the opposing surfaces of the material to be bonded forming the bonding surface. The melting point lowering phenomenon and the agglomeration phenomenon are realized, and the bonding is realized at a temperature lower than the melting point. Therefore, the materials to be joined can be joined without any deformation caused by thermal deformation or pressurization during joining. Further, there is almost no altered layer (heat-affected zone) of the base material such as fusion welding.

ここで、微細凹凸における凸部間や凹部間の距離(隣接する頂部間又は谷底間距離)が1000nmを超えたり、隣接する凹凸部間の高低差が300nmを超えたりした場合には、上記のような融点降下現象や凝集現象が生じ難くなる。
なお、上記した距離及び高低差としては、それぞれ200〜800nm、40〜150nmの範囲内であることがより好ましい。
Here, when the distance between the protrusions and the recesses in the fine unevenness (distance between adjacent tops or valleys) exceeds 1000 nm, or the height difference between adjacent uneven parts exceeds 300 nm, Such melting point lowering phenomenon and aggregation phenomenon are less likely to occur.
In addition, as an above-described distance and height difference, it is more preferable to exist in the range of 200-800 nm and 40-150 nm, respectively.

本発明の低温接合方法において、被接合材の接合面上記のような微細凹凸を加工するには、例えば、フェムト秒レーザ加工や、陽極酸化法、FIB(focused ion beam)加工、ナノインプリント加工、機械加工(切削、研削)などを用いることができると共に、これらの加工方法を2種以上組合せることもできる。但し、上記したような微細な凹凸形状が加工できる方法でありさえすれば、これらに限定されるものではない。   In the low-temperature bonding method of the present invention, in order to process the fine unevenness as described above on the bonding surface of the material to be bonded, for example, femtosecond laser processing, anodic oxidation method, FIB (focused ion beam) processing, nanoimprint processing, machine Processing (cutting, grinding) or the like can be used, and two or more of these processing methods can be combined. However, the method is not limited to these as long as it is a method capable of processing the fine uneven shape as described above.

図1は、このような微細凹凸加工に用いるフェムト秒レーザ加工装置のセッティング状態を示すものであって、発振レーザをシャッター5、アパーチャー6、λ/2板7、グランレーザプリズム8及び対物レンズ9(開口率:0.13)を順次通過させるようになっている。   FIG. 1 shows a setting state of a femtosecond laser processing apparatus used for such fine unevenness processing. The oscillation laser is a shutter 5, an aperture 6, a λ / 2 plate 7, a Glan laser prism 8, and an objective lens 9. (Aperture ratio: 0.13) is sequentially passed.

図2は、上記装置を用いたフェムト秒レーザ加工によって、純銅の表面に形成された微細凹凸形状の一例を示すものであって、ここでは、当該装置によって、パルス幅:120fs、波長:800nm、パルスエネルギ密度:1mJ/pulse、繰り返し周波数:1kHzの特性としたフェムト秒レーザを加工面に照射した。なお、波長はBBO(ベータバリウムボライト)結晶により変更している。
この結果、純銅の加工表面には、隣接する凸部間の距離が240〜720nmの範囲に、隣接する凹凸部間の高低差が48〜144nmの範囲の微細凹凸が形成されていることが確認された。
FIG. 2 shows an example of a fine uneven shape formed on the surface of pure copper by femtosecond laser processing using the above-mentioned apparatus. Here, according to the apparatus, the pulse width: 120 fs, wavelength: 800 nm, The processed surface was irradiated with a femtosecond laser having a pulse energy density of 1 mJ / pulse and a repetition frequency of 1 kHz. The wavelength is changed by a BBO (beta barium bolite) crystal.
As a result, it was confirmed that fine unevenness was formed on the processed surface of pure copper in the range where the distance between adjacent convex portions was in the range of 240 to 720 nm and the height difference between adjacent uneven portions was in the range of 48 to 144 nm. It was done.

