JP2016068130A - Method of joining metal member with resin member - Google Patents

Method of joining metal member with resin member Download PDF

Info

Publication number
JP2016068130A
JP2016068130A JP2014201792A JP2014201792A JP2016068130A JP 2016068130 A JP2016068130 A JP 2016068130A JP 2014201792 A JP2014201792 A JP 2014201792A JP 2014201792 A JP2014201792 A JP 2014201792A JP 2016068130 A JP2016068130 A JP 2016068130A
Authority
JP
Japan
Prior art keywords
metal member
resin
resin member
joining
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201792A
Other languages
Japanese (ja)
Other versions
JP6098606B2 (en
Inventor
勝也 西口
Katsuya Nishiguchi
勝也 西口
宣夫 坂手
Nobuo Sakate
宣夫 坂手
耕二郎 田中
Kojiro Tanaka
耕二郎 田中
嗣久 宮本
Tsuguhisa Miyamoto
嗣久 宮本
小林 めぐみ
Megumi Kobayashi
めぐみ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014201792A priority Critical patent/JP6098606B2/en
Publication of JP2016068130A publication Critical patent/JP2016068130A/en
Application granted granted Critical
Publication of JP6098606B2 publication Critical patent/JP6098606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Abstract

PROBLEM TO BE SOLVED: To provide a method for jointing a resin member containing an electric conductive material with a metal member capable of achieving a junction with a sufficient strength, as well as sufficiently preventing corrosion of the metal member.SOLUTION: A method for jointing a metal member with a resin member is a thermal pressing type jointing method comprising: providing a metal member 11 and a resin member 12 containing an electric conductive material; overlapping at least an end part of one of the members on a surface of the other member; applying heat and pressure to soften and melt the resin member. The method for jointing a metal member with a resin member comprises forming a molten solidified portion 51 by providing a thermoplastic resin sheet 50 between the metal member and the resin member, and by applying heat and pressure to extrude a part of the thermoplastic resin sheet in a molten state from between at least an end part of one of the members and a surface of the other member onto the surface of the other member.SELECTED DRAWING: Figure 4

Description

本発明は、金属部材と樹脂部材との接合方法に関する。   The present invention relates to a method for joining a metal member and a resin member.

従来より、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図14に示すように、金属部材211と樹脂部材212とを直接的に重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融・軟化させて金属部材211と樹脂部材212とを接合する方法である(特許文献1)。   Conventionally, weight reduction has been demanded in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to reduce the thickness of steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. In such a field, development of a joining technique between a metal member and a resin member is important not only from the viewpoint of weight reduction, but also from the viewpoint of realizing an increase in strength, rigidity, and productivity of the joining member. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 14, the friction stir welding method directly superimposes the metal member 211 and the resin member 212 and rotates the rotary tool 216 while pressing the metal member 211 to generate frictional heat. In this method, the metal member 211 and the resin member 212 are joined by melting and softening the resin member 212 with this frictional heat (Patent Document 1).

しかしながら、従来の摩擦撹拌接合方法においては、樹脂部材自体の強度を向上させる観点から、樹脂部材に強化繊維を含有させた場合、接合時において樹脂部材の金属部材との接合表面で溶融・軟化による流動が十分に起こり難い。詳しくは、樹脂部材における回転ツールの直下領域で溶融・軟化が起こっても、強化繊維が溶融樹脂の流動を阻害するため、接合強度が低下することがある。   However, in the conventional friction stir welding method, from the viewpoint of improving the strength of the resin member itself, when a reinforcing fiber is contained in the resin member, the resin member is melted and softened on the joint surface with the metal member at the time of joining. It is hard for flow to occur sufficiently. Specifically, even if melting / softening occurs in the region immediately below the rotary tool in the resin member, the bonding strength may decrease because the reinforcing fibers inhibit the flow of the molten resin.

特開2010−158885号公報JP 2010-158885 A

そこで、接合強度の向上の観点から、図15に示すように、金属部材211と樹脂部材212との間に熱可塑性樹脂シート250を介在させて、押圧部材216で熱および圧力を金属部材側から付与することにより、当該シートを溶融させて金属部材211と樹脂部材212とを接合する試みが本発明の発明者等によりなされている。このとき、図16に示すように、摩擦熱により軟化し溶融状態の熱可塑性樹脂シート250は押圧部材直下部において押し退けられ、金属部材211と樹脂部材212との間で周囲方向(図中、矢印方向)に流動し、これらの間の接合が達成される。一方で、金属部材211と樹脂部材212とは押圧部材直下部において直接的に接触するようになる。このような試みにおいて、熱可塑性樹脂シート250は接合強度の向上のために使用され、また従来からよく問題となる得られる接合体の接合部の外観不良を回避するために、図16に示すように、溶融状態の熱可塑性樹脂シート250は、金属部材211と樹脂部材212との間からはみ出ることはなかった。   Therefore, from the viewpoint of improving the bonding strength, as shown in FIG. 15, a thermoplastic resin sheet 250 is interposed between the metal member 211 and the resin member 212, and heat and pressure are applied from the metal member side by the pressing member 216. The inventors of the present invention have attempted to join the metal member 211 and the resin member 212 by melting the sheet by applying. At this time, as shown in FIG. 16, the thermoplastic resin sheet 250 that is softened and melted by frictional heat is pushed away immediately below the pressing member, and between the metal member 211 and the resin member 212, the circumferential direction (in the drawing, the arrow Direction), and a joint between them is achieved. On the other hand, the metal member 211 and the resin member 212 come into direct contact immediately below the pressing member. In such an attempt, the thermoplastic resin sheet 250 is used to improve the bonding strength, and in order to avoid poor appearance of the bonded portion of the bonded body, which is often a problem from the past, as shown in FIG. In addition, the molten thermoplastic resin sheet 250 did not protrude from between the metal member 211 and the resin member 212.

しかしながら上記のような試みにおいては、樹脂部材212の表面上に配置された金属部材211の端部の端面211Aおよび金属部材211と樹脂部材212との合わせ部における熱可塑性樹脂シート250の未充填部、および金属部材211の樹脂部材側表面における熱可塑性樹脂シート250との接触領域に隣接する領域211Bが比較的早期に腐食するという新たな問題が生じている。   However, in the trial as described above, the end surface 211A of the end portion of the metal member 211 disposed on the surface of the resin member 212 and the unfilled portion of the thermoplastic resin sheet 250 in the joining portion of the metal member 211 and the resin member 212 In addition, there is a new problem that the region 211B adjacent to the contact region with the thermoplastic resin sheet 250 on the resin member side surface of the metal member 211 corrodes relatively early.

本発明の発明者等は、このような金属部材の腐食を鋭意検討した結果、当該腐食はカルバニック腐食による以下のメカニズムに基づいて生じることを見い出し、本発明をなすに至ったものである。例えば、樹脂部材212の表面上に配置された金属部材211の端部の端面211Aにおいては、図17に示すように、金属部材211と樹脂部材212とは押圧部材によるワーク痕251の直下部において直接的に接触しているため、金属部材211を構成する金属と、樹脂部材212に含有される強化繊維(例えば炭素繊維等)とのイオン化傾向の差から、金属部材211から樹脂部材212に向けて電子(e)が流れようとする。そこで、塩素成分(Cl)を含む水252が、樹脂部材212の表面212Aおよび金属部材211の端部の端面211Aに接触して滞留すると、金属部材211が例えば、Alからなる場合、水252に接触するAlが電子を放出してAl3+となり水252に溶出される。放出された電子はワーク痕251の直下部における金属部材211と樹脂部材212との界面を経由して、水252と樹脂部材212との界面に至り、水252と反応してOHが生成する。このOHは水252中に溶出されたAl3+と反応し、錆が発生する。このような一連の反応は電子・イオンループ(図17参照)を形成するために、比較的早期に腐食が起こるものと考えられる。図17は図16における金属部材端部近傍の拡大模式図である。また、図16に示すような金属部材211の樹脂部材側表面における熱可塑性樹脂シート250との接触領域に隣接する領域211Bにおいても、上記と同様のメカニズムにより、腐食が起こる。 As a result of intensive investigations on the corrosion of such metal members, the inventors of the present invention have found that the corrosion occurs based on the following mechanism due to carbamic corrosion, and have made the present invention. For example, in the end surface 211A of the end portion of the metal member 211 arranged on the surface of the resin member 212, as shown in FIG. 17, the metal member 211 and the resin member 212 are located immediately below the workpiece mark 251 by the pressing member. Due to the direct contact, the metal member 211 is directed from the metal member 211 toward the resin member 212 due to the difference in ionization tendency between the metal constituting the metal member 211 and the reinforcing fiber (for example, carbon fiber) contained in the resin member 212. As a result, electrons (e ) try to flow. Therefore, when the water 252 containing a chlorine component (Cl ) stays in contact with the surface 212A of the resin member 212 and the end surface 211A of the end of the metal member 211, the water 252 is formed when the metal member 211 is made of, for example, Al. Al coming into contact with the substrate emits electrons to become Al 3+ and is eluted in water 252. The emitted electrons reach the interface between the water 252 and the resin member 212 via the interface between the metal member 211 and the resin member 212 immediately below the workpiece mark 251 and react with the water 252 to generate OH . . This OH reacts with Al 3+ eluted in the water 252 to generate rust. Such a series of reactions forms an electron / ion loop (see FIG. 17), so that it is considered that corrosion occurs relatively early. FIG. 17 is an enlarged schematic view of the vicinity of the end of the metal member in FIG. Moreover, also in the area | region 211B adjacent to the contact area with the thermoplastic resin sheet 250 in the resin member side surface of the metal member 211 as shown in FIG. 16, corrosion arises by the mechanism similar to the above.

