JP7156086B2 - METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER - Google Patents

METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER Download PDF

Info

Publication number
JP7156086B2
JP7156086B2 JP2019036222A JP2019036222A JP7156086B2 JP 7156086 B2 JP7156086 B2 JP 7156086B2 JP 2019036222 A JP2019036222 A JP 2019036222A JP 2019036222 A JP2019036222 A JP 2019036222A JP 7156086 B2 JP7156086 B2 JP 7156086B2
Authority
JP
Japan
Prior art keywords
metal member
resin member
pressure
resin
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036222A
Other languages
Japanese (ja)
Other versions
JP2020138455A (en
Inventor
耕二郎 田中
勝也 西口
泰博 森田
幸弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019036222A priority Critical patent/JP7156086B2/en
Publication of JP2020138455A publication Critical patent/JP2020138455A/en
Application granted granted Critical
Publication of JP7156086B2 publication Critical patent/JP7156086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法および接合装置に関する。 The present invention relates to a method and apparatus for joining metal members and resin members.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、金属部材と樹脂部材とを重ね合わせ、回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 Conventionally, there has been a demand for weight reduction in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has led to the use of thinner steel sheets, the use of aluminum alloy materials as substitutes for steel materials, and the use of resin materials. In these fields, the development of technology for joining metal members and resin members is important not only for reducing the weight of automobile bodies, but also for increasing the strength and rigidity of joining members and improving productivity. be. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. In the friction stir welding method, a metal member and a resin member are superimposed, and while a rotating tool is rotated, the metal member is pressed against the metal member to generate frictional heat. It is a method of joining a metal member and a resin member by pressing.

これまで、金属部材と樹脂部材との接合方法として、摩擦撹拌接合方法のほか、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等のような、加圧しながら加熱を行う熱圧式接合方法が知られている。 Until now, as a method of joining a metal member and a resin member, in addition to the friction stir welding method, a resistance heating joining method (electrical heating joining method), an induction heating joining method, an ultrasonic heating joining method, etc. A thermocompression bonding method that involves heating is known.

一方、Zn-Fe合金メッキ鋼板とアルミニウム合金板との間に接着剤層を介在させて重ね合わせ、回転ツールの回転および押圧により、接着剤層を粘度低下させつつ接合部の外側(例えば外周側)に押し出す、接合方法が知られている(特許文献1)。 On the other hand, the Zn-Fe alloy plated steel plate and the aluminum alloy plate are superimposed with an adhesive layer interposed therebetween, and the outer side of the joint (for example, the outer peripheral side) is reduced in viscosity by rotating and pressing the rotating tool. ) is known (Patent Document 1).

特開2009-113077号公報JP 2009-113077 A

本発明の発明者等は、従来の熱圧式接合方法による金属部材と樹脂部材との接合に際し、両者間に接着剤等のような第3成分が介在すると、介在しない場合と比較して接合強度の低下が生じる課題があることを見出した。 The inventors of the present invention have found that when a metal member and a resin member are joined by a conventional thermocompression joining method, if a third component such as an adhesive is interposed between the two, the joint strength is higher than that in the case where the third component is not interposed. It has been found that there is a problem that a decrease in

例えば、摩擦撹拌接合方法においては、図9Aに示すように、金属部材211と樹脂部材212とを、これらの間に接着層203を介在させて重ね合わせ、回転ツール216を金属部材211に押し込む。次いで、図9Bに示すように、回転ツール216をさらに押し込み、その回転動作を継続する。その結果、接着剤が介在しない場合と比較して、接合強度が大きく低下した。金属部材211と樹脂部材212との間に接着層203由来の接着剤が残存し、両者の接合を阻害するため、接合強度が大きく低下したものと考えられる。 For example, in the friction stir welding method, as shown in FIG. 9A, a metal member 211 and a resin member 212 are superimposed with an adhesive layer 203 interposed therebetween, and a rotating tool 216 is pushed into the metal member 211 . Then, as shown in FIG. 9B, the rotary tool 216 is further pushed in to continue its rotary motion. As a result, the joint strength was greatly reduced compared to the case where the adhesive was not interposed. It is considered that the adhesive from the adhesive layer 203 remains between the metal member 211 and the resin member 212 and interferes with the bonding between the two, resulting in a large decrease in bonding strength.

摩擦撹拌接合方法以外の他の熱圧式接合方法においても、金属部材と樹脂部材とを重ね合わせると共に、両者間に接着剤を介在させると、接着剤が介在しない場合と比較して、接合強度が大きく低下した。 In other thermo-compression joining methods other than the friction stir joining method, if a metal member and a resin member are overlapped and an adhesive is interposed between the two, the joint strength is increased compared to the case where no adhesive is interposed. dropped significantly.

そこで、従来の熱圧式接合方法により金属部材と樹脂部材とを、これらの間に接着剤を介在させて接合を行うに際し、特許文献1のZn-Fe合金メッキ鋼板とアルミニウム合金板との接合方法のように、接着剤層を接合部の外側に押し出す技術を適用しても、やはり、接着剤が介在しない場合と比較して、接合強度が大きく低下した。 Therefore, when joining a metal member and a resin member with an adhesive interposed between them by a conventional hot-pressure joining method, the method of joining a Zn-Fe alloy plated steel plate and an aluminum alloy plate of Patent Document 1 Even if the technique of extruding the adhesive layer to the outside of the joint was applied, the joint strength was greatly reduced compared to the case where the adhesive was not interposed.

本発明は、金属部材と樹脂部材との間に接着剤が介在する場合であっても、接合強度の低下を十分に防止することができる、金属部材と樹脂部材との接合方法および接合装置を提供することを目的とする。 The present invention provides a method and apparatus for joining a metal member and a resin member, which can sufficiently prevent a decrease in joining strength even when an adhesive is interposed between the metal member and the resin member. intended to provide

本発明は、
金属部材と樹脂部材とを、両者間に接着剤を介在させた状態で、重ね合わせ、押圧部材により圧力および熱を金属部材側から付与することにより前記樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材の金属部材側表面が非溶融の状態で、前記圧力により、平面視において前記金属部材側表面の押圧部材直下領域からその外側に向けての前記接着剤の移動を促進する、金属部材と樹脂部材との接合方法に関する。
The present invention
A metal member and a resin member are superimposed with an adhesive interposed therebetween, and pressure and heat are applied from the metal member side by a pressing member to melt the resin member, thereby joining the metal member and the resin member. A method for joining a metal member and a resin member by a thermocompression joining method for joining the
The metal member, wherein the pressure promotes the movement of the adhesive from a region of the metal member-side surface directly below the pressing member toward the outside in a plan view while the metal member-side surface of the resin member is in a non-melted state. and a method for joining resin members.

本発明の接合方法によれば、あらゆる熱圧式接合方法において、金属部材と樹脂部材との間に接着剤が介在する場合であっても、接合強度の低下を十分に防止することができる。 INDUSTRIAL APPLICABILITY According to the bonding method of the present invention, even when an adhesive is interposed between a metal member and a resin member in any thermocompression bonding method, it is possible to sufficiently prevent a decrease in bonding strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a part of a friction stir welding apparatus suitable for the method of joining a metal member and a resin member according to the present invention; 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。FIG. 4 is an enlarged view of the tip of an example of a rotary tool as a pressing member used in the joining method of the present invention; 本発明の第1ステップにおける重ね合わせ工程の一例を説明するための概略断面図である。It is a schematic sectional view for demonstrating an example of the superimposition process in 1st step of this invention. 本発明の第2ステップにおける接着剤の移動促進工程の一例を説明するための概略断面図である。FIG. 10 is a schematic cross-sectional view for explaining an example of an adhesive transfer promotion step in the second step of the present invention; 本発明の押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process of this invention, and a stirring maintenance process. 本発明の押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the pushing stirring process of this invention, and a stirring maintenance process. 実施例における接合強度の測定方法を説明するための概略図である。It is a schematic diagram for explaining a method of measuring bonding strength in an example. 本発明の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面写真である。2 is a photograph of the surface of a resin member when the metal member is forcibly separated from the joined body obtained by the joining method of the present invention, and the surface of the resin member on the metal member side is observed. 従来技術の接合方法で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面写真である。10 is a photograph of the surface of the resin member when the metal member is forcibly separated from the joined body obtained by the conventional joining method, and the surface of the resin member on the metal member side is observed. 従来技術の第1ステップにおける重ね合わせ工程の一例を説明するための概略断面図である。It is a schematic sectional view for demonstrating an example of the superimposition process in the 1st step of a prior art. 従来技術の押込み撹拌工程および撹拌維持工程の一例を説明するための概略断面図である。FIG. 3 is a schematic cross-sectional view for explaining an example of a conventional pushing-stirring process and a stirring-maintaining process.

本発明の接合方法は、金属部材と樹脂部材とを、これらの間に接着剤を介在させて重ね合わせ、押圧部材による金属部材側からの押圧により樹脂部材に圧力を付与するとともに、熱を付与して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。熱および圧力は好ましくは局所的に付与される。本発明の熱圧式接合方法は、押圧部材により圧力を付与しつつ、押圧部材または別の手段により熱を付与する方法である。熱圧式接合方法は、圧力および熱を付与して、金属部材と樹脂部材との接合を行うことができる方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法、レーザー加熱接合方法、抵抗加熱接合方法、誘導加熱接合方法等であってもよい。好ましくは押圧部材により圧力および熱を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。 In the joining method of the present invention, a metal member and a resin member are superimposed with an adhesive interposed therebetween, and pressure is applied to the resin member by pressing from the metal member side with a pressing member, and heat is applied. This is a thermocompression bonding method in which the resin member is softened and melted by heating, and then solidified to join the metal member and the resin member. Heat and pressure are preferably applied locally. The thermocompression bonding method of the present invention is a method of applying heat by a pressing member or another means while applying pressure by a pressing member. The thermocompression bonding method is not particularly limited as long as it is a method that can bond a metal member and a resin member by applying pressure and heat. method, laser heating bonding method, resistance heating bonding method, induction heating bonding method, or the like. A method of locally applying pressure and heat from the metal member side by a pressing member is preferred, and a friction stir welding method is more preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 As will be described in detail later, the friction stir welding method involves superimposing a metal member and a resin member and pressing the metal member while rotating a rotating tool as a pressing member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により金属部材を加圧しながら、超音波(熱付与手段)により押圧部材および金属部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 The ultrasonic heating bonding method is a method in which a metal member and a resin member are superimposed, and while the metal member is pressed by the pressing member, the pressing member and the metal member are subjected to ultrasonic vibration by ultrasonic waves (heat imparting means). In this method, the resin member is softened and melted by the heat of friction between the resin member and the metal member caused by vibration, and then solidified to join the metal member and the resin member.

レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、レーザー(熱付与手段)を金属部材に照射することにより熱を発生させ、この熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。 In the laser heating bonding method, a metal member and a resin member are superimposed, and in a state in which they are constrained by pressure with a pressing member, heat is generated by irradiating the metal member with a laser (heat imparting means). In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member. A YAG laser, a fiber laser, a semiconductor laser, or the like is used as the laser.

抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、金属部材に、直接電流(熱付与手段)を流すことにより生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 In the resistance heating bonding method, a metal member and a resin member are superimposed, and in a state in which they are constrained by pressure from a pressing member, heat generated by directly applying an electric current (heat imparting means) to the metal member is utilized. In this method, the metal member and the resin member are joined by softening and melting the resin member and then solidifying the resin member.

誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材による加圧によりこれらを拘束した状態で、電磁誘導作用により金属部材に、誘導電流(熱付与手段)を生じさせ、該電流により生じる熱を利用して樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。 The induction heating bonding method is a method in which a metal member and a resin member are superimposed on each other, and in a state in which they are constrained by pressure from a pressing member, an induced current (heat imparting means) is generated in the metal member by an electromagnetic induction action, and the In this method, heat generated by an electric current is used to soften and melt a resin member, which is then solidified to join the metal member and the resin member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、後述するような接着剤の移動促進工程を含む方法により、接合を行う限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。尚、本明細書で直接的または間接的に用いる「上下方向」は、図中における上下方向に対応した方向に相当する。また特記しない限り、これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。 Hereinafter, the joining method of the present invention employing the friction stir welding method will be described in detail with reference to the drawings. It is clear that the effect of the present invention can be obtained even if the method is used. It should be noted that the various elements shown in the drawings are only schematically shown for understanding of the present invention, and that their dimensional ratios, appearances, etc. may differ from the actual ones. The term "vertical direction" used directly or indirectly in this specification corresponds to the vertical direction in the drawings. Also, unless otherwise specified, common reference numerals in these figures indicate the same members, parts, dimensions, or areas.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1~図6を用いて具体的に説明する。
[Method of Joining Metal Member and Resin Member by Friction Stir Welding Method]
The welding method (friction stir welding method) of the present invention will be specifically described with reference to FIGS. 1 to 6. FIG.

