JP6330760B2 - Method of joining metal member and resin member - Google Patents

Method of joining metal member and resin member Download PDF

Info

Publication number
JP6330760B2
JP6330760B2 JP2015166117A JP2015166117A JP6330760B2 JP 6330760 B2 JP6330760 B2 JP 6330760B2 JP 2015166117 A JP2015166117 A JP 2015166117A JP 2015166117 A JP2015166117 A JP 2015166117A JP 6330760 B2 JP6330760 B2 JP 6330760B2
Authority
JP
Japan
Prior art keywords
metal member
resin member
joining
resin
rotary tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015166117A
Other languages
Japanese (ja)
Other versions
JP2017042972A (en
Inventor
耕二郎 田中
耕二郎 田中
聡子 島田
聡子 島田
泰博 森田
泰博 森田
松田 祐之
祐之 松田
嗣久 宮本
嗣久 宮本
小林 めぐみ
めぐみ 小林
勝也 西口
勝也 西口
宣夫 坂手
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2015166117A priority Critical patent/JP6330760B2/en
Publication of JP2017042972A publication Critical patent/JP2017042972A/en
Application granted granted Critical
Publication of JP6330760B2 publication Critical patent/JP6330760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法、接合体および接合装置に関する。   The present invention relates to a method for joining a metal member and a resin member, a joined body, and a joining apparatus.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、金属部材と樹脂部材とを重ね合わせ、回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. The friction stir welding method is a method in which a metal member and a resin member are overlapped, a rotating tool is rotated and pressed against the metal member to generate frictional heat. After the resin member is melted by this frictional heat, the resin member is solidified. The metal member and the resin member are joined together.

このような摩擦撹拌接合方法においては、例えば、接合強度および簡易接合の観点から、回転ツールの形状や押込み量を特定範囲内に設定する技術(特許文献1)が開示されている。   In such a friction stir welding method, for example, a technique (Patent Document 1) is disclosed in which the shape and push-in amount of the rotary tool are set within a specific range from the viewpoint of joining strength and simple joining.

一方、樹脂部材に強化繊維を含有させて、樹脂部材の強度を向上させる技術が知られている。   On the other hand, a technique for improving the strength of a resin member by adding a reinforcing fiber to the resin member is known.

特開2010−158885号公報JP 2010-158885 A

しかしながら、従来の摩擦撹拌接合方法において、強化繊維を含有する樹脂部材を用いた場合、接合強度が低下することがあった。   However, in the conventional friction stir welding method, when a resin member containing reinforcing fibers is used, the bonding strength may be reduced.

本発明の発明者等は、このような接合強度の低下の現象を鋭意研究した結果、当該現象は、樹脂部材に含有される強化繊維のスプリングバックに起因することを見い出した。具体的には、図9(A)に示すように、押圧部材216を金属部材211に押し込んで、摩擦熱により、樹脂部材212の押圧部材直下領域221およびその外周領域を溶融させた後、固化させると、樹脂部材212の当該溶融固化領域においてスプリングバックが生じた。スプリングバックとは、湾曲した強化繊維が樹脂部材212の溶融時に拘束力から解放され、まっすぐに戻ろうと変形する現象である。このようなスプリングバックが生じると、図9(B)に示すように、樹脂部材212における溶融固化領域において、気泡が混入して、見掛け上、発泡したように見える気泡層(いわゆるスプリングバック層)222が形成され、強度の低い気泡層222内で層内破断が生じることで接合強度が低下するものと考えられる。   The inventors of the present invention have intensively studied the phenomenon of such a decrease in bonding strength, and as a result, have found that the phenomenon is caused by springback of reinforcing fibers contained in the resin member. Specifically, as shown in FIG. 9A, the pressing member 216 is pushed into the metal member 211, and the region 221 directly below the pressing member of the resin member 212 and its outer peripheral region are melted by frictional heat, and then solidified. As a result, springback occurred in the melted and solidified region of the resin member 212. The spring back is a phenomenon in which the curved reinforcing fiber is released from the restraining force when the resin member 212 is melted and deforms so as to return straight. When such a springback occurs, as shown in FIG. 9B, bubbles are mixed in the melt-solidified region of the resin member 212, and a bubble layer that appears to be foamed (so-called springback layer). 222 is formed, and it is considered that the bonding strength is lowered by the occurrence of the intra-layer fracture in the bubble layer 222 having a low strength.

そこで発明者等は、気泡層の形成を防止する試みを種々検討したところ、特別な樹脂部材を用いたり、特別な冷却を行ったりする必要があり、極めて煩雑であった。   Therefore, the inventors examined various attempts to prevent the formation of the bubble layer, and it was necessary to use a special resin member or to perform special cooling, which was very complicated.

本発明は、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を簡便に十分な強度で達成することができる金属部材と樹脂部材との接合方法を提供することを目的とする。   The present invention provides a method for joining a metal member and a resin member, which can easily achieve joining of the resin member and the metal member with sufficient strength even when the reinforcing fiber is contained in the resin member. The purpose is to do.