本発明は、導電性材料を含有する樹脂部材を金属部材に十分な強度で接合することができるとともに、金属部材の腐食を十分に防止することができる金属部材と樹脂部材との接合方法を提供することを目的とする。   The present invention provides a method of joining a metal member and a resin member, which can join a resin member containing a conductive material to the metal member with sufficient strength and can sufficiently prevent corrosion of the metal member. The purpose is to do.

本発明は、金属部材と導電性材料を含有する樹脂部材とを、一方の部材の少なくとも一部の端部が他の部材の表面上に配置されるように、重ね合わせ、熱および圧力を付与することにより樹脂部材を軟化および溶融させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
金属部材と樹脂部材との間に熱可塑性樹脂シートを介在させて、熱および圧力を付与することにより、前記一方の部材の少なくとも一部の端部と前記他方の部材の表面との間から熱可塑性樹脂シートの一部を溶融状態にて他方の部材の表面上にはみ出させることを特徴とする金属部材と樹脂部材との接合方法に関する。
In the present invention, a metal member and a resin member containing a conductive material are superposed, heat and pressure are applied so that at least a part of one member is disposed on the surface of the other member. It is a joining method between a metal member and a resin member by a hot-pressure joining method that softens and melts the resin member,
By applying a heat and pressure by interposing a thermoplastic resin sheet between the metal member and the resin member, heat is generated from between the end of at least a part of the one member and the surface of the other member. The present invention relates to a method for joining a metal member and a resin member, characterized in that a part of a plastic resin sheet is protruded on the surface of the other member in a molten state.

本発明はまた、
上記接合方法において、熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む接合方法に関する:
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で熱可塑性樹脂シートおよび樹脂部材を軟化・溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ。
The present invention also provides
In the above bonding method, the hot-pressure bonding method is a friction stir welding method,
The friction stir welding method relates to a joining method including the following steps:
A first step of superimposing the metal member and the resin member; and while rotating the rotating tool, the metal member is pressed against the metal member to generate frictional heat, and the thermoplastic resin sheet and the resin member are softened and melted by the frictional heat. Then, a second step of solidifying and joining the metal member and the resin member.

本発明の接合方法によれば、一方の部材の少なくとも一部の端部と他方の部材の表面との間から熱可塑性樹脂シートの一部を溶融状態にて他方の部材の表面上にはみ出させて固化させる。このようにはみ出して形成された熱可塑性樹脂シートの溶融固化物51が、一方の部材の端部と他方の部材の表面との間での水の滞留を阻害する。たとえ水が一方の部材の端部と他方の部材の表面との間で滞留したとしても、上記溶融固化物51の存在により、当該水が一方の部材の端部の端面と他方の部材の表面との両方に同時に接触することが回避される。それらの結果、上記カルバニック腐食の発生メカニズムにおける電子・イオンループの形成が阻害され、腐食が十分に防止される。
また本発明の接合方法によれば、熱可塑性樹脂シートを介して、樹脂部材と金属部材との接合を行うので、樹脂部材と金属部材とを十分な強度で接合することができる。
According to the joining method of the present invention, a part of the thermoplastic resin sheet is caused to protrude from the surface of the other member in a molten state from between the end of at least a part of the one member and the surface of the other member. Solidify. The melted and solidified product 51 of the thermoplastic resin sheet that protrudes in this way inhibits the retention of water between the end of one member and the surface of the other member. Even if water stays between the end of one member and the surface of the other member, due to the presence of the molten solidified product 51, the water will end up at the end surface of the one member and the surface of the other member. And simultaneous contact with both are avoided. As a result, the formation of electron / ion loops in the occurrence mechanism of carbamic corrosion is inhibited, and corrosion is sufficiently prevented.
According to the joining method of the present invention, since the resin member and the metal member are joined via the thermoplastic resin sheet, the resin member and the metal member can be joined with sufficient strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotary tool used for the joining method of this invention. 図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、本発明の接合方法における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing when the ZZ section in Drawing 1 is seen in the direction of an arrow, and is a schematic sectional view for explaining an example of the preheating process in the joining method of the present invention. 図3における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process, stirring maintenance process, and holding process in the joining method of this invention performed after the preheating process in FIG. 本発明の別の実施態様における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in another embodiment of this invention. 図5における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process, stirring maintenance process, and holding process in the joining method of this invention performed after the preheating process in FIG. 本発明のまた別の実施態様における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in another embodiment of this invention. 図7における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process, stirring maintenance process, and holding process in the joining method of this invention performed after the preheating process in FIG. 本発明のまた別の実施態様における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in another embodiment of this invention. 図9における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process, stirring maintenance process, and holding process in the joining method of this invention performed after the preheating process in FIG. 本発明のまた別の実施態様における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in another embodiment of this invention. 図11における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the indentation stirring process, stirring maintenance process, and holding | maintenance process in the joining method of this invention performed after the preheating process in FIG. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. 従来技術における予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process in a prior art. 図15における予熱工程の後に行われる、押込み撹拌工程、撹拌維持工程及び保持工程を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an indentation stirring process, a stirring maintenance process, and a holding process performed after the preheating process in FIG. 従来技術において起こる腐食の発生メカニズムを説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the generation | occurrence | production mechanism of the corrosion which occurs in a prior art.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、熱および圧力を付与することにより、好ましくは金属部材側から局所的に付与することにより、樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。本発明の接合方法において採用される接合方式は、加圧しながら加熱を行う方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、レーザー加熱接合方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等であってもよい。中でも、好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, the metal member and the resin member are overlapped and heat and pressure are applied, preferably by applying locally from the metal member side, so that the resin member is softened and the metal member and the resin are applied. This is a hot-pressure joining method for joining members. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of heating while applying pressure. For example, a friction stir welding method, a laser heating joining method, a resistance heating joining method (electric heating) Bonding method), induction heating bonding method, ultrasonic heating bonding method and the like. Among these, the friction stir welding method is preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせて拘束した状態で、回転ツールを回転させつつ金属部材に対して押圧することにより発生する摩擦熱を利用して接合する方法である。
レーザー加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、レーザーを金属部材に照射することにより生じる熱を利用して接合する方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。
抵抗加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用して接合する方法である。
誘導加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用して接合する方法である。
超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせて拘束した状態で金属部材側から加圧しながら、金属部材に超音波振動を起こさせ、該振動により生じる金属部材/樹脂部材間の摩擦熱を利用して接合する方法である。
As will be described in detail later, the friction stir welding method refers to frictional heat generated by pressing against a metal member while rotating the rotary tool in a state where the metal member and the resin member are overlapped and restrained. It is the method of joining using.
The laser heating bonding method is a method of bonding using heat generated by irradiating a metal member with a laser in a state where the metal member and the resin member are superposed and restrained. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.
The resistance heating bonding method is a method of bonding using heat generated by flowing a current directly through a metal member in a state where the metal member and the resin member are superposed and restrained.
The induction heating bonding method is a method in which an induction current is generated in a metal member by an electromagnetic induction action in a state where the metal member and the resin member are superposed and restrained, and bonding is performed using heat generated by the current.
The ultrasonic heating bonding method is a method in which a metal member and a resin member are superposed on each other and restrained by applying pressure from the metal member side while causing ultrasonic vibration to occur between the metal member and the resin member. It is the method of joining using the frictional heat of.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図1〜図12を用いて説明するが、金属部材または樹脂部材のうち一方の部材の少なくとも一部の端部と他方の部材の表面との間から熱可塑性樹脂シートの一部を溶融状態にて他方の部材の表面上にはみ出させる限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。これらの図において、共通する符号は同じ部材、部位、寸法または領域を示すものとする。   Hereinafter, although the joining method of this invention which employ | adopted the friction stir welding method is demonstrated using FIGS. 1-12, at least one part edge part of one member and the other member of a metal member or a resin member are demonstrated. As long as a part of the thermoplastic resin sheet protrudes from the surface to the surface of the other member in the molten state, it is clear that the effects of the present invention can be obtained even if other bonding methods described above are used. . In these drawings, common reference numerals indicate the same members, parts, dimensions, or regions.

まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化・溶融し、その結果、金属部材11と樹脂部材12とが接合される。   First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device that friction stir welds a metal member 11 and a resin member 12, and includes a cylindrical rotary tool 16. As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), the metal member 11 is pressed downward in the pressing area P (scheduled pressing area) as indicated by an arrow A2. Friction heat is generated by the pressing of the rotary tool 16, and this frictional heat is conducted to the resin member 12 to soften and melt the resin member 12, and as a result, the metal member 11 and the resin member 12 are joined.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

図2は、回転ツール16の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、先端部(図2では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the distal end portion of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 2). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜100、特に5〜20mmである。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 100, particularly 5 to 20 mm.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(1)本発明に係る接合方法の一実施態様(摩擦撹拌接合方法)
本発明においては、金属部材11と導電性材料を含有する樹脂部材12とを、一方の部材の端部が他の部材の表面上に配置されるように、重ね合わせ、熱および圧力を付与することにより樹脂部材を軟化および溶融させる。このとき、金属部材11と樹脂部材12との間に熱可塑性樹脂シート50を介在させて、熱および圧力を付与することにより、前記一方の部材の少なくとも一部の端部と前記他方の部材の表面との間から熱可塑性樹脂シートの一部を溶融状態にて他方の部材の表面上にはみ出させて、溶融固化部51を形成する。
(1) One embodiment of the joining method according to the present invention (friction stir welding method)
In the present invention, the metal member 11 and the resin member 12 containing a conductive material are superposed, heat and pressure are applied so that the end of one member is disposed on the surface of the other member. As a result, the resin member is softened and melted. At this time, by interposing a thermoplastic resin sheet 50 between the metal member 11 and the resin member 12 and applying heat and pressure, at least a part of the end of the one member and the other member A part of the thermoplastic resin sheet is protruded from the surface of the other member in a molten state to form the melt-solidified portion 51.

一方の部材の端部が他の部材の表面上に配置されるとは、一方の部材が他方の部材上に配置される態様において、両方の部材の端面がひとつの面を形成する面一の態様以外の態様を意味するものである。詳しくは、図3に示すように、金属部材11の端部110が樹脂部材12の表面12B上に配置される第1態様および樹脂部材12の端部120が金属部材11の表面上に配置される第2態様の両方の態様を包含して意味するものとする。第1態様においては、金属部材11の端部110の端面11Aと樹脂部材12の表面12Bとの間で水が滞留し易いので、端面11Aで上記カルバニック腐食が起こり易い。第2態様においては、樹脂部材12の端部120の端面12Aと金属部材11の表面との間で水が滞留し易いので、金属部材11の樹脂部材側表面における熱可塑性樹脂シート50との接触領域に隣接する領域11Bで上記カルバニック腐食が起こり易い。しかしながら、本発明においては、図4に示すように、これらの間から熱可塑性樹脂シート50の一部を溶融状態にて他方の部材の表面上にはみ出させるため、いずれの態様においても、はみ出した溶融固化物51が水の滞留を阻害する。たとえ水が滞留したとしても、上記溶融固化物51の存在により、当該水が前記一方の部材の端部の端面と前記他方の部材の表面との両方に同時に接触することが回避される。それらの結果、上記カルバニック腐食の発生メカニズムにおける電子・イオンループの形成が阻害され、腐食が十分に防止される。   The end of one member is disposed on the surface of the other member. In an aspect in which one member is disposed on the other member, the end surfaces of both members form a single surface. An aspect other than the aspect is meant. Specifically, as shown in FIG. 3, the first mode in which the end portion 110 of the metal member 11 is disposed on the surface 12 </ b> B of the resin member 12 and the end portion 120 of the resin member 12 are disposed on the surface of the metal member 11. It is meant to include both aspects of the second aspect. In the first aspect, since water tends to stay between the end surface 11A of the end portion 110 of the metal member 11 and the surface 12B of the resin member 12, the carbonic corrosion is likely to occur on the end surface 11A. In the second aspect, since water tends to stay between the end surface 12A of the end portion 120 of the resin member 12 and the surface of the metal member 11, the contact with the thermoplastic resin sheet 50 on the resin member side surface of the metal member 11 The carbamic corrosion is likely to occur in the region 11B adjacent to the region. However, in the present invention, as shown in FIG. 4, a part of the thermoplastic resin sheet 50 is protruded from the surface of the other member in a molten state, so that it protrudes in any aspect. The melted and solidified product 51 inhibits the retention of water. Even if water stays, the presence of the melted solid 51 prevents the water from simultaneously contacting both the end surface of the one member and the surface of the other member. As a result, the formation of electron / ion loops in the occurrence mechanism of carbamic corrosion is inhibited, and corrosion is sufficiently prevented.

熱可塑性樹脂シート50の一部を溶融状態にて他方の部材の表面上にはみ出させるとは、例えば図4中、回転ツール16の軸方向において上方から下方に向かって、または下方から上方に向かって観察したとき、金属部材11の端面11Aと樹脂部材12との間から、または樹脂部材12の端面12Aと金属部材11との間から流出した、熱可塑性樹脂シートの溶融固化物51を形成する溶融物が認められるという意味である。   For example, in FIG. 4, a part of the thermoplastic resin sheet 50 is protruded from the surface of the other member in a molten state from the top to the bottom or from the bottom to the top in the axial direction of the rotary tool 16. The molten solidified product 51 of the thermoplastic resin sheet flowing out from between the end surface 11A of the metal member 11 and the resin member 12 or from between the end surface 12A of the resin member 12 and the metal member 11 is formed. This means that a melt is observed.

熱可塑性樹脂シート50のはみ出し幅は、腐食が防止される限り特に限定されず、通常は、0.5mm以上であり、好ましくは3mm以上である。はみ出し幅とは、例えば図4中、回転ツール16の軸方向において観察したとき、金属部材11と樹脂部材12との間から明らかにはみ出している金属部材11の端面11Aからの溶融固化物51の幅のことである。   The protrusion width of the thermoplastic resin sheet 50 is not particularly limited as long as corrosion is prevented, and is usually 0.5 mm or more, preferably 3 mm or more. For example, the protrusion width of the molten solidified material 51 from the end surface 11A of the metal member 11 that clearly protrudes from between the metal member 11 and the resin member 12 when observed in the axial direction of the rotary tool 16 in FIG. It is width.

以下、金属部材11の端部110が樹脂部材12の表面12B上に配置される態様について詳しく説明するが、以下の説明を参酌することにより、樹脂部材12の端部120が金属部材の表面上に配置される態様においても、腐食が防止されることは十分に理解され得る。また本発明においては、一方の部材の全ての端部が他の部材の表面上に配置されなければならないというわけではなく、一方の部材の少なくとも一部の端部が他の部材の表面上に配置されて、当該一方の部材の端部と他の部材の表面との間から熱可塑性樹脂シート50の溶融状態でのはみ出しが達成されればよい。   Hereinafter, the aspect in which the end portion 110 of the metal member 11 is disposed on the surface 12B of the resin member 12 will be described in detail. By referring to the following description, the end portion 120 of the resin member 12 is on the surface of the metal member. It can be fully understood that corrosion is also prevented in the embodiment arranged in the above. Further, in the present invention, not all the end portions of one member have to be disposed on the surface of the other member, but at least a part of the end portion of one member is on the surface of the other member. It is only necessary that the thermoplastic resin sheet 50 protrudes from the space between the end of the one member and the surface of the other member.