図3(a)〜(d)は、上記フェムト秒レーザ加工による微細凹凸を備えた純銅材を真空炉内で、それぞれ600℃(b)、500℃(c)及び400℃(d)に加熱した時の表面状態を加熱前(a)と比較して示したものである。
これらの図から明らかなように、銅の融点が1083℃であるのに対して、銅表面の微細凹凸形状が上記温度域、特に400℃でも崩れる現象が認められ、表面に上記のような微細凹凸を形成することによって、焼結の際に微粒子に観察されるような融点降下現象、凝集現象が発現することが確認された。
3 (a) to 3 (d) show that the pure copper material provided with fine irregularities by the femtosecond laser processing is heated to 600 ° C. (b), 500 ° C. (c) and 400 ° C. (d), respectively, in a vacuum furnace. It shows the surface state when compared with (a) before heating.
As is clear from these figures, while the melting point of copper is 1083 ° C., there is a phenomenon that the fine uneven shape of the copper surface collapses even in the above temperature range, particularly 400 ° C. By forming the irregularities, it was confirmed that a melting point lowering phenomenon and an agglomeration phenomenon as observed in the fine particles during the sintering occurred.

本発明の低温接合方法が適用可能な被接合材の種類としては、上記した銅のみに限定される訳ではない。また、当該接合方法は、同種材料のみならず、異種材の接合にも適用することができる。   The kind of the material to be joined to which the low-temperature joining method of the present invention is applicable is not limited to the above-described copper. In addition, the bonding method can be applied not only to the same kind of material but also to the joining of different kinds of materials.

本発明の低温接合方法を実現するための具体的な工程としては、少なくとも一方の接合面に上記のような微細凹凸形状を形成する工程と、被接合材の接合面同士を突き合わせる工程と、被接合材の接合面を加熱する工程を必要とする。
このとき、上記微細凹凸形状の形成工程と接合面加熱工程の一方、又は両工程を真空中、又は低酸素濃度雰囲気、又は非酸化性雰囲気で行うことが望ましく、これによって接合面の酸化が抑制され、より健全な接合部を得ることができる。なお、両工程を同一雰囲気内で連続して行うことがより望ましい。
As specific steps for realizing the low-temperature bonding method of the present invention, a step of forming the above-described fine irregular shape on at least one bonding surface, a step of matching the bonding surfaces of the materials to be bonded, The process of heating the joining surface of a to-be-joined material is required.
At this time, it is desirable to perform one or both of the fine uneven shape forming step and the bonding surface heating step in a vacuum, a low oxygen concentration atmosphere, or a non-oxidizing atmosphere, thereby suppressing oxidation of the bonding surface. And a healthier joint can be obtained. It is more desirable to perform both steps continuously in the same atmosphere.

本発明の低温接合方法において、上記した低酸素濃度雰囲気とは、酸素濃度が500ppm以下程度の場合を意味する。
また、非酸化性雰囲気とするための非酸化性ガスとしては、窒素やアルゴンが代表例として挙げられるが、大気に較べて被接合材の接合面の酸化を抑制する作用を有するガスであればよい。
In the low temperature bonding method of the present invention, the above-mentioned low oxygen concentration atmosphere means a case where the oxygen concentration is about 500 ppm or less.
In addition, as a non-oxidizing gas for making a non-oxidizing atmosphere, nitrogen and argon are given as typical examples. However, as long as the gas has an action of suppressing the oxidation of the bonding surface of the material to be bonded as compared with the atmosphere. Good.

本発明の低温接合方法においては、微細凹凸形状の加工と同時に、あるいは加工工程と接合面を突き合わせる工程との間に、酸化防止のためのコーティングを加工面に施す工程を加えることが望ましい。
これによって、微細凹凸加工時の雰囲気制御や真空引きを省略することも可能となり、装置を簡素化することができる。また、微細凹凸加工工程から接合工程までの間で被接合材に形成された微細凹凸表面の酸化を抑制することが可能となり、加工から接合までの工程間の工法上の自由度が増すことになる。
In the low temperature bonding method of the present invention, it is desirable to add a step of applying a coating for preventing oxidation to the processed surface simultaneously with the processing of the fine uneven shape or between the processing step and the step of matching the bonding surface.
As a result, it is possible to omit atmosphere control and evacuation at the time of fine unevenness processing, and the apparatus can be simplified. In addition, it becomes possible to suppress the oxidation of the surface of the fine irregularities formed on the material to be joined between the fine irregularity processing step and the bonding step, and the degree of freedom in the construction method between the processes from the processing to the bonding is increased. Become.