本発明には以下の好適な実施態様が含まれる。
[1]金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が1mm以下の厚みで形成されるように接合を行う、金属部材と樹脂部材との接合方法。
[2]前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が前記厚みで形成されるように、押圧部材の駆動および熱の付与を制御する、[1]に記載の金属部材と樹脂部材との接合方法。
[3]前記熱圧式接合方法が、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法であり、
前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が前記厚みで形成されるように、前記回転ツールの駆動を制御する、[1]または[2]に記載の金属部材と樹脂部材との接合方法。
[4]回転ツールの押圧駆動および/または回転駆動を制御する、[3]に記載の金属部材と樹脂部材との接合方法。
[5]前記第2ステップにおいて圧力制御方式を採用し、
回転ツールの金属部材への加圧力および加圧時間および回転数を制御する、[3]または[4]に記載の金属部材と樹脂部材との接合方法。
[6]前記第2ステップが、
前記回転ツールの先端部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程;
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程
を含み、
前記予熱工程では回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させ、
前記撹拌維持工程では回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させる、[5]に記載の金属部材と樹脂部材との接合方法。
[7]前記予熱工程において、第1の加圧力を600N以上1300N未満の範囲で調整し、第1の加圧時間を0.5秒以上2.0秒未満の範囲で調整し、
前記押込み撹拌工程において、第2の加圧力を1300N以上2200N未満の範囲で調整し、第2の加圧時間を0.1秒以上0.5秒未満の範囲で調整し、
前記撹拌維持工程において、第3の加圧力を100N以上1200N未満の範囲で調整し、第3の加圧時間を2.0秒以上8.5秒未満の範囲で調整する、[6]に記載の金属部材と樹脂部材との接合方法。
[8]前記予熱工程、前記押込み撹拌工程および前記撹拌維持工程において、それぞれ独立して、回転ツールの回転数を2000rpm以上4000rpm以下の範囲で調整する、[7]に記載の金属部材と樹脂部材との接合方法。
[9]前記第2ステップにおいて位置制御方式を採用し、
回転ツールの座標位置、特定位置での保持時間および回転数を制御する、[3]または[4]に記載の金属部材と樹脂部材との接合方法。
[10]前記第2ステップが、
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を含み、
前記押込み撹拌工程では回転ツールを、前記金属部材の厚みをTとしたとき、0.4×T〜0.9×Tの進入量まで、金属部材に進入させる、[9]に記載の金属部材と樹脂部材との接合方法。
[11]前記第2ステップがさらに、
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程;
を含み、
前記撹拌維持工程では回転ツールを、前記押込み撹拌工程で進入させた位置で2.0秒以上8.5秒未満だけ保持し、
前記押込み撹拌工程では回転ツールを0.05〜1mm/秒の進入速度で進入させる、[10]に記載の金属部材と樹脂部材との接合方法。
[12]前記押込み撹拌工程および前記撹拌維持工程において、それぞれ独立して、回転ツールの回転数を2000rpm以上4000rpm以下の範囲で調整する、[10]または[11]に記載の金属部材と樹脂部材との接合方法。
[13]前記金属部材の厚みTが0.5〜4mmである、[1]〜[12]のいずれかに記載の金属部材と樹脂部材との接合方法。
[14]前記金属部材がアルミニウムまたはアルミニウム合金からなり、
前記樹脂部材が130〜350℃の融点Tmを有する、[1]〜[13]のいずれかに記載の金属部材と樹脂部材との接合方法。
[15]前記回転ツールが、金属部材と接触する先端部において、該回転ツールの中心軸線上に突設されたピン部および該ピン部を支持するショルダ部を有し、前記ショルダ部がすり鉢状に窪んだ傾斜面を有する、[3]〜[14]のいずれかに記載の金属部材と樹脂部材との接合方法。
[16]前記強化繊維の平均繊維長Lが1mm超50mm以下である、[1]〜[15]のいずれかに記載の金属部材と樹脂部材との接合方法。
[17]前記樹脂部材が該樹脂部材全量に対して10〜50重量%の割合で前記強化繊維を含有する、[1]〜[16]のいずれかに記載の金属部材と樹脂部材との接合方法。
[18]前記樹脂部材が、熱可塑性ポリマーおよび強化繊維を含む混合物を射出成形法またはプレス成形法に供することにより、製造されたものである、[1]〜[17]のいずれかに記載の金属部材と樹脂部材との接合方法。
[19]前記固化を放置冷却により行う、[1]〜[18]のいずれかに記載の金属部材と樹脂部材との接合方法。
[20]金属部材と強化繊維を含有する樹脂部材とが、該樹脂部材の一部の溶融および固化により接合された接合体であって、
前記樹脂部材における溶融固化領域の金属部材側表面において厚み1mm以下の気泡層を有する、ことを特徴とする金属部材と樹脂部材との接合体。
[21][1]〜[19]のいずれかに記載の金属部材と樹脂部材との接合方法により接合された、[20]に記載の金属部材と樹脂部材との接合体。
[22]金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱により樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合装置であって、
前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が1mm以下の厚みで形成されるように押圧部材の駆動を制御する駆動制御装置を含む、金属部材と樹脂部材との接合装置。
[23][1]〜[19]のいずれかに記載の金属部材と樹脂部材との接合方法を実施するための、[22]に記載の金属部材と樹脂部材との接合装置。
The present invention includes the following preferred embodiments.
[1] A metal member and a resin member containing reinforcing fibers are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and heat is applied to soften and melt the resin member. Then, a method of joining the metal member and the resin member by a hot-pressure joining method that solidifies and joins,
The joining method of a metal member and a resin member which joins so that a bubble layer may be formed in the thickness below 1 mm on the metal member side surface of the fusion | melting solidification area | region in the said resin member.
[2] The metal member and resin according to [1], wherein driving of the pressing member and application of heat are controlled so that a bubble layer is formed with the thickness on the metal member side surface of the melt-solidified region in the resin member. Joining method with member.
[3] The hot-pressure bonding method includes:
A first step of superimposing the metal member and the resin member; and, while rotating the rotary tool as the pressing member, pressing the metal member to generate frictional heat, softening and melting the resin member by the frictional heat, A friction stir welding method including a second step of solidifying and joining the metal member and the resin member;
The metal member and the resin member according to [1] or [2], wherein driving of the rotary tool is controlled so that a bubble layer is formed with the thickness on the metal member side surface of the melted and solidified region in the resin member. Joining method.
[4] The method for joining the metal member and the resin member according to [3], wherein pressing and / or rotational driving of the rotary tool is controlled.
[5] Adopting a pressure control method in the second step,
The method for joining the metal member and the resin member according to [3] or [4], wherein the pressing force and pressurizing time and the number of rotations of the rotating tool on the metal member are controlled.
[6] The second step includes
A preheating step of rotating the rotary tool in a state where only the tip of the rotary tool is in contact with the surface of the metal member;
A pushing agitation step of pushing the rotating tool into the metal member and entering the metal member and the resin member to a depth not reaching the joining boundary surface; and a position where the rotating tool is entered in the pushing agitation step. Including an agitation maintaining step for continuing the rotation operation,
In the preheating step, the rotary tool is rotated by the first pressurizing time while being pressed with the first pressurizing force,
In the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force,
In the stirring maintaining step, the rotary tool is rotated by a third pressurizing time longer than the first pressurizing time while pressing the rotating tool with a third pressurizing force smaller than the first pressurizing force. A method of joining a metal member and a resin member.
[7] In the preheating step, the first pressure is adjusted in a range of 600 N or more and less than 1300 N, and the first pressurizing time is adjusted in a range of 0.5 second or more and less than 2.0 seconds,
In the indentation stirring step, the second pressure is adjusted in the range of 1300 N or more and less than 2200 N, the second pressurizing time is adjusted in the range of 0.1 second or more and less than 0.5 second,
In the stirring maintaining step, the third pressure is adjusted in a range of 100 N or more and less than 1200 N, and the third pressurizing time is adjusted in a range of 2.0 seconds or more and less than 8.5 seconds, [6]. Joining method of metal member and resin member.
[8] The metal member and the resin member according to [7], wherein in the preheating step, the indentation stirring step, and the stirring maintaining step, the number of rotations of the rotary tool is independently adjusted in a range of 2000 rpm to 4000 rpm. Joining method.
[9] A position control method is adopted in the second step,
The method for joining the metal member and the resin member according to [3] or [4], wherein the coordinate position of the rotary tool, the holding time at the specific position, and the number of rotations are controlled.
[10] The second step includes
Including a pushing agitation step of pushing the rotating tool into the metal member to enter a depth that does not reach the joining interface between the metal member and the resin member;
The metal member according to [9], wherein the rotating tool is caused to enter the metal member up to an entry amount of 0.4 × T to 0.9 × T, where T is a thickness of the metal member in the indentation stirring step. And joining method of resin member.
[11] The second step further includes
A stirring maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool is entered in the indentation stirring step;
Including
In the stirring maintaining step, the rotating tool is held at a position where the rotating tool is entered in the indenting stirring step for not less than 2.0 seconds and less than 8.5 seconds,
The joining method of the metal member and the resin member according to [10], wherein the rotating tool is allowed to enter at an approach speed of 0.05 to 1 mm / second in the indentation stirring step.
[12] The metal member and the resin member according to [10] or [11], wherein the number of rotations of the rotating tool is independently adjusted in a range of 2000 rpm to 4000 rpm in the indentation stirring step and the stirring maintaining step. Joining method.
[13] The method for joining the metal member and the resin member according to any one of [1] to [12], wherein a thickness T of the metal member is 0.5 to 4 mm.
[14] The metal member is made of aluminum or an aluminum alloy,
The method for joining a metal member and a resin member according to any one of [1] to [13], wherein the resin member has a melting point Tm of 130 to 350 ° C.
[15] The rotating tool has a pin portion projecting on a central axis of the rotating tool and a shoulder portion supporting the pin portion at a tip portion in contact with the metal member, and the shoulder portion has a mortar shape. The method for joining a metal member and a resin member according to any one of [3] to [14], wherein the metal member has an inclined surface that is recessed.
[16] The method for joining a metal member and a resin member according to any one of [1] to [15], wherein an average fiber length L of the reinforcing fibers is more than 1 mm and not more than 50 mm.
[17] The joining of the metal member and the resin member according to any one of [1] to [16], wherein the resin member contains the reinforcing fiber in a proportion of 10 to 50% by weight with respect to the total amount of the resin member. Method.
[18] The resin member according to any one of [1] to [17], wherein the resin member is produced by subjecting a mixture containing a thermoplastic polymer and a reinforcing fiber to an injection molding method or a press molding method. A method of joining a metal member and a resin member.
[19] The method for joining a metal member and a resin member according to any one of [1] to [18], wherein the solidification is performed by standing cooling.
[20] A joined body in which a metal member and a resin member containing reinforcing fibers are joined by melting and solidifying a part of the resin member,
A bonded body of a metal member and a resin member, wherein the metal member has a bubble layer having a thickness of 1 mm or less on a surface on the metal member side of a melt-solidified region in the resin member.
[21] A joined body of the metal member and the resin member according to [20], which is joined by the joining method of the metal member and the resin member according to any one of [1] to [19].
[22] The metal member and the resin member containing the reinforcing fiber are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and the resin member is softened and melted by heat and then solidified. It is a joining device between a metal member and a resin member by a hot-pressure joining method that performs joining,
An apparatus for joining a metal member and a resin member, including a drive control device for controlling the drive of the pressing member so that a bubble layer is formed with a thickness of 1 mm or less on the surface of the melted and solidified region of the resin member on the metal member side.
[23] A joining apparatus for joining a metal member and a resin member according to [22] for carrying out the joining method for a metal member and a resin member according to any one of [1] to [19].

本発明の接合方法によれば、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を簡便に十分な強度で達成することができる。また本発明の接合方法は、特別な樹脂部材を用いたり、特別な冷却を行ったりしなくてもよい。   According to the joining method of the present invention, even if the reinforcing fiber is contained in the resin member, the joining of the resin member and the metal member can be easily achieved with sufficient strength. Moreover, the joining method of this invention does not need to use a special resin member or to perform special cooling.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの別の一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of another example of the rotation tool as a pressing member used for the joining method of this invention. 本発明の予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process of this invention. 本発明の押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process and stirring stirring process of this invention. 本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面状態を示す概略模式図である。It is a schematic diagram which shows the surface state of the resin member when a metal member is forcedly peeled from the joining body obtained by the joining method of this invention, and the metal member side surface of the resin member is observed. 本発明の接合方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。It is an enlarged view of the joining boundary surface of the metal member and the resin member in the joined body obtained by the joining method of the present invention. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. (A)は従来技術における金属部材と樹脂部材との接合方法を説明するための概略断面図であり、(B)は、(A)の方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。(A) is a schematic sectional drawing for demonstrating the joining method of the metal member and resin member in a prior art, (B) is the metal member and resin member in the joined_body | zygote obtained by the method of (A). It is an enlarged view of the joining boundary surface.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。熱および圧力は好ましくは局所的に付与される。本発明の熱圧式接合方法は、押圧部材により圧力を付与しつつ、押圧部材または別の手段により熱を付与する方法である。熱圧式接合方法は、後述するように、金属部材と樹脂部材との接合体において樹脂部材における溶融固化領域の金属部材側表面に気泡層が所定の範囲内の厚みで形成されるように接合を行うことができる方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは押圧部材により熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, after a metal member and a resin member are overlapped, pressure is applied to the resin member by pressing from the metal member side by the pressing member, and heat is applied to soften and melt the resin member. This is a hot-pressure joining method in which a metal member and a resin member are joined by solidification. Heat and pressure are preferably applied locally. The hot-pressure bonding method of the present invention is a method of applying heat by a pressing member or another means while applying pressure by the pressing member. As will be described later, in the hot-pressure bonding method, bonding is performed so that a bubble layer is formed on the metal member side surface of the melt-solidified region of the resin member with a thickness within a predetermined range in the bonded body of the metal member and the resin member. The method is not particularly limited as long as it can be performed. For example, a friction stir welding method, an ultrasonic heating bonding method, a laser heating bonding method, a resistance heating bonding method, an induction heating bonding method, or the like may be used. Preferably, it is a method in which heat and pressure are locally applied from the metal member side by a pressing member, and a friction stir welding method is more preferably employed.