熱可塑性樹脂シート50は、熱および圧力の付与により、金属部材11の端部110の端面11Aと樹脂部材12の表面12Bとの間から溶融状態にて樹脂部材12の表面上にはみ出るものである。熱可塑性樹脂シート50はそのような挙動を示す限り、その構成材料、寸法および形状は特に限定されるものではない。   The thermoplastic resin sheet 50 protrudes on the surface of the resin member 12 in a molten state from between the end surface 11A of the end portion 110 of the metal member 11 and the surface 12B of the resin member 12 by application of heat and pressure. . As long as the thermoplastic resin sheet 50 exhibits such behavior, the constituent material, dimensions, and shape thereof are not particularly limited.

熱可塑性樹脂シート50の構成材料は、溶融状態において樹脂部材12と相溶可能なポリマー材料が好ましく使用される。具体的には、樹脂部材を構成する熱可塑性ポリマーの後述の具体例と同様の材料が例示できる。熱可塑性樹脂シート50の好ましい構成材料は変性ポリオレフィン系樹脂である。樹脂部材12がポリオレフィン系樹脂を含む場合、変性ポリオレフィン系樹脂が特に好ましい。変性ポリオレフィン系樹脂とは、ポリオレフィン系樹脂の酸変性物という意味である。変性ポリオレフィン系樹脂の具体例として、エチレン、プロピレンなどのポリオレフィン系樹脂の構成モノマーとともに、マレイン酸、無水マレイン酸等のカルボキシル基含有モノマーを共重合またはグラフト重合させてなる共重合体が挙げられる。   As the constituent material of the thermoplastic resin sheet 50, a polymer material compatible with the resin member 12 in a molten state is preferably used. Specifically, the material similar to the below-mentioned specific example of the thermoplastic polymer which comprises a resin member can be illustrated. A preferable constituent material of the thermoplastic resin sheet 50 is a modified polyolefin resin. When the resin member 12 includes a polyolefin resin, a modified polyolefin resin is particularly preferable. The modified polyolefin resin means an acid-modified product of polyolefin resin. Specific examples of the modified polyolefin resin include a copolymer obtained by copolymerization or graft polymerization of a constituent monomer of a polyolefin resin such as ethylene and propylene and a carboxyl group-containing monomer such as maleic acid and maleic anhydride.

熱可塑性樹脂シート50の構成材料の分子量は、接合時に軟化・溶融可能な限り、特に限定されるものではなく、通常はメルトフローレート(MFR)が2〜200、好ましくは2〜55のポリマーが使用される。   The molecular weight of the constituent material of the thermoplastic resin sheet 50 is not particularly limited as long as it can be softened and melted at the time of joining. Usually, a polymer having a melt flow rate (MFR) of 2 to 200, preferably 2 to 55 is used. used.

本明細書中、MFRはメルトフローレートであって、JIS K7210に基づいて230℃で測定された値(g/10分間)を用いている。   In the present specification, MFR is a melt flow rate, and a value (g / 10 minutes) measured at 230 ° C. based on JIS K7210 is used.

熱可塑性樹脂シート50の形状は、四角形状、円形状等、様々な形状であってよいが、熱可塑性樹脂シート50の溶融状態でのはみ出しの観点からは、円形状が好ましい。熱可塑性樹脂シート50は、金属部材11と樹脂部材12との重ね合わせ時において、熱可塑性樹脂シート50の中心が回転ツール16の回転軸上に位置するように配置されることが好ましい。   The shape of the thermoplastic resin sheet 50 may be various shapes such as a square shape and a circular shape, but a circular shape is preferable from the viewpoint of protruding the thermoplastic resin sheet 50 in a molten state. The thermoplastic resin sheet 50 is preferably disposed so that the center of the thermoplastic resin sheet 50 is positioned on the rotation axis of the rotary tool 16 when the metal member 11 and the resin member 12 are overlapped.

熱可塑性樹脂シート50は、金属部材11の全面または樹脂部材12の全面にあらかじめ塗布(プレコート)されていてもよい。このような態様も、熱可塑性樹脂シート50を介在させる態様に包含されるものとする。   The thermoplastic resin sheet 50 may be applied (precoated) in advance to the entire surface of the metal member 11 or the entire surface of the resin member 12. Such an aspect is also included in the aspect in which the thermoplastic resin sheet 50 is interposed.

本発明に係る接合方法は少なくとも以下のステップを含むものである:
金属部材11と樹脂部材12とを熱可塑性樹脂シート50を介して重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材12を軟化・溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ。
なお、第1ステップにおいて得られる金属部材11と樹脂部材12とが重ね合わされたものを「ワーク」10と呼ぶ。
The joining method according to the present invention comprises at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12 via the thermoplastic resin sheet 50; and while rotating the rotary tool 16, the metal member 11 is pressed against the metal member 11 to generate frictional heat. A second step in which the metal member 11 and the resin member 12 are joined after the member 12 is softened and melted and then solidified.
The metal member 11 and the resin member 12 obtained in the first step are called “work” 10.

第1ステップ:
第1ステップにおいては、図1および図3に示すように、金属部材11と樹脂部材12とを所望の接合部位で熱可塑性樹脂シート50を介して重ね合わせる。詳しくは、樹脂部材12において上記のような充填材含有率勾配を有する表面(例えば120)が金属部材11と接触するように、金属部材11と樹脂部材12とを重ね合わせる。
First step:
In the first step, as shown in FIGS. 1 and 3, the metal member 11 and the resin member 12 are superposed via a thermoplastic resin sheet 50 at a desired joining portion. Specifically, the metal member 11 and the resin member 12 are overlapped so that the surface (for example, 120) having the filler content rate gradient as described above in the resin member 12 is in contact with the metal member 11.

第2ステップ:
第2ステップにおいては、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面130に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
Second step:
In the second step, at least a push-in stirring step C <b> 2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joining boundary surface 130 between the metal member 11 and the resin member 12.

本発明においては、第2ステップにおいて、押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
In the present invention, in the second step, the preheating step C1 for rotating the rotary tool 16 in a state where only the front end portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the pushing and stirring step. Is preferred, but not necessarily.
After the indentation stirring step, it is preferable to perform the stirring maintenance step C3 in which the rotation operation of the rotary tool 16 is continued at the position where the rotary tool 16 has entered to a depth that does not reach the joining boundary surface. It doesn't have to be.