(1)接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Welding Apparatus First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the welding method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as an apparatus for friction stir welding a metal member 11 and a resin member 12, and includes a cylindrical rotating tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。 As shown in the figure, the rotating tool 16 is applied to the work 10, which is superimposed with the metal member 11 on top and the resin member 12 on the bottom, as indicated by an arrow A1 by a driving source (not shown). While rotating about the central axis X (see FIG. 2), it moves downward as indicated by arrow A2. At this time, the rotary tool 16 applies pressure to a pressing region P (to-be-pressed region) on the surface of the metal member 11 . Frictional heat is generated by the pressing of the rotary tool 16, and this frictional heat is transferred to the resin member 12 to soften and melt the resin member 12, and then solidify the molten resin. As a result, the metal member 11 and the resin member 12 are joined together.

図2は、回転ツール16の一例の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、金属部材と接触する先端部(図2では下端部)にピン部16aおよび該ピン部を支持するショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。 FIG. 2 is an enlarged view of the tip of an example of the rotary tool 16. As shown in FIG. In FIG. 2, the right half shows the appearance of the rotating tool 16, and the left half shows a cross section. As shown in FIG. 2, the cylindrical rotary tool 16 has a pin portion 16a at the tip portion (lower end portion in FIG. 2) that contacts the metal member and a shoulder portion 16b that supports the pin portion. The shoulder portion 16b is the tip portion of the rotary tool 16 that includes the circular tip surface of the rotary tool 16 . The pin portion 16a is a columnar portion having a smaller diameter than the shoulder portion 16b and protruding outward (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the center axis X of the rotary tool 16. be. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材および各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.3~0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.3~0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。 The material and dimensions of each part of the rotary tool 16 are mainly set according to the type of metal of the metal member 11 to be pressed by the rotary tool 16 . For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.3-0.5 mm. Further, for example, when the metal member 11 is made of steel, the rotating tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body) or the like, the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a is 10 mm. is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.3 to 0.5 mm. However, these are only examples, and needless to say, the present invention is not limited to these.

回転ツール16は、ピン部16aを必ずしも有さなければならないというわけではない。本発明においては、接着剤の移動のさらなる促進およびこれによる溶融固化領域60および61(特に回転ツールの直下領域の溶融固化領域60)内に存在する接着剤のさらなる低減、ならびに接合強度の低下のより十分な防止の観点から、回転ツールは、ピン部16aを有さないことが好ましい。ピン部16aを有さない回転ツール(「フラットツール」ともいう)は、例えば、D2=0mmおよびh=0mmの寸法を有すること以外、図2の回転ツール16と同様の回転ツールである。 The rotary tool 16 does not necessarily have to have the pin portion 16a. In the present invention, further promotion of adhesive migration and thereby further reduction of the adhesive present in the melted and solidified regions 60 and 61 (especially the melted and solidified region 60 in the region immediately below the rotating tool), and reduction in bonding strength From the viewpoint of more sufficient prevention, it is preferable that the rotating tool does not have the pin portion 16a. A rotary tool without a pin portion 16a (also called a "flat tool") is, for example, a rotary tool similar to the rotary tool 16 of FIG. 2, except that it has dimensions D2=0 mm and h=0 mm.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。 Below the rotating tool 16 , a cylindrical receiver 17 having the same diameter as the rotating tool 16 or a larger diameter than the rotating tool 16 is arranged coaxially with the rotating tool 16 . The receiver 17 is moved upward as indicated by an arrow A3 with respect to the workpiece 10 by a drive source (not shown). The upper end surface of the receiver 17 contacts the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotary tool 16 starts pressing the workpiece 10 at the latest. The receiver 17 holds the work 10 between itself and the rotating tool 16, and supports the work 10 from below against the pressing force during the pressing period of the rotating tool 16, that is, during friction stir welding. Note that it is not always necessary to move the receiving tool 17 in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can be adopted.

摩擦撹拌接合装置1は、樹脂部材の金属部材側表面が非溶融の状態で、圧力により、平面視において金属部材側表面の押圧部材直下領域からその外側(例えば外周方向)に向けての接着剤の移動を促進するように、押圧部材としての回転ツールの駆動、特に押圧駆動および/または回転駆動、好ましくは押圧駆動および回転駆動、を制御する駆動制御装置(図示せず)を含む。本明細書中、平面視とは、金属部材11と樹脂部材12との重ね合わせ方向に基づくそれらの厚み方向に沿って金属部材11および樹脂部材12を上側または下側からみたときの状態(上面図または下面図)のことである。 In the friction stir welding apparatus 1, when the metal member side surface of the resin member is in a non-melted state, pressure is applied to the metal member side surface from the region immediately below the pressing member toward the outside (for example, the outer peripheral direction) in plan view. a drive control device (not shown) for controlling the drive, in particular the push drive and/or the rotation drive, preferably the push drive and the rotation drive, of the rotary tool as the push member, so as to facilitate the movement of the . In this specification, the term “planar view” refers to a state when the metal member 11 and the resin member 12 are viewed from above or below along the thickness direction based on the overlapping direction of the metal member 11 and the resin member 12 (upper surface). or bottom view).

駆動制御装置は、後で詳述するように、回転ツールの座標位置(例えば進入量)とその座標位置までの移動速度、および回転数を制御する位置制御方式を採用してもよいし、または回転ツールの金属部材への加圧力および加圧時間および回転数を制御する圧力制御方式を採用してもよい。 The drive control device may adopt a position control method that controls the coordinate position (for example, the amount of entry) of the rotary tool, the speed of movement to that coordinate position, and the number of revolutions, as will be described in detail later, or A pressure control system may be employed that controls the pressure applied to the metal member by the rotary tool, the time for which the pressure is applied, and the number of revolutions.

なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。 Although not shown in FIG. 1, the friction stir welding apparatus 1 has a workpiece 10 fixed in advance and a spacer, a clamp, or the like for preventing the metal member 11 from floating when the rotating tool 16 is pressed. Equipped with fixtures.

(2)接合方法
本発明の接合方法によれば、金属部材11と樹脂部材12との界面13において、樹脂部材12の溶融および固化により溶融固化領域60および61(図6参照;斜線領域60および網線領域61)が形成され、当該溶融固化領域60および61が金属部材11と樹脂部材12との接合に寄与する。溶融固化領域60(斜線領域)は、接合境界面13において回転ツールの直下領域で溶融していた樹脂部材表面の溶融樹脂120が当該直下領域内で固化した領域である。溶融固化領域61(網線領域)は、接合境界面13において回転ツールの直下領域で溶融していた樹脂部材表面の溶融樹脂120が当該直下領域を超えて、その外周側領域(すなわちその外側領域)まで流動し、固化した領域である。本発明においては、このような溶融固化領域60および61(特に回転ツールの直下領域の溶融固化領域60)内に存在する接着剤が低減されるように接合を行う。詳しくは、樹脂部材12の金属部材側表面121が非溶融の状態で、圧力により、平面視において金属部材側表面121の押圧部材直下領域120からその外側(例えば外周方向)に向けての接着剤の移動を促進するように接合を行う。これにより、樹脂部材と金属部材との接合強度の低下を十分に防止することができる。樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が溶融している状態で、圧力により、平面視において金属部材側表面121の押圧部材直下領域120からその外側(例えば外周方向)に向けての接着剤の移動を促進するように接合を行っても、接合強度の低下を十分に防止できない場合がある。溶融固化領域60および61(特に回転ツールの直下領域の溶融固化領域60)内の接着剤が十分に低減されないためである。
(2) Joining method According to the joining method of the present invention, the melted and solidified regions 60 and 61 (see FIG. 6; A meshed region 61) is formed, and the melted and solidified regions 60 and 61 contribute to bonding between the metal member 11 and the resin member 12. FIG. A melted and solidified region 60 (hatched region) is a region where the molten resin 120 on the surface of the resin member melted in the region directly below the rotating tool on the joint boundary surface 13 solidifies in the region directly below. The melted and solidified region 61 (dotted line region) is an outer peripheral region (that is, an outer region thereof) of the molten resin 120 on the surface of the resin member that has been melted in the region directly below the rotary tool at the joint boundary surface 13. ) and solidified. In the present invention, bonding is performed such that the amount of adhesive present in such melted and solidified regions 60 and 61 (especially melted and solidified region 60 in the region immediately below the rotating tool) is reduced. Specifically, when the metal member-side surface 121 of the resin member 12 is in a non-melted state, the adhesive is applied from the area 120 directly below the pressing member of the metal member-side surface 121 toward the outside (for example, the outer peripheral direction) in a plan view by pressure. Joining is performed so as to promote the movement of As a result, it is possible to sufficiently prevent a decrease in bonding strength between the resin member and the metal member. In a state where the metal member side surface 121 of the resin member 12 (particularly, the region directly under the pressing member 120) is melted, the pressure causes the metal member side surface 121 of the metal member side surface 121 to move outward from the region directly under the pressing member 120 (for example, in the outer peripheral direction) in a plan view. Even if the bonding is performed so as to promote the movement of the adhesive toward the , it may not be possible to sufficiently prevent the decrease in bonding strength. This is because the adhesive in the melt-solidified regions 60 and 61 (especially the melt-solidified region 60 in the region immediately below the rotary tool) is not sufficiently reduced.

本発明においては、圧力のみにより、上記のように接着剤の移動を促進してもよいが、より好ましい態様においては、圧力だけでなく、圧力と摩擦熱との組み合わせにより、接着剤の移動をより一層、十分に促進することができる。摩擦熱は、接着剤の移動促進のとき、接着剤が特定の温度状態にあるように生じさせる摩擦熱である。詳しくは、接着剤は、当該接着剤の移動促進のとき、樹脂部材の融点以下であって、かつ当該接着剤の軟化点以上の温度状態にあることがより好ましい。これにより、接着剤の移動をより一層、十分に促進することができる。 In the present invention, the movement of the adhesive may be promoted only by pressure as described above, but in a more preferred embodiment, the movement of the adhesive is promoted by not only pressure but also a combination of pressure and frictional heat. Further, it can be sufficiently promoted. Frictional heat is the frictional heat that causes the adhesive to be in a particular temperature state when promoting the transfer of the adhesive. Specifically, it is more preferable that the adhesive is at a temperature lower than the melting point of the resin member and higher than the softening point of the adhesive when promoting the movement of the adhesive. Thereby, the movement of the adhesive can be further sufficiently promoted.

本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は具体的には、少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を金属部材11に押圧して接着剤の移動を促進した後、回転ツール16の回転により摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
Specifically, the method for joining a metal member and a resin member by the friction stir welding method according to the present invention includes at least the following steps:
a first step of overlapping the metal member 11 and the resin member 12; A second step of bonding the metal member 11 and the resin member 12 by softening and melting the resin member 12 with heat:
includes.

第1ステップにおいては、図1および図3に示すように、金属部材11と樹脂部材12とを所望の接合部位にて両者間に接着剤3を介在させた状態で重ね合わせる。図3は、図1におけるX-X断面を矢印方向で見たときの概略断面図である。 In the first step, as shown in FIGS. 1 and 3, the metal member 11 and the resin member 12 are overlaid at a desired joining portion with the adhesive 3 interposed therebetween. FIG. 3 is a schematic cross-sectional view of the XX cross section in FIG. 1 as viewed in the direction of the arrows.

接着剤3は、図3等において、流動性を有し接着層を形成しているが、本発明は、接着剤3が塗布および乾燥により流動性を消失していることを妨げるものではない。本発明においては、溶融固化領域60および61(特に回転ツールの直下領域の溶融固化領域60)内に存在する接着剤の低減の観点から、後述する金属部材11と樹脂部材12との重ね合わせ時において、流動性を有することが好ましい。 Although the adhesive 3 has fluidity and forms an adhesive layer in FIG. 3 and the like, the present invention does not prevent the fluidity of the adhesive 3 from being lost due to application and drying. In the present invention, from the viewpoint of reducing the amount of adhesive existing in the melted and solidified regions 60 and 61 (especially the melted and solidified region 60 in the region immediately below the rotating tool), when the metal member 11 and the resin member 12 are superimposed, which will be described later, WHEREIN: It is preferable to have fluidity|liquidity.

接着剤3は、金属部材11と樹脂部材12との重ね合わせ時において、両者間に介在する限り、樹脂部材12における金属部材11との対向面に塗布されていてもよいし、または金属部材11における樹脂部材12との対向面に塗布されていてもよい。接着剤3は、金属部材11および樹脂部材12のいずれの対向面にも形成されず、これらの対向面から独立して、接着剤シートの形態で金属部材11と樹脂部材12との間に介在してもよい。 The adhesive 3 may be applied to the surface of the resin member 12 facing the metal member 11 as long as the adhesive 3 is interposed between the metal member 11 and the resin member 12 when the metal member 11 and the resin member 12 are superimposed on each other. may be applied to the surface facing the resin member 12 in . The adhesive 3 is not formed on the opposing surfaces of the metal member 11 and the resin member 12, and is interposed between the metal member 11 and the resin member 12 in the form of an adhesive sheet independently from these opposing surfaces. You may

接着剤3は、従来から金属部材11と樹脂部材12との接着に寄与し得るあらゆる接着剤を包含する。従って、接着剤3は、接着剤として使用される材料だけでなく、金属部材11と樹脂部材12との間のシーリングに使用されているシール材(またはシーラント)も包含する概念で用いるものとする。接着剤3を構成する材料として、例えば、エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂およびこれらの混合物等の熱硬化性樹脂、合成ゴム系樹脂、ポリ塩化ビニル系樹脂およびこれらの混合物等の熱可塑性樹脂が挙げられる。 The adhesive 3 conventionally includes all adhesives that can contribute to adhesion between the metal member 11 and the resin member 12 . Therefore, the concept of the adhesive 3 includes not only the material used as an adhesive but also the sealing material (or sealant) used for sealing between the metal member 11 and the resin member 12. . Examples of materials constituting the adhesive 3 include thermosetting resins such as epoxy resins, urethane resins, acrylic resins and mixtures thereof, synthetic rubber resins, polyvinyl chloride resins and mixtures thereof. A plastic resin is mentioned.

