JP6319341B2 - Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method - Google Patents

Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method Download PDF

Info

Publication number
JP6319341B2
JP6319341B2 JP2016029248A JP2016029248A JP6319341B2 JP 6319341 B2 JP6319341 B2 JP 6319341B2 JP 2016029248 A JP2016029248 A JP 2016029248A JP 2016029248 A JP2016029248 A JP 2016029248A JP 6319341 B2 JP6319341 B2 JP 6319341B2
Authority
JP
Japan
Prior art keywords
metal member
resin member
resin
joining
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016029248A
Other languages
Japanese (ja)
Other versions
JP2017144661A (en
Inventor
聡子 島田
聡子 島田
嗣久 宮本
嗣久 宮本
泰博 森田
泰博 森田
松田 祐之
祐之 松田
耕二郎 田中
耕二郎 田中
勝也 西口
勝也 西口
杉本 幸弘
幸弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2016029248A priority Critical patent/JP6319341B2/en
Publication of JP2017144661A publication Critical patent/JP2017144661A/en
Application granted granted Critical
Publication of JP6319341B2 publication Critical patent/JP6319341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法およびその方法で使用される金属部材と樹脂部材とからなる接合部材セットに関する。   The present invention relates to a method for joining a metal member and a resin member, and a joining member set including a metal member and a resin member used in the method.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図13に示すように、平板状金属部材211と平板状樹脂部材212とをそのまま重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である(特許文献1)。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 13, the friction stir welding method is a method in which a flat metal member 211 and a flat resin member 212 are overlapped as they are and pressed against the metal member 211 while rotating the rotary tool 216 to generate frictional heat. In this method, the resin member 212 is melted by the frictional heat and then solidified to join the metal member 211 and the resin member 212 (Patent Document 1).

また摩擦撹拌接合方法において、樹脂部材として官能基を有する樹脂部材を用いることにより、高強度に接合する技術が開示されている(特許文献2)。   Moreover, in the friction stir welding method, a technique for bonding with high strength by using a resin member having a functional group as the resin member is disclosed (Patent Document 2).

特開2010−158885号公報JP 2010-158885 A 特開2014−208461号公報JP 2014-208461 A

本発明の発明者等は、従来の摩擦撹拌接合方法において、平板状金属部材および平板状樹脂部材をそのまま用いて得られた接合体を部材として自動車車体に用いた場合、その製造過程(塗装乾燥炉での最高温度180℃)および車の苛酷な使用環境(例えば極寒地域および灼熱地域)において、図14に示すように、金属部材211と樹脂部材212との熱膨張率の差により、接合部213にせん断方向の応力(211’および212’)が発生し、せん断方向の接合強度が不足する場合があることを見出した。   In the conventional friction stir welding method, the inventors of the present invention, when a joined body obtained by using a flat metal member and a flat resin member as they are is used as a member in an automobile body, the manufacturing process (paint drying) In the furnace, the maximum temperature is 180 ° C.) and in the severe use environment of the car (for example, extremely cold region and scorching region), as shown in FIG. 14, due to the difference in thermal expansion coefficient between the metal member 211 and the resin member 212, the joint portion It was found that shear stress (211 ′ and 212 ′) was generated in 213, and the joint strength in the shear direction might be insufficient.

本発明は、せん断方向の接合強度が十分に向上する金属部材と樹脂部材との接合方法を提供することを目的とする。   An object of this invention is to provide the joining method of the metal member and resin member which joint strength in a shear direction fully improves.

本発明は、
金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材と前記樹脂部材との相互の接触面それぞれに、前記金属部材および前記樹脂部材が嵌合するための嵌合形成部を設け、
該嵌合形成部により前記金属部材と前記樹脂部材とを嵌合させた状態で接合を行う、金属部材と樹脂部材との接合方法に関する。
The present invention
Thermo-pressure bonding in which a metal member and a resin member are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a method,
On each of the mutual contact surfaces of the metal member and the resin member, a fitting formation portion for fitting the metal member and the resin member is provided,
The present invention relates to a joining method between a metal member and a resin member, in which the metal member and the resin member are joined together by the fitting forming portion.

本発明はまた、上記の金属部材と樹脂部材との接合方法において使用される金属部材と樹脂部材とからなる接合部材セットに関する。   The present invention also relates to a joining member set including a metal member and a resin member used in the joining method of the metal member and the resin member.

本発明の後述する実施態様IおよびIIに係る接合方法によれば、せん断方向の接合強度を十分に向上させることができる。   According to the joining method according to embodiments I and II described later of the present invention, the joining strength in the shear direction can be sufficiently improved.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 本発明の実施態様I−1に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member used for the joining method concerning embodiment I-1 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図3Aに示す接合部材セットを用いた実施態様I−1に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process, the stirring maintenance process, and the holding | maintenance process in the joining method which concerns on embodiment I-1 using the joining member set shown to FIG. 3A. 本発明の実施態様I−2に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member which are used for the joining method concerning embodiment I-2 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図4Aに示す接合部材セットを用いた実施態様I−2に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process in the joining method which concerns on embodiment I-2 using the joining member set shown to FIG. 4A, a stirring maintenance process, and a holding process. 本発明の実施態様I−3に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member which are used for the joining method concerning embodiment I-3 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図5Aに示す接合部材セットを用いた実施態様I−3に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process, the stirring maintenance process, and the holding process in the joining method which concerns on embodiment I-3 using the joining member set shown to FIG. 5A. 本発明の実施態様II−1に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member used for the joining method concerning embodiment II-1 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図6Aに示す接合部材セットを用いた実施態様II−1に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of an indentation stirring process, a stirring maintenance process, and a holding process in the joining method which concerns on embodiment II-1 using the joining member set shown to FIG. 6A. 本発明の実施態様II−2に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member which are used for the joining method concerning embodiment II-2 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図7Aに示す接合部材セットを用いた実施態様II−2に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the indentation stirring process, stirring maintenance process, and holding process in the joining method which concerns on embodiment II-2 using the joining member set shown to FIG. 7A. 本発明の実施態様II−3に係る接合方法に使用される金属部材と樹脂部材とからなる接合部材セットの一例の概略断面図を示すとともに、当該接合方法における予熱工程の一例を説明するための概略断面図である。While showing the schematic sectional drawing of an example of the joining member set which consists of a metal member and resin member used for the joining method concerning embodiment II-3 of the present invention, for explaining an example of the preheating process in the joining method concerned It is a schematic sectional drawing. 図8Aに示す接合部材セットを用いた実施態様II−3に係る接合方法における押込み撹拌工程、撹拌維持工程及び保持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process, the stirring maintenance process, and the holding | maintenance process in the joining method which concerns on embodiment II-3 using the joining member set shown to FIG. 8A. 本発明の実施態様I−1に係る接合方法により得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材との接触面を正面から観察したときの樹脂部材の概略模式図である。Schematic diagram of a resin member when the metal member is forcibly peeled from the joined body obtained by the joining method according to Embodiment I-1 of the present invention, and the contact surface of the resin member with the metal member is observed from the front. It is. 本発明の接合方法の一例により得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材との接触面を正面から観察したときの樹脂部材の概略模式図である。It is a schematic diagram of a resin member when a metal member is forcibly separated from a joined body obtained by an example of a joining method of the present invention, and a contact surface of a resin member with a metal member is observed from the front. 本発明の接合方法の一例により得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材との接触面を正面から観察したときの樹脂部材の概略模式図である。It is a schematic diagram of a resin member when a metal member is forcibly separated from a joined body obtained by an example of a joining method of the present invention, and a contact surface of a resin member with a metal member is observed from the front. 実施例におけるせん断方向の接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joining strength of the shear direction in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. 従来技術においてせん断方向の接合強度が低下するメカニズムを説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the mechanism in which the joint strength of a shear direction falls in a prior art.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法に関するものである。本発明の接合方法において採用される接合方式は、熱を付与しつつ、圧力を局所的に付与して接合する方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, a metal member and a resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat and then solidified. The present invention relates to a hot-pressure bonding method for performing bonding. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of joining by applying pressure locally while applying heat. For example, a friction stir welding method, ultrasonic A heat bonding method, a laser heat bonding method, a resistance heat bonding method, an induction heat bonding method, or the like may be used. A method of applying heat and pressure locally from the metal member side is preferable, and a friction stir welding method is more preferably used.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   As will be described in detail later, the friction stir welding method is a method in which a metal member and a resin member are overlapped and a rotating tool as a pressing member is rotated to press the metal member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧しながら、押圧部材及び樹脂部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heating joining method is a resin member / metal member produced by superposing a metal member and a resin member, causing ultrasonic vibrations to the pressing member and the resin member while pressing the metal member with the pressing member, and the vibration. In this method, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧した状態で、レーザーを金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。   The laser heating joining method is a method in which a metal member and a resin member are overlapped, heat is generated by irradiating the metal member with a laser in a state where the metal member is pressed by the pressing member, and the resin member is softened by this heat. Further, after melting, the metal member and the resin member are joined by solidifying. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。本方法で使用される樹脂部材としては、炭素繊維強化樹脂からなる樹脂部材が好ましい。   The resistance heating bonding method is a method in which a metal member and a resin member are overlapped, and the resin member is softened by using heat generated by passing a current directly through the metal member in a state where the metal member and the resin member are constrained by pressurization by the pressing member. In this method, after melting, the metal member and the resin member are joined by solidification. The resin member used in this method is preferably a resin member made of carbon fiber reinforced resin.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The induction heating joining method is a method in which a metal member and a resin member are overlapped, and an induction current is generated in the metal member by electromagnetic induction while the metal member and the resin member are constrained by pressure applied by the pressing member, and heat generated by the current is used. Then, after the resin member is softened and melted, it is solidified to join the metal member and the resin member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、後述する金属部材と樹脂部材とを嵌合状態で用いる限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる「上下方向」は、図中における上下方向に対応した方向に相当する。また特記しない限り、これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, the joining method of the present invention employing the friction stir welding method will be described in detail with reference to the drawings. However, as long as the metal member and the resin member described below are used in a fitted state, the other joining methods described above are used. It is clear that the effects of the present invention can be obtained. It should be noted that the various elements shown in the drawings are merely schematically shown for understanding of the present invention, and the dimensional ratio, appearance, and the like may differ from the actual ones. The “vertical direction” used directly or indirectly in this specification corresponds to a direction corresponding to the vertical direction in the drawing. Unless otherwise specified, in these drawings, common reference numerals indicate the same members, parts, dimensions, or regions.