以下、各工程について詳しく説明する。   Hereinafter, each step will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。図3は、図1におけるZ−Z断面を矢印方向で見たときの概略断面図であって、本発明の接合方法における予熱工程を説明するための概略断面図である。
(Preheating process C1)
In the preheating step C1, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 3, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N). FIG. 3 is a schematic cross-sectional view when the ZZ cross section in FIG. 1 is viewed in the direction of the arrow, and is a schematic cross-sectional view for explaining a preheating step in the joining method of the present invention.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との間の熱可塑性樹脂シート50および樹脂部材12にも伝わり、次の押込み撹拌工程C2で、熱可塑性樹脂シート50および樹脂部材12が軟化・溶融し易くなる。   In the preheating step C1, the frictional heat is also transmitted to the thermoplastic resin sheet 50 and the resin member 12 between the metal member 11 and the resin member 12, and in the next indentation stirring step C2, the thermoplastic resin sheet 50 and the resin member 12 are transferred. Becomes easier to soften and melt.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び熱可塑性樹脂シート50および樹脂部材12の軟化・溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は700N以上1200N未満の値、第1の加圧時間は0.5秒以上2.0秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are the viewpoint of the ease of pressing the rotating tool 16 as described above and the viewpoint of the ease of softening and melting of the thermoplastic resin sheet 50 and the resin member 12. The value varies depending on, for example, the rotational speed of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressure in the preheating step C1 is 700 N or more and less than 1200 N, and the first pressurizing time is 0.5 seconds or more and 2 A value of less than 0 seconds and a rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2は、回転ツール16と受け具17とを相互に近接させることにより、図4に示すように、回転ツール16を金属部材11に押し込む工程である。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図4に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面130に達しない深さまで進入させると共に、金属部材11の回転ツール直下部を樹脂部材12側に突出変形させる。これにより、回転ツールの直下領域およびその外周領域で溶融している熱可塑性樹脂シート50をさらに外周方向まで流動させ、結果として、金属部材11の端部110の端面11Aと樹脂部材12の表面12Bとの間から樹脂部材12の表面上にはみ出させる。
(Indentation stirring step C2)
The pushing and stirring step C2 is a step of pushing the rotating tool 16 into the metal member 11 by bringing the rotating tool 16 and the receiving member 17 close to each other as shown in FIG. When the indentation stirring step C2 is performed after the preheating step C1, the rotary tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotary tool 16 into the metal member 11 as shown in FIG. As a result, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 130 between the metal member 11 and the resin member 12, and the portion immediately below the rotary tool of the metal member 11 is protruded and deformed toward the resin member 12. As a result, the thermoplastic resin sheet 50 melted in the region immediately below and the outer peripheral region of the rotary tool is further flowed to the outer peripheral direction. As a result, the end surface 11A of the end 110 of the metal member 11 and the surface 12B of the resin member 12 are obtained. It protrudes on the surface of the resin member 12 from between.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。この回転ツール16の押込みにより、金属部材11の回転ツール直下部において、金属部材11と樹脂部材12との接合境界面130が受け具17側(図例では下側)に移動し、当該直下部が樹脂部材12側に突出変形する。これにより、熱可塑性樹脂シート50が溶融状態でその外周方向に移動し、金属部材11と樹脂部材12との間から樹脂部材12の表面上にはみ出る。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. Due to the pressing of the rotary tool 16, the joint boundary surface 130 between the metal member 11 and the resin member 12 moves to the receiving member 17 side (lower side in the illustrated example) immediately below the rotary tool of the metal member 11. Projecting toward the resin member 12 side. Thereby, the thermoplastic resin sheet 50 moves in the outer peripheral direction in a molten state, and protrudes from between the metal member 11 and the resin member 12 onto the surface of the resin member 12.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本発明では、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が熱可塑性樹脂シート50および樹脂部材12に伝わり、熱可塑性樹脂シート50および樹脂部材12の軟化・溶融および流動が促進される。   Therefore, in the present invention, in the indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters a depth that does not reach the joining boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, and a large amount of frictional heat is transmitted to the thermoplastic resin sheet 50 and the resin member 12, so that the thermoplastic resin sheet 50 and the resin member are transmitted. 12 softening / melting and flow are promoted.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は1200N以上1800N未満の値、第2の加圧時間は0.1秒以上0.5秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second pressing force in the indentation stirring step C2 is a value of 1200 N or more and less than 1800 N, and the second pressurizing time is 0.1 second or more. The value of less than 0.5 seconds and the rotation speed of the rotary tool are preferably 500 rpm or more and 10,000 rpm or less.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図4に示すように、上記接合境界面130に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、5.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual approach between the rotary tool 16 and the receiving member 17 and, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the stirring maintaining step C3, the rotary tool 16 is moved to a third pressurizing time (for example, 5.75) longer than the first pressurizing time with a third pressurizing force (for example, 500 N) smaller than the first pressurizing force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が熱可塑性樹脂シート50および樹脂部材12に移動する。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotation operation of the rotary tool 16 is continued at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat is transferred to the thermoplastic resin sheet 50 and the resin member 12.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は100N以上700N未満の値、特に100N以上600N以下の値が好ましい。第3の加圧時間は1.0秒以上10秒未満の値、回転ツールの回転数は500rpm以上10000rpm以下の値が好ましい。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring and maintaining step C3 is preferably a value of 100 N or more and less than 700 N, particularly a value of 100 N or more and 600 N or less. The third pressurizing time is preferably 1.0 to less than 10 seconds, and the rotation speed of the rotary tool is preferably 500 to 10000 rpm.

(保持工程C4)
押込み撹拌工程C2または撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図4に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
(Holding process C4)
After the indentation stirring step C2 or the stirring maintaining step C3, a holding step C4 is performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held at a predetermined pressure for a predetermined pressurizing time. Also good.
As shown in FIG. 4, the holding step C4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と熱可塑性樹脂シート50と樹脂部材12とを押圧領域Pで受け具17との間に挟んでクランプする。これにより、熱可塑性樹脂シート50を介した金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却・固化完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation has been stopped is reduced by the metal member 11, the thermoplastic resin sheet 50, and the resin member because the applied pressure is smaller than the indentation stirring process C 2 but larger than the stirring maintenance process C 3. 12 is clamped between the receiving part 17 and the pressing area P. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 via the thermoplastic resin sheet 50 is increased, and the bonding strength after the completion of cooling and solidification is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の押圧領域Pの密着力向上の観点から設定され、その値は、例えば金属部材11の素材の種類等に依存して変化する。例えば、アルミニウム合金製金属部材11を使用する場合、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion strength of the pressing region P during the cooling period as described above, and the values thereof are, for example, those of the material of the metal member 11 It varies depending on the type. For example, when the aluminum alloy metal member 11 is used, the fourth pressure in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, and the fourth pressurization time is preferably a value of 1 second or more, for example.

本発明では、少なくとも前記した工程C2を経て、好ましくは前記した工程C1およびC2を経て、より好ましくは前記した工程C1〜C3を経て、最も好ましくは前記した工程C1〜C4を経て、金属部材11と樹脂部材12とが熱可塑性樹脂シート50を介して広い範囲で高強度に接合された金属部材11と樹脂部材12との接合体20が得られる。   In the present invention, at least through the above-described steps C2, preferably through the above-described steps C1 and C2, more preferably through the above-described steps C1 to C3, and most preferably through the above-described steps C1 to C4, the metal member 11 And the joined member 20 of the metal member 11 and the resin member 12 in which the resin member 12 and the resin member 12 are joined to each other through the thermoplastic resin sheet 50 in a wide range with high strength.

第2ステップにおいて所定の工程を行った後、通常は冷却を行い、溶融樹脂を固化させる。冷却方法は特に限定されず、例えば、放置冷却法、空冷等が挙げられる。   After performing a predetermined process in the second step, cooling is usually performed to solidify the molten resin. The cooling method is not particularly limited, and examples thereof include a standing cooling method and air cooling.

以上、回転ツールを金属部材の接触面上、面方向で移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, the case where the metal member and the resin member are joined in a point shape without moving the rotary tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly while being moved (line joining).

(2)樹脂部材
本発明において樹脂部材12は熱可塑性ポリマーおよび導電性充填材を含有する。導電性充填材とは、金属部材と樹脂部材との接合方法の分野において、樹脂部材中に補強、剛性向上等の目的で添加される導電性を有する添加剤であって、樹脂部材中、熱可塑性ポリマー成分とは独立して存在する無機系の添加剤である。そのような導電性充填材の具体例として、例えば、炭素繊維、タルク等の導電性材料が挙げられる。
(2) Resin member In the present invention, the resin member 12 contains a thermoplastic polymer and a conductive filler. The conductive filler is an additive having conductivity that is added to the resin member for the purpose of reinforcement, rigidity improvement, etc. in the field of the joining method between the metal member and the resin member. It is an inorganic additive that exists independently of the plastic polymer component. Specific examples of such a conductive filler include conductive materials such as carbon fiber and talc.

充填材は、金属部材を構成する金属材料とは異なる導電性材料を含むことが好ましい。樹脂部材が金属部材を構成する金属材料とは異なる導電性材料を含む場合にガルバニック腐食が起こるところ、本発明においては樹脂部材がそのような導電性材料を含む場合であっても、当該腐食を有効に防止することができるためである。金属部材を構成する金属材料とは、金属部材を主として構成する金属材料のことである。導電性材料が金属部材を構成する材料とは異なるとは、導電性材料と金属部材構成材料とは異なる化学式で表される、という意味である。例えば、導電性材料がAlで表され、金属部材を主として構成する材料がAlで表される場合、これらの材料は異なっている。 The filler preferably includes a conductive material different from the metal material constituting the metal member. Galvanic corrosion occurs when the resin member includes a conductive material different from the metal material constituting the metal member. In the present invention, even if the resin member includes such a conductive material, the corrosion is not caused. This is because it can be effectively prevented. The metal material constituting the metal member is a metal material mainly constituting the metal member. That the conductive material is different from the material constituting the metal member means that the conductive material and the metal member constituting material are represented by different chemical formulas. For example, when the conductive material is represented by Al 2 O 3 and the material mainly constituting the metal member is represented by Al, these materials are different.