上記のような酸化防止を目的とするコーティング剤としては、例えばポリエチレン(ワックス)、ポリアクリレート、ポリアミン、ポリアミド、ウレタン、ポリエーテル、ポリエステル及び多ケイ酸塩から成る群から選択された少なくとも一つの樹脂、又はこれら樹脂の混合物などを用いることができる。なお、これらコーティング剤は、接合時の加熱によって分解することから、塗布したままで接合に供することができる。   Examples of the coating agent for preventing oxidation as described above include at least one resin selected from the group consisting of polyethylene (wax), polyacrylate, polyamine, polyamide, urethane, polyether, polyester and polysilicate. , Or a mixture of these resins can be used. In addition, since these coating agents are decomposed | disassembled by the heating at the time of joining, they can be used for joining with apply | coating.

本発明の接合装置は、被接合材を収納し、真空やArなどの非酸化性ガスに雰囲気制御することができる密閉炉と、この密閉炉内の温度を調整する熱制御手段と、被接合材の接合面に微細凹凸加工を施すレーザ加工手段と、被接合材の接合面同士を突き合わせる加圧手段を備えており、本発明の低温接合に好適に用いることができる。
また、当該接合装置には、必要に応じて、微細凹凸加工を施した接合面にコーティングを施すためのコーティング剤噴射手段を設けることも可能である。
The joining apparatus of the present invention contains a material to be joined, a sealed furnace capable of controlling the atmosphere in a non-oxidizing gas such as vacuum or Ar, a thermal control means for adjusting the temperature in the sealed furnace, A laser processing means for performing fine unevenness processing on the joining surface of the material and a pressing means for abutting the joining surfaces of the materials to be joined are provided, and can be suitably used for the low-temperature joining of the present invention.
Moreover, the said joining apparatus can also be provided with the coating agent injection means for coating a joining surface which gave the fine unevenness | corrugation as needed.

図4は、本発明の接合装置の一例を示すものであって、図に示す接合装置10は、炉内を真空にしたり、Arの様な不活性ガスに置換したりして雰囲気制御ができる拡散接合装置に、フェムト秒レーザ加工装置がセッティングされたものである。   FIG. 4 shows an example of the bonding apparatus of the present invention. The bonding apparatus 10 shown in the figure can control the atmosphere by evacuating the furnace or replacing it with an inert gas such as Ar. A femtosecond laser processing apparatus is set in the diffusion bonding apparatus.

すなわち、この接合装置10は、雰囲気制御可能な密閉炉11と、この密閉炉内の温度を調整する熱制御装置12と、密閉炉11内に収納された被接合材1,2の接合面に微細凹凸加工を施すレーザ加工手段としてのフェムト秒レーザ加工装置13と、被接合材1,2の接合面同士を突き合わせる加圧手段としてのエアシリンダ14を備えている。
なお、当該接合装置10には、さらに微細凹凸加工と同時、あるいはその直後の接合面にコーティングを施すためのコーティング剤噴射手段(図示せず)を上記レーザ加工装置13と同様の位置に配置してもよい。
That is, the joining apparatus 10 includes a sealed furnace 11 capable of controlling the atmosphere, a thermal control apparatus 12 that adjusts the temperature in the sealed furnace, and the joining surfaces of the materials 1 and 2 accommodated in the sealed furnace 11. A femtosecond laser processing apparatus 13 as laser processing means for performing fine unevenness processing and an air cylinder 14 as pressurizing means for abutting the bonding surfaces of the materials 1 and 2 to be bonded are provided.
In the bonding apparatus 10, coating agent spraying means (not shown) for coating the bonding surface at the same time as or immediately after the fine unevenness processing is disposed at the same position as the laser processing apparatus 13. May be.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明がこれら実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be specifically described based on examples. Needless to say, the present invention is not limited to these examples.