<摩擦撹拌接合方法による金属部材と樹脂部材との接合方法>
本発明の接合方法(摩擦撹拌接合方法)について図面を用いて具体的に説明する。
<Method of joining metal member and resin member by friction stir welding method>
The joining method (friction stir welding method) of the present invention will be specifically described with reference to the drawings.

[1]接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、円柱状の回転ツール16を具備している。
[1] Joining Device First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding device suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device that friction stir welds a metal member 11 and a resin member 12, and includes a cylindrical rotary tool 16.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。   As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), the metal member 11 is pressed downward in the pressing area P (scheduled pressing area) as indicated by an arrow A2. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

[2]回転ツール
図2は、回転ツール16の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、先端部(図2では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
[2] Rotating Tool FIG. 2 is an enlarged view of the tip portion of the rotating tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 2). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body) or the like, the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

[3]金属部材および樹脂部材
図3A、図4A、図5A、図6A、図7Aおよび図8A(以下、「図3A等」ということがある)に示すように、金属部材11は樹脂部材12との接触面110に、樹脂部材12と嵌合するための嵌合形成部111を有し、かつ樹脂部材12は金属部材11との接触面120に、金属部材11と嵌合するための嵌合形成部121を有している。嵌合形成部とは、嵌合を形成するための部材という意味である。本発明においては、このような嵌合形成部により金属部材と樹脂部材とを嵌合させた状態で接合を行うため、せん断方向の接合強度が向上する。せん断方向とは、金属部材と樹脂部材との界面内のあらゆる方向を意味する。
[3] Metal Member and Resin Member As shown in FIGS. 3A, 4A, 5A, 6A, 7A, and 8A (hereinafter sometimes referred to as “FIG. 3A etc.”), the metal member 11 is a resin member 12. The contact surface 110 with the metal member 11 has a fitting formation portion 111 for fitting with the resin member 12, and the resin member 12 is fitted with the metal member 11 on the contact surface 120 with the metal member 11. It has a combined part 121. A fitting formation part means the member for forming fitting. In this invention, since it joins in the state which made the metal member and the resin member fit by such a fitting formation part, the joining strength of a shear direction improves. The shear direction means any direction in the interface between the metal member and the resin member.

金属部材の嵌合形成部111および樹脂部材の嵌合形成部121は、互いに嵌合可能な限り、いかなる形状を有していてもよい。例えば、金属部材の嵌合形成部111または樹脂部材の嵌合形成部121の一方は、凸形状、凹形状またはそれらの複合形状を有し、他方は、前記一方の嵌合形成部の形状に対応する相補的形状を有する。前記一方の嵌合形成部の形状に対応する相補的形状とは、前記一方の嵌合形成部と、例えば適度なクリアランスで嵌合可能な形状のことである。クリアランスは部材同士の重ね合わせが可能なレベルに適宜設定される。例えば、一方の嵌合形成部が凸形状を有する場合、他方の嵌合形成部は凹形状を有する。凸形状の具体的形状としては、例えば、円柱形状、楕円柱形状、多角柱形状(四角柱形状等)等の柱形状が挙げられる。凹形状としては、上記凸形状の具体的形状に相補的に対応する凹形状が挙げられる。   The metal member fitting formation portion 111 and the resin member fitting formation portion 121 may have any shape as long as they can be fitted to each other. For example, one of the fitting formation portion 111 of the metal member or the fitting formation portion 121 of the resin member has a convex shape, a concave shape, or a composite shape thereof, and the other is in the shape of the one fitting formation portion. It has a corresponding complementary shape. The complementary shape corresponding to the shape of the one fitting formation portion is a shape that can be fitted with the one fitting formation portion, for example, with an appropriate clearance. The clearance is appropriately set to a level at which the members can be overlapped. For example, when one fitting formation part has a convex shape, the other fitting formation part has a concave shape. Specific examples of the convex shape include columnar shapes such as a columnar shape, an elliptical columnar shape, and a polygonal columnar shape (such as a quadrangular columnar shape). The concave shape includes a concave shape that complementarily corresponds to the specific shape of the convex shape.

以下、金属部材および樹脂部材を、実施態様Iおよび実施態様IIにより詳しく説明する。   Hereinafter, the metal member and the resin member will be described in more detail with reference to Embodiment I and Embodiment II.

(実施態様Iについて)
実施態様Iは、金属部材11の嵌合形成部111が凸形状を有し、かつ樹脂部材12の嵌合形成部121が金属部材11の嵌合形成部111の形状に相補的に対応する凹形状を有する実施態様である(例えば図3A、図4Aおよび図5A)。これらの図において、金属部材11の嵌合形成部111は特に円柱系凸形状を有しているが、凸形状を有する限り、これに限定されるものではない。
(Regarding Embodiment I)
In the embodiment I, the fitting forming portion 111 of the metal member 11 has a convex shape, and the fitting forming portion 121 of the resin member 12 corresponds to the shape of the fitting forming portion 111 of the metal member 11 in a complementary manner. Embodiments having a shape (eg, FIGS. 3A, 4A and 5A). In these drawings, the fitting forming portion 111 of the metal member 11 has a cylindrical convex shape in particular, but is not limited to this as long as it has a convex shape.

実施態様Iは、金属部材11の凸形状の嵌合形成部111の幅(例えば嵌合形成部111が円柱系凸形状を有するときの直径)dおよび押圧部材の幅(例えば回転ツール16の直径)D1について、d=D1のとき、図3Aに示す実施態様I−1に対応し、d>D1のとき、図4Aに示す実施態様I−2に対応し、d<D1のとき、図5Aに示す実施態様I−3に対応する。特記しない限り、実施態様Iは、実施態様I−1〜I−3を包含して意味するものとする。実施態様I−1〜I−3は、金属部材11の嵌合形成部の寸法(凸部の幅、特に円柱系凸部の直径)が異なること以外、互いに同様である。   In the embodiment I, the width of the convex fitting formation portion 111 of the metal member 11 (for example, the diameter when the fitting formation portion 111 has a cylindrical convex shape) d and the width of the pressing member (for example, the diameter of the rotary tool 16). ) For D1, when d = D1, this corresponds to embodiment I-1 shown in FIG. 3A, when d> D1, this corresponds to embodiment I-2 shown in FIG. 4A, and when d <D1, FIG. This corresponds to the embodiment I-3 shown in FIG. Unless stated otherwise, embodiment I shall mean including embodiments I-1 to 1-3. Embodiments I-1 to I-3 are the same as each other except that the size of the fitting formation portion of the metal member 11 (the width of the convex portion, particularly the diameter of the cylindrical convex portion) is different.

実施態様Iにおいて、金属部材11の嵌合形成部111の高さhは、せん断方向の接合強度が向上する限り特に限定されない。当該高さhは通常、金属部材11の厚みTについて、以下の関係式(i−1)を満たす。当該高さhは、金属部材凸部下面への樹脂溶着の観点からは、以下の関係式(i−2)を満たすことが好ましく、以下の関係式(i−3)を満たすことがより好ましい:
0.1×T≦h≦2×T (i−1);
0.2×T≦h≦1×T (i−2);
0.3×T≦h≦0.6×T (i−3)。)
なお、hは通常、上記関係式を満たしつつ、概ねt未満であって0.5mm以上である。
In the embodiment I, the height h of the fitting forming portion 111 of the metal member 11 is not particularly limited as long as the joining strength in the shear direction is improved. The height h normally satisfies the following relational expression (i-1) for the thickness T of the metal member 11. The height h preferably satisfies the following relational expression (i-2) and more preferably satisfies the following relational expression (i-3) from the viewpoint of resin welding to the lower surface of the metal member convex portion. :
0.1 × T ≦ h ≦ 2 × T (i−1);
0.2 × T ≦ h ≦ 1 × T (i-2);
0.3 * T <= h <= 0.6 * T (i-3). )
In addition, h is generally less than t and 0.5 mm or more while satisfying the above relational expression.