気泡層が所定の範囲内の厚みで形成されるように接合を行うとは、後で詳述するように、気泡層の厚みが所定の範囲内になるように、押圧部材の駆動および熱の付与を制御する、という意味であり、特に摩擦撹拌接合方法においては回転ツールの駆動を制御することである。   The joining is performed so that the bubble layer is formed with a thickness within a predetermined range. As will be described in detail later, the pressure member is driven and heated so that the thickness of the bubble layer is within a predetermined range. In other words, in the friction stir welding method, the drive of the rotary tool is controlled.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   As will be described in detail later, the friction stir welding method is a method in which a metal member and a resin member are overlapped and a rotating tool as a pressing member is rotated to press the metal member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧しながら、超音波(熱付与手段)により押圧部材及び金属部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heating bonding method is to superimpose a metal member and a resin member, press the metal member with the pressing member, and cause ultrasonic vibration to the pressing member and the metal member with ultrasonic waves (heat applying means), In this method, the resin member is softened and melted by the frictional heat of the resin member / metal member generated by vibration and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、レーザー(熱付与手段)を金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。   The laser heating bonding method is a method in which a metal member and a resin member are overlapped and heat is generated by irradiating a metal member with a laser (heat applying means) in a state where the metal member and the resin member are constrained by pressurization by a pressing member. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、金属部材に、直接電流(熱付与手段)を流すことにより生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The resistance heating bonding method uses heat generated by flowing a current (heat applying means) directly to a metal member in a state where the metal member and the resin member are overlapped and constrained by pressurization by the pressing member. The resin member is softened and melted and then solidified to join the metal member and the resin member.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、電磁誘導作用により金属部材に、誘導電流(熱付与手段)を生じさせ、該電流により生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The induction heating joining method is a method in which a metal member and a resin member are overlapped, and an induction current (heat applying means) is generated in the metal member by electromagnetic induction in a state in which the metal member and the resin member are constrained by pressurization by the pressing member. In this method, the resin member is softened and melted using heat generated by an electric current and then solidified to join the metal member and the resin member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、樹脂部材における溶融固化領域の金属部材側表面に気泡層が所定の範囲内の厚みで形成されるように接合を行う限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる「上下方向」は、図中における上下方向に対応した方向に相当する。また特記しない限り、これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, the joining method of the present invention employing the friction stir welding method will be described in detail with reference to the drawings. However, a bubble layer is formed with a thickness within a predetermined range on the metal member side surface of the melt-solidified region in the resin member. As long as bonding is performed in this way, it is apparent that the effects of the present invention can be obtained even if other bonding methods described above are used. It should be noted that the various elements shown in the drawings are merely schematically shown for understanding of the present invention, and the dimensional ratio, appearance, and the like may differ from the actual ones. The “vertical direction” used directly or indirectly in this specification corresponds to a direction corresponding to the vertical direction in the drawing. Unless otherwise specified, in these drawings, common reference numerals indicate the same members, parts, dimensions, or regions.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1〜図6を用いて具体的に説明する。
[Method of joining metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS.

(1)接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Joining Device First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding device suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。   As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), it moves downward as indicated by an arrow A2. At this time, the rotary tool 16 applies pressure in the pressing region P (scheduled pressing region) on the surface of the metal member 11. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined.

図2は、回転ツール16の一例の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、金属部材と接触する先端部(図2では下端部)にピン部16a及び該ピン部を支持するショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the tip portion of an example of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b that supports the pin portion at a distal end portion (lower end portion in FIG. 2) that contacts the metal member. The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body) or the like, the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto.

図3に示す回転ツール16’を用いてもよい。図3は、回転ツールの別の一例の先端部の拡大図である。図3において、回転ツール16’はショルダ部16bがすり鉢状(円錐状)に窪んだ傾斜面16cを有すること以外、図2の回転ツール16と同様である。図3において、ショルダ部16bの外周からピン部16aに近づくほど当該窪みの深さは深くなっている。これにより、回転ツール16’のショルダ部16bは、接合時において、外周部から金属部材と接触するようになるので、後述する溶融固化領域の最大径を拡大でき、接合強度のさらなる向上を達成できる。傾斜面16cの傾斜角θは通常、15°以下であり、好ましくは1〜15°、より好ましくは5〜10°である。   A rotary tool 16 'shown in FIG. 3 may be used. FIG. 3 is an enlarged view of a tip portion of another example of the rotary tool. In FIG. 3, the rotary tool 16 ′ is the same as the rotary tool 16 of FIG. 2 except that the shoulder portion 16 b has an inclined surface 16 c that is recessed in a mortar shape (conical shape). In FIG. 3, the depth of the recess becomes deeper as it approaches the pin portion 16a from the outer periphery of the shoulder portion 16b. As a result, the shoulder portion 16b of the rotary tool 16 ′ comes into contact with the metal member from the outer peripheral portion at the time of joining, so that the maximum diameter of the melt-solidified region to be described later can be expanded, and further improvement in joining strength can be achieved. . The inclination angle θ of the inclined surface 16c is usually 15 ° or less, preferably 1 to 15 °, more preferably 5 to 10 °.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、金属部材と樹脂部材との接合体において樹脂部材における溶融固化領域の金属部材側表面に気泡層が所定の範囲内の厚みで形成されるように、押圧部材としての回転ツールの駆動、特に押圧駆動および/または回転駆動、好ましくは押圧駆動および回転駆動、を制御する駆動制御装置(図示せず)を含む。   The friction stir welding apparatus 1 rotates as a pressing member so that a bubble layer is formed with a thickness within a predetermined range on the metal member side surface of the melt-solidified region of the resin member in the joined body of the metal member and the resin member. A drive control device (not shown) for controlling the drive of the tool, in particular the press drive and / or the rotary drive, preferably the press drive and the rotary drive is included.

駆動制御装置は、後で詳述するように、回転ツールの金属部材への加圧力および加圧時間および回転数を制御する圧力制御方式を採用してもよいし、または回転ツールの座標位置、特定位置での保持時間および回転数を制御する位置制御方式を採用してもよい。   As will be described in detail later, the drive control device may employ a pressure control method for controlling the pressing force and pressurizing time and the number of rotations on the metal member of the rotary tool, or the coordinate position of the rotary tool, You may employ | adopt the position control system which controls the holding time and rotation speed in a specific position.

なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(2)接合方法
本発明の接合方法によれば、金属部材11と樹脂部材12との界面13において、樹脂部材12の溶融および固化により溶融固化領域61(図6参照;斜線領域)が形成され、当該溶融固化領域61が金属部材11と樹脂部材12との接合に寄与する。本発明においては、このような溶融固化領域61の金属部材側表面において気泡層62(図6参照;格子領域)が所定の厚みで形成されるように接合を行う。詳しくは樹脂部材12の溶融固化領域61における金属部材側表面に形成される気泡層62の厚みが1mm以下になるように接合を行う。これにより、樹脂部材と金属部材との接合を簡便に十分な強度で達成することができる。本発明の接合方法においては、気泡層が形成されない条件まで入熱を小さくした場合、溶融固化領域が小さくなりすぎ、十分な接合強度が得られない場合がある。一方で、気泡層の厚みが1mmを超えるような条件下で接合を行った場合においても、十分な接合強度は得られない。
(2) Joining Method According to the joining method of the present invention, the melted and solidified region 61 (see FIG. 6; hatched region) is formed by melting and solidifying the resin member 12 at the interface 13 between the metal member 11 and the resin member 12. The melt-solidified region 61 contributes to the joining between the metal member 11 and the resin member 12. In the present invention, bonding is performed so that the bubble layer 62 (see FIG. 6; lattice region) is formed with a predetermined thickness on the surface of the melt-solidified region 61 on the metal member side. Specifically, the bonding is performed so that the thickness of the bubble layer 62 formed on the metal member side surface in the melt-solidified region 61 of the resin member 12 is 1 mm or less. Thereby, joining of a resin member and a metal member can be achieved simply and with sufficient strength. In the bonding method of the present invention, when the heat input is reduced to a condition where no bubble layer is formed, the melt-solidified region becomes too small, and sufficient bonding strength may not be obtained. On the other hand, even when bonding is performed under a condition where the thickness of the bubble layer exceeds 1 mm, sufficient bonding strength cannot be obtained.