(実施例1)
図5に示すように、純銅材から成り、径5mm、長さ15mmの円柱状をなす被接合材1と、同じく純銅材から成り、径10mm、長さ25mmの円柱状をなす被接合材2とを突き合わせ接合するに際して、10mm径の円柱状被接合材2の接合面にフェムト秒レーザによる微細凹凸加工を施した。
すなわち、図1に示したように構成したレーザ加工装置を用い、パルス幅:120fs、波長:800nm、パルスエネルギ密度:1mJ/pulse、繰り返し周波数:1kHzのフェムト秒レーザを照射することにより、凸部間距離240〜720nmの範囲、高低差48〜144nmの範囲の微細凹凸を形成した。
Example 1
As shown in FIG. 5, a material to be joined 1 made of a pure copper material and having a cylindrical shape with a diameter of 5 mm and a length of 15 mm, and a material to be joined 2 made of a pure copper material and having a cylindrical shape with a diameter of 10 mm and a length of 25 mm. Were subjected to fine concavo-convex processing by a femtosecond laser on the joint surface of the columnar workpiece 2 having a diameter of 10 mm.
That is, by using a laser processing apparatus configured as shown in FIG. 1 and projecting a femtosecond laser having a pulse width of 120 fs, a wavelength of 800 nm, a pulse energy density of 1 mJ / pulse, and a repetition frequency of 1 kHz, Fine irregularities having a distance of 240 to 720 nm and a height difference of 48 to 144 nm were formed.

そして、400℃、700℃に加熱すると共に、5MPaの加圧力を30分付加することによって両被接合材1,2を突き合わせ接合した。なお、このときの微細凹凸加工、接合工程は、共にAr雰囲気中において連続的に行った。
接合後、引張試験片を切り出し、引張試験に供した。
And both the to-be-joined materials 1 and 2 were butt-joined by heating to 400 degreeC and 700 degreeC, and applying the pressurization force of 5 Mpa for 30 minutes. Note that the fine unevenness processing and the joining step at this time were both continuously performed in an Ar atmosphere.
After joining, a tensile test piece was cut out and subjected to a tensile test.

図6は、引張試験試験後の破断面の走査型電子顕微鏡による観察結果を示すものであって、接合部の破断面は延性破断を示すディンプル形状を示し、良好な接合部を形成していることが判明した。
このように、本発明によれば、バルク固体融点の約1/3である400℃という低温でも、良好な接合を実現できることが確認された。
FIG. 6 shows the observation result of the fracture surface after the tensile test by a scanning electron microscope. The fracture surface of the joint shows a dimple shape showing ductile fracture and forms a good joint. It has been found.
Thus, according to the present invention, it was confirmed that good bonding can be realized even at a low temperature of 400 ° C., which is about 3 of the bulk solid melting point.

(実施例2)
被接合材1,2の接合面の両方に、同様の微細凹凸加工を施すと共に、当該加工の直後に、加工面の酸化防止のためにウレタン樹脂を主成分とする酸化防止剤(熱分解温度:200℃)をコーティングしたこと以外は、上記実施例1と同じ操作を繰り返すことによって、被接合材1,2を接合したのち、引張試験を同様に実施した。
その結果、400℃という低温でも、良好な接合を実現できると共に、試験後の破断面は、図6と同様のディンプル破面を示し、良好な接合部が得られることが確認できた。
(Example 2)
Both the joint surfaces of the materials to be joined 1 and 2 are subjected to the same fine unevenness processing, and immediately after the processing, an antioxidant containing a urethane resin as a main component for preventing oxidation of the processed surface (thermal decomposition temperature) : 200 ° C.) The same operation as in Example 1 was repeated except that the materials to be joined 1 and 2 were joined, and then a tensile test was conducted in the same manner.
As a result, it was confirmed that good bonding could be realized even at a low temperature of 400 ° C., and the fracture surface after the test showed a dimple fracture surface similar to that of FIG.