実施態様Iにおいて、金属部材11の嵌合形成部111の幅(例えば嵌合形成部111が円柱系凸形状を有するときの直径)dは、せん断方向の接合強度が向上する限り特に限定されない。当該嵌合形成部111の幅(例えば直径)dは通常、押圧部材の幅(例えば回転ツールの直径)D1について、以下の関係式(ii−1)を満たす。当該dは、せん断方向の接合強度のさらなる向上観点から、以下の関係式(ii−2)を満たすことが好ましく、以下の関係式(ii−3)を満たすことがより好ましい:
0.4×D1≦d≦3×D1 (ii−1);
0.5×D1≦d≦2×D1 (ii−2);
1.1×D1≦d≦1.8×D1 (ii−3)。)
なお、dは通常、上記関係式を満たしつつ、概ね5mm以上である。
In Embodiment I, the width (for example, the diameter when the fitting formation portion 111 has a cylindrical convex shape) d of the metal member 11 is not particularly limited as long as the joint strength in the shearing direction is improved. The width (for example, diameter) d of the fitting formation portion 111 normally satisfies the following relational expression (ii-1) with respect to the width (for example, the diameter of the rotating tool) D1 of the pressing member. The d preferably satisfies the following relational expression (ii-2) and more preferably satisfies the following relational expression (ii-3) from the viewpoint of further improving the joint strength in the shear direction.
0.4 × D1 ≦ d ≦ 3 × D1 (ii-1);
0.5 × D1 ≦ d ≦ 2 × D1 (ii-2);
1.1 × D1 ≦ d ≦ 1.8 × D1 (ii-3). )
Note that d is generally 5 mm or more while satisfying the above relational expression.

実施態様Iにおいて、後述する金属部材11の厚みTおよび樹脂部材12の厚みtはそれぞれ特に限定されない。   In the embodiment I, the thickness T of the metal member 11 and the thickness t of the resin member 12 described later are not particularly limited.

(実施態様IIについて)
実施態様IIは、樹脂部材12の嵌合形成部121が凸形状を有し、かつ金属部材11の嵌合形成部111が樹脂部材12の嵌合形成部121の形状に相補的に対応する凹形状を有する実施態様である(例えば図6A、図7Aおよび図8A)。これらの図において、樹脂部材12の嵌合形成部121は特に円柱系凸形状を有しているが、凸形状を有する限り、これに限定されるものではない。
(Regarding Embodiment II)
In the embodiment II, the fitting forming portion 121 of the resin member 12 has a convex shape, and the fitting forming portion 111 of the metal member 11 corresponds to the shape of the fitting forming portion 121 of the resin member 12 in a complementary manner. Embodiments having a shape (eg, FIGS. 6A, 7A and 8A). In these drawings, the fitting forming portion 121 of the resin member 12 has a columnar convex shape in particular, but is not limited to this as long as it has a convex shape.

実施態様IIは、樹脂部材12の凸形状の嵌合形成部121の幅(例えば嵌合形成部121が円柱系凸形状を有するときの直径)d’および押圧部材の幅(例えば回転ツール16の直径)D1について、d’=D1のとき、図6Aに示す実施態様II−1に対応し、d’>D1のとき、図7Aに示す実施態様II−2に対応し、d’<D1のとき、図8Aに示す実施態様II−3に対応する。特記しない限り、実施態様IIは実施態様II−1〜II−3を包含して意味するものとする。実施態様II−1〜II−3は、樹脂部材12の嵌合形成部の寸法(凸部の幅、特に円柱系凸部の直径)が異なること以外、同様である。   In the embodiment II, the width (for example, the diameter when the fitting forming portion 121 has a cylindrical convex shape) d ′ and the width of the pressing member (for example, the rotating tool 16 of the rotary tool 16) are formed. For diameter D1, when d ′ = D1, this corresponds to embodiment II-1 shown in FIG. 6A, and when d ′> D1, this corresponds to embodiment II-2 shown in FIG. 7A, and d ′ <D1. Corresponds to embodiment II-3 shown in FIG. 8A. Unless otherwise specified, embodiment II is intended to include embodiments II-1 to II-3. Embodiments II-1 to II-3 are the same except that the dimensions (the width of the convex portion, particularly the diameter of the cylindrical convex portion) of the resin member 12 are different.

実施態様IIにおいて、樹脂部材12の嵌合形成部121の高さh’は、せん断方向の接合強度が向上する限り特に限定されない。当該高さh’は通常、金属部材11の厚みTについて、以下の関係式(iii−1)を満たす。当該高さh’は、ツールの押し込み量の観点からは、以下の関係式(iii−2)を満たすことが好ましく、以下の関係式(iii−3)を満たすことがより好ましい:
0.1×T≦h’≦T−0.5 (iii−1);
0.2×T≦h’≦T−1.0 (iii−2);
0.3×T≦h’≦T−1.5 (iii−3)。
In the embodiment II, the height h ′ of the fitting forming portion 121 of the resin member 12 is not particularly limited as long as the bonding strength in the shear direction is improved. The height h ′ normally satisfies the following relational expression (iii-1) for the thickness T of the metal member 11. The height h ′ preferably satisfies the following relational expression (iii-2), and more preferably satisfies the following relational expression (iii-3), from the viewpoint of the amount of indentation of the tool:
0.1 × T ≦ h ′ ≦ T−0.5 (iii-1);
0.2 × T ≦ h ′ ≦ T−1.0 (iii-2);
0.3 * T <= h '<= T-1.5 (iii-3).

実施態様IIにおいて、樹脂部材12の嵌合形成部121の幅(例えば嵌合形成部121が円柱系凸形状を有するときの直径)d’は、せん断方向の接合強度が向上する限り特に限定されない。当該嵌合形成部121の幅(例えば直径)d’は通常、押圧部材の幅(例えば回転ツールの直径)D1について、以下の関係式(iv−1)を満たす。当該d’は、せん断方向の接合強度のさらなる向上の観点からは、以下の関係式(iv−2)を満たすことが好ましく、以下の関係式(iv−3)を満たすことがより好ましい:
0.4×D1≦d’≦3×D1 (iv−1);
0.5×D1≦d’≦2×D1 (iv−2);
1.1×D1≦d’≦1.8×D1 (iv−3)。)
なお、d’は通常、上記関係式を満たしつつ、概ね5mm以上である。
In the embodiment II, the width (for example, the diameter when the fitting forming portion 121 has a cylindrical convex shape) d ′ of the resin member 12 is not particularly limited as long as the joining strength in the shear direction is improved. . The width (for example, diameter) d ′ of the fitting forming portion 121 normally satisfies the following relational expression (iv-1) for the width (for example, the diameter of the rotating tool) D1 of the pressing member. The d ′ preferably satisfies the following relational expression (iv-2) and more preferably satisfies the following relational expression (iv-3) from the viewpoint of further improving the joint strength in the shear direction.
0.4 × D1 ≦ d ′ ≦ 3 × D1 (iv-1);
0.5 × D1 ≦ d ′ ≦ 2 × D1 (iv-2);
1.1 × D1 ≦ d ′ ≦ 1.8 × D1 (iv-3). )
Note that d ′ is generally approximately 5 mm or more while satisfying the above relational expression.

実施態様IIにおいて、後述する金属部材11の厚みTおよび樹脂部材12の厚みtはそれぞれ特に限定されない。   In the embodiment II, the thickness T of the metal member 11 and the thickness t of the resin member 12 described later are not particularly limited.

(実施態様Iおよび実施態様IIについて)
前記した実施態様のうち、せん断方向の接合強度のさらなる向上の観点から好ましい実施態様は、実施態様I(実施態様I−1、I−2、I−3)および実施態様II−2、特に実施態様I−1およびI−2である。これらの実施態様においては、凸形状を有する嵌合形成部でのせん断破壊が十分に抑制される。
(About Embodiment I and Embodiment II)
Among the embodiments described above, preferred embodiments from the viewpoint of further improving the joint strength in the shear direction are Embodiment I (Embodiments I-1, I-2, I-3) and Embodiment II-2, Aspects I-1 and I-2. In these embodiments, shear fracture at the fitting forming portion having a convex shape is sufficiently suppressed.

せん断方向の接合強度のさらなる向上と剥離方向の確保(溶着面積)の観点から好ましい実施態様は、実施態様I、特に実施態様I−1およびI−2であり、より好ましくは実施態様I−2である。これらの実施態様においては、金属部材11における凸形状を有する嵌合形成部111の存在により、金属部材の熱容量が上がる。このため、回転ツール16の直下領域における樹脂部材表面の樹脂の過熱が抑制され、溶融樹脂の分解が十分に抑制される。   Preferred embodiments from the viewpoint of further improving the bonding strength in the shear direction and securing the peel direction (welding area) are Embodiment I, particularly Embodiments I-1 and I-2, and more preferably Embodiment I-2. It is. In these embodiments, due to the presence of the fitting forming portion 111 having a convex shape in the metal member 11, the heat capacity of the metal member is increased. For this reason, overheating of the resin on the surface of the resin member in the region immediately below the rotary tool 16 is suppressed, and decomposition of the molten resin is sufficiently suppressed.

図3A、図4A、図5A、図6A、図7Aおよび図8Aにおいて、金属部材11は、嵌合形成部111の形状および寸法が異なること以外、互いに同様であり、また樹脂部材12は、嵌合形成部121の形状および寸法が異なること以外、互いに同様である。   3A, FIG. 4A, FIG. 5A, FIG. 6A, FIG. 7A, and FIG. 8A, the metal member 11 is the same except that the shape and dimensions of the fitting forming portion 111 are different. It is the same as each other except that the shape and size of the combined portion 121 are different.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などの展伸材および鋳造用のアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and wrought materials such as 5000 series, 6000 series and aluminum alloys for casting;
steel;
Magnesium and its alloys;
Titanium and its alloys.

金属部材11は、例えばダイカスト法により、所望の形状に製造可能である。   The metal member 11 can be manufactured in a desired shape by, for example, a die casting method.

金属部材11の厚みTは特に制限されるものではなく、通常、1〜10mmであり、好ましくは2〜5mmである。金属部材11の厚みTは、樹脂部材12との重ね合わせ部分の厚みであって、嵌合形成部111を有さない略平板形状部分の厚みのことである。   The thickness T of the metal member 11 is not particularly limited, and is usually 1 to 10 mm, preferably 2 to 5 mm. The thickness T of the metal member 11 is the thickness of the overlapping portion with the resin member 12 and the thickness of the substantially flat plate-shaped portion that does not have the fitting formation portion 111.