本発明において気泡層の厚みは、後述する各工程での入熱量に影響を受ける。例えば、入熱量が大きいほど、気泡層の厚みは厚くなる傾向がある。また例えば、入熱量が小さいほど、気泡層の厚みは薄くなる傾向がある。   In the present invention, the thickness of the bubble layer is affected by the amount of heat input in each step described later. For example, the greater the amount of heat input, the greater the thickness of the bubble layer. Further, for example, the smaller the heat input amount, the thinner the bubble layer tends to be.

本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
The method of joining the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed to generate frictional heat, and the resin member 12 is softened and melted by the frictional heat. Then, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

第1ステップにおいては、図1に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。   In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are overlapped at a desired joint portion.

第2ステップにおいては、気泡層の厚みが所定の範囲内になるように、回転ツールの駆動を制御する。第2ステップにおいては、上記したように、回転ツールの加圧力、加圧時間および回転数を制御する圧力制御方式、または回転ツールの座標位置、特定位置での保持時間および回転数を制御する位置制御方式を採用する。以下、圧力制御方式を採用する第2ステップを第1実施態様として説明し、位置制御方式を採用する第2ステップを第2実施態様として説明する。   In the second step, the driving of the rotating tool is controlled so that the thickness of the bubble layer is within a predetermined range. In the second step, as described above, the pressure control method for controlling the pressurizing force, pressurizing time, and rotational speed of the rotary tool, or the coordinate position of the rotary tool, the holding time at the specific position, and the position for controlling the rotational speed. Adopt control method. Hereinafter, the second step employing the pressure control method will be described as the first embodiment, and the second step employing the position control method will be described as the second embodiment.

<第1実施態様:圧力制御方式>
本実施態様の第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。
<First Embodiment: Pressure Control Method>
In the second step of the present embodiment, at least the pushing and stirring step C <b> 2 for pushing the rotary tool 16 into the metal member 11 and entering to a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12 is performed. preferable.

本実施態様の第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。   In the second step of the present embodiment, a preheating step C1 for rotating the rotary tool 16 in a state where only the front end portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the pushing and stirring step. Although preferred, it is not necessary.

前記押込撹拌工程の後に、回転ツール16を前記押込み撹拌工程で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。   After the indentation stirring step, it is preferable to perform an agitation maintenance step C3 in which the rotation operation of the rotation tool 16 is continued at a position where the rotation tool 16 has entered in the indentation agitation step, but this step must also be performed. Not that.

以下、本実施態様におけるこれらの工程について詳しく説明する。   Hereinafter, these steps in this embodiment will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図4に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900〜1200N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図4は、図1におけるX−X断面を矢印方向で見たときの概略断面図である。
(Preheating process C1)
In the preheating step C1, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 4, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 to 1200 N). Let 4 is a schematic cross-sectional view of the XX cross section in FIG. 1 as viewed in the direction of the arrow.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域P(回転ツール16による押圧領域)の範囲及び押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing area P (the pressing area by the rotary tool 16) of the metal member 11 and the area near the pressing area P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、気泡層の厚さの観点、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの他、生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、予熱工程C1における第1の加圧力は、600N以上1300N未満が好ましい。第1の加圧時間は、0.5秒以上2.0秒未満が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下が好ましい。   The first pressurizing step and the first pressurizing time in the preheating step C1 are the viewpoint of the thickness of the bubble layer, the viewpoint of ease of pushing in the rotary tool 16 as described above, and the ease of softening and melting of the resin member 12. In addition, the value is set from the viewpoint of productivity, and the value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later, the first pressure in the preheating step C1 is preferably 600 N or more and less than 1300 N. The first pressurization time is preferably 0.5 seconds or more and less than 2.0 seconds. The rotation speed of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

本工程における入熱量は、第1の加圧力の大きさ、第1の加圧時間の長さ、および回転ツールの回転数の大きさによって決まる。   The amount of heat input in this step is determined by the magnitude of the first applied pressure, the length of the first pressurizing time, and the magnitude of the rotational speed of the rotary tool.

(押込み撹拌工程C2)
押込み撹拌工程C2では、回転ツール16と受け具17とを相互に近接させることにより、図5に示すように、回転ツール16を金属部材11に押し込む。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図5に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図5に示すように、樹脂部材12側に突出変形させることが好ましい。これにより、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120について、その溶融と該直下領域から外周領域への流動(図5の矢印方向)を促進させることができる。図5は、図1におけるX−X断面を矢印方向で見たときの概略断面図である。
(Indentation stirring step C2)
In the indentation stirring step C2, the rotary tool 16 and the receiving member 17 are brought close to each other, thereby pushing the rotary tool 16 into the metal member 11 as shown in FIG. When the pushing and stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. Thereby, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable that the lower portion 110 of the metal member 11 is protruded and deformed toward the resin member 12 as shown in FIG. Thereby, about the molten resin 120 of the resin member surface melt | dissolved in the area | region immediately under a rotating tool, the fusion | melting and the flow (arrow direction of FIG. 5) to the outer peripheral area | region can be accelerated | stimulated. FIG. 5 is a schematic cross-sectional view of the XX cross section in FIG.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N〜2000N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurization time (second pressure greater than the first pressurization (eg, 1500 N to 2000 N) and shorter than the first pressurization time ( For example, the rotation is performed at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。好ましくは、この回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。本押込み撹拌工程C2およびこの後に好ましく行われる撹拌維持工程C3により、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外周領域まで流動する(図5の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化領域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合が十分に良好な作業効率かつ十分な強度で達成することができる。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. Preferably, when the rotary tool 16 is pressed, the joining boundary surface 13 between the metal member 11 and the resin member 12 moves to the support 17 side (lower side in the illustrated example) in the lower portion 110 of the metal member 11. The right lower part 110 projects and deforms toward the resin member 12 side. By the indentation stirring step C2 and the stirring maintaining step C3 that is preferably performed thereafter, the melting of the molten resin 120 on the surface of the resin member melted in the region immediately below the rotary tool at the joining interface 13 is promoted, and the region immediately below And flows to the outer peripheral region (in the direction of the arrow in FIG. 5). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonded region) obtained by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Can be achieved with sufficiently good working efficiency and sufficient strength.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、回転ツール16の外周部が樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11, and the outer peripheral portion of the rotary tool 16 contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化および溶融が促進される。   Therefore, in this indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters a depth that does not reach the joint boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and softening and melting of the resin member 12 are promoted.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、押込み撹拌工程C2における第2の加圧力は、1300N以上2200N未満が好ましい。第2の加圧時間は、0.1秒以上0.5秒未満が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the second applied pressure in the indentation stirring step C2 is preferably 1300 N or more and less than 2200 N. The second pressurization time is preferably 0.1 seconds or more and less than 0.5 seconds. The rotation speed of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

本工程における入熱量は、第2の加圧力の大きさ、第2の加圧時間の長さ、および回転ツールの回転数の大きさによって決まる。   The amount of heat input in this step is determined by the magnitude of the second applied pressure, the length of the second pressurizing time, and the magnitude of the rotational speed of the rotary tool.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図5に示すように、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500〜800N)で、第1の加圧時間より長い第3の加圧時間(例えば、2.75〜6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。特に第3の加圧時間は、気泡層の厚さが厚くなり過ぎない程度の時間とする。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual approach between the rotary tool 16 and the receiving member 17 and, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the agitation maintaining step C3, the rotary tool 16 is moved to a third pressurization time (for example, 2 to 2) longer than the first pressurization time with a third pressurization force (for example, 500 to 800 N) smaller than the first pressurization force. .75 to 6.75 seconds) at a predetermined rotation speed (for example, 3000 rpm). In particular, the third pressurizing time is set to a time that does not cause the bubble layer to become too thick.

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置にほぼ維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、押圧領域P直下の領域の範囲を超えて、広い範囲で十分に軟化および溶融する。   In the stirring maintaining step C3, the rotating tool 16 is substantially maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range just below the pressing region P.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、気泡層の厚さの観点、上記のような樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、撹拌維持工程C3における第3の加圧力は、100N以上1200N未満が好ましい。第3の加圧時間は、2.0秒以上8.5秒未満が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下が好ましい。   The third pressing force and the third pressurizing time in the stirring maintaining step C3 are from the viewpoint of the thickness of the bubble layer, and from the viewpoint of sufficient softening / melting and productivity in a wide range of the resin member 12 as described above. The value is set and varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the melting point of the resin member 12. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the third pressure in the stirring and maintaining step C3 is preferably 100 N or more and less than 1200 N. The third pressurization time is preferably 2.0 seconds or more and less than 8.5 seconds. The rotation speed of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

本工程における入熱量は、第3の加圧力の大きさ、第3の加圧時間の長さ、および回転ツールの回転数の大きさによって決まる。
特に第3の加圧時間は上記範囲内で長いほど、気泡層の厚みは大きくなる。第3の加圧時間は上記範囲内で短いほど、気泡層の厚みは小さくなる。
The amount of heat input in this step is determined by the magnitude of the third pressing force, the length of the third pressurizing time, and the magnitude of the rotational speed of the rotary tool.
In particular, the longer the third pressurization time is within the above range, the greater the thickness of the bubble layer. The shorter the third pressurization time is within the above range, the smaller the thickness of the bubble layer.