充填材は、粒子形状、繊維形状、織物等の各種形状を有していてもよいが、繊維形状を有していることが好ましい。炭素繊維、等の繊維状充填材は、溶融樹脂の流動を阻害するため、接合強度が低下するところ、本発明においては樹脂部材がそのような繊維状充填材を含む場合であっても、接合強度の低下を有効に防止することができるためである。   The filler may have various shapes such as a particle shape, a fiber shape, and a fabric, but preferably has a fiber shape. Since the fibrous filler such as carbon fiber inhibits the flow of the molten resin, the bonding strength is lowered. In the present invention, even if the resin member includes such a fibrous filler, the bonding is reduced. This is because a decrease in strength can be effectively prevented.

樹脂部材12は導電性充填材、特に繊維状導電性充填材を全量に対して、通常5〜50重量%の含有率で含有している。このような含有率は樹脂部材全体を樹脂成分が溶解し得る溶剤に溶解させ、充填材を濾別し、該充填材重量の全量に対する割合を算出することにより求めることができる。   The resin member 12 contains a conductive filler, particularly a fibrous conductive filler, in a content of usually 5 to 50% by weight with respect to the total amount. Such a content rate can be calculated | required by dissolving the whole resin member in the solvent in which the resin component can melt | dissolve, filtering a filler, and calculating the ratio with respect to the whole quantity of this filler weight.

熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびそれらの変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene, and modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

熱可塑性ポリマーの分子量は、接合時に軟化・溶融可能な限り、特に限定されるものではなく、通常はメルトフローレート(MFR)が2〜200、好ましくは2〜55の熱可塑性ポリマーが使用される。   The molecular weight of the thermoplastic polymer is not particularly limited as long as it can be softened and melted at the time of joining. Usually, a thermoplastic polymer having a melt flow rate (MFR) of 2-200, preferably 2-55 is used. .

本明細書中、MFRはメルトフローレートであって、JIS K7210に基づいて230℃で測定された値(g/10分間)を用いている。   In the present specification, MFR is a melt flow rate, and a value (g / 10 minutes) measured at 230 ° C. based on JIS K7210 is used.

樹脂部材12は他の添加剤を含有してもよい。   The resin member 12 may contain other additives.

以上、樹脂部材12は全体形状として略平板形状を有するものについて説明するが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。   As described above, the resin member 12 is described as having a substantially flat plate shape as a whole, but is not limited to this, and when the resin member 12 is overlapped with the metal member 11 for bonding, the portion immediately below the metal member 11 is As long as it has a substantially flat plate shape, it may have any shape.

樹脂部材12における金属部材11直下の部分の厚みtは通常、2〜10mmである。   The thickness t of the portion immediately below the metal member 11 in the resin member 12 is usually 2 to 10 mm.

(3)金属部材
金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために樹脂部材12と重ね合わせる部分のみが少なくとも略平板形状を有する限り、いかなる形状を有していてもよい。
(3) Metal member Although the metal member 11 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, it is not limited to this, and only a portion that overlaps the resin member 12 for bonding is provided. As long as it has at least a substantially flat plate shape, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みTは特に制限されるものではなく、通常、2〜10mmである。   The thickness T of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is not particularly limited, and is usually 2 to 10 mm.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

本発明においては、腐食防止の観点から好ましい実施態様において、金属部材として、端部が樹脂部材との間で熱可塑性樹脂シートの溶融物が溜まる溜まり空間を形成するように変形または加工されている金属部材を使用する。   In the present invention, in a preferred embodiment from the viewpoint of preventing corrosion, the metal member is deformed or processed so as to form a pool space in which the melt of the thermoplastic resin sheet accumulates between the end portion and the resin member. Use metal parts.

例えば、図5〜図6および図7〜図8に示す金属部材11は、端部110が樹脂部材12との間で熱可塑性樹脂シート50の溶融物が溜まる溜まり空間115を形成するように変形されている。このような金属部材11においは、端部110が樹脂部材12側とは反対側に屈曲しており、その結果、溜まり空間115が形成される。図5は、本発明の一実施態様の金属部材を用いたときの、予熱工程の一例を表す概略断面図である。図6は、図5における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を表す概略断面図である。図7は、本発明の別の一実施態様の金属部材を用いたときの、予熱工程の一例を表す概略断面図である。図8は、図7における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を表す概略断面図である。   For example, the metal member 11 shown in FIGS. 5 to 6 and FIGS. 7 to 8 is deformed so as to form a pool space 115 in which the melt of the thermoplastic resin sheet 50 is accumulated between the end portion 110 and the resin member 12. Has been. In such a metal member 11, the end portion 110 is bent to the side opposite to the resin member 12 side, and as a result, a pool space 115 is formed. FIG. 5 is a schematic cross-sectional view showing an example of a preheating step when using the metal member of one embodiment of the present invention. FIG. 6 is a schematic cross-sectional view showing an indentation stirring step, stirring maintaining step, and holding step in the joining method of the present invention performed after the preheating step in FIG. FIG. 7 is a schematic cross-sectional view showing an example of a preheating step when using a metal member according to another embodiment of the present invention. FIG. 8 is a schematic cross-sectional view showing an indentation stirring step, stirring maintaining step, and holding step in the joining method of the present invention performed after the preheating step in FIG.

また例えば、図9〜図10および図11〜図12に示す金属部材11は、端部110が樹脂部材12との間で熱可塑性樹脂シート50の溶融物が溜まる溜まり空間115を形成するように加工されている。このような金属部材11においは、端部110が樹脂部材12側に切り欠き部を有し、その結果、溜まり空間115が形成される。図9は、本発明の別の一実施態様の金属部材を用いたときの、予熱工程の一例を表す概略断面図である。図10は、図9における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を表す概略断面図である。図11は、本発明の別の一実施態様の金属部材を用いたときの、予熱工程の一例を表す概略断面図である。図12は、図11における予熱工程の後に行われる、本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を表す概略断面図である。   Further, for example, the metal member 11 shown in FIGS. 9 to 10 and FIGS. 11 to 12 forms a pool space 115 in which the melt of the thermoplastic resin sheet 50 is accumulated between the end portion 110 and the resin member 12. Has been processed. In such a metal member 11, the end portion 110 has a cutout portion on the resin member 12 side, and as a result, a pool space 115 is formed. FIG. 9 is a schematic cross-sectional view showing an example of a preheating step when using a metal member according to another embodiment of the present invention. FIG. 10 is a schematic cross-sectional view showing an indentation stirring process, a stirring maintenance process, and a holding process in the joining method of the present invention performed after the preheating process in FIG. 9. FIG. 11 is a schematic cross-sectional view showing an example of a preheating step when using a metal member according to another embodiment of the present invention. FIG. 12 is a schematic cross-sectional view showing an indentation stirring step, stirring maintaining step, and holding step in the joining method of the present invention performed after the preheating step in FIG.

本発明においては、図5,7,9および11に示すような金属部材11を用いた場合、熱および圧力を金属部材側から付与すると、熱可塑性樹脂シート50が溶融する。その後、それぞれ図6,8,10および12に示すように、該溶融物は金属部材11の端部110と樹脂部材12との間の溜まり空間15に溜まった後、その一部が金属部材11の端部110の端面11Aと樹脂部材12の表面12Bとの間からはみ出す。   In the present invention, when the metal member 11 as shown in FIGS. 5, 7, 9 and 11 is used, if heat and pressure are applied from the metal member side, the thermoplastic resin sheet 50 is melted. Thereafter, as shown in FIGS. 6, 8, 10, and 12, the melt is accumulated in the accumulation space 15 between the end portion 110 of the metal member 11 and the resin member 12, and a part thereof is the metal member 11. It protrudes from between the end surface 11A of the end portion 110 and the surface 12B of the resin member 12.