樹脂部材12は熱可塑性ポリマーを含むものであり、さらに強化繊維を含んでもよい。   The resin member 12 contains a thermoplastic polymer, and may further contain reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS)、ポリスチレン(PS)などのスチレン系樹脂;
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Styrenic resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS) and polystyrene (PS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin resin, particularly polypropylene, which is inexpensive and excellent in mechanical properties is preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に均一に含有および分散される繊維である。強化繊維は、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、連続繊維であってもよいし、不連続繊維であってもよいし、またはそれらの混合繊維であってもよい。本発明において強化繊維は、特に不連続繊維が好ましい。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。   The reinforcing fibers contained in the resin member 12 are fibers that are uniformly contained and dispersed in the polymer in order to improve strength in the field of polymer-containing composite materials. Reinforcing fibers are generally roughly classified into continuous fibers and discontinuous fibers. In the present invention, reinforcing fibers may be continuous fibers, discontinuous fibers, or a mixture thereof. It may be a fiber. In the present invention, the reinforcing fiber is particularly preferably a discontinuous fiber. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は特に限定されるものではなく、通常は樹脂部材12の全量に対して、50重量%以下、特に10〜50重量%であり、好ましくは20〜50重量%である。   The content of the reinforcing fiber is not particularly limited, and is usually 50% by weight or less, particularly 10 to 50% by weight, and preferably 20 to 50% by weight with respect to the total amount of the resin member 12.

樹脂部材12は、例えば射出成形法により、所望の形状に製造可能である。   The resin member 12 can be manufactured in a desired shape by, for example, an injection molding method.

樹脂部材12の厚みtは特に制限されるものではなく、通常、1〜10mmであり、好ましくは2〜5mmである。樹脂部材12の厚みtは、金属部材11との重ね合わせ部分の厚みであって、嵌合形成部121を有さない略平板形状部分の厚みのことである。   The thickness t of the resin member 12 is not particularly limited, and is usually 1 to 10 mm, preferably 2 to 5 mm. The thickness t of the resin member 12 is the thickness of the overlapping portion with the metal member 11 and is the thickness of the substantially flat plate-shaped portion that does not have the fitting formation portion 121.

樹脂部材12は、例えば安定剤、難燃剤、着色材などの添加剤をさらに含有してもよい。   The resin member 12 may further contain additives such as a stabilizer, a flame retardant, and a coloring material.

以上、実施態様Iおよび実施態様IIについて説明した。このような実施態様Iおよび実施態様IIの説明より、これら以外の実施態様(例えば、金属部材の嵌合形成部および樹脂部材の嵌合形成部の一方が凸形状と凹形状との複合形状を有し、他方は、前記一方の嵌合形成部の形状に相補的に対応する形状を有する実施態様)においても、本発明の効果が得られることは明らかである。   The embodiment I and the embodiment II have been described above. From the description of such embodiment I and embodiment II, other embodiments (for example, one of the fitting formation portion of the metal member and the fitting formation portion of the resin member has a composite shape of a convex shape and a concave shape). It is clear that the effect of the present invention can be obtained even in an embodiment in which the other has a shape that complementarily corresponds to the shape of the one fitting formation portion.

[4]本発明に係る接合方法の一実施態様(摩擦撹拌接合方法)
本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とをそれらの嵌合形成部により嵌合させつつ、重ね合わせる第1ステップ;および
押圧部材として回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
[4] One embodiment of the joining method according to the present invention (friction stir welding method)
The method of joining the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step in which the metal member 11 and the resin member 12 are fitted together by their fitting forming portions and superimposed; and while the rotary tool 16 is rotated as the pressing member, the metal member 11 is pressed to generate frictional heat. The second step of softening and melting the resin member 12 by this frictional heat and then solidifying it to join the metal member 11 and the resin member 12:
Is included.

第1ステップ:
第1ステップにおいては、例えば、図1、図3A、図4A、図5A、図6A、図7Aおよび図8Aに示すように、金属部材11および樹脂部材12の嵌合形成部111および121により金属部材11と樹脂部材12とを嵌合させた状態で重ね合わせる。詳しくは、金属部材11の嵌合形成部111と樹脂部材12の嵌合形成部121とが嵌合するように、金属部材11と樹脂部材12とを重ね合わせる。
First step:
In the first step, for example, as shown in FIGS. 1, 3A, 4A, 5A, 6A, 7A, and 8A, the metal member 11 and the resin member 12 are formed by the fitting formation portions 111 and 121. The member 11 and the resin member 12 are overlapped in a fitted state. Specifically, the metal member 11 and the resin member 12 are overlapped so that the fitting formation portion 111 of the metal member 11 and the fitting formation portion 121 of the resin member 12 are fitted.

このとき、嵌合させた状態の金属部材11および樹脂部材12は好ましくは、樹脂部材12の嵌合形成部121の少なくとも一部が樹脂部材12の溶融固化領域内に位置するように、回転ツール16と受け具17との間に供給され、第2ステップの接合を行う。樹脂部材12の嵌合形成部121の少なくとも一部が樹脂部材12の溶融固化領域内に位置するとは、図9に示すように、最終的に得られる接合体から金属部材11を剥離したとき、樹脂部材12の嵌合形成部121の少なくとも一部が樹脂部材12の溶融固化領域125内に位置するという意味である。樹脂部材12の溶融固化領域125は、金属部材11との接触面120において、接合時に樹脂部材12の溶融および固化により形成された領域であり、溶融が生じていない領域に対し、当該溶融固化領域の外周126で目視により区別可能な段差(数ミクロンの段差)が存在する領域のことである。具体的には、金属部材11の剥離後、樹脂部材12の金属部材11との接触面120を正面から観察したとき、溶融固化領域125の外周126内に、嵌合形成部121領域の少なくとも一部が包含されていればよい。図9は、実施態様I−1に係る接合方法により得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材との接触面を正面から観察したときの樹脂部材の概略模式図である。   At this time, the metal member 11 and the resin member 12 in the fitted state are preferably a rotary tool so that at least a part of the fitting formation portion 121 of the resin member 12 is located in the melt-solidified region of the resin member 12. 16 and the receiving member 17 for joining in the second step. When at least a part of the fitting forming portion 121 of the resin member 12 is located in the melt-solidified region of the resin member 12, as shown in FIG. 9, when the metal member 11 is peeled from the finally obtained joined body, This means that at least a part of the fitting forming portion 121 of the resin member 12 is located in the melt-solidified region 125 of the resin member 12. The melted and solidified region 125 of the resin member 12 is a region formed by melting and solidifying the resin member 12 at the time of joining on the contact surface 120 with the metal member 11. This is a region where there are steps (steps of several microns) that can be visually discriminated on the outer periphery 126 of the. Specifically, after the metal member 11 is peeled off, when the contact surface 120 of the resin member 12 with the metal member 11 is observed from the front, at least one of the engagement forming portion 121 regions is formed in the outer periphery 126 of the melt-solidified region 125. It is sufficient that the part is included. FIG. 9: is a schematic model of the resin member when the metal member is forcibly separated from the joined body obtained by the joining method according to Embodiment I-1 and the contact surface of the resin member with the metal member is observed from the front. FIG.

せん断方向の接合強度のさらなる向上および厚み方向の接合強度の向上の観点からは、図10に示すように、樹脂部材12の金属部材11との接触面120において、樹脂部材12の嵌合形成部121の一部が樹脂部材12の溶融固化領域126内に位置していればよい。同様の観点から好ましくは、図9に示すように、樹脂部材12の嵌合形成部121の全部が樹脂部材12の溶融固化領域126内に位置している。例えば、金属部材11または樹脂部材12が有する凸状の嵌合形成部が円柱形状を有する場合、樹脂部材12の嵌合形成部121の全部が樹脂部材12の溶融固化領域126内に位置するためには、当該円柱形状の軸が回転ツール16の軸上に配置されるように、嵌合状態の金属部材11および樹脂部材12を、回転ツール16と受け具17との間に供給すればよい。   From the viewpoint of further improving the joint strength in the shear direction and improving the joint strength in the thickness direction, as shown in FIG. 10, the fitting formation portion of the resin member 12 on the contact surface 120 of the resin member 12 with the metal member 11. It is only necessary that a part of 121 is located in the melt-solidified region 126 of the resin member 12. From the same viewpoint, preferably, as shown in FIG. 9, the entire fitting formation portion 121 of the resin member 12 is located in the melt-solidified region 126 of the resin member 12. For example, when the convex fitting formation part which the metal member 11 or the resin member 12 has has a cylindrical shape, the whole fitting formation part 121 of the resin member 12 is located in the melt-solidified region 126 of the resin member 12. In this case, the metal member 11 and the resin member 12 in a fitted state may be supplied between the rotary tool 16 and the receiving member 17 so that the columnar shaft is arranged on the axis of the rotary tool 16. .

本発明においては、樹脂部材12の嵌合形成部121の少なくとも一部が必ずしも樹脂部材12の溶融固化領域126内に位置していなければならないというわけではなく、例えば図11に示すように、樹脂部材12の金属部材11との接触面120において、樹脂部材12の嵌合形成部121が樹脂部材12の溶融固化領域126外に位置していてもよい。せん断方向の接合強度の向上効果が十分に得られるためである。樹脂部材12の金属部材11との接触面120とは、金属部材11の剥離前まで当該金属部材11と接触していた面のことである。   In the present invention, at least a part of the fitting forming portion 121 of the resin member 12 does not necessarily have to be located in the melt-solidified region 126 of the resin member 12. For example, as shown in FIG. In the contact surface 120 of the member 12 with the metal member 11, the fitting formation portion 121 of the resin member 12 may be located outside the melt-solidified region 126 of the resin member 12. This is because the effect of improving the joint strength in the shear direction can be sufficiently obtained. The contact surface 120 of the resin member 12 with the metal member 11 is a surface that has been in contact with the metal member 11 until the metal member 11 is peeled off.