本実施態様において撹拌維持工程C3を行った後は、通常、放置冷却することにより、固化を行う。即ち、外部から強制的に冷却を行わずに固化させる。   In the present embodiment, after the stirring and maintaining step C3 is performed, the solidification is usually performed by allowing to cool by standing. That is, it is solidified without forcibly cooling from the outside.

<第2実施態様:位置制御方式>
本実施態様の第2ステップにおいても、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。
<Second Embodiment: Position Control Method>
Also in the second step of the present embodiment, at least the pushing and stirring step C <b> 2 for pushing the rotary tool 16 into the metal member 11 and entering it to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12 is performed. preferable.

本実施態様の第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行ってもよいが、位置制御方式を採用するため、行わなくてもよい。   In the second step of the present embodiment, a preheating step C1 for rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the indentation stirring step. However, since the position control method is adopted, it may not be performed.

前記押込撹拌工程の後に、回転ツール16を前記押込み撹拌工程で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。   After the indentation stirring step, it is preferable to perform an agitation maintenance step C3 in which the rotation operation of the rotation tool 16 is continued at a position where the rotation tool 16 has entered in the indentation agitation step, but this step must also be performed. Not that.

以下、本実施態様におけるこれらの工程について詳しく説明する。   Hereinafter, these steps in this embodiment will be described in detail.

(押込み撹拌工程C2)
本実施態様の押込み撹拌工程C2は、位置制御方式を採用すること以外、第1実施態様の押込み撹拌工程C2と同様である。詳しくは、本実施態様の押込み撹拌工程C2では、図5に示すように、回転ツール16を、所定回転数(例えば、3000rpm)で回転させつつ、所定の深さ(例えば、前記金属部材の厚みをT(mm)としたとき0.5×T〜0.9×Tまで進入させる。
(Indentation stirring step C2)
The pushing and stirring step C2 of this embodiment is the same as the pushing and stirring step C2 of the first embodiment, except that a position control method is adopted. Specifically, in the indentation stirring step C2 of the present embodiment, as shown in FIG. 5, the rotating tool 16 is rotated at a predetermined number of rotations (for example, 3000 rpm) and a predetermined depth (for example, the thickness of the metal member). Is set to 0.5 × T to 0.9 × T, where T is (mm).

押込み撹拌工程C2では、回転ツール16を所定の深さまで進入させることにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。これにより、第1実施態様の押込み撹拌工程C2においてと同様に、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外周領域まで流動する(図5の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化領域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合が十分に良好な作業効率かつ十分な強度で達成することができる。   In the indentation agitation step C2, the joint interface 13 between the metal member 11 and the resin member 12 is placed on the support 17 side (see FIG. In the example, it moves to the lower side), and the immediate lower part 110 projects and deforms toward the resin member 12 side. As a result, as in the indentation stirring step C2 of the first embodiment, the melting of the molten resin 120 on the surface of the resin member melted in the region immediately below the rotary tool at the joining interface 13 is promoted, and the region immediately below And flows to the outer peripheral region (in the direction of the arrow in FIG. 5). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonded region) obtained by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Can be achieved with sufficiently good working efficiency and sufficient strength.

回転ツール16が所定の深さまで進入した時点で、回転ツール16の押込み移動を停止する。   When the rotary tool 16 enters a predetermined depth, the pushing movement of the rotary tool 16 is stopped.

押込み撹拌工程C2の回転ツールの進入量(進入深さ)は、回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、押込み撹拌工程C2における回転ツールの進入量は、金属部材の厚みをT(mm)としたとき、0.4×T〜0.9×T(mm)、好ましくは0.5×T〜0.9×T(mm)である。進入量は、金属部材の表面からその厚み方向での進入深さである。回転ツールの回転数は2000rpm以上4000rpm以下が好ましい。   The amount of entry (intrusion depth) of the rotary tool in the indentation stirring step C2 is set from the viewpoint of bringing the rotary tool 16 as close as possible to the resin member 12, and the values thereof are, for example, the number of rotations of the rotary tool 16 and the thickness of the metal member 11. It varies depending on the type of material and the melting point of the resin member 12. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later, the amount of intrusion of the rotary tool in the indentation stirring step C2 is defined as T (mm). In this case, 0.4 × T to 0.9 × T (mm), preferably 0.5 × T to 0.9 × T (mm). The amount of entry is the depth of entry in the thickness direction from the surface of the metal member. The rotation speed of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

本工程における入熱量は、回転ツールの進入時間および回転ツールの回転数によって決まり、当該回転ツールの進入時間は回転ツールの進入量及び進入速度で決まる。   The amount of heat input in this step is determined by the entry time of the rotating tool and the number of rotations of the rotating tool, and the entry time of the rotating tool is determined by the amount of entry and the entry speed of the rotating tool.

本工程において回転ツールの進入速度は特に限定されず、例えば、0.05〜1mm/秒、特に0.1〜0.5mm/秒が好ましい。   In this step, the approach speed of the rotary tool is not particularly limited, and is preferably 0.05 to 1 mm / second, particularly 0.1 to 0.5 mm / second.

(撹拌維持工程C3)
本実施態様の撹拌維持工程C3は、位置制御方式を採用するため金属部材に対して圧力を付与しないこと以外、第1実施態様の撹拌維持工程C3と同様である。回転ツール16により金属部材11に対して圧力を付与することなく、図5に示すように、回転ツール16を前記押込み撹拌工程C2で進入させた位置で回転ツール16の回転動作を継続させる。これにより、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、押圧領域P直下の領域の範囲を超えて、広い範囲で十分に軟化および溶融する。
(Stirring maintenance step C3)
The agitation maintaining step C3 of this embodiment is the same as the agitation maintaining step C3 of the first embodiment except that no pressure is applied to the metal member in order to adopt the position control method. Without applying pressure to the metal member 11 by the rotating tool 16, as shown in FIG. 5, the rotating operation of the rotating tool 16 is continued at the position where the rotating tool 16 is entered in the pushing and stirring step C2. Thereby, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range just below the pressing region P.

撹拌維持工程C3では、回転ツール16を上記所定の位置で所定の時間(例えば、3〜8秒)だけ保持しつつ、所定回転数(例えば、3000rpm)で回転させる。特に保持時間は、気泡層の厚さが厚くなり過ぎない程度の時間とする。   In the agitation maintaining step C3, the rotary tool 16 is rotated at a predetermined rotational speed (for example, 3000 rpm) while holding the rotary tool 16 at the predetermined position for a predetermined time (for example, 3 to 8 seconds). In particular, the holding time is set to such a time that the thickness of the bubble layer does not become too thick.

撹拌維持工程C3の保持時間は、気泡層の厚さの観点、上記のような樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および後述の融点の樹脂部材12を使用する場合、撹拌維持工程C3における保持時間は、0秒以上8.5秒未満が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下が好ましい。保持時間が0秒であることは、本実施態様において撹拌維持工程C3は行わなくてもよいことを意味する。上記押込み撹拌工程C2における回転ツールの進入時間だけでも、入熱量を調整できるためである。特に、上記押込み撹拌工程C2において回転ツールの進入量、進入速度および回転数が上記範囲内であるとき、本撹拌維持工程C3における保持時間は通常、2秒以上8.5秒未満である。   The holding time of the stirring and maintaining step C3 is set from the viewpoint of the thickness of the bubble layer and from the viewpoint of sufficient softening / melting and productivity in a wide range of the resin member 12 as described above. 16 changes depending on the number of rotations, the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point described later are used, the holding time in the stirring and maintaining step C3 is preferably 0 second or more and less than 8.5 seconds. The rotation speed of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less. The holding time of 0 seconds means that the stirring and maintaining step C3 may not be performed in this embodiment. This is because the amount of heat input can be adjusted only by the entry time of the rotary tool in the indentation stirring step C2. In particular, when the amount of approach, the approach speed, and the rotational speed of the rotary tool are within the above ranges in the indentation stirring step C2, the holding time in the stirring maintaining step C3 is usually 2 seconds or more and less than 8.5 seconds.

本工程における入熱量は、保持時間の長さ、および回転ツールの回転数の大きさによって決まる。
特に、上記保持時間は上記範囲内で長いほど、気泡層の厚みは大きくなる。保持時間は上記範囲内で短いほど、気泡層の厚みは小さくなる。
The amount of heat input in this step is determined by the length of the holding time and the rotation speed of the rotating tool.
In particular, the longer the holding time is within the above range, the greater the thickness of the bubble layer. The shorter the holding time is within the above range, the smaller the thickness of the bubble layer.