参考例3)
図7に示すように、純銅材から成る5mm径の被接合材1と、同じく純銅材から成り、10mm径の被接合材2との間に、その両面に同様の微細凹凸加工を施した厚さ50μmの純ニッケル箔3を中間材として挟持したこと以外は、上記実施例1と同じ操作を繰り返し、中間材3を介して被接合材1,2を接合した。
その結果、400℃という低温でも、良好な接合を実現できることが確認された。そして、接合部から引張試験片を切り出し、引張試験を同様に実施した結果、試験片の破断面は、同様のディンプル破面を示し、ニッケル中間材を挟んだ場合にも、良好な接合部が得られることが確認された。
( Reference Example 3)
As shown in FIG. 7, a thickness obtained by performing the same fine unevenness processing on both surfaces between a 5 mm-diameter workpiece 1 made of a pure copper material and a 10 mm-diameter workpiece 2 made of the same pure copper material. The same operations as those of Example 1 were repeated except that the pure nickel foil 3 having a thickness of 50 μm was sandwiched as an intermediate material, and the materials 1 and 2 were bonded via the intermediate material 3.
As a result, it was confirmed that good bonding can be realized even at a low temperature of 400 ° C. And as a result of cutting out the tensile test piece from the joint part and carrying out the tensile test in the same manner, the fracture surface of the test piece shows a similar dimple fracture surface, and even when a nickel intermediate material is sandwiched, a good joint part is obtained. It was confirmed that it was obtained.

(実施例4)
10mm径の円柱状被接合材2の接合面に、ダイヤモンド工具を用いた切削加工によって、凸部間距離800〜1000nmの範囲、高低差150〜300nmの範囲の微細凹凸を形成した。なお、このときの微細形状加工工程は、大気雰囲気とし、加工後、酸化皮膜除去のために酸洗を実施した。
これによって、円柱状被接合材2の接合面に形成された微細形状を図8(a)〜(c)に示す。
Example 4
Fine concavities and convexities having a distance between convex portions of 800 to 1000 nm and a height difference of 150 to 300 nm were formed on the joint surface of the columnar workpiece 2 having a diameter of 10 mm by cutting using a diamond tool. In this case, the fine shape processing step was performed in an air atmosphere, and after processing, pickling was performed to remove the oxide film.
8A to 8C show the fine shape formed on the joining surface of the columnar workpiece 2 by this.

上記以外は、上記実施例1と同じ操作を繰り返すことによって、被接合材1,2を接合したのち、引張試験を同様に実施した。
その結果、上記実施例1と同様に、バルク固体融点の約1/3である400℃という低温でも、良好な接合を実現することが確認された。
また、引張試験の破断面は、図9(a)及び(b)に示すように、ディンプル破面を示し、良好な接合部を形成していることが判明した。
Except for the above, the same operation as in Example 1 was repeated, and after joining the materials 1 and 2 to be joined, a tensile test was carried out in the same manner.
As a result, as in Example 1, it was confirmed that good bonding was realized even at a low temperature of 400 ° C., which is about 1/3 of the melting point of the bulk solid.
Moreover, as shown in FIGS. 9A and 9B, the fracture surface of the tensile test showed a dimple fracture surface, and it was found that a good joint was formed.

(実施例5)
接合雰囲気を酸素濃度が400ppm程度の窒素雰囲気としたこと以外は、上記実施例4と同じ操作を繰り返すことによって、被接合材1,2を接合したのち、引張試験を同様に実施した。
その結果、上記実施例1と同様に、400℃という低温でも良好な接合を実現することが確認された。また、引張試験の破断面はディンプル破面を示し、良好な接合部を形成していることが判明した。
(Example 5)
Except that the bonding atmosphere was a nitrogen atmosphere with an oxygen concentration of about 400 ppm, the same operation as in Example 4 was repeated to bond the materials to be bonded 1 and 2 and then the tensile test was performed in the same manner.
As a result, it was confirmed that good bonding was realized even at a low temperature of 400 ° C. as in Example 1. Moreover, the fracture surface of the tensile test showed a dimple fracture surface, and it was found that a good joint was formed.