第2ステップ:
第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
Second step:
In the second step, at least a pushing and stirring step C <b> 2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the boundary surface 13 between the metal member 11 and the resin member 12.

第2ステップにおいて、押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
押込み撹拌工程の後には、回転ツール16を境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the second step, it is preferable to perform the preheating step C1 in which the rotating tool 16 is rotated in a state where only the front end portion of the rotating tool 16 is in contact with the surface portion of the metal member 11 before the pushing and stirring step. It doesn't have to be done.
After the indentation stirring step, it is preferable to perform the stirring maintenance step C3 in which the rotation operation of the rotary tool 16 is continued at a position where the rotary tool 16 has entered to a depth that does not reach the boundary surface 13, but the step is not necessarily performed. It doesn't have to be.

以下、各工程について詳しく説明する。   Hereinafter, each step will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図3A、図4A、図5A、図6A、図7Aおよび図8A(以下、「図3A等」ということがある)に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図3A等は、図1におけるZ−Z断面を矢印方向で見たときの概略断面図である。
(Preheating process C1)
In the preheating step C1, the rotating tool 16 and the receiving member 17 are brought close to each other to thereby be referred to as FIGS. 3A, 4A, 5A, 6A, 7A, and 8A (hereinafter referred to as “FIG. 3A etc.”). ), The rotating tool 16 is rotated in a state where only the tip of the rotating tool 16 is in contact with the surface portion (upper surface portion in the illustrated example) of the metal member 11. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N). 3A and the like are schematic cross-sectional views when the ZZ cross section in FIG. 1 is viewed in the arrow direction.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との境界面13を介して、樹脂部材12にも伝わる。摩擦熱は樹脂部材12の内部に伝わり、樹脂部材12の境界面13における上記押圧領域P直下のQ領域の範囲及び当該Q領域の近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、樹脂部材12が軟化および溶融し易くなる。   In the preheating step C <b> 1, the frictional heat is also transmitted to the resin member 12 through the boundary surface 13 between the metal member 11 and the resin member 12. The frictional heat is transferred to the inside of the resin member 12, and the range of the Q region immediately below the pressing region P and the range near the Q region on the boundary surface 13 of the resin member 12 are preheated. Thereby, the resin member 12 becomes easy to soften and melt in the next indentation stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、例えば、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化および溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は700N以上1200N未満の値、第1の加圧時間は0.5秒以上2.0秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set, for example, from the viewpoint of ease of pushing in the rotating tool 16 as described above and from the viewpoint of softening and melting of the resin member 12, The value varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressure in the preheating step C1 is 700 N or more and less than 1200 N, and the first pressurizing time is 0.5 seconds or more and 2 A value of less than 0 seconds and a rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2は、回転ツール16と受け具17とを相互に近接させることにより、図3B、図4B、図5B、図6B、図7Bおよび図8B(以下、「図3B等」ということがある)に示すように、回転ツール16を金属部材11に押し込む工程である。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図3B等に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との境界面13に達しない深さまで進入させる。
(Indentation stirring step C2)
In the indentation stirring step C2, the rotary tool 16 and the receiving member 17 are brought close to each other, thereby making it possible to refer to FIGS. 3B, 4B, 5B, 6B, 7B and 8B (hereinafter referred to as “FIG. 3B etc.”). This is a step of pushing the rotary tool 16 into the metal member 11 as shown in FIG. When the pushing and stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. 3B and the like. Thereby, the rotary tool 16 is advanced to a depth that does not reach the boundary surface 13 between the metal member 11 and the resin member 12.

回転ツール16の押し込み量kは、回転ツール16の直下領域における樹脂部材表面の溶融樹脂の分解抑制による剥離方向の接合強度の向上の観点から、金属部材11の厚みTについて、以下の関係式(v−1)を満たすことが好ましい。当該押し込み量kは、剥離方向の接合強度のさらなる向上(溶着面積)の観点から、以下の関係式(v−2)を満たすことが好ましく、以下の関係式(v−3)を満たすことがより好ましい:
0.1×T≦k≦0.6×T (v−1);
0.2×T≦k≦0.5×T (v−2);
0.3×T≦k≦0.4×T (v−3)。)
なお、実施態様Iにおいては、kは通常、上記関係式を満たしつつ、概ねT未満であって0.5mm以上である。
実施態様IIにおいては、kは通常、上記関係式を満たしつつ、概ねT−h’未満であって0.5mm以上である。
The pushing amount k of the rotary tool 16 is expressed by the following relational expression about the thickness T of the metal member 11 from the viewpoint of improving the bonding strength in the peeling direction by suppressing the decomposition of the molten resin on the surface of the resin member in the region immediately below the rotary tool 16 ( It is preferable to satisfy v-1). The indentation amount k preferably satisfies the following relational expression (v-2) and further satisfies the following relational expression (v-3) from the viewpoint of further improving the bonding strength in the peeling direction (welding area). More preferred:
0.1 × T ≦ k ≦ 0.6 × T (v−1);
0.2 × T ≦ k ≦ 0.5 × T (v-2);
0.3 * T <= k <= 0.4 * T (v-3). )
In Embodiment I, k is generally less than T and 0.5 mm or more while satisfying the above relational expression.
In Embodiment II, k is generally less than Th ′ and 0.5 mm or more while satisfying the above relational expression.

図4Bに示す実施態様I−2および図7Bに示す実施態様II−2においては、本工程で金属部材11の回転ツール直下部を樹脂部材12側に突出変形させてもよい。これにより、境界面13において回転ツールの直下領域Q(図4Aおよび図7A参照)で溶融している樹脂部材表面の溶融樹脂を該領域Qの外周領域まで流動させてもよい。   In Embodiment I-2 shown in FIG. 4B and Embodiment II-2 shown in FIG. 7B, the portion immediately below the rotary tool of the metal member 11 may be protruded and deformed toward the resin member 12 in this step. Thereby, the molten resin on the surface of the resin member melted in the region Q (see FIGS. 4A and 7A) immediately below the rotary tool on the boundary surface 13 may flow to the outer peripheral region of the region Q.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。進入深さは前記押し込み量kの範囲が好ましい。図4Bに示す実施態様I−2および図7Bに示す実施態様II−2においては、回転ツール16の押込みにより、金属部材11の回転ツール直下部において、金属部材11と樹脂部材12との境界面13が受け具17側(図例では下側)に移動し、当該直下部が樹脂部材12側に突出変形してもよい。これにより、境界面13において回転ツールの直下領域Q(図4Aおよび図7A参照)で溶融している樹脂部材表面の溶融樹脂が該直下領域Qを超えて、その外周領域まで流動してもよい。このとき溶融樹脂は回転ツール直下領域Qを中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、また、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化域(接合領域)も拡大されるため、樹脂部材と金属部材との接合を十分な強度で達成することがでる。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. The penetration depth is preferably in the range of the pushing amount k. In the embodiment I-2 shown in FIG. 4B and the embodiment II-2 shown in FIG. 7B, the boundary surface between the metal member 11 and the resin member 12 immediately below the rotary tool of the metal member 11 due to the pressing of the rotary tool 16. 13 may move to the receiving member 17 side (lower side in the illustrated example), and the immediate lower part may project and deform toward the resin member 12 side. Thereby, the molten resin on the surface of the resin member melted in the region Q (see FIGS. 4A and 7A) of the rotary tool on the boundary surface 13 may flow over the region Q and to the outer peripheral region. . At this time, the molten resin spreads in a substantially circular shape centering on the region Q immediately below the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonding region) formed by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Bonding with the member can be achieved with sufficient strength.

仮に、回転ツール16が過度に押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is pushed excessively (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本発明では、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の境界面13における回転ツールの直下領域Qおよびその外周領域の軟化および溶融が促進される。場合によっては、直下領域Qの溶融樹脂がその外周領域に流動してもよい。   Therefore, in the present invention, in the pushing and stirring step C2, the pushing of the rotating tool 16 is stopped when the shoulder portion 16b of the rotating tool 16 enters a depth that does not reach the boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the boundary surface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, and a large amount of frictional heat is transmitted to the resin member 12, so that the region Q immediately below the rotary tool on the boundary surface 13 of the resin member 12 is obtained. And the softening and melting of the outer peripheral region are promoted. In some cases, the molten resin in the region Q immediately below may flow to the outer peripheral region.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、例えば、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は1200N以上1800N未満の値、第2の加圧時間は0.1秒以上0.5秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The second pressurizing force and the second pressurizing time in the indentation stirring step C2 are set, for example, from the viewpoint of avoiding the opening of the metal member 11 and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is 0.1 second or more. The value of less than 0.5 seconds and the rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図3B等に示すように、上記境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
In the agitation maintaining step C3, the rotation tool 16 and the receiving member 17 are stopped from approaching each other, and as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the agitation maintaining step C3, the rotary tool 16 is moved to a third pressurization time (for example, 6.75) longer than the first pressurization time with a third pressurization force (for example, 500 N) smaller than the first pressurization force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の領域Qの範囲を超えて、広い範囲で十分に軟化および溶融してもよい。図3B等において、「×」印は樹脂の溶融を示す。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 may be sufficiently softened and melted in a wide range beyond the range of the region Q immediately below the pressing region P. In FIG. 3B and the like, “x” marks indicate melting of the resin.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、例えば、上記のような樹脂部材12の広い範囲での十分な軟化および溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は100N以上700N未満の値、特に100N以上600N以下の値が好ましい。第3の加圧時間は1.0秒以上10秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The third pressurizing force and the third pressurizing time of the stirring maintaining step C3 are set, for example, from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, rotation It varies depending on the number of rotations of the tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring and maintaining step C3 is preferably a value of 100 N or more and less than 700 N, particularly a value of 100 N or more and 600 N or less. The third pressurizing time is preferably 1.0 to less than 10 seconds, and the rotation speed of the rotary tool is preferably 500 to 10000 rpm.