本実施態様においても撹拌維持工程C3を行った後は、通常、放置冷却することにより、固化を達成する。即ち、外部から強制的に冷却を行わずに固化させる。   Also in this embodiment, after performing the stirring and maintaining step C3, solidification is usually achieved by cooling by standing. That is, it is solidified without forcibly cooling from the outside.

(3)金属部材
本発明において使用される金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、少なくとも樹脂部材12と重ね合わせる部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11における樹脂部材12と重ね合わせる部分は両面ともに通常、平面から構成されている。
(3) Metal Member The metal member 11 used in the present invention has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this, and at least overlaps with the resin member 12. As long as the portion has a substantially flat plate shape, it may have any shape. The part of the metal member 11 that overlaps with the resin member 12 is generally composed of a flat surface on both sides.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図4参照)は通常、0.5〜4mmであるがこれに限定されるものではない。   The thickness T (thickness before the bonding treatment; see FIG. 4) of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

金属部材11を構成する好ましい金属はアルミニウムおよびアルミニウム合金である。   Preferred metals constituting the metal member 11 are aluminum and an aluminum alloy.

(4)樹脂部材
本発明において使用される樹脂部材12は熱可塑性ポリマーおよび強化繊維を含むものである。
(4) Resin member The resin member 12 used in the present invention contains a thermoplastic polymer and reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin resin, particularly polypropylene, which is inexpensive and excellent in mechanical properties is preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12における金属部材11直下の部分は両面ともに通常、平面から構成されている。   The resin member 12 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this. When the resin member 12 is overlapped with the metal member 11 for bonding, the resin member 12 is directly below the metal member 11. As long as the portion has a substantially flat plate shape, it may have any shape. The part immediately below the metal member 11 in the resin member 12 is generally composed of a flat surface on both sides.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図4参照)は通常、2〜10mm、特に2〜5mmであるがこれに限定されるものではない。   The thickness t (thickness before joining treatment; see FIG. 4) of the portion immediately below the metal member 11 in the resin member 12 is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に均一に含有および分散される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、特に不連続繊維を意味するものとする。不連続繊維は、スプリングバックが起こりやすいものと考えられているところ、本発明においてはそのような不連続繊維が含有される場合であっても、スプリングバックを十分に防止できるためである。   In the field of polymer-containing composite materials, the reinforcing fibers contained in the resin member 12 are fibers that are uniformly contained and dispersed in the polymer in order to improve strength, and are generally large in continuous fibers and discontinuous fibers. Although different, the reinforcing fiber in the present invention shall mean a discontinuous fiber. This is because discontinuous fibers are considered to be prone to spring back, and in the present invention, even when such discontinuous fibers are contained, spring back can be sufficiently prevented.

強化繊維は樹脂部材中、ランダム配向形態で含有され、平均繊維長Lが通常、50mm以下、特に1mm超50mm以下、好ましくは1mm超30mm以下である。強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。   The reinforcing fibers are contained in the resin member in a randomly oriented form, and the average fiber length L is usually 50 mm or less, particularly more than 1 mm and 50 mm or less, preferably more than 1 mm and 30 mm or less. The average fiber diameter of the reinforcing fibers is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10〜50重量%であり、好ましくは20〜50重量%、より好ましくは30〜50重量%である。   The content of the reinforcing fiber is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, more preferably 30 to 50% by weight, based on the total amount of the resin member.

強化繊維の含有量は、樹脂部材の製造時における各材料の使用量に基づく値を使用することができるし、以下の方法により測定される値を使用することもできる。まず、樹脂部材またはその一部(試料)を、電気炉等により、熱可塑性ポリマー(樹脂成分)の分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを取り出す。このとき、樹脂部材またはその一部(試料)を、熱可塑性ポリマーが溶解し得る溶剤に溶解させ、強化繊維を濾別することによっても強化繊維のみを取り出すことができる。加熱前後または溶解前後の重量測定により、強化繊維の含有量を試料の重量に対する割合として算出することができる。または、比重を測定することによっても、含有量の測定ができる。   As the content of the reinforcing fiber, a value based on the amount of each material used at the time of manufacturing the resin member can be used, and a value measured by the following method can also be used. First, a resin member or a part (sample) thereof is heated by an electric furnace or the like at a temperature not lower than the decomposition temperature of the thermoplastic polymer (resin component) and not higher than the decomposition temperature of the reinforcing fiber, thereby removing the thermoplastic polymer and reinforcing fiber. Take out only. At this time, only the reinforcing fiber can be taken out by dissolving the resin member or a part (sample) thereof in a solvent in which the thermoplastic polymer can be dissolved and filtering the reinforcing fiber. By measuring the weight before and after heating or before and after dissolution, the content of reinforcing fibers can be calculated as a ratio to the weight of the sample. Alternatively, the content can be measured by measuring the specific gravity.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。   The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, colorants, foaming agents, and the like.

樹脂部材12は、熱可塑性ポリマーおよび強化繊維ならびに所望の添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。   The resin member 12 can be manufactured by subjecting a mixture containing a thermoplastic polymer and reinforcing fibers and a desired additive to a molding method such as an injection molding method or a press molding method.

樹脂部材12の融点Tmは樹脂部材12の種類によって異なり、通常、130〜350℃である。
樹脂部材12の融点Tmは、JIS7121により測定された値を用いている。
The melting point Tm of the resin member 12 varies depending on the type of the resin member 12, and is usually 130 to 350 ° C.
As the melting point Tm of the resin member 12, a value measured according to JIS 7121 is used.

(5)接合体
本発明の接合方法により接合された金属部材11と樹脂部材12との接合体は、樹脂部材12の溶融固化領域61において接合が達成されている。
(5) Bonded Body The bonded body of the metal member 11 and the resin member 12 bonded by the bonding method of the present invention is achieved in the melt-solidified region 61 of the resin member 12.

溶融固化領域61(斜線領域)は、図6に示すように、接合時において、樹脂部材12の溶融および固化により形成された領域であって、樹脂部材12の金属部材側表面121における溶融が生じていない領域122に対し、その外周で区別可能な段差が存在する領域である。溶融固化領域61は通常、図6に示すように、樹脂部材12の金属部材側表面121における回転ツール直下領域60およびその外周領域において形成されている。図6は、本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材12の金属部材側表面121を観察したときの樹脂部材12の表面状態を示す概略模式図である。   As shown in FIG. 6, the melted and solidified region 61 (hatched region) is a region formed by melting and solidifying the resin member 12 at the time of joining, and melting on the metal member side surface 121 of the resin member 12 occurs. This is a region where there is a step that can be distinguished on the outer periphery of the region 122 that is not. As shown in FIG. 6, the melt-solidified region 61 is usually formed in the region 60 directly below the rotary tool on the metal member side surface 121 of the resin member 12 and the outer peripheral region thereof. FIG. 6 is a schematic diagram showing the surface state of the resin member 12 when the metal member is forcibly separated from the joined body obtained by the joining method of the present invention and the metal member side surface 121 of the resin member 12 is observed. It is.

本発明の接合体は、溶融固化領域61の直径をR(mm)、回転ツールの直径をD1(mm)としたとき、R/D1は通常、1〜5であり、好ましくは2〜5であり、より好ましくは3〜5である。   In the joined body of the present invention, when the diameter of the melt-solidified region 61 is R (mm) and the diameter of the rotary tool is D1 (mm), R / D1 is usually 1 to 5, preferably 2 to 5. Yes, more preferably 3-5.

本発明においては、溶融固化領域61の金属部材側表面において気泡層形成領域62(格子領域)が1mm以下、即ち0(0を含まず)〜1(1を含む)mm、の厚みで形成される。本発明において、気泡層の形成を防止するための特別な樹脂部材および/または特別な冷却を用いないとき、気泡層が形成されない条件まで入熱を小さくした場合、溶融固化領域が小さくなりすぎ、十分な接合強度が得られない場合がある。厚み1mm超の気泡層が形成されても、十分な接合強度が得られない。気泡層62の厚みは、接合強度のさらなる向上の観点から、0.9mm以下が好ましく、より好ましくは0.5mm以下である。なお、本明細書中、特記しない限り、数値範囲はその下限値または上限値としての値を含むものとする。   In the present invention, the bubble layer forming region 62 (lattice region) is formed with a thickness of 1 mm or less, that is, 0 (not including 0) to 1 (including 1) mm on the surface of the melt-solidified region 61 on the metal member side. The In the present invention, when a special resin member and / or special cooling for preventing the formation of the bubble layer is not used, when the heat input is reduced to a condition where the bubble layer is not formed, the melt-solidified region becomes too small, In some cases, sufficient bonding strength cannot be obtained. Even if a bubble layer having a thickness of more than 1 mm is formed, sufficient bonding strength cannot be obtained. The thickness of the bubble layer 62 is preferably 0.9 mm or less, more preferably 0.5 mm or less, from the viewpoint of further improving the bonding strength. In the present specification, unless otherwise specified, the numerical range includes a value as a lower limit value or an upper limit value thereof.

気泡層形成領域62は、気泡の存在により、図6において目視により容易にその存在を確認できる。   The presence of the bubble layer formation region 62 can be easily confirmed by visual inspection in FIG. 6 due to the presence of bubbles.