金属部材において上記のような変形または加工を行うことにより、水が滞留しても、金属部材の端部110の端面11Aと樹脂部材の表面12Bとの両方に同時に接触する確率が著しく低下する。その結果、カルバニック腐食の発生メカニズムにおける電子・イオンループの形成が阻害され、腐食がより一層、十分に防止される。   When the metal member is deformed or processed as described above, even if water stays, the probability of simultaneously contacting both the end surface 11A of the end portion 110 of the metal member and the surface 12B of the resin member is significantly reduced. As a result, formation of electron / ion loops in the mechanism of occurrence of carbamic corrosion is hindered, and corrosion is further prevented sufficiently.

[実施例1]
(樹脂部材)
ポリマーAとして、ポリアミドのみからなるポリアミドペレット(商品名;ユニチカナイロンA1020、ユニチカ社製)に炭素繊維を配合したペレットを用いた。当該ペレットの炭素繊維含有率は40重量%であった。ポリアミドのMFRは20であった。
[Example 1]
(Resin member)
As the polymer A, a pellet obtained by blending carbon fiber with a polyamide pellet (trade name; Unitika nylon A1020, manufactured by Unitika Co., Ltd.) made only of polyamide was used. The carbon fiber content of the pellet was 40% by weight. The MFR of the polyamide was 20.

ポリマーAを用いて射出成形法により、(縦100mm×横50mm×厚み3mm)寸法の樹脂部材12を製造した。詳しくは100重量部のポリマーAを250℃に加熱して、混合溶融物を得た。混合溶融物を、50℃に加熱された金型内に、射出速度100mm/秒で射出注入した後、冷却・固化させ、樹脂部材12を得た。   A resin member 12 having a size of (length 100 mm × width 50 mm × thickness 3 mm) was produced by injection molding using polymer A. Specifically, 100 parts by weight of polymer A was heated to 250 ° C. to obtain a mixed melt. The mixed melt was injected and injected into a mold heated to 50 ° C. at an injection speed of 100 mm / second, and then cooled and solidified to obtain a resin member 12.

(熱可塑性樹脂シート)
変性ポリプロピレンからなる厚み0.2mmのポリマーシート(モディックP565;三菱化学社製)を用いた。変性ポリプロピレンはプロピレンとマレイン酸無水物との共重合体であった。
熱可塑性樹脂シート50は、直径12mmの円形シートであった。
熱可塑性樹脂シート50の面積(12mm×12mm×3.14=452mm)は、金属部材11と樹脂部材12との重ね合わせ時における重複領域の面積をX(30mm×30mm=900mm)としたとき、0.50×Xであった。
(Thermoplastic resin sheet)
A 0.2 mm thick polymer sheet (Modic P565; manufactured by Mitsubishi Chemical Corporation) made of modified polypropylene was used. The modified polypropylene was a copolymer of propylene and maleic anhydride.
The thermoplastic resin sheet 50 was a circular sheet having a diameter of 12 mm.
The area of the thermoplastic resin sheet 50 (12 mm × 12 mm × 3.14 = 452 mm 2 ) is defined as X (30 mm × 30 mm = 900 mm 2 ) when the metal member 11 and the resin member 12 are overlapped. Was 0.50 × X.

(金属部材)
金属部材としては、6000系のアルミニウム合金製の平板状部材を用いた(縦100mm×横30mm×厚み1.2mm)。
(回転ツール)
回転ツールとしては、図2の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
(Metal member)
As the metal member, a flat plate member made of a 6000 series aluminum alloy was used (length 100 mm × width 30 mm × thickness 1.2 mm).
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 2 of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1および図3に示すように重ね合わせた。それらの間には、円形状熱可塑性樹脂シート50の中心が回転ツール16の回転軸上に位置するように、熱可塑性樹脂シート50を配置させた。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlaid as shown in FIGS. Between them, the thermoplastic resin sheet 50 was arranged so that the center of the circular thermoplastic resin sheet 50 was positioned on the rotation axis of the rotary tool 16.

第2ステップ:
図3に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpm)。
次いで、図4に示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図4に示すように、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpm)。
次いで、図4に示すように、接合体20から回転ツール16を抜き取り、放置冷却した。
Second step:
As shown in FIG. 3, the rotary tool 16 was rotated in a state where only the tip of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1.00 seconds). Tool rotation speed 3000 rpm).
Next, as shown in FIG. 4, the rotary tool 16 is pushed into the metal member 11 to a depth that does not reach the joining interface between the metal member 11 and the resin member 12 (pushing stirring step C2: pressure 1500N, pressure applied). Pressure time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 4, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface (stirring maintenance step C3: pressurizing force 500 N, pressurizing time. 5.75 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 4, the rotary tool 16 was extracted from the joined body 20 and left to cool.

これらの結果、図4に示すように、金属部材11の端部の端面11Aと樹脂部材12の表面12Bとの間から熱可塑性樹脂シートの一部が溶融状態にて樹脂部材12の表面12B上にはみ出て、固化した。このはみ出し幅は、0.5〜5mmであった。
また図4に示すように樹脂部材12の端部の端面12Aと金属部材11の表面との間からも熱可塑性樹脂シートの一部が溶融状態にてはみ出て、固化した。このはみ出し幅は、0.5〜5mmであった。
As a result, as shown in FIG. 4, a part of the thermoplastic resin sheet is melted between the end surface 11A of the end of the metal member 11 and the surface 12B of the resin member 12 on the surface 12B of the resin member 12. It protruded and solidified. The protrusion width was 0.5 to 5 mm.
Further, as shown in FIG. 4, a part of the thermoplastic resin sheet protrudes in a molten state from between the end surface 12 </ b> A of the end portion of the resin member 12 and the surface of the metal member 11 and solidifies. The protrusion width was 0.5 to 5 mm.

(接合直後の接合強度)
JIS Z 3136に規定されている方法により、金属部材と樹脂部材とが接合された接合体を図1の矢印Y,Yに示す方向に引っ張り、せん断引張試験を行った。せん断強度Sに基づいて評価した。
A;3kN≦S(良);
B;2kN≦S<3kN(実用上問題なし);
C;S<2kN(実用上問題あり)。
(Joint strength immediately after joining)
The joined body in which the metal member and the resin member were joined by a method defined in JIS Z 3136 was pulled in the directions indicated by arrows Y and Y in FIG. Evaluation was based on the shear strength S.
A; 3 kN ≦ S (good);
B; 2 kN ≦ S <3 kN (no problem in practical use);
C; S <2 kN (problem in practical use).

(耐腐食性)
接合体に対してJISZ2371に準じ30日間の塩水噴霧試験を実施した。その後、腐食の発生の有無に基づいて評価した。
◎;腐食は全く発生していなかった;
○;腐食はわずかに発生していたが、実用上問題なかった;
×;腐食が発生していた。
(Corrosion resistance)
The bonded body was subjected to a salt spray test for 30 days in accordance with JISZ2371. Then, it evaluated based on the presence or absence of generation | occurrence | production of corrosion.
◎; no corrosion occurred;
○: Slight corrosion occurred, but no problem in practical use;
X: Corrosion occurred.

[実施例2]
金属部材11の端部110を図5および図6に示すように変形したこと以外、実施例1と同様の方法により、金属部材と樹脂部材との接合および評価を行った。
[Example 2]
The metal member and the resin member were joined and evaluated by the same method as in Example 1 except that the end 110 of the metal member 11 was deformed as shown in FIGS. 5 and 6.

[実施例3]
金属部材11の端部110を図9および図10に示すように加工したこと以外、実施例1と同様の方法により、金属部材と樹脂部材との接合および評価を行った。
[Example 3]
The metal member and the resin member were joined and evaluated by the same method as in Example 1 except that the end 110 of the metal member 11 was processed as shown in FIGS. 9 and 10.

[比較例1]
熱可塑性樹脂シート50を使用しなかったこと以外、実施例1と同様の方法により、金属部材と樹脂部材との接合および評価を行った。
接合体において金属部材11と樹脂部材12との間からのはみ出しは全く起こっていなかった。
[Comparative Example 1]
The metal member and the resin member were joined and evaluated by the same method as in Example 1 except that the thermoplastic resin sheet 50 was not used.
In the joined body, no protrusion from between the metal member 11 and the resin member 12 occurred.