(保持工程C4)
最後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図3B等に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
(Holding process C4)
Finally, a holding step C4 may be performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined pressurizing time with a predetermined pressure in that state.
Similarly, as shown in FIG. 3B and the like, the holding step C4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12とを押圧領域Pで受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation has been stopped presses the metal member 11 and the resin member 12 in the pressing region P because the applied pressure is smaller than the indentation agitation step C2 but greater than the agitation maintenance step C3. And clamp with the receiving member 17. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、例えば、上記のような冷却期間中の少なくとも領域Qでの密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set, for example, from the viewpoint of improving the adhesion strength at least in the region Q during the cooling period as described above, and the values thereof are, for example, the metal member 11 It depends on the type of material. For example, when the aluminum alloy metal member 11 is used, the fourth pressure in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, and the fourth pressurization time is preferably a value of 1 second or more, for example.

本発明では、少なくとも前記した工程C2を経て、好ましくは前記した工程C1およびC2を経て、より好ましくは前記した工程C1〜C3を経て、その後、必要に応じてさらに工程C4を経て、最終的に、せん断方向の接合強度が十分に向上した接合体が得られる。   In the present invention, at least through the above-described step C2, preferably through the above-described steps C1 and C2, more preferably through the above-described steps C1 to C3, and then further through step C4 as necessary, finally. As a result, a bonded body with sufficiently improved bonding strength in the shear direction can be obtained.

第2ステップにおいて所定の工程を行った後、通常は冷却を行い、溶融樹脂を固化させる。冷却方法は特に限定されず、例えば、放置冷却法、空冷等が挙げられる。   After performing a predetermined process in the second step, cooling is usually performed to solidify the molten resin. The cooling method is not particularly limited, and examples thereof include a standing cooling method and air cooling.

以上、回転ツールを金属部材の接触面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, the case where the metal member and the resin member are joined in a point shape without moving the rotary tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly while being moved (line joining).

<実験例I>
実験例Iは実施態様Iに関する実験例である。詳しくは実施例A1は実施態様I−1(図3Aおよび図3B)に関し、実施例B1は実施態様I−2(図4Aおよび図4B)に関し、実施例C1は実施態様I−3(図5Aおよび図5B)に関する。
<Experimental example I>
Experimental Example I is an experimental example related to Embodiment I. Specifically, Example A1 relates to embodiment I-1 (FIGS. 3A and 3B), Example B1 relates to embodiment I-2 (FIGS. 4A and 4B), and Example C1 includes embodiment I-3 (FIG. 5A). And FIG. 5B).

[実施例A1]
(金属部材)
JIS ADC12を用いて、ダイカスト法により、図3Aに示す金属部材11を製造した。金属部材11は、幅30mm×長さ100mm×厚みT(表1参照)の全体形状を有する平板に、表1に示す寸法の円柱形状を有する凸部(嵌合形成部)111が備わったものであった。
[Example A1]
(Metal member)
A metal member 11 shown in FIG. 3A was manufactured by die casting using JIS ADC12. The metal member 11 is a flat plate having an overall shape of width 30 mm × length 100 mm × thickness T (see Table 1) and provided with a convex portion (fitting formation portion) 111 having a columnar shape having the dimensions shown in Table 1. Met.

(樹脂部材)
炭素繊維強化プラスチック(CFRP)を用いて、射出成形法により、図3Aに示す樹脂部材12を製造した。樹脂部材12は、幅30mm×長さ100mm×厚みt(表1参照)の全体形状を有する平板に、表1に示す寸法の円柱形状を有する凹部(嵌合形成部)121が備わったものであった。CFRPはポリプロピレンに40重量%の不連続炭素繊維が含有されたものであった。
(Resin member)
A resin member 12 shown in FIG. 3A was manufactured by injection molding using carbon fiber reinforced plastic (CFRP). The resin member 12 includes a flat plate having an overall shape of width 30 mm × length 100 mm × thickness t (see Table 1) and a concave portion (fitting formation portion) 121 having a cylindrical shape having the dimensions shown in Table 1. there were. CFRP was a polypropylene containing 40% by weight of discontinuous carbon fibers.

(回転ツール)
回転ツールとしては、図2の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 2 of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
図3Aに示すように、金属部材11の嵌合形成部111と樹脂部材12の嵌合形成部121とが嵌合し、かつ金属部材の嵌合形成部(円柱形状)111の軸が回転ツール16の軸上に配置されるように、金属部材11の端部と樹脂部材12の端部とを重ね合わせた(図1)。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
As shown in FIG. 3A, the fitting forming portion 111 of the metal member 11 and the fitting forming portion 121 of the resin member 12 are fitted, and the axis of the fitting forming portion (columnar shape) 111 of the metal member is a rotary tool. The end of the metal member 11 and the end of the resin member 12 were overlapped so as to be arranged on the 16 axes (FIG. 1).

第2ステップ:
まず、図3Aに示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpm)。
Second step:
First, as shown in FIG. 3A, the rotary tool 16 was rotated in a state where only the tip portion of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1.. 00 seconds, tool rotation speed 3000 rpm).

その後、図3Bに示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との境界面13に達しない深さ(押し込み量k)まで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図3Bに示すように、回転ツール16を境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間6.75秒、ツール回転数3000rpm)。
次いで、金属部材11から回転ツール16を抜き取り、放置冷却し、接合体を得た。
Thereafter, as shown in FIG. 3B, the rotary tool 16 is pushed into the metal member 11 to enter a depth (pushing amount k) that does not reach the boundary surface 13 between the metal member 11 and the resin member 12 (push stirring step C2). : Pressurizing force 1500 N, pressurizing time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 3B, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the boundary surface 13 (stirring maintaining step C3: pressurizing pressure 500N, pressurizing time) 6.75 seconds, tool rotation speed 3000 rpm).
Subsequently, the rotary tool 16 was extracted from the metal member 11 and allowed to cool down to obtain a joined body.

[比較例A1]
金属部材11および樹脂部材12にそれぞれ嵌合形成部111および121を形成しなかったこと、および接合方法におけるステップ1で、金属部材11の端部と樹脂部材12の端部とをそのまま重ね合わせたこと以外、実施例A1と同様の方法により、接合体を得た。
[Comparative Example A1]
The fitting formation portions 111 and 121 were not formed on the metal member 11 and the resin member 12, respectively, and the end portion of the metal member 11 and the end portion of the resin member 12 were directly overlapped in step 1 in the joining method. Except for this, a joined body was obtained in the same manner as in Example A1.

[実施例B1]
金属部材11および樹脂部材12を構成する材料および金属部材11の嵌合形成部111および樹脂部材12の嵌合形成部121の寸法を表2に示すように変更したこと、図4Aに示すように、金属部材11の端部と樹脂部材12の端部との重ね合わせおよび予熱工程C1を行ったこと、および図4Bに示すように、押込み撹拌工程C2および撹拌維持工程C3を行ったこと以外、実施例A1と同様の方法により、接合体を得た。
[Example B1]
The material constituting the metal member 11 and the resin member 12 and the dimensions of the fitting formation portion 111 of the metal member 11 and the fitting formation portion 121 of the resin member 12 have been changed as shown in Table 2, as shown in FIG. 4A. Except that the end portion of the metal member 11 and the end portion of the resin member 12 were overlapped and the preheating step C1 was performed, and as shown in FIG. 4B, the indentation stirring step C2 and the stirring maintaining step C3 were performed. A joined body was obtained in the same manner as in Example A1.

[比較例B1]
金属部材11および樹脂部材12にそれぞれ嵌合形成部111および121を形成しなかったこと、および接合方法におけるステップ1で、金属部材11の端部と樹脂部材12の端部とをそのまま重ね合わせたこと以外、実施例B1と同様の方法により、接合体を得た。
[Comparative Example B1]
The fitting formation portions 111 and 121 were not formed on the metal member 11 and the resin member 12, respectively, and the end portion of the metal member 11 and the end portion of the resin member 12 were directly overlapped in step 1 in the joining method. Except for this, a joined body was obtained in the same manner as in Example B1.

[実施例C1]
金属部材11および樹脂部材12を構成する材料および金属部材11の嵌合形成部111および樹脂部材12の嵌合形成部121の寸法を表3に示すように変更したこと、図5Aに示すように、金属部材11の端部と樹脂部材12の端部との重ね合わせおよび予熱工程C1を行ったこと、および図5Bに示すように、押込み撹拌工程C2および撹拌維持工程C3を行ったこと以外、実施例A1と同様の方法により、接合体を得た。
[Example C1]
The material constituting the metal member 11 and the resin member 12 and the dimensions of the fitting formation portion 111 of the metal member 11 and the fitting formation portion 121 of the resin member 12 have been changed as shown in Table 3, as shown in FIG. 5A. Except that the end portion of the metal member 11 and the end portion of the resin member 12 were overlapped and the preheating step C1 was performed, and as shown in FIG. 5B, the indentation stirring step C2 and the stirring maintaining step C3 were performed. A joined body was obtained in the same manner as in Example A1.