接着剤3の軟化点は通常、40~10℃、特に50~80℃である。 The softening point of the adhesive 3 is usually 40-10°C, especially 50-80°C.

接着剤(層)の厚みk(図3参照)は通常、金属部材11と樹脂部材12との重ね合わせ時において、0.1~2mmであり、溶融固化領域60および61(特に回転ツールの直下領域の溶融固化領域60)内に存在する接着剤の低減の観点から、好ましくは0.1~1.0mm、より好ましくは0.1~0.5mmである。 The thickness k (see FIG. 3) of the adhesive (layer) is usually 0.1 to 2 mm when the metal member 11 and the resin member 12 are superimposed, and the melted and solidified regions 60 and 61 (especially directly below the rotating tool) From the viewpoint of reducing the amount of adhesive present in the melt-solidified region 60) of the region, it is preferably 0.1 to 1.0 mm, more preferably 0.1 to 0.5 mm.

第2ステップにおいては、回転ツール16を金属部材11に押圧して、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融の状態で、接着剤の移動を促進した後、回転ツール16の回転により摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させるように、回転ツールの駆動を制御する。第2ステップにおいては、上記したように、回転ツールの座標位置(例えば進入量)とその座標位置までの移動速度、および回転数を制御する位置制御方式、または回転ツールの加圧力、加圧時間および回転数を制御する圧力制御方式を採用する。以下、位置制御方式を採用する第2ステップを第1実施態様として説明し、圧力制御方式を採用する第2ステップを第2実施態様として説明する。 In the second step, the rotary tool 16 is pressed against the metal member 11 to accelerate the movement of the adhesive while the metal member-side surface 121 of the resin member 12 (in particular, the region 120 immediately below the pressing member) is not melted. , the rotation of the rotary tool 16 generates frictional heat, and the frictional heat softens and melts the resin member 12, so that the drive of the rotary tool is controlled. In the second step, as described above, the coordinate position (for example, the amount of entry) of the rotating tool, the speed of movement to the coordinate position, and the position control method for controlling the number of rotations, or the pressing force and pressing time of the rotating tool and a pressure control system that controls the number of revolutions. Hereinafter, the second step employing the position control method will be described as the first embodiment, and the second step employing the pressure control method will be described as the second embodiment.

<第1実施態様:位置制御方式>
本実施態様の第2ステップにおいては、接着剤の移動を促進する移動促進工程C0、および回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。
<First Embodiment: Position Control System>
In the second step of the present embodiment, a movement promoting step C0 for promoting the movement of the adhesive, and a push stirring step for advancing the rotating tool 16 to a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12 Preferably, at least C2 is performed.

本実施態様の第2ステップにおいては、移動促進工程C0の後であって、押込み撹拌工程C2の前に、後述する圧力制御方式における予熱工程C1を行ってもよいが、位置制御方式を採用するため、行わなくてもよい。 In the second step of the present embodiment, the preheating step C1 in the pressure control method described later may be performed after the movement promoting step C0 and before the pushing stirring step C2, but the position control method is adopted. Therefore, it does not have to be done.

前記押込撹拌工程C2の後に、回転ツール16を前記押込み撹拌工程で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を必要に応じて行う。 After the pushing-in stirring step C2, a stirring maintaining step C3 is performed as necessary to continue the rotating operation of the rotating tool 16 at the position where the rotating tool 16 entered in the pushing-in stirring step.

以下、本実施態様におけるこれらの工程について詳しく説明する。 These steps in this embodiment will be described in detail below.

(移動促進工程C0)
本実施態様の移動促進工程C0においては、図4に示すように、回転ツール16を金属部材11に押圧して、接着剤3の移動を促進する。接着剤の移動とは、図4に示すように、樹脂部材12の金属部材側表面121の押圧部材直下領域120からその外側に向けて(図4の矢印方向)の接着剤3の移動のことである。接着剤の移動を、樹脂部材12の金属部材側表面121の押圧部材直下領域120からの接着剤の排出と捉えると、本工程は接着剤の排出促進工程とも称することができる。本実施態様においては、接着剤3の移動促進を、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融の状態で行う。換言すると、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融の状態にあるときに、回転ツール16を金属部材11に押圧して、接着剤3の移動を促進する。樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が溶融状態にあるときに、回転ツール16を金属部材11に押圧して、接着剤3の移動を促進すると、接着剤3の移動が十分に促進されないため、押圧部材直下領域120に存在する接着剤の量が十分に低減されない。このため、接合強度の低下を十分に防止できない。
(Movement promotion step C0)
In the movement promoting step C0 of this embodiment, as shown in FIG. 4, the rotary tool 16 is pressed against the metal member 11 to promote the movement of the adhesive 3. As shown in FIG. As shown in FIG. 4, the movement of the adhesive means the movement of the adhesive 3 from the region 120 directly below the pressing member on the metal member side surface 121 of the resin member 12 toward the outside thereof (in the direction of the arrow in FIG. 4). is. If the movement of the adhesive is regarded as the discharge of the adhesive from the region 120 directly below the pressing member of the metal member-side surface 121 of the resin member 12, this step can also be referred to as the discharge promotion step of the adhesive. In this embodiment, the movement of the adhesive 3 is promoted while the metal member-side surface 121 of the resin member 12 (particularly, the area 120 immediately below the pressing member) is not melted. In other words, when the metal member-side surface 121 of the resin member 12 (especially the region 120 immediately below the pressing member) is in a non-melted state, the rotary tool 16 is pressed against the metal member 11 to promote the movement of the adhesive 3. . When the metal member-side surface 121 of the resin member 12 (especially the area 120 immediately below the pressing member) is in a molten state, the rotating tool 16 is pressed against the metal member 11 to promote the movement of the adhesive 3. Since the movement is not sufficiently promoted, the amount of adhesive existing in the region 120 immediately below the pressing member is not sufficiently reduced. Therefore, it is not possible to sufficiently prevent a decrease in bonding strength.

接合強度のさらなる向上の観点から、接着剤3の移動促進は、樹脂部材12の金属部材側表面121(特にその押圧部材直下領域120)が非軟化の状態にあるときに行うことが好ましい。 From the viewpoint of further improving the bonding strength, it is preferable to promote the movement of the adhesive 3 when the metal member-side surface 121 of the resin member 12 (especially the region 120 immediately below the pressing member) is in a non-softened state.

樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融の状態にあるとは、溶融していない状態にあるという意味であり、非溶融の状態は、軟化している状態および軟化さえもしていない状態(すなわち、非軟化の状態)を包含する。
具体的には、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融または非軟化の状態にあるとは、それぞれ樹脂部材12における当該表面121(特に押圧部材直下領域120)の温度が樹脂部材(特に樹脂部材を構成する熱可塑性ポリマー)の融点未満の温度または軟化点未満の温度であるという意味である。
That the metal member side surface 121 of the resin member 12 (especially the area 120 immediately below the pressing member) is in a non-melted state means that it is in a non-melted state, and the non-melted state is a softened state. and a state that is not even softened (that is, a non-softened state).
Specifically, when the metal member side surface 121 of the resin member 12 (particularly, the region directly below the pressing member 120) is in a non-melting or non-softening state, the surface 121 (especially the region directly below the pressing member 120) of the resin member 12 is ) is a temperature below the melting point or softening point of the resin member (especially the thermoplastic polymer forming the resin member).

具体的には、本実施態様の移動促進工程C0において、回転ツールの回転数、進入量および進入速度は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)を非溶融状態(好ましくは非軟化状態)としつつ、接着剤の移動をさらに促進する観点から、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの回転数、進入量および進入速度は例えば、以下の通りである。本実施態様の移動促進工程C0において、回転ツールは回転させなくてもよいし(回転数0)、または回転させてもよい。好ましくは、接着剤が、樹脂部材の融点以下であって、かつ当該接着剤の軟化点以上の温度状態にあるように、回転ツールを回転させる。回転ツールを回転させる場合、回転ツールの回転数は、例えば、4000rpm以下(特に10~4000rpm)であり、接着剤の移動のさらなる促進の観点から、好ましくは10~2000rpmであり、より好ましくは10~500rpmである。本実施態様の移動促進工程C0において、達成される回転ツールの進入量は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融状態(好ましくは非軟化状態)のときに接着剤の移動が促進される限り、特に限定されず、0mmではない進入量を設定し、圧力、もしくは圧力と樹脂溶融を起こさない範囲での摩擦熱を発生させる。回転ツールの進入量は、接着剤の移動のさらなる促進の観点から、好ましくは0.2×T以下(特に0.01×T以上0.2×T以下)、より好ましくは0.1×T以下(特に0.01×T以上0.1×T以下)である。本明細書中、回転ツールの進入量は、回転ツールが進入した量であって、回転ツール先端と金属表面の接触位置からの回転ツールの移動量のことである。回転ツールの進入量は、回転ツールがピン部を有する場合、ピン部の先端が進入した量のことである。回転ツールがピン部を有さない場合、回転ツールの進入量は、ショルダ部16bが進入した量のことである。なお、以降の工程において、回転ツールの進入量は、各工程でのその時点での総進入量のことであり、換言すると、累積(または積算)進入量である。本実施態様の移動促進工程C0において、回転ツールが金属部材11に進入するときの、進入速度は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融状態(好ましくは非軟化状態)のときに接着剤の移動が促進される限り、特に限定されない。回転ツールの進入速度は、接着剤の移動のさらなる促進の観点から、好ましくは100mm/分以下(特に1~100mm/分)、より好ましくは50mm/分以下(特に1~50mm/分)である。本工程において、回転数、進入量および進入速度はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the movement promoting step C0 of the present embodiment, the rotation speed, the amount of entry, and the entry speed of the rotating tool are set so that the surface 121 of the resin member 12 on the metal member side (especially the region 120 immediately below the pressing member) is in a non-melting state ( It is determined depending on the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like, from the viewpoint of further promoting the movement of the adhesive while maintaining the non-softening state. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190 ° C., the rotation speed, the amount of entry, and the entry speed of the rotary tool are as follows. . In the movement promotion step C0 of this embodiment, the rotary tool may not be rotated (the number of rotations is 0), or may be rotated. Preferably, the rotary tool is rotated so that the temperature of the adhesive is below the melting point of the resin member and above the softening point of the adhesive. When rotating the rotating tool, the rotation speed of the rotating tool is, for example, 4000 rpm or less (especially 10 to 4000 rpm), preferably 10 to 2000 rpm, more preferably 10, from the viewpoint of further promoting the transfer of the adhesive. ~500 rpm. In the movement promoting step C0 of the present embodiment, the amount of penetration of the rotary tool achieved is when the metal member side surface 121 of the resin member 12 (especially the region directly below the pressing member 120) is in a non-melting state (preferably a non-softening state). As long as the movement of the adhesive is accelerated, it is not particularly limited, and the amount of penetration is set to be not 0 mm, and pressure, or pressure and frictional heat within a range that does not cause resin melting, is generated. From the viewpoint of further promoting the movement of the adhesive, the amount of entry of the rotary tool is preferably 0.2×T or less (especially 0.01×T or more and 0.2×T or less), more preferably 0.1×T. or less (especially 0.01×T or more and 0.1×T or less). In this specification, the amount of penetration of the rotary tool is the amount of penetration of the rotary tool, which is the amount of movement of the rotary tool from the contact position between the tip of the rotary tool and the metal surface. The penetration amount of the rotary tool is the amount by which the tip of the pin part enters when the rotary tool has a pin part. If the rotary tool does not have a pin portion, the amount of penetration of the rotary tool is the amount that the shoulder portion 16b has penetrated. In the subsequent steps, the amount of entry of the rotary tool is the total amount of entry at that point in each process, in other words, the cumulative (or cumulative) amount of entry. In the movement promoting step C0 of the present embodiment, the entering speed when the rotating tool enters the metal member 11 is such that the metal member side surface 121 of the resin member 12 (especially the region 120 immediately below the pressing member) is in a non-melting state (preferably There is no particular limitation as long as the adhesive is promoted to move when it is in a non-softened state). The entry speed of the rotary tool is preferably 100 mm/min or less (especially 1 to 100 mm/min), more preferably 50 mm/min or less (especially 1 to 50 mm/min), from the viewpoint of further promoting the movement of the adhesive. . In this step, the number of revolutions, the amount of entry, and the entry speed may be adjusted within the above ranges.