(比較例1)
上記実施例1と同様の突き合わせ接合(図5参照)を行うに際して、接合面に微細凹凸加工を施すことなく、#80の研磨紙によって周期100μmの凹凸を有する研磨痕を付けた状態で、同様の接合を試みた。
その結果、400℃ではもとより、700℃でも、極めて低い強度の接合部しか得られなかった。破断面を観察しても機械加工を施した凹凸の凸の部分で一部接合がなされているのみで、破断面の大半が未接合であった。
(Comparative Example 1)
When performing butt-joining (see FIG. 5) as in Example 1 above, the surface is similarly polished with a polishing mark having irregularities with a period of 100 μm made by # 80 abrasive paper without applying fine irregularities to the joining surface. I tried joining.
As a result, only extremely low strength joints were obtained not only at 400 ° C. but also at 700 ° C. Even when the fractured surface was observed, only a part of the convex and concave portions that had been machined was joined, and most of the fractured surface was unjoined.

(比較例2)
上記参考例3と同様の接合を行うに際して、純銅材から成る5mm径の被接合材1と純銅材から成る10mm径の被接合材2の接合面に、微細凹凸加工を施すことなく、上記比較例1と同様に、#80の研磨紙によって周期100μmの凹凸を有する研磨痕をそれぞれ形成した。そして、図10に示すように、被接合材1及び2の間に、微細凹凸加工のない厚さ50μmの純ニッケル箔3を中間材として挟持した後、上記参考例3と同じ操作によって、中間材3を介して被接合材1,2を接合した。
しかし、400℃では、微細凹凸加工を施した参考例3の場合に較べて、強度の値が十分の1以下であり、僅かに強度が向上するものの、700℃でも満足のいく接合強度を有する良好な接合部を得ることができなかった。また、破断面を観察しても未接合の領域が多く見られた。
(Comparative Example 2)
When performing the same joining as in Reference Example 3 above, the above comparison is made without subjecting the joining surfaces of the 5 mm diameter joined material 1 made of pure copper material and the 10 mm diameter joined material 2 made of pure copper material to fine unevenness processing. In the same manner as in Example 1, polishing marks having irregularities with a period of 100 μm were formed by using # 80 polishing paper. Then, as shown in FIG. 10, between the welded material 1 and 2, by a pure nickel foil 3 without thickness 50μm of finely roughened after sandwiching the intermediate material, the same procedure as Reference Example 3, intermediate The joined materials 1 and 2 were joined via the material 3.
However, at 400 ° C., the strength value is 1 or less, which is a sufficient value of 1 as compared with the case of Reference Example 3 subjected to fine unevenness processing, and although the strength is slightly improved, the joint strength is satisfactory even at 700 ° C. A good joint could not be obtained. Moreover, many unjoined areas were observed even when the fracture surface was observed.

(比較例3)
10mm径の円柱状被接合材2の接合面に、ダイヤモンド工具を用いた切削加工によって、鏡面加工を施した。加工後、酸化皮膜除去のために酸洗を実施した。これ以外は、上記実施例1と同じ操作を繰り返すことによって、被接合材1,2を接合したのち、引張試験を同様に実施した。なお、得られた鏡面の平面度は1μm以下、10点平均粗さ(Ra)は0.01μm以下、凸部間距離は0.1mmであった。
その結果、接合強度は、上記参考例3の1/2程度の値に留まり、良好な接合ができないことが判明した。
(Comparative Example 3)
The joining surface of the columnar workpiece 2 having a diameter of 10 mm was mirror-finished by cutting using a diamond tool. After processing, pickling was performed to remove the oxide film. Except for this, the same operation as in Example 1 was repeated to join the materials to be joined 1 and 2 and then the tensile test was carried out in the same manner. The flatness of the obtained mirror surface was 1 μm or less, the 10-point average roughness (Ra) was 0.01 μm or less, and the distance between the convex portions was 0.1 mm.
As a result, it was found that the bonding strength remained at about half the value of Reference Example 3, and good bonding was not possible.