気泡層形成領域62の厚みは以下の方法により測定することができる。
図7のように金属部材11と樹脂部材12が接合されたままの状態で、測定したい部位(すなわち、回転ツールの直下部分の近傍)の板厚方向の断面観察により厚みの測定を行う。気泡層20は空気を取り込み発泡した状態であるため、目視によりその他の部位との差異は容易に確認できる。図7は、本発明の接合方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。
具体的には、接合体の断面画像における回転ツール直下領域およびその周囲(溶融固化領域)において、気泡層の最大厚みを求める。
The thickness of the bubble layer forming region 62 can be measured by the following method.
With the metal member 11 and the resin member 12 being joined as shown in FIG. 7, the thickness is measured by observing a cross section in the plate thickness direction of a portion to be measured (that is, in the vicinity of the portion immediately below the rotary tool). Since the bubble layer 20 is in a state where air is taken in and foamed, a difference from other parts can be easily confirmed visually. FIG. 7 is an enlarged view of a joint interface between a metal member and a resin member in a joined body obtained by the joining method of the present invention.
Specifically, the maximum thickness of the bubble layer is determined in the region immediately below the rotary tool and in the periphery (melt-solidified region) in the cross-sectional image of the joined body.

以上、本発明においては、回転ツールを金属部材の接触面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, in the present invention, the case where the metal member and the resin member are joined in a spot shape without moving the rotating tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly (line joining) while moving the rotary tool in the direction.

[樹脂部材]
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材において炭素繊維の平均繊維長は3mm、平均繊維径は7μmであった。樹脂部材の融点Tmは170℃であった。樹脂部材において炭素繊維はランダムに配向していた。
[Resin member]
A resin member 12 having dimensions of 100 mm in length, 30 mm in width, and 3 mm in thickness was produced by an injection molding method using polypropylene pellets containing 40% by weight of carbon fibers (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.). In the resin member, the average fiber length of the carbon fibers was 3 mm, and the average fiber diameter was 7 μm. The melting point Tm of the resin member was 170 ° C. In the resin member, the carbon fibers were randomly oriented.

[金属部材]
金属部材としては、6000系のアルミニウム合金製の平板状部材(縦100mm×横30mm×厚さ1.2mm)を用いた。
[Metal members]
As the metal member, a flat plate member (length 100 mm × width 30 mm × thickness 1.2 mm) made of a 6000 series aluminum alloy was used.

[回転ツール]
図2に示す回転ツール16(D1=10mm、D2=2mm、h=0.5mm、θ=0°;工具鋼製)または図3に示す回転ツール16’(D1=10mm、D2=2mm、h=0.5mm、θ=7°;工具鋼製)を用いた。
[Rotation tool]
The rotary tool 16 shown in FIG. 2 (D1 = 10 mm, D2 = 2 mm, h = 0.5 mm, θ = 0 °; made of tool steel) or the rotary tool 16 ′ shown in FIG. 3 (D1 = 10 mm, D2 = 2 mm, h = 0.5 mm, θ = 7 °; made of tool steel).

[実施例A1](圧力制御方式)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
[Example A1] (pressure control method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず、図4に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpm)。
Second step:
First, as shown in FIG. 4, the rotary tool 16 was rotated in a state where only the tip portion of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1. 00 seconds, tool rotation speed 3000 rpm).

その後、図5に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図5に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間2.75秒、ツール回転数3000rpm)。
次いで、回転ツール16を金属部材11から離間させ、放置冷却を行い、接合体を得た。
Thereafter, as shown in FIG. 5, the rotary tool 16 was pushed into the metal member 11 to a depth not reaching the joint boundary surface 13 between the metal member 11 and the resin member 12 (pushing stirring step C2: pressure 1500N. , Pressurization time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 5, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintenance step C3: pressurizing force 500 N, pressurization) Time 2.75 seconds, tool rotation speed 3000 rpm).
Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool down to obtain a joined body.

[接合強度]
図8に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎;4.0≦S;
○;3.0≦S<4.0;
×;S<3.0(実用上問題あり)。
[Joint strength]
As shown in FIG. 8, the joined body of the metal member 11 and the resin member 12 was placed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
A: 4.0 ≦ S;
○; 3.0 ≦ S <4.0;
X: S <3.0 (practical problem).

[溶融固化領域]
溶融固化領域61の直径Rを、その外周の段差に基づいて、測定した。当該直径Rは、溶融固化領域61の最大直径である。
[Melting area]
The diameter R of the melt-solidified region 61 was measured based on the step on the outer periphery. The diameter R is the maximum diameter of the melt-solidified region 61.

[気泡層]
気泡層(いわゆるスプリングバック層)の厚みを前記した方法により測定した。
[Bubble layer]
The thickness of the bubble layer (so-called springback layer) was measured by the method described above.

[実施例A2〜A4および比較例A1〜A3]
接合条件を表1に記載のように変更したこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合および接合体の評価を行った。
[Examples A2 to A4 and Comparative Examples A1 to A3]
Except that the joining conditions were changed as shown in Table 1, the resin member and the metal member were joined and the joined body was evaluated by the same method as in Example A1.

Figure 0006330760
Figure 0006330760

[実施例B1](位置制御方式)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
[Example B1] (Position control method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず、予熱工程C1を行うことなく、図5に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2:進入量0.8mm、進入速度0.2mm/秒、ツール回転数3000rpm)。
次いで、図5に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:保持時間3.00秒、ツール回転数3000rpm)。
次いで、回転ツール16を金属部材11から離間させ、放置冷却を行い、接合体を得た。
Second step:
First, without performing the preheating step C1, as shown in FIG. 5, the rotary tool 16 is pushed into the metal member 11 to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12 ( Indentation stirring step C2: ingress amount 0.8 mm, ingress speed 0.2 mm / sec, tool rotation speed 3000 rpm).
Next, as shown in FIG. 5, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintenance step C3: holding time 3.00 seconds). Tool rotation speed 3000 rpm).
Next, the rotary tool 16 was separated from the metal member 11 and allowed to cool down to obtain a joined body.

その後、実施例A1と同様の方法により、接合体の評価を行った。   Thereafter, the joined body was evaluated by the same method as in Example A1.

[実施例B2〜B6および比較例B1〜B4]
接合条件を表1に記載のように変更したこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合および接合体の評価を行った。
[Examples B2 to B6 and Comparative Examples B1 to B4]
Except that the joining conditions were changed as shown in Table 1, the resin member and the metal member were joined and the joined body was evaluated by the same method as in Example A1.

Figure 0006330760
Figure 0006330760

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
20:気泡層
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
P:押圧領域(押圧予定領域)
121:樹脂部材における回転ツール直下領域の表層部
1: Friction stir welding apparatus 10: Work 11: Metal member 12: Resin member 13: Joining interface between metal member and resin member 16: Rotating tool 17: Receiving tool 20: Bubble layer 100: For measuring joint strength Jig 110: Immediately below the rotating tool of the metal member P: Pressing area (planned pressing area)
121: Surface layer portion of region directly under rotating tool in resin member

Claims (18)