(予熱工程C1)
本実施態様において予熱工程C1は行ってもよいし、または行わなくてもよい。本実施態様において予熱工程C1を行う場合、予熱工程C1は、回転ツール16(例えば先端部)を金属部材11に接触させた状態で回転ツールを回転させる。これにより、回転ツール16と金属部材11との間で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域P(回転ツール16による押圧領域)の範囲および押圧領域Pの近傍の範囲が予熱される。その結果として、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。
(Preheating step C1)
The preheating step C1 may or may not be performed in this embodiment. When performing the preheating step C<b>1 in this embodiment, the preheating step C<b>1 rotates the rotating tool 16 (for example, the tip portion) while the rotating tool 16 is in contact with the metal member 11 . Thereby, frictional heat is generated between the rotating tool 16 and the metal member 11 . The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P (the pressing region of the rotary tool 16) of the metal member 11 and the range in the vicinity of the pressing region P are preheated. As a result, it becomes easier to push the rotary tool 16 into the metal member 11 in the next push-in agitation step C2.

具体的には、本実施態様の予熱工程C1において、回転ツールの回転数、進入量および進入速度は、回転ツール16の押込み易さ、樹脂部材12の軟化・溶融し易さおよび生産性の観点から、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツール16の押込み易さの観点から、回転ツールを、移動促進工程で進入させたツール位置で、5秒以下(特に0.1~5秒)の保持時間にて、1000rpm以上4000rpm以下の回転数で保持することが好ましい。本工程において、回転数および保持時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the preheating step C1 of the present embodiment, the rotation speed, the amount of entry, and the entry speed of the rotary tool are determined from the viewpoint of ease of pushing the rotary tool 16, ease of softening/melting of the resin member 12, and productivity. is determined depending on the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190 ° C., from the viewpoint of ease of pushing the rotary tool 16, the rotary tool is moved in the movement promoting step. It is preferable to hold the position of the tool at which it is advanced at a rotation speed of 1000 rpm or more and 4000 rpm or less for a holding time of 5 seconds or less (especially 0.1 to 5 seconds). In this step, the number of revolutions and the holding time may be adjusted within the ranges described above.

(押込み撹拌工程C2)
本実施態様の押込み撹拌工程C2では、図5および図6に示すように、回転ツール16を、所定回転数で回転させつつ、所定の深さまで進入させる。
(Forcing stirring step C2)
In the pushing-in stirring step C2 of this embodiment, as shown in FIGS. 5 and 6, the rotating tool 16 is rotated at a predetermined number of revolutions and is advanced to a predetermined depth.

押込み撹拌工程C2では、詳しくは、図5および図6に示すように、回転ツール16を回転させつつ、金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させる。回転ツール16を所定の深さまで進入した時点で、回転ツール16の押込み移動を停止する。回転ツール16を当該深さまで進入させることにより、回転ツール直下領域で樹脂部材表面120が溶融するとともに、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面が受け具側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。これにより、接合境界面13において回転ツールの直下領域で樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外側に向けて(図5および図6の矢印方向へ)流動する。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。このとき、移動促進工程C0で外側に移動していた接着剤は、溶融した樹脂120と共に、さらに外側に向けて流動する。その結果、押圧部材直下領域120に存在する接着剤の量が十分に低減され、接合強度の低下を十分に防止できる。 5 and 6, the rotary tool 16 is rotated and pushed into the metal member 11 to a depth that does not reach the joint interface between the metal member 11 and the resin member 12. let it enter up to When the rotating tool 16 has entered a predetermined depth, the pressing movement of the rotating tool 16 is stopped. By advancing the rotary tool 16 to the depth, the resin member surface 120 is melted in the region directly below the rotary tool, and the joint boundary surface between the metal member 11 and the resin member 12 is melted in the region 110 directly below the rotary tool of the metal member 11. It moves to the receiving tool side (lower side in the example of the figure), and the directly lower portion 110 is deformed so as to protrude toward the resin member 12 side. As a result, the melting of the molten resin 120 on the surface of the resin member is promoted in the region directly below the rotary tool at the joint boundary surface 13, and the melted resin 120 is spread outward beyond the region directly below (in the direction of the arrows in FIGS. 5 and 6). to) flow. The molten resin spreads out in a substantially circular shape centered on the area immediately below the rotating tool. At this time, the adhesive that has moved outward in the movement promoting step C0 flows further outward together with the melted resin 120 . As a result, the amount of adhesive existing in the region 120 immediately below the pressing member is sufficiently reduced, and a decrease in bonding strength can be sufficiently prevented.

仮に、回転ツール16がさらに押し込まれると(つまり回転ツールの進入量が金属部材11の厚みT超になると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、回転ツール16の外周部が樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる場合があるため、回転ツールの進入量が金属部材11の厚みT超になることは避けるのが好ましい。 If the rotary tool 16 is further pushed in (that is, if the amount of penetration of the rotary tool exceeds the thickness T of the metal member 11), the shoulder portion 16b of the rotary tool 16 exceeds the joint interface. That is, the rotating tool 16 penetrates the metal member 11 and the outer peripheral portion of the rotating tool 16 contacts the resin member 12 . As a result, the metal member 11 is in a perforated state in which the rotary tool 16 has passed through, which may result in defective joining. preferable.

具体的には、本実施態様の押込み撹拌工程C2において、回転ツールの回転数、進入量および進入速度は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)を溶融状態とする観点から、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの回転数、進入量および進入速度は例えば、以下の通りである。回転ツールの回転数は、例えば、2000rpm以上4000rpm以下である。本実施態様の押込み撹拌工程C2において、達成される回転ツールの進入量は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)の溶融および接着剤のさらなる移動の観点から、金属部材の厚みをT(mm)としたとき、好ましくは0.4×T~0.9×T(mm)、より好ましくは0.5×T~0.9×T(mm)、さらに好ましくは0.7×T~0.9×T(mm)である。本実施態様の押込み撹拌工程C2において、回転ツールが金属部材11に進入するときの、進入速度は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)の溶融および接着剤のさらなる移動の観点から、好ましくは1mm/分以上である。回転ツールの進入速度は、接着剤の移動のさらなる促進の観点から、好ましくは1~300mm/分、より好ましくは10~300mm/分、さらに好ましくは10~100mm/分である。本工程において、回転数、進入量および進入速度はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the pushing-in stirring step C2 of the present embodiment, the rotational speed, the amount of entry, and the entry speed of the rotary tool are set so that the metal member-side surface 121 of the resin member 12 (particularly, the region 120 immediately below the pressing member) is in a molten state. From a viewpoint, it is determined depending on the thickness of the metal member 11, the type of material, the melting point of the resin member 12, and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190 ° C., the rotation speed, the amount of entry, and the entry speed of the rotary tool are as follows. . The rotational speed of the rotating tool is, for example, 2000 rpm or more and 4000 rpm or less. In the pushing and stirring step C2 of the present embodiment, the amount of penetration of the rotary tool achieved is the metal member from the viewpoint of melting of the metal member side surface 121 (especially the region directly below the pressing member 120) of the resin member 12 and further movement of the adhesive. When the thickness of the member is T (mm), it is preferably 0.4 × T to 0.9 × T (mm), more preferably 0.5 × T to 0.9 × T (mm), still more preferably 0.7×T to 0.9×T (mm). In the pushing-in stirring step C2 of the present embodiment, when the rotating tool enters the metal member 11, the entering speed is such that the metal member-side surface 121 of the resin member 12 (especially the region 120 immediately below the pressing member) melts and the adhesive further melts. From the viewpoint of movement, it is preferably 1 mm/min or more. The entry speed of the rotary tool is preferably 1 to 300 mm/min, more preferably 10 to 300 mm/min, and even more preferably 10 to 100 mm/min, from the viewpoint of further promoting the movement of the adhesive. In this step, the number of revolutions, the amount of entry, and the entry speed may be adjusted within the above ranges.

(撹拌維持工程C3)
本実施態様において撹拌維持工程C3は行ってもよいし、または行わなくてもよい。本実施態様において撹拌維持工程C3を行う場合、撹拌維持工程C3では、回転ツール1を金属部材11にさらに押し込むことなく、回転ツール16を前記押込み撹拌工程C2で進入させた位置で、回転ツール16の回転動作を継続させる。これにより、多量の摩擦熱が発生し、発生した摩擦熱がより多く樹脂部材12に移動する。そのため、樹脂部材12は、押圧領域P直下の領域の範囲を超えて、広い範囲で十分に軟化および溶融し、接合強度のさらなる向上が達成される。
(Stirring maintenance step C3)
In this embodiment, the stirring maintenance step C3 may or may not be performed. When performing the stirring maintenance step C3 in this embodiment, in the stirring maintenance step C3, the rotating tool 16 is moved to the position where the rotating tool 16 was inserted in the pushing stirring step C2 without further pushing the rotating tool 1 into the metal member 11. to continue the rotating motion. As a result, a large amount of frictional heat is generated, and more of the generated frictional heat moves to the resin member 12 . Therefore, the resin member 12 is sufficiently softened and melted over a wide range beyond the range of the region immediately below the pressing region P, and further improvement in bonding strength is achieved.

具体的には、本実施態様の撹拌維持工程C3において、回転ツールの進入量は上記押込み撹拌工程C2で達成された進入量が維持され、このため回転ツールの進入速度は0mm/秒である。本実施態様の撹拌維持工程C3において、回転ツールの回転数および保持時間は、樹脂部材12のより広い範囲での十分な軟化および溶融の観点から、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの回転数および保持時間は例えば、以下の通りである。回転ツールの回転数は、例えば、2000rpm以上4000rpm以下である。本実施態様の撹拌維持工程C3において、保持時間は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)の溶融の観点から、好ましくは1秒間以上(特に1~5秒)、より好ましくは2~5秒間である。保持時間が0秒であることは、本実施態様において撹拌維持工程C3は行わないことを意味する。本工程において、回転数および保持時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the agitation maintenance step C3 of this embodiment, the penetration amount of the rotary tool is maintained at the penetration amount achieved in the above-described push-in agitation step C2, so the penetration speed of the rotary tool is 0 mm/sec. In the agitation maintaining step C3 of the present embodiment, the number of revolutions of the rotating tool and the holding time are determined from the viewpoint of sufficient softening and melting of the resin member 12 in a wider range, the thickness of the metal member 11, the type of raw material, and the resin member. 12 melting point, etc. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190° C., the rotation speed and holding time of the rotating tool are as follows. The rotational speed of the rotating tool is, for example, 2000 rpm or more and 4000 rpm or less. In the agitation maintaining step C3 of the present embodiment, the retention time is preferably 1 second or more (especially 1 to 5 seconds) from the viewpoint of melting of the metal member side surface 121 (especially the area 120 immediately below the pressing member) of the resin member 12, More preferably, it is 2 to 5 seconds. A retention time of 0 seconds means that the agitation maintenance step C3 is not performed in this embodiment. In this step, the number of revolutions and the holding time may be adjusted within the ranges described above.

本実施態様において撹拌維持工程C3を行う場合、撹拌維持工程C3を行った後は、通常、放置冷却することにより、固化が達成される。
本実施態様において撹拌維持工程C3を行わない場合、押込み撹拌工程C2を行った後、通常、放置冷却することにより、固化が達成される。
When the stirring maintenance step C3 is performed in the present embodiment, solidification is usually achieved by standing to cool after performing the stirring maintenance step C3.
In the present embodiment, when the agitation maintenance step C3 is not performed, solidification is usually achieved by standing to cool after performing the push-in agitation step C2.

<第2実施態様:圧力制御方式>
本実施態様の第2ステップにおいては、接着剤の移動を促進する移動促進工程C0、および回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。
<Second Embodiment: Pressure Control System>
In the second step of the present embodiment, a movement promoting step C0 for promoting the movement of the adhesive, and a push stirring step for advancing the rotating tool 16 to a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12 Preferably, at least C2 is performed.

本実施態様の第2ステップにおいては、移動促進工程C0の後であって押込み撹拌工程C2の前に、回転ツール16を金属部材11に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。 In the second step of the present embodiment, a preheating step C1 of rotating the rotating tool 16 while the rotating tool 16 is in contact with the metal member 11 after the movement promoting step C0 and before the pushing stirring step C2. is preferred, but not necessarily required.

前記押込撹拌工程C2の後に、回転ツール16を前記押込み撹拌工程C2で進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。 After the pushing-in stirring step C2, it is preferable to perform the stirring maintaining step C3 in which the rotating operation of the rotating tool 16 is continued at the position where the rotating tool 16 entered in the pushing-in stirring step C2, but this step must also be performed. It doesn't mean you have to.

以下、本実施態様におけるこれらの工程について詳しく説明する。 These steps in this embodiment will be described in detail below.