[比較例C1]
金属部材11および樹脂部材12にそれぞれ嵌合形成部111および121を形成しなかったこと、および接合方法におけるステップ1で、金属部材11の端部と樹脂部材12の端部とをそのまま重ね合わせたこと以外、実施例C1と同様の方法により、接合体を得た。
[Comparative Example C1]
The fitting formation portions 111 and 121 were not formed on the metal member 11 and the resin member 12, respectively, and the end portion of the metal member 11 and the end portion of the resin member 12 were directly overlapped in step 1 in the joining method. Except for this, a joined body was obtained in the same manner as in Example C1.

<実験例II>
実験例IIは実施態様IIに関する実験例である。詳しくは実施例D1は実施態様II−1(図6Aおよび図6B)に関し、実施例E1は実施態様II−2(図7Aおよび図7B)に関する。
<Experimental example II>
Experimental Example II is an experimental example related to Embodiment II. Specifically, Example D1 relates to embodiment II-1 (FIGS. 6A and 6B) and Example E1 relates to embodiment II-2 (FIGS. 7A and 7B).

[実施例D1]
金属部材11および樹脂部材12を以下に示すものに変更したこと、図6Aに示すように、金属部材11の端部と樹脂部材12の端部との重ね合わせおよび予熱工程C1を行ったこと、および図6Bに示すように、押込み撹拌工程C2および撹拌維持工程C3を行ったこと以外、実施例A1と同様の方法により、接合体を得た。
[Example D1]
The metal member 11 and the resin member 12 have been changed to those shown below, and as shown in FIG. 6A, the end of the metal member 11 and the end of the resin member 12 are overlapped and the preheating step C1 is performed. And as shown to FIG. 6B, the joined_body | zygote was obtained by the method similar to Example A1 except having performed the indentation stirring process C2 and the stirring maintenance process C3.

(金属部材)
JIS ADC12を用いて、ダイカスト法により、図6Aに示す金属部材11を製造した。金属部材11は、幅30mm×長さ100mm×厚みT(表4参照)の全体形状を有する平板に、表4に示す寸法の円柱形状を有する凹部(嵌合形成部)111が備わったものであった。
(Metal member)
A metal member 11 shown in FIG. 6A was manufactured by die casting using JIS ADC12. The metal member 11 includes a flat plate having an overall shape of width 30 mm × length 100 mm × thickness T (see Table 4) and a concave portion (fitting formation portion) 111 having a columnar shape having the dimensions shown in Table 4. there were.

(樹脂部材)
炭素繊維強化プラスチック(CFRP)を用いて、射出成形法により、図6Aに示す樹脂部材12を製造した。樹脂部材12は、幅30mm×長さ100mm×厚みt(表4参照)の全体形状を有する平板に、表4に示す寸法の円柱形状を有する凸部(嵌合形成部)121が備わったものであった。CFRPはポリプロピレンに40重量%の不連続炭素繊維が含有されたものであった。
(Resin member)
A resin member 12 shown in FIG. 6A was manufactured by injection molding using carbon fiber reinforced plastic (CFRP). The resin member 12 is a flat plate having an overall shape of width 30 mm × length 100 mm × thickness t (see Table 4) provided with a convex portion (fitting forming portion) 121 having a columnar shape having the dimensions shown in Table 4. Met. CFRP was a polypropylene containing 40% by weight of discontinuous carbon fibers.

[比較例D1]
金属部材11および樹脂部材12にそれぞれ嵌合形成部111および121を形成しなかったこと、および接合方法におけるステップ1で、金属部材11の端部と樹脂部材12の端部とをそのまま重ね合わせたこと以外、実施例D1と同様の方法により、接合体を得た。
[Comparative Example D1]
The fitting formation portions 111 and 121 were not formed on the metal member 11 and the resin member 12, respectively, and the end portion of the metal member 11 and the end portion of the resin member 12 were directly overlapped in step 1 in the joining method. Except for this, a joined body was obtained in the same manner as in Example D1.

[実施例E1]
金属部材11および樹脂部材12を構成する材料および金属部材11の嵌合形成部111および樹脂部材12の嵌合形成部121の寸法を表5に示すように変更したこと、図7Aに示すように、金属部材11の端部と樹脂部材12の端部との重ね合わせおよび予熱工程C1を行ったこと、および図7Bに示すように、押込み撹拌工程C2および撹拌維持工程C3を行ったこと以外、実施例A1と同様の方法により、接合体を得た。
[Example E1]
The material constituting the metal member 11 and the resin member 12 and the dimensions of the fitting formation portion 111 of the metal member 11 and the fitting formation portion 121 of the resin member 12 have been changed as shown in Table 5, as shown in FIG. 7A. Except that the end of the metal member 11 and the end of the resin member 12 were overlapped and the preheating step C1 was performed, and the indentation stirring step C2 and the stirring maintaining step C3 were performed as shown in FIG. 7B, A joined body was obtained in the same manner as in Example A1.

[比較例E1]
金属部材11および樹脂部材12にそれぞれ嵌合形成部111および121を形成しなかったこと、および接合方法におけるステップ1で、金属部材11の端部と樹脂部材12の端部とをそのまま重ね合わせたこと以外、実施例E1と同様の方法により、接合体を得た。
[Comparative Example E1]
The fitting formation portions 111 and 121 were not formed on the metal member 11 and the resin member 12, respectively, and the end portion of the metal member 11 and the end portion of the resin member 12 were directly overlapped in step 1 in the joining method. Except that, a joined body was obtained in the same manner as in Example E1.

<せん断方向の接合強度(せん断強度)>
図12に示すように、金属部材11と樹脂部材12との接合体20を長手方向で引っ張ることにより、接合部のせん断強度を測定した。
実施例A1、B1、C1およびE1では、樹脂部材の母材(本体)自体が破断することにより、測定が終了した。
実施例D1では、樹脂部材の凸部自体が破断することにより、測定が終了した。
比較例A1、B1、C1、D1およびE1では、金属部材11と樹脂部材12との間の接合部界面の樹脂が凝集破壊することにより、測定が終了した。
<Joint strength in the shear direction (shear strength)>
As shown in FIG. 12, the shear strength of the joint was measured by pulling the joined body 20 of the metal member 11 and the resin member 12 in the longitudinal direction.
In Examples A1, B1, C1, and E1, the measurement was completed when the base material (main body) itself of the resin member was broken.
In Example D1, the measurement was completed when the convex portion of the resin member itself was broken.
In Comparative Examples A1, B1, C1, D1, and E1, the measurement was completed when the resin at the joint interface between the metal member 11 and the resin member 12 was coherently broken.

<樹脂部材の嵌合形成部と樹脂部材の溶融固化領域との関係>
実施例A1、B1、C1、D1およびE1において、樹脂部材12を金属部材11から剥離したところ、樹脂部材12の嵌合形成部121は図9に示すように樹脂部材12の溶融固化領域125内に位置していた。
<Relationship between resin member fitting forming portion and resin member melting and solidifying region>
In Examples A1, B1, C1, D1, and E1, when the resin member 12 is peeled from the metal member 11, the fitting formation portion 121 of the resin member 12 is in the melt-solidified region 125 of the resin member 12 as shown in FIG. Was located at.

Figure 0006319341
Figure 0006319341

Figure 0006319341
Figure 0006319341

Figure 0006319341
Figure 0006319341

Figure 0006319341
Figure 0006319341

Figure 0006319341
Figure 0006319341

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との境界面
16:回転ツール
17:受け具
110:金属部材の樹脂部材との接触面
111:金属部材の嵌合形成部
120:樹脂部材の金属部材との接触面
122:樹脂部材の嵌合形成部
1: Friction stir welding apparatus 10: Work 11: Metal member 12: Resin member 13: Interface between metal member and resin member 16: Rotating tool 17: Receiving tool 110: Contact surface of metal member with resin member 111: Metal Member fitting formation portion 120: Contact surface of resin member with metal member 122: Resin member fitting formation portion

Claims (16)