上記実施例及び比較例による接合結果を表1にまとめて示す。   The joining results of the above examples and comparative examples are summarized in Table 1.

Figure 0005597946
Figure 0005597946

1、2 被接合材
10 接合装置
11 密閉炉
12 熱制御装置(熱制御手段)
13 フェムト秒レーザ加工装置(レーザ加工手段)
14 エアシリンダ(加圧手段)
DESCRIPTION OF SYMBOLS 1, 2 To-be-joined material 10 Joining apparatus 11 Sealed furnace 12 Thermal controller (thermal control means)
13 femtosecond laser processing equipment (laser processing means)
14 Air cylinder (Pressurizing means)

Claims (6)

銅製の被接合材における接合面の少なくとも一方に、隣接する凸部間又は凹部間の距離が200〜1000nmの間の任意の値であって、隣接する凹凸部間の高低差が40〜300nmの間の任意の値である微細凹凸を形成した状態で接合面同士を突き合わせ、銅製の被接合材の融点よりも低い温度に加熱して接合することを特徴とする金属の低温接合方法。 The distance between adjacent convex portions or concave portions is an arbitrary value between 200 and 1000 nm on at least one of the bonding surfaces in the copper workpiece, and the height difference between adjacent concave and convex portions is 40 to 300 nm. A metal low-temperature bonding method characterized in that the joining surfaces are butted together in a state in which fine irregularities having an arbitrary value are formed, and are joined by heating to a temperature lower than the melting point of the copper material to be joined. 微細凹凸における隣接する凸部間又は凹部間の距離が200〜800nmの間の任意の値であり、隣接する凹凸部間の高低差が40〜150nmの間の任意の値であることを特徴とする請求項1に記載の低温接合方法。   The distance between adjacent convex portions or concave portions in the fine unevenness is an arbitrary value between 200 and 800 nm, and the height difference between adjacent uneven portions is an arbitrary value between 40 and 150 nm. The low temperature bonding method according to claim 1. 少なくとも一方の銅製の被接合材の接合面に微細凹凸形状を形成する工程と、銅製の被接合材の接合面同士を突き合わせる工程と、銅製の被接合材の接合面を加熱する工程から成ることを特徴とする請求項1又は2に記載の低温接合方法。 Comprising the step of heating and forming at least one of copper fine irregularities on the bonding surface of the bonding material, a process to match the joining faces of the copper material to be joined, the bonding surface of the copper material to be joined The low-temperature bonding method according to claim 1 or 2, wherein: 微細凹凸形状を形成する工程と銅製の被接合材の接合面を加熱する工程の少なくとも一方を真空中又は低酸素濃度雰囲気又は非酸化性雰囲気で行うことを特徴とする請求項3に記載の低温接合方法。 4. The low temperature according to claim 3, wherein at least one of the step of forming the fine unevenness and the step of heating the bonding surface of the copper joining material is performed in a vacuum, a low oxygen concentration atmosphere or a non-oxidizing atmosphere. Joining method. 微細凹凸形状の加工と同時又は加工直後に、加工面にコーティングを施すことを特徴とする請求項3又は4に記載の低温接合方法。   The low-temperature bonding method according to claim 3 or 4, wherein the processed surface is coated at the same time as or after the processing of the fine uneven shape. 銅製の被接合材を収納する雰囲気制御可能な密閉炉と、密閉炉内の温度を調整する熱制御手段と、銅製の被接合材の接合面の少なくとも一方に隣接する凸部間又は凹部間の距離が200〜1000nmの間の任意の値であって、隣接する凹凸部間の高低差が40〜300nmの間の任意の値である微細凹凸形状加工を施すレーザ加工手段と、銅製の被接合材の接合面同士を突き合わせる加圧手段を備えたことを特徴とする接合装置。 A closed furnace capable of controlling the atmosphere containing the material to be bonded made of copper, a thermal control means for adjusting the temperature in the closed furnace, and between the convex portions or the concave portions adjacent to at least one of the bonding surfaces of the copper bonded material Laser processing means for performing fine uneven shape processing in which the distance is an arbitrary value between 200 and 1000 nm, and the height difference between adjacent uneven portions is an arbitrary value between 40 and 300 nm, and copper to- be-joined A joining apparatus comprising pressure means for abutting joining surfaces of materials together.
JP2009155830A 2008-10-03 2009-06-30 Low-temperature metal joining method Active JP5597946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155830A JP5597946B2 (en) 2008-10-03 2009-06-30 Low-temperature metal joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008258361 2008-10-03
JP2008258361 2008-10-03
JP2009155830A JP5597946B2 (en) 2008-10-03 2009-06-30 Low-temperature metal joining method