(移動促進工程C0)
本実施態様の移動促進工程C0では、以下に示すように圧力制御方式を採用すること以外、第1実施態様の移動促進工程C0と同様である。本実施態様の移動促進工程C0では、図4に示すように、回転ツール16を金属部材11に押圧して、接着剤3の移動を促進する。本実施態様の移動促進工程C0においても、第1実施態様の移動促進工程C0と同様に、接着剤3の移動促進を、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融の状態、好ましくは非軟化の状態で行う。樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が溶融状態にあるときに、回転ツール16を金属部材11に押圧して、接着剤3の移動を促進すると、接着剤3の移動が十分に促進されないため、押圧部材直下領域120に存在する接着剤の量が十分に低減されない。このため、接合強度の低下を十分に防止できない。図4は、図1におけるX-X断面を矢印方向で見たときの概略断面図である。
(Movement promotion step C0)
The movement promotion step C0 of this embodiment is the same as the movement promotion step C0 of the first embodiment except that the pressure control method is employed as described below. In the movement promoting step C0 of this embodiment, as shown in FIG. 4, the rotary tool 16 is pressed against the metal member 11 to promote the movement of the adhesive 3. As shown in FIG. In the movement promoting step C0 of this embodiment, as in the movement promoting step C0 of the first embodiment, the movement of the adhesive 3 is promoted by the metal member side surface 121 of the resin member 12 (in particular, the region directly below the pressing member 120). It is carried out in a non-melted state, preferably in a non-softened state. When the metal member-side surface 121 of the resin member 12 (especially the area 120 immediately below the pressing member) is in a molten state, the rotating tool 16 is pressed against the metal member 11 to promote the movement of the adhesive 3. Since the movement is not sufficiently promoted, the amount of adhesive existing in the region 120 immediately below the pressing member is not sufficiently reduced. Therefore, it is not possible to sufficiently prevent a decrease in bonding strength. FIG. 4 is a schematic cross-sectional view of the XX cross section in FIG. 1 as viewed in the direction of the arrows.

本実施態様の移動促進工程C0では、回転ツール16を、第1の加圧力および第1の回転数で、第1の加圧時間だけ金属部材11に押圧する。本工程の第1の加圧力および第1の回転数は、本実施態様の後述の予熱工程C1の第2の加圧力および第2の回転数との関係で通常、以下の条件(1)~(3)のうち、いずれか1つの条件を満たし、接着剤の移動のさらなる促進の観点から、条件(3)を満たすことが好ましい。
(1)第1の加圧力は第2の加圧力よりも小さい;
(2)第1の回転数は第2の回転数よりも小さい;または
(3)第1の加圧力は第2の加圧力よりも小さく、かつ第1の回転数は第2の回転数よりも小さい。
第1の加圧時間は、本実施態様の後述の予熱工程C1の第2の加圧時間と同等であってもよい。
In the movement promotion step C0 of this embodiment, the rotary tool 16 is pressed against the metal member 11 with a first pressure and a first rotation speed for a first pressure time. The first applied pressure and the first rotational speed in this step are usually the following conditions (1) to It is preferable to satisfy any one of the conditions (3) and to satisfy the condition (3) from the viewpoint of further promoting the transfer of the adhesive.
(1) the first applied pressure is less than the second applied pressure;
(2) the first rotational speed is less than the second rotational speed; or (3) the first applied force is less than the second applied force and the first rotational speed is less than the second rotational speed. is also small.
The first pressurization time may be equivalent to the second pressurization time of the preheating step C1 described later in this embodiment.

具体的には、本実施態様の移動促進工程C0において、回転ツールの回転数(すなわち第1の回転数)、第1の加圧力および第1の加圧時間は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)を非溶融状態(好ましくは非軟化状態)としつつ、接着剤の移動をさらに促進する観点から、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの第1の回転数、第1の加圧力および第1の加圧時間は例えば、以下の通りである。本実施態様の移動促進工程C0において、回転ツールは回転させなくてもよいし(回転数0rpm)、または回転させてもよい。好ましくは、接着剤が、樹脂部材の融点以下であって、かつ当該接着剤の軟化点以上の温度状態にあるように、回転ツールを回転させる。回転ツールの第1の回転数は、例えば、4000rpm以下(0rpmを含む)であり、接着剤の移動のさらなる促進の観点から、好ましくは10~2000rpm、より好ましくは10rpm以上500rpm未満である。本実施態様の移動促進工程C0において、第1の加圧力は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融状態(好ましくは非軟化状態)のときに接着剤の移動が促進される限り、特に限定されず、例えば500N以下(特に10~500N)であり、接着剤の移動のさらなる促進の観点から、好ましくは10~200Nである。本実施態様の移動促進工程C0において、第1の加圧時間は、樹脂部材12の金属部材側表面121(特に押圧部材直下領域120)が非溶融状態(好ましくは非軟化状態)のときに接着剤の移動が促進される限り、特に限定されず、通常は0.5秒以上2.0秒未満であり、接着剤の移動のさらなる促進の観点から、好ましくは0.5秒以上1.5秒以下である。本工程において、回転数、加圧力および加圧時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the movement promotion step C0 of this embodiment, the number of rotations of the rotating tool (that is, the first number of rotations), the first pressure, and the first pressure time are set to the metal member side of the resin member 12. From the viewpoint of further promoting the movement of the adhesive while keeping the surface 121 (especially the region 120 immediately below the pressing member) in a non-melted state (preferably in a non-softened state), the thickness and material type of the metal member 11 and the melting point of the resin member 12 are selected. etc. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190° C., the first rotation speed of the rotary tool, the first pressure and the first pressure For example, the pressure time is as follows. In the movement promotion step C0 of this embodiment, the rotary tool may not be rotated (rotational speed 0 rpm), or may be rotated. Preferably, the rotary tool is rotated so that the temperature of the adhesive is below the melting point of the resin member and above the softening point of the adhesive. The first rotation speed of the rotary tool is, for example, 4000 rpm or less (including 0 rpm), preferably 10 to 2000 rpm, more preferably 10 rpm or more and less than 500 rpm, from the viewpoint of further promoting the movement of the adhesive. In the movement promoting step C0 of this embodiment, the first pressure is applied when the metal member-side surface 121 of the resin member 12 (especially the region directly below the pressing member 120) is in a non-melting state (preferably a non-softening state). For example, it is 500 N or less (especially 10 to 500 N), preferably 10 to 200 N from the viewpoint of further promoting the movement of the adhesive. In the movement promoting step C0 of this embodiment, the first pressurization time is set when the metal member side surface 121 of the resin member 12 (especially the region directly below the pressing member 120) is in a non-melting state (preferably a non-softening state). It is not particularly limited as long as the movement of the agent is promoted, and is usually 0.5 seconds or more and less than 2.0 seconds, and from the viewpoint of further promoting the movement of the adhesive, preferably 0.5 seconds or more and 1.5 seconds. seconds or less. In this step, the number of revolutions, the pressing force and the pressing time may each be adjusted within the above ranges.

(予熱工程C1)
本実施態様において予熱工程C1は行ってもよいし、または行わなくてもよい。本実施態様において予熱工程C1を行う場合、予熱工程C1は、回転ツール16(例えば先端部)を金属部材11に接触させた状態で回転ツールを回転させる。これにより、回転ツール16と金属部材11との間で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域P(回転ツール16による押圧領域)の範囲および押圧領域Pの近傍の範囲が予熱される。その結果として、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。
(Preheating step C1)
The preheating step C1 may or may not be performed in this embodiment. When performing the preheating step C<b>1 in this embodiment, the preheating step C<b>1 rotates the rotating tool 16 (for example, the tip portion) while the rotating tool 16 is in contact with the metal member 11 . Thereby, frictional heat is generated between the rotating tool 16 and the metal member 11 . The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P (the pressing region of the rotary tool 16) of the metal member 11 and the range in the vicinity of the pressing region P are preheated. As a result, it becomes easier to push the rotary tool 16 into the metal member 11 in the next push-in agitation step C2.

本実施態様において予熱工程C1は、以下に示すように圧力制御方式を採用すること以外、第1実施態様の予熱工程C1と同様である。 In this embodiment, the preheating step C1 is the same as the preheating step C1 of the first embodiment, except that the pressure control system is employed as described below.

本実施態様の予熱工程C1は、回転ツール16を、第2の加圧力および第2の回転数で、第2の加圧時間だけ金属部材11に押圧する。本工程の第2の加圧力および第2の回転数は、本実施態様の前述の移動促進工程C0の第1の加圧力および第1の回転数との関係で通常、上記した条件(1)~(3)のうち、いずれか1つの条件を満たし、接着剤の移動のさらなる促進の観点から、上記した条件(3)を満たすことが好ましい。 In the preheating step C1 of this embodiment, the rotary tool 16 is pressed against the metal member 11 with a second pressure and a second rotation speed for a second pressure time. The second applied pressure and the second rotational speed in this step are usually in relation to the first applied pressure and the first rotational speed in the above-described movement promoting step C0 of the present embodiment, and the condition (1) described above From the viewpoint of further promoting the transfer of the adhesive, it is preferable to satisfy any one of the conditions (3) to satisfy the above condition (3).

本実施態様の予熱工程C1では、回転ツール16の金属部材11との接着により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の押圧領域P(回転ツール16による押圧領域)の範囲および押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。 In the preheating step C1 of this embodiment, frictional heat is generated on the surface portion (upper surface portion in the figure) of the metal member 11 due to the adhesion of the rotary tool 16 to the metal member 11 . The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P (the pressing region of the rotary tool 16) of the metal member 11 and the range in the vicinity of the pressing region P are preheated. This makes it easier to push the rotary tool 16 into the metal member 11 in the next push-in agitation step C2.

具体的には、本実施態様の予熱工程C1において、回転ツールの回転数(すなわち第2の回転数)、第2の加圧力および第2の加圧時間は、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの第2の回転数、第2の加圧力および第2の加圧時間は例えば、以下の通りである。回転ツールの第2の回転数は、例えば、2000rpm以上4000rpm以下であり、回転ツール16の押込み易さの観点から、好ましくは2500rpm以上3500rpm以下である。本実施態様の予熱工程C1において、第2の加圧力は通常、600N以上1300N未満であり、次の押込み撹拌工程C2での回転ツール16の押込み易さの観点から、好ましくは800N以上1100N以下である。本実施態様の予熱工程C1において、第2の加圧時間は通常、0.5秒以上2.0秒未満であり、次の押込み撹拌工程C2での回転ツール16の押込み易さの観点から、好ましくは0.5秒以上1.5秒以下である。本工程において、回転数、加圧力および加圧時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the preheating step C1 of the present embodiment, the number of rotations of the rotary tool (that is, the second number of rotations), the second pressure, and the second pressure time are determined according to the thickness of the metal member 11 and the material. It is determined depending on the type, the melting point of the resin member 12, and the like. For example, when using the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and the resin member 12 having a melting point of 150 to 190° C., the second rotation speed of the rotary tool, the second pressure and the second pressure For example, the pressure time is as follows. The second rotation speed of the rotary tool is, for example, 2000 rpm or more and 4000 rpm or less, and from the viewpoint of ease of pushing the rotary tool 16, preferably 2500 rpm or more and 3500 rpm or less. In the preheating step C1 of the present embodiment, the second pressure is usually 600 N or more and less than 1300 N, and preferably 800 N or more and 1100 N or less from the viewpoint of ease of pushing the rotary tool 16 in the following push-in stirring step C2. be. In the preheating step C1 of this embodiment, the second pressurization time is usually 0.5 seconds or more and less than 2.0 seconds, and from the viewpoint of ease of pushing the rotary tool 16 in the following pushing-in stirring step C2, It is preferably 0.5 seconds or more and 1.5 seconds or less. In this step, the number of revolutions, the pressing force and the pressing time may each be adjusted within the above ranges.

(押込み撹拌工程C2)
本実施態様において押込み撹拌工程C2は、以下に示すように圧力制御方式を採用すること以外、第1実施態様の押込み撹拌工程C2と同様である。本実施態様においても、押込み撹拌工程C2では、回転ツール16と受け具17とを相互に近接させることにより、図5および図6に示すように、回転ツール16を金属部材11に押し込む。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図5および図6に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図5および図6に示すように、樹脂部材12側に突出変形させることが好ましい。これにより、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120について、その溶融と該直下領域から外側に向けて(図5および図6の矢印方向へ)の流動を促進させ、移動促進工程C0で外側に移動していた接着剤をさらに外側に向けて流動させ得る。その結果、押圧部材直下領域120に存在する接着剤の量が十分に低減され、接合強度の低下を十分に防止できる。
(Forcing stirring step C2)
In this embodiment, the forced stirring step C2 is the same as the forced stirring step C2 of the first embodiment except that the pressure control system is employed as described below. Also in this embodiment, in the pushing-in stirring step C2, the rotating tool 16 and the receiver 17 are brought close to each other, so that the rotating tool 16 is pushed into the metal member 11 as shown in FIGS. When the forcing stirring step C2 is performed after the preheating step C1, the rotating tool 16 and the receiver 17 are brought closer to each other, so that the rotating tool 16 is attached to the metal member 11 as shown in FIGS. push in. As a result, the rotating tool 16 is advanced to a depth that does not reach the joining interface 13 between the metal member 11 and the resin member 12 . At this time, as shown in FIGS. 5 and 6, it is preferable to deform the metal member 11 directly under the rotating tool 110 so as to protrude toward the resin member 12 side. As a result, the molten resin 120 on the surface of the resin member that is melted in the region directly below the rotary tool is melted and flowed outward from the region directly below (in the direction of the arrow in FIGS. 5 and 6), The adhesive that has moved outward in the movement promoting step C0 can be made to flow further outward. As a result, the amount of adhesive existing in the region 120 immediately below the pressing member is sufficiently reduced, and a decrease in bonding strength can be sufficiently prevented.