Figure 2016068130
Figure 2016068130

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
16:回転ツール
17:受け具
50:熱可塑性樹脂シート
P:金属部材表面における回転ツールによる押圧領域(押圧予定領域)
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 12: Resin member 16: Rotating tool 17: Receiving tool 50: Thermoplastic resin sheet P: Pressing area (scheduled pressing area) by rotating tool on metal member surface

Claims (12)

金属部材と導電性材料を含有する樹脂部材とを、一方の部材の少なくとも一部の端部が他の部材の表面上に配置されるように、重ね合わせ、熱および圧力を付与することにより樹脂部材を軟化および溶融させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
金属部材と樹脂部材との間に熱可塑性樹脂シートを介在させて、熱および圧力を付与することにより、前記一方の部材の少なくとも一部の端部と前記他方の部材の表面との間から熱可塑性樹脂シートの一部を溶融状態にて他方の部材の表面上にはみ出させることを特徴とする金属部材と樹脂部材との接合方法。
Resin by superimposing a metal member and a resin member containing a conductive material, and applying heat and pressure so that at least a part of one member is disposed on the surface of the other member A method for joining a metal member and a resin member by a hot-pressure joining method for softening and melting a member,
By applying a heat and pressure by interposing a thermoplastic resin sheet between the metal member and the resin member, heat is generated from between the end of at least a part of the one member and the surface of the other member. A method for joining a metal member and a resin member, characterized in that a part of the plastic resin sheet is protruded on the surface of the other member in a molten state.
金属部材の少なくとも一部の端部が樹脂部材の表面上に配置され、
金属部材と樹脂部材との間からはみ出した溶融物が金属部材の当該端部の端面の少なくとも一部を覆う請求項1に記載の金属部材と樹脂部材との接合方法。
At least a part of the end of the metal member is disposed on the surface of the resin member,
The method for joining the metal member and the resin member according to claim 1, wherein the melt that protrudes between the metal member and the resin member covers at least a part of the end surface of the end portion of the metal member.
金属部材として、端部が樹脂部材との間で熱可塑性樹脂シートの溶融物が溜まる溜まり空間を形成するように変形または加工されている金属部材を使用する請求項2に記載の金属部材と樹脂部材との接合方法。   The metal member and the resin according to claim 2, wherein the metal member is a metal member that is deformed or processed so as to form a pool space in which a melt of the thermoplastic resin sheet is accumulated between the end portion and the resin member. Joining method with member. 金属部材として、端部が樹脂部材側とは反対側に屈曲している金属部材を使用する請求項3に記載の金属部材と樹脂部材との接合方法。   The method for joining a metal member and a resin member according to claim 3, wherein the metal member is a metal member whose end is bent to the side opposite to the resin member side. 金属部材として、端部が樹脂部材側に切り欠き部を有する金属部材を使用する請求項3に記載の金属部材と樹脂部材との接合方法。   The joining method of the metal member and resin member of Claim 3 which uses the metal member which an edge part has a notch part in the resin member side as a metal member. 熱および圧力を金属部材側から付与することにより、熱可塑性樹脂シートを溶融させ、該溶融物を金属部材の端部と樹脂部材との間の溜まり空間に溜めた後、その一部を金属部材の端部と樹脂部材の表面との間からはみ出させる請求項2〜5のいずれかに記載の金属部材と樹脂部材との接合方法。   By applying heat and pressure from the metal member side, the thermoplastic resin sheet is melted, and after the melt is accumulated in a storage space between the end of the metal member and the resin member, a part of the melt is applied to the metal member. The joining method of the metal member and resin member in any one of Claims 2-5 made to protrude from between the edge part of this, and the surface of a resin member. 熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む請求項1〜6のいずれかに記載の接合方法:
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で熱可塑性樹脂シートおよび樹脂部材を軟化・溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップ。
The hot-pressure bonding method is a friction stir welding method,
The joining method according to any one of claims 1 to 6, wherein the friction stir welding method includes the following steps:
A first step of superimposing the metal member and the resin member; and while rotating the rotating tool, the metal member is pressed against the metal member to generate frictional heat, and the thermoplastic resin sheet and the resin member are softened and melted by the frictional heat. Then, a second step of solidifying and joining the metal member and the resin member.
上記第2ステップが、回転ツールを金属部材に押し込んで金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を備えている請求項7に記載の接合方法。   The joining method according to claim 7, wherein the second step includes a pushing agitation step of pushing the rotary tool into the metal member to enter a depth that does not reach the joining interface between the metal member and the resin member. 上記第2ステップが、押込み撹拌工程の前に、回転ツールの先端部のみを金属部材の表面部に接触させた状態で上記回転ツールを回転させる予熱工程をさらに備えている請求項8に記載の接合方法。   The said 2nd step is further equipped with the pre-heating process which rotates the said rotation tool in the state which contacted only the front-end | tip part of the rotation tool with the surface part of the metal member before an indentation stirring process. Joining method. 上記予熱工程では上記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
上記押込み撹拌工程では上記回転ツールを上記第1の加圧力より大きい第2の加圧力で押圧しつつ上記第1の加圧時間より短い第2の加圧時間だけ回転させる請求項9に記載の接合方法。
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
10. The method according to claim 9, wherein, in the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force. Joining method.
上記第2ステップが、回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
上記撹拌維持工程では上記回転ツールを上記第1の加圧力より小さい第3の加圧力で押圧しつつ上記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項10に記載の接合方法。
The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth that does not reach the joining boundary surface,
The said stirring maintenance process WHEREIN: The said rotating tool is rotated only for 3rd pressurization time longer than the said 1st pressurization time, pressing with the 3rd pressurization force smaller than the said 1st pressurization force. Joining method.
上記第2ステップが、撹拌維持工程の後に、上記回転ツールの回転を停止し、その状態で上記回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項11に記載の接合方法。   The said 2nd step is further equipped with the holding process which stops rotation of the said rotation tool after a stirring maintenance process, and hold | maintains the said rotation tool with a predetermined pressurizing force for a predetermined pressurization time in that state. 11. The joining method according to 11.
JP2014201792A 2014-09-30 2014-09-30 Method of joining metal member and resin member Active JP6098606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201792A JP6098606B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201792A JP6098606B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2016068130A true JP2016068130A (en) 2016-05-09
JP6098606B2 JP6098606B2 (en) 2017-03-22

Family

ID=55863598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201792A Active JP6098606B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6098606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653479A (en) * 2019-09-26 2020-01-07 沈阳航空航天大学 Friction stir and ultrasonic composite welding method for light alloy and resin-based composite material
US10549379B2 (en) 2016-02-05 2020-02-04 Kabushiki Kaisha Toshiba Friction stir welding method and joined body
JP2020138455A (en) * 2019-02-28 2020-09-03 マツダ株式会社 Joining method and apparatus for joining metal members and resin members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095308A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006297927A (en) * 2005-03-25 2006-11-02 Toray Ind Inc Structure for automobile
US20070044406A1 (en) * 2005-08-26 2007-03-01 Van Aken David C Sealants for structural member joints and methods of using same
JP2009113077A (en) * 2007-11-06 2009-05-28 Mazda Motor Corp Friction spot joining method
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095308A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006297927A (en) * 2005-03-25 2006-11-02 Toray Ind Inc Structure for automobile
US20070044406A1 (en) * 2005-08-26 2007-03-01 Van Aken David C Sealants for structural member joints and methods of using same
JP2009113077A (en) * 2007-11-06 2009-05-28 Mazda Motor Corp Friction spot joining method
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10549379B2 (en) 2016-02-05 2020-02-04 Kabushiki Kaisha Toshiba Friction stir welding method and joined body
JP2020138455A (en) * 2019-02-28 2020-09-03 マツダ株式会社 Joining method and apparatus for joining metal members and resin members
JP7156086B2 (en) 2019-02-28 2022-10-19 マツダ株式会社 METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
CN110653479A (en) * 2019-09-26 2020-01-07 沈阳航空航天大学 Friction stir and ultrasonic composite welding method for light alloy and resin-based composite material

Also Published As

Publication number Publication date
JP6098606B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6315017B2 (en) Method of joining metal member and resin member
JP6102813B2 (en) Method of joining metal member and resin member
JP6098606B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6102805B2 (en) Dissimilar member joining method
JP6098605B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6098565B2 (en) Method of joining metal member and resin member
JP6614204B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP2020138455A (en) Joining method and apparatus for joining metal members and resin members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150