Publications (2)

Publication Number Publication Date
JP2010105043A JP2010105043A (en) 2010-05-13
JP5597946B2 true JP5597946B2 (en) 2014-10-01

Family

ID=42294999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155830A Active JP5597946B2 (en) 2008-10-03 2009-06-30 Low-temperature metal joining method

Country Status (1)

Country Link
JP (1) JP5597946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799457A (en) * 2022-05-26 2022-07-29 南京理工大学 Low-temperature diffusion connection method based on femtosecond laser surface activation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381816B2 (en) * 2010-03-03 2014-01-08 三菱電機株式会社 Wire bonding method
JP5441813B2 (en) * 2010-05-14 2014-03-12 パナソニック株式会社 Joining method and joining apparatus
DE102016122060B3 (en) * 2016-11-16 2018-03-29 Csm Maschinen Gmbh Laser pressure welding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315884A (en) * 2003-04-16 2004-11-11 Masao Hondo Hot pressing device, and method of joining member by pulse energizing method using the hot pressing device
JP2008006445A (en) * 2006-06-27 2008-01-17 Tohoku Univ Method for joining titanium alloy and aluminum material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799457A (en) * 2022-05-26 2022-07-29 南京理工大学 Low-temperature diffusion connection method based on femtosecond laser surface activation

Also Published As

Publication number Publication date
JP2010105043A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
WO2013129281A1 (en) Method for joining metal materials
US10556292B2 (en) Method for bonding aluminum-based metals
US20080035707A1 (en) Transient-liquid-phase joining of ceramics at low temperatures
US8397976B2 (en) Method for cohesively bonding metal to a non-metallic substrate using capacitors
JP2008214704A (en) Amorphous metal or metal glass joined body
JP6003108B2 (en) Joining method and joining part manufacturing method
US20080087710A1 (en) RAPID, REDUCED TEMPERATURE JOINING OF ALUMINA CERAMICS WITH Ni/Nb/Ni INTERLAYERS
JP5597946B2 (en) Low-temperature metal joining method
JP7394025B2 (en) Parts for electrical/electronic equipment
JP7123674B2 (en) Dissimilar material joined structure manufacturing method and dissimilar material joined structure
CN105618885B (en) A method of reinforced phase is formed by regulation and strengthens composite weld structural material
JP6016095B2 (en) Joining method and joining parts
JP2009291793A (en) Method for producing structure
JP7434066B2 (en) Parts for electrical/electronic equipment
JP6546953B2 (en) Sputtering target-backing plate assembly and method for manufacturing the same
CN110871321B (en) Method for performing low-temperature diffusion connection of titanium and zirconium by using nanocrystallization device
WO2020067022A1 (en) Method for joining metal materials, and metal joining body
JPH06155030A (en) Joined clad plate and its manufacture
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
WO2021246494A1 (en) Component for electrical/electronic equipment
Bloss Ultrasonic metal welding: the weldability of stainless steel, titanium, and nickel-based superalloys
JP7470575B2 (en) Electrical and electronic equipment parts
JP4538671B2 (en) Dissimilar metal joining method and apparatus
JPH09314358A (en) Insert member for titanium alloy joining and joining method of titanium alloy
JP2005131695A (en) Laser beam welding method and laser beam welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R151 Written notification of patent or utility model registration

Ref document number: 5597946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151