詳しくは、本実施態様の押込み撹拌工程C2では、回転ツール16を、第2の加圧力より大きい第3の加圧力で、第2の加圧時間より短い第3の加圧時間だけ、所定回転数で回転させる。 Specifically, in the pushing-in stirring step C2 of the present embodiment, the rotating tool 16 is rotated by a predetermined pressure with a third pressure higher than the second pressure for a third pressure time shorter than the second pressure time. Rotate by number.

本実施態様において押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。好ましくは、この回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。本押込み撹拌工程C2およびこの後に好ましく行われる撹拌維持工程C3により、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120の溶融が促進されると共に、該直下領域を超えて、その外側領域まで流動する(図5の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がり、移動促進工程C0で外側に移動していた接着剤をさらに外側に流動させ得る。 In this embodiment, in the push-in stirring step C2, the rotating tool 16 is pushed into the metal member 11 by applying a greater pressure than in the preheating step C1. That is, the rotating tool 16 deeply enters the inside of the metal member 11 . Preferably, the pressing of the rotary tool 16 moves the joint boundary surface 13 between the metal member 11 and the resin member 12 toward the receiver 17 (lower side in the figure) at the portion 110 immediately below the rotary tool of the metal member 11 . , the right lower portion 110 is deformed to protrude toward the resin member 12 side. By the main pushing-in stirring step C2 and the stirring maintaining step C3 preferably performed after this, the melting of the molten resin 120 on the surface of the resin member that is melted in the area directly below the rotary tool on the joint boundary surface 13 is promoted, and the area directly below is accelerated. and flows to its outer region (in the direction of the arrow in FIG. 5). The molten resin spreads in a substantially circular shape centering on the region immediately below the rotating tool, and can cause the adhesive that has moved outward in the movement promoting step C0 to flow further outward.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎおよび/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、回転ツール16の外周部が樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。 If the rotary tool 16 is pushed further (ie too high pressure and/or too long time), the shoulder 16b of the rotary tool 16 will exceed the joint interface. That is, the rotating tool 16 penetrates the metal member 11 and the outer peripheral portion of the rotating tool 16 contacts the resin member 12 . As a result, the metal member 11 has a hole through which the rotary tool 16 has passed, resulting in poor bonding.

そこで、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化および溶融が促進される。 Therefore, in this push-in agitation step C2, the push-in of the rotary tool 16 is stopped when the shoulder portion 16b of the rotary tool 16 has entered a depth that does not reach the joining boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintenance step C3, frictional heat is generated at the reference position near the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and softening and melting of the resin member 12 are accelerated.

具体的には、本実施態様の押込み撹拌工程C2において、回転ツールの回転数(すなわち第3の回転数)、第3の加圧力および第3の加圧時間は、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの第3の回転数、第3の加圧力および第3の加圧時間は例えば、以下の通りである。回転ツールの第3の回転数は、例えば、2000rpm以上4000rpm以下であり、回転ツール16の押込み易さの観点から、好ましくは2500rpm以上3500rpm以下である。本実施態様の押込み撹拌工程C2において、第3の加圧力は通常、1300N以上2200N未満であり、回転ツール16の押込み易さの観点から、好ましくは1400N以上2000N以下である。本実施態様の押込み撹拌工程C2において、第3の加圧時間は通常、0.1秒以上0.5秒未満であり、回転ツール16の押込み易さの観点から、好ましくは0.1秒以上0.4秒以下である。本工程において、回転数、加圧力および加圧時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the forcing stirring step C2 of the present embodiment, the number of rotations of the rotary tool (that is, the third number of rotations), the third pressure, and the third pressure time are determined by the thickness and material of the metal member 11. and the melting point of the resin member 12 and the like. For example, when using an aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and a resin member 12 having a melting point of 150 to 190° C., the third rotation speed of the rotary tool, the third pressure and the third pressure For example, the pressure time is as follows. The third rotation speed of the rotary tool is, for example, 2000 rpm or more and 4000 rpm or less, and preferably 2500 rpm or more and 3500 rpm or less from the viewpoint of ease of pushing the rotary tool 16 . In the pushing and stirring step C2 of this embodiment, the third pressure is usually 1300 N or more and less than 2200 N, and preferably 1400 N or more and 2000 N or less from the viewpoint of ease of pushing the rotary tool 16. In the pushing and stirring step C2 of the present embodiment, the third pressurizing time is usually 0.1 seconds or more and less than 0.5 seconds, and from the viewpoint of ease of pushing the rotary tool 16, preferably 0.1 seconds or more. 0.4 seconds or less. In this step, the number of revolutions, the pressing force and the pressing time may each be adjusted within the above ranges.

(撹拌維持工程C3)
本実施態様において撹拌維持工程C3は、以下に示すように圧力制御方式を採用すること以外、第1実施態様の撹拌維持工程C3と同様である。本実施態様においても、撹拌維持工程C3では、回転ツール16と受け具17との相互近接を停止することにより、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第2の加圧力より小さい第4の加圧力(例えば、600N未満)で、第2の加圧時間より長い第4の加圧時間(例えば、2.75~6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
In this embodiment, the agitation maintenance step C3 is the same as the agitation maintenance step C3 of the first embodiment, except that the pressure control method is employed as described below. Also in the present embodiment, in the agitation maintaining step C3, the rotating tool 16 and the receiver 17 are stopped from approaching each other, so that the position (this is referred to as the "reference position") is advanced to a depth that does not reach the joint boundary surface 13. ) to continue the rotating operation of the rotating tool 16 . In the agitation maintaining step C3, the rotary tool 16 is applied with a fourth pressure lower than the second pressure (for example, less than 600 N) for a fourth pressure time longer than the second pressure time (for example, 2.0 N). 75 to 6.75 seconds) at a predetermined number of revolutions (eg, 3000 rpm).

詳しくは本実施態様の撹拌維持工程C3では、回転ツールを、第2の加圧力より小さく、かつ第1の加圧力以上の第4の加圧力で押圧しつつ第2の加圧時間より長い第4の加圧時間だけ回転させる。本撹拌維持工程C3において加圧力(すなわち第4の加圧力)が予熱工程C1の加圧力(すなわち第2の加圧力)よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置にほぼ維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、押圧領域P直下の領域の範囲を超えて、広い範囲で十分に軟化および溶融する。本撹拌維持工程C3では、加圧力(すなわち第4の加圧力)は通常、移動促進工程C0の加圧力(すなわち第1の加圧力)以上である。 Specifically, in the agitation maintaining step C3 of this embodiment, the rotary tool is pressed with a fourth pressure that is smaller than the second pressure and is greater than or equal to the first pressure, while the second pressure is longer than the second pressure. Rotate for the pressurization time of 4. By making the applied pressure (i.e., the fourth applied pressure) in the main stirring maintenance step C3 smaller than the applied pressure (i.e., the second applied pressure) in the preheating step C1 (of course, by making it smaller than in the push-in stirring step C2). , the rotary tool 16 is maintained substantially at the reference position. Since the rotary tool 16 continues to rotate at the reference position near the resin member 12 , a large amount of frictional heat is generated and most of the generated frictional heat is transferred to the resin member 12 . Therefore, the resin member 12 is sufficiently softened and melted over a wide range beyond the range of the region immediately below the pressing region P. In the main agitation maintaining step C3, the applied pressure (that is, the fourth applied pressure) is usually equal to or higher than the applied pressure (that is, the first applied pressure) in the movement promoting step C0.

具体的には、本実施態様の撹拌維持工程C3において、回転ツールの回転数(すなわち第4の回転数)、第4の加圧力および第4の加圧時間は、金属部材11の厚みおよび素材の種類および樹脂部材12の融点等に依存して決定される。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11および150~190℃の融点の樹脂部材12を使用する場合、回転ツールの第4の回転数、第4の加圧力および第4の加圧時間は例えば、以下の通りである。回転ツールの第4の回転数は、例えば、2000rpm以上4000rpm以下であり、樹脂部材12の溶融の観点から、好ましくは2500rpm以上3500rpm以下である。本実施態様の撹拌維持工程C3において、第4の加圧力は通常、600N未満(特に100N以上600N未満)であり、樹脂部材12の溶融の観点から、好ましくは200N以上500N以下である。本実施態様の撹拌維持工程C3において、第4の加圧時間は通常、2.0秒以上8.5秒未満であり、樹脂部材12の溶融の観点から、好ましくは2.0秒以上8.0秒以下である。本工程において、回転数、加圧力および加圧時間はそれぞれ上記範囲内で調整されてもよい。 Specifically, in the agitation maintaining step C3 of the present embodiment, the number of rotations of the rotating tool (that is, the fourth number of rotations), the fourth pressure, and the fourth pressure time are set according to the thickness and material of the metal member 11. and the melting point of the resin member 12 and the like. For example, when using the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less and the resin member 12 having a melting point of 150 to 190° C., the fourth rotation speed of the rotary tool, the fourth pressure and the fourth pressure For example, the pressure time is as follows. The fourth rotation speed of the rotary tool is, for example, 2000 rpm or more and 4000 rpm or less, and from the viewpoint of melting the resin member 12, preferably 2500 rpm or more and 3500 rpm or less. In the stirring maintaining step C3 of this embodiment, the fourth pressure is usually less than 600N (especially 100N or more and less than 600N), preferably 200N or more and 500N or less from the viewpoint of melting of the resin member 12. In the stirring maintaining step C3 of this embodiment, the fourth pressurization time is usually 2.0 seconds or more and less than 8.5 seconds, and from the viewpoint of melting the resin member 12, preferably 2.0 seconds or more8. 0 seconds or less. In this step, the number of revolutions, the pressing force and the pressing time may each be adjusted within the above ranges.

本実施態様においても、撹拌維持工程C3を行う場合、撹拌維持工程C3を行った後は、通常、放置冷却することにより、固化が達成される。
本実施態様において撹拌維持工程C3を行わない場合、押込み撹拌工程C2を行った後、通常、放置冷却することにより、固化が達成される。
Also in this embodiment, when performing the stirring maintenance process C3, after performing the stirring maintenance process C3, solidification is normally achieved by standing-to-cool.
In the present embodiment, when the agitation maintenance step C3 is not performed, solidification is usually achieved by standing to cool after performing the push-in agitation step C2.

本実施態様(圧力制御方式)において、特に各工程の加圧力は、好ましくは、以下の関係を有する。
第1の加圧力(移動促進工程)≦第4の加圧力(撹拌維持工程)<第2の加圧力(予熱工程)<第3の加圧力(押込み撹拌工程)
In this embodiment (pressure control system), the applied pressure in each step preferably has the following relationship.
1st applied pressure (movement promotion step) ≤ 4th applied pressure (stirring maintenance step) < 2nd applied pressure (preheating step) < 3rd applied pressure (push-stirring step)

(3)金属部材
本発明において使用される金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、少なくとも樹脂部材12と重ね合わせる部分が略平板形状を有する限り、いかなる形状を有していてもよい。金属部材11における樹脂部材12と重ね合わせる部分は両面ともに通常、平面から構成されている。
(3) Metal member The metal member 11 used in the present invention has a substantially flat plate shape as an overall shape in FIG. It may have any shape as long as the portion has a substantially flat plate shape. Both surfaces of the portion of the metal member 11 that overlaps the resin member 12 are generally flat.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図3参照)は通常、0.5~4mmであるがこれに限定されるものではない。 The thickness T (thickness before joining treatment; see FIG. 3) of the substantially flat plate-shaped portion of the metal member 11 that overlaps the resin member 12 is usually 0.5 to 4 mm, but is not limited to this.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal forming the metal member 11, any metal having a higher melting point than the thermoplastic polymer forming the resin member 12 can be used. Among others, the following metals and alloys used in the automotive sector are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
magnesium and its alloys;
Titanium and its alloys.

金属部材11を構成する好ましい金属はアルミニウムおよびアルミニウム合金である。 Preferred metals for forming metal member 11 are aluminum and aluminum alloys.

(4)樹脂部材
本発明において使用される樹脂部材12は熱可塑性ポリマーを含み、強化繊維をさらに含んでもよい。
(4) Resin Member The resin member 12 used in the present invention contains a thermoplastic polymer and may further contain reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル-ブタジエン-スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer forming the resin member 12, any thermoplastic polymer can be used. Among them, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene, and acid-modified products thereof;
polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), and polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
acrylonitrile-butadiene-styrene copolymer resin (ABS);
polyphenylene sulfide (PPS);
Polyamide resins (PA) such as PA6, PA66, PA11, PA12, PA6T, PA9T and MXD6;
Polycarbonate resin (PC);
polyurethane resin;
fluoropolymer resins; and liquid crystal polymers (LCPs).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。 As the thermoplastic polymer forming the resin member 12, a polyolefin resin, particularly polypropylene, is preferably used because it is inexpensive and has excellent mechanical properties.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2~200g/10分間、特に2~55g/10分間となるような分子量であればよい。 The molecular weight of the thermoplastic polymer is not particularly limited. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。 In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。樹脂部材12における金属部材11直下の部分は両面ともに通常、平面から構成されている。 Although the resin member 12 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, it is not limited to this. The portion may have any shape as long as it has a substantially flat plate shape. Both surfaces of the portion of the resin member 12 immediately below the metal member 11 are generally flat.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図3参照)は通常、2~10mm、特に2~5mmであるがこれに限定されるものではない。 The thickness t of the portion of the resin member 12 immediately below the metal member 11 (thickness before bonding; see FIG. 3) is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited to this.