金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材と前記樹脂部材との相互の接触面それぞれに、前記金属部材および前記樹脂部材が嵌合するための嵌合形成部を設け、
該嵌合形成部により前記金属部材と前記樹脂部材とを嵌合させた状態で接合を行
前記金属部材の嵌合形成部が円柱系凸形状を有し、
前記樹脂部材の嵌合形成部が、前記金属部材の嵌合形成部の形状に対応する凹形状を有し、
前記金属部材の嵌合形成部の円柱系凸形状における高さhおよび直径dが、前記金属部材の厚みTおよび押圧部材の幅D1について、以下の関係式を満たす、金属部材と樹脂部材との接合方法
0.1×T≦h≦2×T;
0.4×D1≦d≦3×D1
Thermo-pressure bonding in which a metal member and a resin member are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a method,
On each of the mutual contact surfaces of the metal member and the resin member, a fitting formation portion for fitting the metal member and the resin member is provided,
Said metal member and have lines joining in a state where said the resin member is fitted by the fitting formation portion,
The fitting formation part of the metal member has a cylindrical convex shape,
The resin member fitting formation portion has a concave shape corresponding to the shape of the metal member fitting formation portion,
The height h and the diameter d in the cylindrical convex shape of the fitting formation portion of the metal member satisfy the following relational expression for the thickness T of the metal member and the width D1 of the pressing member: Joining method :
0.1 × T ≦ h ≦ 2 × T;
0.4 × D1 ≦ d ≦ 3 × D1 .
金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材と前記樹脂部材との相互の接触面それぞれに、前記金属部材および前記樹脂部材が嵌合するための嵌合形成部を設け、
該嵌合形成部により前記金属部材と前記樹脂部材とを嵌合させた状態で接合を行
前記樹脂部材の嵌合形成部が円柱系凸形状を有し、
前記金属部材の嵌合形成部が、前記樹脂部材の嵌合形成部の形状に対応する凹形状を有し、
前記樹脂部材の嵌合形成部の円柱系凸形状における高さh’および直径d’が、前記金属部材の厚みTおよび押圧部材の幅D1について、以下の関係式を満たす、金属部材と樹脂部材との接合方法
0.1×T≦h’≦T−0.5;
0.4×D1≦d’≦3×D1
Thermo-pressure bonding in which a metal member and a resin member are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a method,
On each of the mutual contact surfaces of the metal member and the resin member, a fitting formation portion for fitting the metal member and the resin member is provided,
Said metal member and have lines joining in a state where said the resin member is fitted by the fitting formation portion,
The fitting formation part of the resin member has a cylindrical convex shape,
The fitting formation part of the metal member has a concave shape corresponding to the shape of the fitting formation part of the resin member,
A metal member and a resin member in which the height h ′ and the diameter d ′ in the columnar convex shape of the fitting formation portion of the resin member satisfy the following relational expression for the thickness T of the metal member and the width D1 of the pressing member: Joining method :
0.1 × T ≦ h ′ ≦ T−0.5;
0.4 × D1 ≦ d ′ ≦ 3 × D1 .
熱圧式接合方法が摩擦撹拌接合方法であり、  The hot-pressure bonding method is a friction stir welding method,
該摩擦撹拌接合方法が以下のステップを含む、請求項1または2に記載の金属部材と樹脂部材との接合方法:  The method for joining a metal member and a resin member according to claim 1 or 2, wherein the friction stir welding method includes the following steps:
前記金属部材と前記樹脂部材とをそれらの嵌合形成部により嵌合させつつ、重ね合わせる第1ステップ;および  A first step of superimposing the metal member and the resin member while fitting the metal member and the resin member by their fitting forming portions; and
前記押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ。  While rotating the rotary tool as the pressing member, the metal member is pressed to generate frictional heat, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member. 2 steps.
前記第2ステップが、前記回転ツールを前記金属部材に押し込んで前記金属部材と前記樹脂部材との境界面に達しない深さまで進入させる押込み撹拌工程を備えている、請求項3に記載の金属部材と樹脂部材との接合方法。  4. The metal member according to claim 3, wherein the second step includes a pushing stirring step of pushing the rotating tool into the metal member to enter a depth that does not reach a boundary surface between the metal member and the resin member. And joining method of resin member. 前記第2ステップが、前記押込み撹拌工程の前に、回転ツールの先端部のみを金属部材の表面部に接触させた状態で前記回転ツールを回転させる予熱工程をさらに備えている、請求項4に記載の金属部材と樹脂部材との接合方法。  The said 2nd step is further equipped with the pre-heating process which rotates the said rotation tool in the state which made only the front-end | tip part of a rotation tool contacted the surface part of the metal member before the said pushing stirring process. The joining method of the metal member and resin member of description. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、  In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる、請求項5に記載の金属部材と樹脂部材との接合方法。  The said agitation stirring process rotates only the 2nd pressurization time shorter than the said 1st pressurization time, pressing the said rotation tool with the 2nd pressurization force larger than the said 1st pressurization force. Joining method of metal member and resin member.
前記第2ステップが、前記回転ツールを境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、  The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth not reaching the boundary surface,
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる、請求項6に記載の金属部材と樹脂部材との接合方法。  The said stirring maintenance process WHEREIN: The said rotating tool is rotated only for the 3rd pressurization time longer than the said 1st pressurization time, pressing with the 3rd pressurization force smaller than the said 1st pressurization force. Joining method of metal member and resin member.
前記第2ステップが、前記撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で前記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている、請求項7に記載の金属部材と樹脂部材との接合方法。  The second step further comprises a holding step of stopping the rotation of the rotary tool after the stirring maintaining step and holding the rotary tool for a predetermined pressurizing time with a predetermined pressure in that state. The joining method of the metal member and resin member of Claim 7. 金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記金属部材と前記樹脂部材との相互の接触面それぞれに、前記金属部材および前記樹脂部材が嵌合するための嵌合形成部を設け、
該嵌合形成部により前記金属部材と前記樹脂部材とを嵌合させた状態で接合を行
熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む、金属部材と樹脂部材との接合方法
前記金属部材と前記樹脂部材とをそれらの嵌合形成部により嵌合させつつ、重ね合わせる第1ステップ;および
前記押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ
Thermo-pressure bonding in which a metal member and a resin member are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat, and then solidified and bonded. A method of joining a metal member and a resin member by a method,
On each of the mutual contact surfaces of the metal member and the resin member, a fitting formation portion for fitting the metal member and the resin member is provided,
Said metal member and have lines joining in a state where said the resin member is fitted by the fitting formation portion,
The hot-pressure bonding method is a friction stir welding method,
The method of joining a metal member and a resin member , wherein the friction stir welding method includes the following steps :
A first step of superimposing the metal member and the resin member while fitting the metal member and the resin member by their fitting forming portions; and
While rotating the rotary tool as the pressing member, the metal member is pressed to generate frictional heat, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member. 2 steps .
前記第2ステップが、前記回転ツールを前記金属部材に押し込んで前記金属部材と前記樹脂部材との境界面に達しない深さまで進入させる押込み撹拌工程を備えている、請求項9に記載の金属部材と樹脂部材との接合方法。  10. The metal member according to claim 9, wherein the second step includes a pressing and stirring step of pressing the rotating tool into the metal member to enter a depth not reaching a boundary surface between the metal member and the resin member. And joining method of resin member. 前記第2ステップが、前記押込み撹拌工程の前に、回転ツールの先端部のみを金属部材の表面部に接触させた状態で前記回転ツールを回転させる予熱工程をさらに備えている、請求項10に記載の金属部材と樹脂部材との接合方法。  The second step further includes a preheating step of rotating the rotary tool in a state where only the tip portion of the rotary tool is in contact with the surface portion of the metal member before the indentation stirring step. The joining method of the metal member and resin member of description. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、  In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる、請求項11に記載の金属部材と樹脂部材との接合方法。  The said agitation process WHEREIN: The said rotating tool is rotated only for the 2nd pressurization time shorter than the said 1st pressurization time, pressing with the 2nd pressurization force larger than the said 1st pressurization force. Joining method of metal member and resin member.
前記第2ステップが、前記回転ツールを境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、  The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth not reaching the boundary surface,
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる、請求項12に記載の金属部材と樹脂部材との接合方法。  The said stirring maintenance process rotates only the 3rd pressurization time longer than the said 1st pressurization time, pressing the said rotary tool with the 3rd pressurization force smaller than the said 1st pressurization force. Joining method of metal member and resin member.
前記第2ステップが、前記撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で前記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている、請求項13に記載の金属部材と樹脂部材との接合方法。  The second step further comprises a holding step of stopping the rotation of the rotary tool after the stirring maintaining step and holding the rotary tool for a predetermined pressurizing time with a predetermined pressure in that state. The method for joining the metal member and the resin member according to claim 13. 嵌合させた状態の前記金属部材および前記樹脂部材を、前記樹脂部材の嵌合形成部の少なくとも一部が該樹脂部材の溶融固化領域内に位置するように、前記接合に供する、請求項1〜14のいずれかに記載の金属部材と樹脂部材との接合方法。  2. The metal member and the resin member in a fitted state are subjected to the joining so that at least a part of a fitting formation portion of the resin member is located in a melt-solidified region of the resin member. The joining method of the metal member in any one of -14, and a resin member. 前記金属部材の嵌合形成部および前記樹脂部材の嵌合形成部の一方が、凸形状、凹形状またはそれらの複合形状を有し、  One of the fitting formation part of the metal member and the fitting formation part of the resin member has a convex shape, a concave shape or a composite shape thereof,
前記金属部材の嵌合形成部および前記樹脂部材の嵌合形成部の他方が、前記一方の嵌合形成部の形状に対応する相補的形状を有する、請求項1〜15のいずれかに記載の金属部材と樹脂部材との接合方法。  The other of the fitting formation part of the said metal member and the fitting formation part of the said resin member has a complementary shape corresponding to the shape of said one fitting formation part. A method of joining a metal member and a resin member.
JP2016029248A 2016-02-18 2016-02-18 Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method Active JP6319341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029248A JP6319341B2 (en) 2016-02-18 2016-02-18 Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029248A JP6319341B2 (en) 2016-02-18 2016-02-18 Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method

Publications (2)

Publication Number Publication Date
JP2017144661A JP2017144661A (en) 2017-08-24
JP6319341B2 true JP6319341B2 (en) 2018-05-09

Family

ID=59680556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029248A Active JP6319341B2 (en) 2016-02-18 2016-02-18 Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method

Country Status (1)

Country Link
JP (1) JP6319341B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188653A (en) * 2018-04-20 2019-10-31 株式会社ショーワ Manufacturing method of joined body and joined body manufactured by manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204117U (en) * 1981-06-19 1982-12-25
JP2570411Y2 (en) * 1990-09-12 1998-05-06 株式会社吉野工業所 Synthetic resin cylindrical molded body with metal cover

Also Published As

Publication number Publication date
JP2017144661A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6098563B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6098565B2 (en) Method of joining metal member and resin member
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6319341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150