金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて接合を行う熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記熱圧式接合方法が、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
押圧部材として回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法であり、
前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が0(0を含まず)〜1(1を含む)mmの厚みで形成されるように、前記回転ツールの駆動を制御して接合を行う、金属部材と樹脂部材との接合方法。
The metal member and the resin member containing the reinforcing fiber are superposed, pressure is applied to the resin member by pressing from the metal member side by the pressing member, heat is applied to soften and melt the resin member, and then solidify It is a joining method of a metal member and a resin member by a hot-pressure joining method that performs joining,
The hot-pressure bonding method is
A first step of superimposing the metal member and the resin member; and
A second tool that presses against a metal member to generate frictional heat while rotating the rotary tool as a pressing member, softens and melts the resin member with the frictional heat, and then solidifies the second member to join the metal member and the resin member. A friction stir welding method including steps,
Joining by controlling the driving of the rotary tool so that a bubble layer is formed with a thickness of 0 (not including 0) to 1 (including 1) mm on the surface of the melted and solidified region of the resin member on the metal member side A method for joining the metal member and the resin member.
前記樹脂部材における溶融固化領域の金属部材側表面に気泡層が前記厚みで形成されるように、押圧部材の駆動および熱の付与を制御する、請求項1に記載の金属部材と樹脂部材との接合方法。   The metal member and the resin member according to claim 1, wherein driving of the pressing member and application of heat are controlled so that a bubble layer is formed with the thickness on the surface of the molten and solidified region of the resin member. Joining method. 回転ツールの押圧駆動および/または回転駆動を制御する、請求項1または2に記載の金属部材と樹脂部材との接合方法。 The joining method of the metal member and resin member of Claim 1 or 2 which controls the pressing drive and / or rotational drive of a rotary tool. 前記第2ステップにおいて圧力制御方式を採用し、
回転ツールの金属部材への加圧力および加圧時間および回転数を制御する、請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合方法。
Adopting a pressure control method in the second step,
The joining method of the metal member and resin member in any one of Claims 1-3 which controls the pressurizing force and pressurization time to a metal member of a rotary tool, and rotation speed.
前記第2ステップが、
前記回転ツールの先端部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程;
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程
を含み、
前記予熱工程では回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させ、
前記撹拌維持工程では回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させる、請求項に記載の金属部材と樹脂部材との接合方法。
The second step includes
A preheating step of rotating the rotary tool in a state where only the tip of the rotary tool is in contact with the surface of the metal member;
A pushing agitation step of pushing the rotating tool into the metal member and entering the metal member and the resin member to a depth not reaching the joining boundary surface; and a position where the rotating tool is entered in the pushing agitation step. Including an agitation maintaining step for continuing the rotation operation,
In the preheating step, the rotary tool is rotated by the first pressurizing time while being pressed with the first pressurizing force,
In the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force,
The agitation in the sustain step rotates only between long third pressurization than between the first pressurization while pressing the rotating tool in the first pressure is less than the third pressure, according to claim 4 A method of joining a metal member and a resin member.
前記予熱工程において、第1の加圧力を600N以上1300N未満の範囲で調整し、第1の加圧時間を0.5秒以上2.0秒未満の範囲で調整し、
前記押込み撹拌工程において、第2の加圧力を1300N以上2200N未満の範囲で調整し、第2の加圧時間を0.1秒以上0.5秒未満の範囲で調整し、
前記撹拌維持工程において、第3の加圧力を100N以上1200N未満の範囲で調整し、第3の加圧時間を2.0秒以上8.5秒未満の範囲で調整する、請求項に記載の金属部材と樹脂部材との接合方法。
In the preheating step, the first pressurizing force is adjusted in a range of 600 N or more and less than 1300 N, and the first pressurizing time is adjusted in a range of 0.5 second or more and less than 2.0 seconds,
In the indentation stirring step, the second pressure is adjusted in the range of 1300 N or more and less than 2200 N, the second pressurizing time is adjusted in the range of 0.1 second or more and less than 0.5 second,
In the stirring step of maintaining the third pressure adjusted in a range of less than or more 100 N 1200 N, is adjusted in the third range pressing time of less than 2.0 seconds to 8.5 seconds, according to claim 5 Joining method of metal member and resin member.
前記予熱工程、前記押込み撹拌工程および前記撹拌維持工程において、それぞれ独立して、回転ツールの回転数を2000rpm以上4000rpm以下の範囲で調整する、請求項に記載の金属部材と樹脂部材との接合方法。 The joining of the metal member and the resin member according to claim 6 , wherein in the preheating step, the indentation stirring step, and the stirring maintaining step, the number of rotations of the rotary tool is independently adjusted in a range of 2000 rpm to 4000 rpm. Method. 前記第2ステップにおいて位置制御方式を採用し、
回転ツールの座標位置、特定位置での保持時間および回転数を制御する、請求項1〜7のいずれかに記載の金属部材と樹脂部材との接合方法。
Adopting a position control method in the second step,
Coordinate position of the rotary tool, to control the retention time and the rotational speed at a specific location, method of joining the metal member and the resin member according to any one of claims 1 to 7.
前記第2ステップが、
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を含み、
前記押込み撹拌工程では回転ツールを、前記金属部材の厚みをTとしたとき、0.4×T〜0.9×Tの進入量まで、金属部材に進入させる、請求項に記載の金属部材と樹脂部材との接合方法。
The second step includes
Including a pushing agitation step of pushing the rotating tool into the metal member to enter a depth that does not reach the joining interface between the metal member and the resin member;
9. The metal member according to claim 8 , wherein in the indentation stirring step, the rotating tool is caused to enter the metal member up to an amount of entry of 0.4 × T to 0.9 × T, where T is the thickness of the metal member. And joining method of resin member.
前記第2ステップがさらに、
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程;
を含み、
前記撹拌維持工程では回転ツールを、前記押込み撹拌工程で進入させた位置で2.0秒以上8.5秒未満だけ保持し、
前記押込み撹拌工程では回転ツールを0.05〜1mm/秒の進入速度で進入させる、請求項に記載の金属部材と樹脂部材との接合方法。
The second step further includes
A stirring maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool is entered in the indentation stirring step;
Including
In the stirring maintaining step, the rotating tool is held at a position where the rotating tool is entered in the indenting stirring step for not less than 2.0 seconds and less than 8.5 seconds,
The joining method of the metal member and resin member of Claim 9 which makes a rotary tool approach at the approach speed of 0.05-1 mm / sec in the said pushing stirring process.
前記押込み撹拌工程および前記撹拌維持工程において、それぞれ独立して、回転ツールの回転数を2000rpm以上4000rpm以下の範囲で調整する、請求項または10に記載の金属部材と樹脂部材との接合方法。 The joining method of the metal member and resin member of Claim 9 or 10 which adjusts the rotation speed of a rotary tool in the range of 2000 rpm or more and 4000 rpm or less each independently in the said pushing stirring process and the said stirring maintenance process. 前記金属部材の厚みTが0.5〜4mmである、請求項1〜11のいずれかに記載の金属部材と樹脂部材との接合方法。 The thickness T of the metal member is 0.5 to 4 mm, method of joining the metal member and the resin member according to any one of claims 1 to 11. 前記金属部材がアルミニウムまたはアルミニウム合金からなり、
前記樹脂部材が130〜350℃の融点Tmを有する、請求項1〜12のいずれかに記載の金属部材と樹脂部材との接合方法。
The metal member is made of aluminum or an aluminum alloy,
The resin member has a melting point Tm of the one hundred and thirty to three hundred and fifty ° C., method of joining the metal member and the resin member according to any one of claims 1 to 12.
前記回転ツールが、金属部材と接触する先端部において、該回転ツールの中心軸線上に突設されたピン部および該ピン部を支持するショルダ部を有し、前記ショルダ部がすり鉢状に窪んだ傾斜面を有する、請求項13のいずれかに記載の金属部材と樹脂部材との接合方法。 The rotating tool has a pin portion projecting on a central axis of the rotating tool and a shoulder portion supporting the pin portion at a tip portion in contact with the metal member, and the shoulder portion is recessed in a mortar shape. It has an inclined surface, method of joining the metal member and the resin member according to any one of claims 1 to 13. 前記強化繊維の平均繊維長Lが1mm超50mm以下である、請求項1〜14のいずれかに記載の金属部材と樹脂部材との接合方法。 The average fiber length L of the reinforcing fiber is 1mm super 50mm or less, method of joining the metal member and the resin member according to any of claims 1-14. 前記樹脂部材が該樹脂部材全量に対して10〜50重量%の割合で前記強化繊維を含有する、請求項1〜15のいずれかに記載の金属部材と樹脂部材との接合方法。 The joining method of the metal member and resin member in any one of Claims 1-15 in which the said resin member contains the said reinforcement fiber in the ratio of 10 to 50 weight% with respect to this resin member whole quantity. 前記樹脂部材が、熱可塑性ポリマーおよび強化繊維を含む混合物を射出成形法またはプレス成形法に供することにより、製造されたものである、請求項1〜16のいずれかに記載の金属部材と樹脂部材との接合方法。 The metal member and resin member according to any one of claims 1 to 16 , wherein the resin member is produced by subjecting a mixture containing a thermoplastic polymer and reinforcing fibers to an injection molding method or a press molding method. Joining method. 前記固化を放置冷却により行う、請求項1〜17のいずれかに記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to any one of claims 1 to 17 , wherein the solidification is performed by standing cooling.
JP2015166117A 2015-08-25 2015-08-25 Method of joining metal member and resin member Active JP6330760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166117A JP6330760B2 (en) 2015-08-25 2015-08-25 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015166117A JP6330760B2 (en) 2015-08-25 2015-08-25 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2017042972A JP2017042972A (en) 2017-03-02
JP6330760B2 true JP6330760B2 (en) 2018-05-30

Family

ID=58209407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166117A Active JP6330760B2 (en) 2015-08-25 2015-08-25 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6330760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589171B2 (en) * 2015-11-26 2019-10-16 株式会社ヒロテック Metal resin bonding method and metal resin bonded body
JP2019171620A (en) * 2018-03-27 2019-10-10 マツダ株式会社 Method of joining thermoset resin member, thermoset resin member used in the same, and joined body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626687B2 (en) * 2008-08-19 2011-02-09 トヨタ自動車株式会社 Bonding method between resin and metal
JP6040352B2 (en) * 2011-03-29 2016-12-07 学校法人近畿大学 Friction stir processing apparatus and friction stir processing method
JP6102806B2 (en) * 2013-03-22 2017-03-29 マツダ株式会社 Dissimilar member joining method
JP6102805B2 (en) * 2013-03-22 2017-03-29 マツダ株式会社 Dissimilar member joining method
JP6098526B2 (en) * 2014-01-14 2017-03-22 マツダ株式会社 Method of joining metal member and resin member

Also Published As

Publication number Publication date
JP2017042972A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6102805B2 (en) Dissimilar member joining method
JP6098605B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098606B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6314935B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6098565B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6098607B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6137104B2 (en) Method of joining metal member and resin member
JP7156086B2 (en) METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150