樹脂部材12に含有されてもよい強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に均一に含有および分散される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、いずれの繊維であってもよい。 The type of reinforcing fiber that may be contained in the resin member 12 is not particularly limited, and examples thereof include carbon fiber and glass fiber. In the field of polymer-containing composite materials, reinforcing fibers are fibers that are uniformly contained and dispersed in a polymer to improve strength, and are generally divided into continuous fibers and discontinuous fibers. In , the reinforcing fiber may be any fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10~50重量%であり、好ましくは20~50重量%、より好ましくは30~50重量%である。 The content of reinforcing fibers is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, more preferably 30 to 50% by weight, based on the total weight of the resin member.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。 The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, coloring agents, and foaming agents.

樹脂部材12は、熱可塑性ポリマーおよび強化繊維ならびに所望の添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。 The resin member 12 can be manufactured by subjecting a mixture containing a thermoplastic polymer, reinforcing fibers, and desired additives to a molding method such as an injection molding method or a press molding method.

樹脂部材12の融点Tmは樹脂部材12の種類によって異なり、通常、130~350℃、特に150~200℃である。樹脂部材12の融点Tmは樹脂部材12を構成する熱可塑性ポリマーの融点であってもよい。
樹脂部材12の融点Tmは、JIS7121により測定された値を用いている。
The melting point Tm of the resin member 12 varies depending on the type of the resin member 12, and is usually 130-350.degree. C., particularly 150-200.degree. The melting point Tm of the resin member 12 may be the melting point of the thermoplastic polymer forming the resin member 12 .
As the melting point Tm of the resin member 12, a value measured according to JIS7121 is used.

[樹脂部材]
炭素繊維を40重量%含むポリプロピレンペレット(PP-CF40-11;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材において炭素繊維の平均繊維長は3mm、平均繊維径は7μmであった。樹脂部材の融点Tmは170℃であった。樹脂部材において炭素繊維はランダムに配向していた。
[Resin member]
A resin member 12 having dimensions of 100 mm long, 30 mm wide and 3 mm thick was manufactured by an injection molding method using polypropylene pellets (PP-CF40-11; manufactured by Daicel Polymer Ltd.) containing 40% by weight of carbon fiber. The carbon fibers in the resin member had an average fiber length of 3 mm and an average fiber diameter of 7 μm. The melting point Tm of the resin member was 170°C. The carbon fibers were randomly oriented in the resin member.

[金属部材]
金属部材としては、6000系のアルミニウム合金製の平板状部材(縦100mm×横30mm×厚さ1.2mm)を用いた。
[Metal member]
As the metal member, a plate-like member (100 mm long×30 mm wide×1.2 mm thick) made of a 6000 series aluminum alloy was used.

[回転ツール]
回転ツールは、ピン部16aを有さない回転ツール、詳しくは、図2においてD1=10mm、D2=0mmおよびh=0mmの寸法を有する回転ツール16(工具鋼製)を用いた。
[Rotation tool]
A rotary tool without a pin portion 16a, specifically, a rotary tool 16 (made of tool steel) having dimensions of D1=10 mm, D2=0 mm and h=0 mm in FIG. 2 was used.

[実施例A1](位置制御方式)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを、図1および図3に示すようにそれらの間に接着剤3を介在させた状態で、重ね合わせた。このとき、接着剤(層)3の厚みは0.3mmであった。接着剤3として、エポキシ系加熱硬化型接着剤(硬化温度:約150℃、最軟化点:50℃)を使用した。
[Embodiment A1] (position control method)
A joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
An end portion of the metal member 11 and an end portion of the resin member 12 were overlapped with an adhesive 3 interposed therebetween as shown in FIGS. 1 and 3 . At this time, the thickness of the adhesive (layer) 3 was 0.3 mm. As the adhesive 3, an epoxy heat-curable adhesive (curing temperature: about 150° C., maximum softening point: 50° C.) was used.

第2ステップ:
まず、回転ツール16で金属部材11を押圧して、接着剤3の移動促進工程C0を行った。詳しくは、図4に示すように、回転ツール16で金属部材11を押圧して、樹脂部材12の金属部材側表面121の押圧部材直下領域120からその外側に向けて(図4の矢印方向へ)接着剤3の移動を促進した。金属部材側表面121は非軟化状態であった。移動促進工程C0:進入量0.1mm、進入速度30mm/秒、ツール回転数100rpm。
Second step:
First, the metal member 11 was pressed by the rotary tool 16 to perform the movement promoting step C0 of the adhesive 3 . Specifically, as shown in FIG. 4, the metal member 11 is pressed by the rotating tool 16, and the metal member-side surface 121 of the resin member 12 is pushed outward from the region 120 immediately below the pressing member (in the direction of the arrow in FIG. 4). ) promoted the migration of the adhesive 3; The metal member side surface 121 was in a non-softened state. Movement acceleration step C0: entry amount 0.1 mm, entry speed 30 mm/sec, tool rotation speed 100 rpm.

次いで、予熱工程C1を行うことなく、図5および図6に示すように、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた。このとき、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂120が、押圧部材直下領域120からその外側に向けて(図5および図6の矢印方向へ)、接着剤と共に流動した。押込み撹拌工程C2:進入量1.8mm、進入速度30mm/秒、ツール回転数3000rpm。
その後、回転ツール16を金属部材11から離間させ、放置冷却を行い、接合体を得た。
Next, without performing the preheating step C1, as shown in FIGS. 5 and 6, the rotary tool 16 is pushed into the metal member 11 to a depth that does not reach the bonding interface 13 between the metal member 11 and the resin member 12. let me At this time, the molten resin 120 on the surface of the resin member melted in the region directly below the rotating tool flowed outward from the region 120 directly below the pressing member (in the direction of the arrow in FIGS. 5 and 6) together with the adhesive. . Push-in stirring step C2: Intrusion amount 1.8 mm, intrusion speed 30 mm/sec, tool rotation speed 3000 rpm.
After that, the rotating tool 16 was separated from the metal member 11 and left to cool, thereby obtaining a joined body.

[実施例A2~A4および比較例A1~A4]
接合条件を表1に記載のように変更したこと以外、実施例A1と同様の方法により、樹脂部材と金属部材との接合を行った。
[Examples A2 to A4 and Comparative Examples A1 to A4]
A resin member and a metal member were joined by the same method as in Example A1, except that the joining conditions were changed as shown in Table 1.

[接合強度S]
図7に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断引張強度Sを測定した。なお、接合強度(剪断引張強度)の測定は、各実施例/比較例の接合操作終了後、10分以内に行った。本実施例/比較例には加熱硬化型接着剤を使用しているが、接合中の加熱では接着剤の硬化には至らない。また、常温硬化型接着剤を使用する場合でも本試験方法により接着剤の硬化前の接合強度を測定することができる。このため、当該接合強度にとって、接着剤の介在による効果は悪影響のみに基づいている。しかしながら、いずれの実施例においても、接着剤を追加熱もしくは室温放置により十分に硬化させた後に測定した接合強度は、溶融固化領域61外に排出された接着剤による接合強度が発現することにより、硬化前の接合強度より大きな値となり、結果として接着剤が介在しない場合の接合強度よりも大きな値を示した。これらの結果より、接着剤と他の接合手法を組み合わせて使用する場合に大きな問題となる、接着剤が十分硬化しない状態における接合への接着剤の悪影響に対し、本発明が効果を発揮することが明らかである。
[Joint strength S]
As shown in FIG. 7, a joined body of the metal member 11 and the resin member 12 was arranged in the jig 100 . The jig 100 is constructed so that a downward force acts on the upper end portion of the resin member 12 when the jig 100 is pulled downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end of the resin member 12, and shear tension is applied to the joint without being affected by the strength of the base material of the resin member 12. Strength S was measured. The bonding strength (shear tensile strength) was measured within 10 minutes after the bonding operation in each example/comparative example was completed. Although a heat-curable adhesive is used in this example/comparative example, heating during bonding does not lead to curing of the adhesive. Also, even when using a room-temperature curing adhesive, the bonding strength before curing of the adhesive can be measured by this test method. Therefore, the effect of the intervening adhesive on the joint strength is based only on its adverse effect. However, in any of the examples, the bonding strength measured after the adhesive is sufficiently hardened by additional heat or left at room temperature exhibits the bonding strength due to the adhesive discharged outside the melted and solidified region 61. The value was greater than the bond strength before curing, and as a result, the value was greater than the bond strength when no adhesive was interposed. These results demonstrate that the present invention is effective against the adverse effects of the adhesive on bonding when the adhesive is not sufficiently cured, which is a major problem when using the adhesive in combination with other bonding methods. is clear.

Figure 0007156086000001
Figure 0007156086000001

表1において、一見すると、実施例の中には、比較例よりも接合強度が低い実施例が存在する。しかし、実施例は押込み撹拌工程C2の工程時間が近似する比較例と比較するべきである。すなわち、実施例A1およびA3は比較例A1と比較するべきであり、実施例A2およびA4は比較例A2と比較するべきである。従って、実施例A1およびA3の接合強度を比較例A1の接合強度に対する割合(上昇率)で示した。実施例A2およびA4の接合強度Sを比較例A2の接合強度に対する割合(上昇率)で示した。これらの上昇率について評価した。
◎:140%以上(最良);
〇:130%以上140%未満(良好);
△:110%以上130%未満(合格);
×:110%未満(不合格)。
In Table 1, at first glance, among the examples, there are examples in which the bonding strength is lower than that of the comparative examples. However, the example should be compared to the comparative example, which has a similar step time for the forced agitation step C2. That is, Examples A1 and A3 should be compared to Comparative Example A1, and Examples A2 and A4 should be compared to Comparative Example A2. Therefore, the bonding strengths of Examples A1 and A3 are shown as a ratio (rate of increase) to the bonding strength of Comparative Example A1. The bonding strength S of Examples A2 and A4 is shown as a ratio (rate of increase) to the bonding strength of Comparative Example A2. These rates of increase were evaluated.
◎: 140% or more (best);
○: 130% or more and less than 140% (good);
△: 110% or more and less than 130% (pass);
x: Less than 110% (failed).

実施例A1で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面写真を図8Aに示す。
比較例A1で得られた接合体から金属部材を強制的に剥離させ、樹脂部材の金属部材側表面を観察したときの樹脂部材の表面写真を図8Bに示す。
図8Aおよび図8Bにおいて、中央の白変色領域(樹脂凝集破壊領域)が接合領域Aであり、樹脂溶融範囲の中で白変色が生じていない外周領域が、接着剤成分が残存し、接合強度が低い領域Bである。図8Aおよび図8Bより、本発明の接合方法により、領域Bの範囲が小さくなり、領域Aの範囲が拡大していることが確認できる。
FIG. 8A shows a photograph of the surface of the resin member when the metal member was forcibly separated from the joined body obtained in Example A1 and the surface of the resin member on the metal member side was observed.
FIG. 8B shows a photograph of the surface of the resin member when the metal member was forcibly separated from the joined body obtained in Comparative Example A1 and the surface of the resin member on the metal member side was observed.
In FIGS. 8A and 8B, the central white discoloration area (resin cohesion failure area) is the bonding area A, and the outer peripheral area where white discoloration does not occur in the resin melting range is where the adhesive component remains and the bonding strength is is the region B where is low. From FIGS. 8A and 8B, it can be confirmed that the range of region B is reduced and the range of region A is expanded by the bonding method of the present invention.

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。 INDUSTRIAL APPLICABILITY The joining method according to the present invention is useful for joining metal members and resin members in the fields of automobiles, railway vehicles, aircraft, home electric appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
P:押圧領域(押圧予定領域)
120:樹脂部材における回転ツール直下領域の表層部
121:樹脂部材の金属部材側表面
1: Friction Stir Welding Apparatus 10: Workpiece 11: Metal Member 12: Resin Member 13: Joint Boundary Surface between Metal Member and Resin Member 16: Rotating Tool 17: Receiver 100: Jig for Measuring Joint Strength 110: Immediately below the rotating tool of the metal member P: Pressing area (planned pressing area)
120: Surface layer portion of resin member directly below rotating tool 121: Metal member side surface of resin member

Claims (15)

金属部材と樹脂部材とを、両者間に接着剤を介在させた状態で、重ね合わせ、押圧部材により圧力および熱を金属部材側から付与することにより前記樹脂部材を溶融させて金属部材と樹脂部材とを接合する熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記樹脂部材の金属部材側表面が非溶融の状態で、前記圧力により、平面視において前記金属部材側表面の押圧部材直下領域からその外側に向けての前記接着剤の移動を促進する、金属部材と樹脂部材との接合方法。
A metal member and a resin member are superimposed with an adhesive interposed therebetween, and pressure and heat are applied from the metal member side by a pressing member to melt the resin member, thereby joining the metal member and the resin member. A method for joining a metal member and a resin member by a thermocompression joining method for joining the
The metal member, wherein the pressure promotes the movement of the adhesive from a region of the metal member-side surface directly below the pressing member toward the outside in a plan view while the metal member-side surface of the resin member is in a non-melted state. and a method of joining with a resin member.
前記樹脂部材の金属部材側表面が非軟化の状態で、前記圧力により、前記接着剤の移動を促進する、請求項1に記載の金属部材と樹脂部材との接合方法。 2. The method of joining a metal member and a resin member according to claim 1, wherein the pressure promotes movement of the adhesive while the metal member-side surface of the resin member is in a non-softened state. 前記接着剤の移動促進のとき、該接着剤は、前記樹脂部材の融点以下であって、かつ該接着剤の軟化点以上の温度状態にある、請求項1または2に記載の金属部材と樹脂部材との接合方法。 3. The metal member and resin according to claim 1, wherein the adhesive is at a temperature below the melting point of the resin member and above the softening point of the adhesive when promoting the movement of the adhesive. The method of joining with the member. 前記接着剤の移動を促進した後、前記圧力および前記熱により、前記樹脂部材を溶融させ、溶融した樹脂を、前記平面視において前記押圧部材直下領域からその外側に向けて、前記接着剤と共に流動させる、請求項1~3のいずれかに記載の金属部材と樹脂部材との接合方法。 After promoting the movement of the adhesive, the resin member is melted by the pressure and the heat, and the melted resin flows outward from the region immediately below the pressing member in plan view together with the adhesive. The method for joining a metal member and a resin member according to any one of claims 1 to 3, wherein the metal member and the resin member are joined. 前記熱圧式接合方法が、
金属部材と樹脂部材とを両者間に接着剤を介在させた状態で重ね合わせる第1ステップ;および
前記押圧部材として回転ツールを前記金属部材に押圧して前記接着剤の移動を促進した後、前記回転ツールの回転により摩擦熱を発生させ、該摩擦熱により樹脂部材を軟化および溶融させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法である、請求項1~4のいずれかに記載の金属部材と樹脂部材との接合方法。
The thermocompression bonding method is
A first step of superimposing a metal member and a resin member with an adhesive interposed therebetween; A friction stir welding method according to any one of claims 1 to 4, comprising a second step of generating frictional heat by rotating the rotary tool, softening and melting the resin member by the frictional heat, and joining the metal member and the resin member. A method for joining a metal member and a resin member according to any one of the above.
前記第2ステップにおいて位置制御方式を採用し、
前記第2ステップが、
前記回転ツールを前記金属部材に押圧して前記接着剤の移動を促進する移動促進工程;および
前記回転ツールを回転させつつ金属部材に押し込んで、前記金属部材と前記樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程
を含む、請求項5に記載の金属部材と樹脂部材との接合方法。
Adopting a position control method in the second step,
The second step is
a movement promoting step of pressing the rotating tool against the metal member to promote movement of the adhesive; 6. The method for joining a metal member and a resin member according to claim 5, comprising a step of pushing and stirring the metal member and the resin member to a depth not reached.
前記移動促進工程では前記回転ツールを、前記金属部材の厚みをTとしたとき、0.2×T以下の進入量および4000rpm以下の回転数で、前記金属部材に押圧し、
前記押込み撹拌工程では前記回転ツールを、前記金属部材の厚みをTとしたとき、0.4×T~0.9×Tの進入量まで、2000~4000rpmの回転数および1~300mm/分の進入速度で、前記金属部材に進入させる、請求項6に記載の金属部材と樹脂部材との接合方法。
In the movement promoting step, the rotating tool is pressed against the metal member with an amount of penetration of 0.2 × T or less and a rotation speed of 4000 rpm or less, where T is the thickness of the metal member;
In the pushing stirring step, the rotary tool is rotated at a speed of 2000 to 4000 rpm and 1 to 300 mm / min to an amount of penetration of 0.4 × T to 0.9 × T, where T is the thickness of the metal member. 7. The method of joining a metal member and a resin member according to claim 6, wherein the metal member is caused to enter at an approach speed.
前記第2ステップが、前記移動促進工程の後であって前記押込み撹拌工程の前に、
前記回転ツールを前記金属部材に接触させた状態で前記回転ツールを回転させる予熱工程
をさらに含み、
前記予熱工程では前記回転ツールを、移動促進工程で進入させたツール位置で、5秒以下の保持時間にて、1000rpm以上4000rpm以下の回転数で保持する、請求項7に記載の金属部材と樹脂部材との接合方法。
In the second step, after the movement promoting step and before the pushing stirring step,
further comprising a preheating step of rotating the rotating tool while the rotating tool is in contact with the metal member;
8. The metal member and resin according to claim 7, wherein in the preheating step, the rotating tool is held at the tool position where it was entered in the movement promoting step at a holding time of 5 seconds or less at a rotation speed of 1000 rpm or more and 4000 rpm or less. The method of joining with the member.
前記第2ステップがさらに、
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程;
を含み、
前記撹拌維持工程では回転ツールを、前記押込み撹拌工程で進入させた位置で、1秒以上の保持時間にて、2000~4000rpmの回転数で保持する、請求項6~8のいずれかに記載の金属部材と樹脂部材との接合方法。
The second step further comprises:
a stirring maintaining step of continuing the rotating operation of the rotating tool at the position where the rotating tool entered in the pushing stirring step;
including
The rotating tool according to any one of claims 6 to 8, wherein in the stirring maintaining step, the rotary tool is held at a rotation speed of 2000 to 4000 rpm at the position where it was entered in the pushing stirring step for a holding time of 1 second or more. A method of joining a metal member and a resin member.
前記第2ステップにおいて圧力制御方式を採用し、
前記第2ステップが、
前記回転ツールを前記金属部材に押圧して前記接着剤の移動を促進する移動促進工程;
前記回転ツールを前記金属部材に接触させた状態で前記回転ツールを回転させる予熱工程;
前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程;および
前記回転ツールを前記押込み撹拌工程で進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程
を含む、請求項5に記載の金属部材と樹脂部材との接合方法。
Adopting a pressure control method in the second step,
The second step is
a movement promoting step of pressing the rotating tool against the metal member to promote movement of the adhesive;
a preheating step of rotating the rotating tool while the rotating tool is in contact with the metal member;
A pushing and stirring step in which the rotating tool is pushed into the metal member and penetrates to a depth that does not reach the joint boundary surface between the metallic member and the resin member; 6. The method for joining a metal member and a resin member according to claim 5, comprising a stirring maintenance step of continuing the rotating motion.
前記移動促進工程では回転ツールを第1の加圧力および第1の回転数にて金属部材に押圧し、
前記予熱工程では回転ツールを第2の加圧力および第2の回転数にて金属部材に第2の加圧時間で押圧し、
前記第1の加圧力、前記第1の回転数、前記第2の加圧力および前記第2の回転数は、以下の条件(1)~(3)のうち、いずれか1つの条件を満たし、
前記押込み撹拌工程では回転ツールを前記第2の加圧力より大きい第3の加圧力で押圧しつつ前記第2の加圧時間より短い第3の加圧時間だけ回転させ、
前記撹拌維持工程では回転ツールを、前記第2の加圧力より小さく、かつ前記第1の加圧力以上の第4の加圧力で押圧しつつ上記第2の加圧時間より長い第4の加圧時間だけ回転させる、請求項10に記載の金属部材と樹脂部材との接合方法:
(1)第1の加圧力は第2の加圧力よりも小さい;
(2)第1の回転数は第2の回転数よりも小さい;または
(3)第1の加圧力は第2の加圧力よりも小さく、かつ第1の回転数は第2の回転数よりも小さい。
In the movement promoting step, the rotary tool is pressed against the metal member with a first pressure and a first rotation speed,
In the preheating step, the rotary tool is pressed against the metal member at a second pressure and a second rotation speed for a second pressure time,
The first applied pressure, the first rotation speed, the second applied pressure and the second rotation speed satisfy any one of the following conditions (1) to (3),
In the pushing-in stirring step, the rotary tool is pressed with a third pressure greater than the second pressure and rotated for a third pressure time shorter than the second pressure time,
In the stirring maintaining step, the rotating tool is pressed with a fourth pressure that is less than the second pressure and is greater than or equal to the first pressure, and a fourth pressure that is longer than the second pressure is applied. The method for joining a metal member and a resin member according to claim 10, wherein the rotation is for a period of time:
(1) the first applied pressure is less than the second applied pressure;
(2) the first rotational speed is less than the second rotational speed; or (3) the first applied force is less than the second applied force and the first rotational speed is less than the second rotational speed. is also small.
前記移動促進工程において、第1の加圧力を500N以下の範囲で調整し、
前記予熱工程において、第2の加圧力を600N以上1300N未満の範囲で調整し、
前記押込み撹拌工程において、第3の加圧力を1300N以上2200N未満の範囲で調整し、
前記撹拌維持工程において、第4の加圧力を600N未満の範囲で調整する、請求項11に記載の金属部材と樹脂部材との接合方法。
In the movement promoting step, the first pressure is adjusted within a range of 500 N or less,
In the preheating step, the second pressure is adjusted in the range of 600 N or more and less than 1300 N,
In the pushing stirring step, the third pressure is adjusted in the range of 1300 N or more and less than 2200 N,
12. The method for joining a metal member and a resin member according to claim 11, wherein the fourth pressure is adjusted within a range of less than 600N in the stirring and maintaining step.
前記移動促進工程において、回転ツールの回転数を4000rpm以下の範囲で調整し、
前記予熱工程、前記押込み撹拌工程および前記撹拌維持工程において、それぞれ独立して、回転ツールの回転数を2000rpm以上4000rpm以下の範囲で調整する、請求項12に記載の金属部材と樹脂部材との接合方法。
In the movement promoting step, the rotation speed of the rotating tool is adjusted within a range of 4000 rpm or less,
Joining a metal member and a resin member according to claim 12, wherein in the preheating step, the indentation stirring step, and the stirring maintaining step, the rotation speed of the rotating tool is adjusted independently in the range of 2000 rpm or more and 4000 rpm or less. Method.
前記金属部材の厚みTが0.5~4mmである、請求項1~13のいずれかに記載の金属部材と樹脂部材との接合方法。 The method for joining a metal member and a resin member according to any one of claims 1 to 13, wherein the metal member has a thickness T of 0.5 to 4 mm. 前記金属部材がアルミニウムまたはアルミニウム合金からなり、
前記樹脂部材が130~350℃の融点Tmを有する、請求項1~14のいずれかに記載の金属部材と樹脂部材との接合方法。
the metal member is made of aluminum or an aluminum alloy,
The method for joining a metal member and a resin member according to any one of claims 1 to 14, wherein the resin member has a melting point Tm of 130 to 350°C.
JP2019036222A 2019-02-28 2019-02-28 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER Active JP7156086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036222A JP7156086B2 (en) 2019-02-28 2019-02-28 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036222A JP7156086B2 (en) 2019-02-28 2019-02-28 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER

Publications (2)

Publication Number Publication Date
JP2020138455A JP2020138455A (en) 2020-09-03
JP7156086B2 true JP7156086B2 (en) 2022-10-19

Family

ID=72264241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036222A Active JP7156086B2 (en) 2019-02-28 2019-02-28 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER

Country Status (1)

Country Link
JP (1) JP7156086B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113077A (en) 2007-11-06 2009-05-28 Mazda Motor Corp Friction spot joining method
JP2015100846A (en) 2013-11-28 2015-06-04 スズキ株式会社 Joint method of panel component
JP2015131443A (en) 2014-01-14 2015-07-23 マツダ株式会社 Method for joining metal member to resin member, and joint product obtained by the method
JP2016068130A (en) 2014-09-30 2016-05-09 マツダ株式会社 Method of joining metal member with resin member
JP2019001029A (en) 2017-06-14 2019-01-10 マツダ株式会社 Binding method of metal component and resin component, and metal component and resin component used in method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239918A (en) * 1988-07-29 1990-02-08 Hashimoto Forming Ind Co Ltd Bonding method for respective components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113077A (en) 2007-11-06 2009-05-28 Mazda Motor Corp Friction spot joining method
JP2015100846A (en) 2013-11-28 2015-06-04 スズキ株式会社 Joint method of panel component
JP2015131443A (en) 2014-01-14 2015-07-23 マツダ株式会社 Method for joining metal member to resin member, and joint product obtained by the method
JP2016068130A (en) 2014-09-30 2016-05-09 マツダ株式会社 Method of joining metal member with resin member
JP2019001029A (en) 2017-06-14 2019-01-10 マツダ株式会社 Binding method of metal component and resin component, and metal component and resin component used in method

Also Published As

Publication number Publication date
JP2020138455A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6098526B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP2014208459A (en) Joint method and joint body of different members
JP7156086B2 (en) METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
JP2017013084A (en) Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member
JP2016068128A (en) Method of joining metal member with resin member and resin member used for the same
JP6330760B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6098562B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6098607B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6137104B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150