JP6098551B2 - Method of joining metal member and resin member - Google Patents

Method of joining metal member and resin member Download PDF

Info

Publication number
JP6098551B2
JP6098551B2 JP2014043053A JP2014043053A JP6098551B2 JP 6098551 B2 JP6098551 B2 JP 6098551B2 JP 2014043053 A JP2014043053 A JP 2014043053A JP 2014043053 A JP2014043053 A JP 2014043053A JP 6098551 B2 JP6098551 B2 JP 6098551B2
Authority
JP
Japan
Prior art keywords
resin member
metal member
rotary tool
polymer
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014043053A
Other languages
Japanese (ja)
Other versions
JP2015168102A (en
Inventor
耕二郎 田中
耕二郎 田中
勝也 西口
勝也 西口
弘祐 住田
弘祐 住田
甲斐 裕之
裕之 甲斐
松田 祐之
祐之 松田
由紀 國府田
由紀 國府田
小林 めぐみ
めぐみ 小林
嗣久 宮本
嗣久 宮本
杉本 幸弘
幸弘 杉本
宣夫 坂手
宣夫 坂手
健太 岡田
健太 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014043053A priority Critical patent/JP6098551B2/en
Publication of JP2015168102A publication Critical patent/JP2015168102A/en
Application granted granted Critical
Publication of JP6098551B2 publication Critical patent/JP6098551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材との接合方法および該方法において使用される樹脂部材に関する。   The present invention relates to a method for joining a metal member and a resin member, and a resin member used in the method.

従来より、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、あるいはスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、金属部材と樹脂部材とを重ね合わせ、回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を溶融・軟化させて金属部材と樹脂部材とを接合する方法である。   Conventionally, weight reduction has been demanded in the fields of automobiles, railway vehicles, aircraft, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to reduce the thickness of steel sheets, or aluminum alloy materials have been used as substitutes for steel materials, and the use of resin materials has also advanced. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. The friction stir welding method is a method in which a metal member and a resin member are overlapped, a rotating tool is rotated and pressed against the metal member to generate frictional heat, and the resin member is melted and softened by this frictional heat to form a metal member. And a resin member.

このような摩擦撹拌接合方法においては、例えば、接合強度の観点から、金属部材の一方の面に、樹脂部材を構成する熱可塑性樹脂と相溶可能な熱可塑性樹脂からなる塗膜を形成し、当該金属部材を塗膜が形成された面が樹脂部材と接触するように配置して接合を行う技術(特許文献1)が開示されている。   In such a friction stir welding method, for example, from the viewpoint of bonding strength, a coating film made of a thermoplastic resin compatible with the thermoplastic resin constituting the resin member is formed on one surface of the metal member, The technique (patent document 1) which arrange | positions and joins the said metal member so that the surface in which the coating film was formed contacts a resin member is disclosed.

特開2009−279858号公報JP 2009-279858 A

しかしながら、上記した技術においては、摩擦撹拌接合を行う前に、金属部材の表面に塗膜を形成する必要があるので、工程数が増え、コストを増大させる原因となる。   However, in the above-described technique, it is necessary to form a coating film on the surface of the metal member before performing friction stir welding, which increases the number of processes and increases costs.

そこで、本発明の発明者等により、カルボン酸変性ポリマーからなる樹脂部材を用いて、金属部材との接合強度を向上させる試みがなされているが、カルボン酸変性ポリマーは比較的融点が低く、樹脂部材の耐熱性が低下するため、得られた接合体の用途が制限されることがある。   Therefore, the inventors of the present invention have attempted to improve the bonding strength with a metal member by using a resin member made of a carboxylic acid-modified polymer. However, the carboxylic acid-modified polymer has a relatively low melting point and is a resin. Since the heat resistance of a member falls, the use of the obtained joined body may be restrict | limited.

本発明は、工程数を増やすことなく、耐熱性が十分に向上した樹脂部材を金属部材に十分な強度で接合することができる金属部材と樹脂部材との接合方法および該方法において使用される樹脂部材を提供することを目的とする。   The present invention relates to a method for joining a metal member and a resin member, which can join a resin member having sufficiently improved heat resistance to the metal member with sufficient strength without increasing the number of steps, and a resin used in the method. An object is to provide a member.

本発明は、
金属部材と樹脂部材とを重ね合わせ、熱および圧力を金属部材側から付与することにより樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法であって、
樹脂部材として、金属部材との接合表面におけるカルボニル基の存在量が内層部におけるカルボニル基の存在量よりも大きい樹脂部材を用いることを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention
It is a hot-pressure bonding method in which a metal member and a resin member are overlapped, the resin member is softened by applying heat and pressure from the metal member side, and the metal member and the resin member are bonded.
The present invention relates to a method for joining a metal member and a resin member, wherein the resin member is a resin member in which the amount of carbonyl groups on the joining surface with the metal member is larger than the amount of carbonyl groups on the inner layer.

本発明はまた、
上記接合方法において、熱圧式接合方法が摩擦撹拌接合方法であり、
該摩擦撹拌接合方法が以下のステップを含む接合方法に関する:
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化させて金属部材と樹脂部材とを接合する第2ステップ。
The present invention also provides
In the above bonding method, the hot-pressure bonding method is a friction stir welding method,
The friction stir welding method relates to a joining method including the following steps:
A first step of superimposing the metal member and the resin member; and while rotating the rotary tool, the metal member is pressed against the metal member to generate frictional heat, and the frictional heat softens the resin member to form the metal member and the resin member. Second step of joining.

本発明はまた、上記接合方法において使用される樹脂部材に関する。   The present invention also relates to a resin member used in the joining method.

本発明の接合方法によれば、金属部材との接合表面におけるカルボニル基の存在量が内層部よりも大きい樹脂部材を用いるため、樹脂部材の耐熱性が向上する。しかも、当該樹脂部材を金属部材に十分な強度で接合することができる。   According to the joining method of the present invention, since the resin member having a larger amount of carbonyl groups on the joining surface with the metal member than the inner layer portion is used, the heat resistance of the resin member is improved. Moreover, the resin member can be bonded to the metal member with sufficient strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一例を示す模式図である。It is a schematic diagram which shows an example of the friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法における金属部材と樹脂部材との接合メカニズムを示す概念図である。It is a conceptual diagram which shows the joining mechanism of the metal member and resin member in the joining method of this invention. 本発明の接合方法に使用される樹脂部材の一例の端部の拡大図である。It is an enlarged view of the edge part of an example of the resin member used for the joining method of this invention. 本発明の接合方法に使用される回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotary tool used for the joining method of this invention. 本発明の接合方法における予熱工程を説明するための断面図である。It is sectional drawing for demonstrating the preheating process in the joining method of this invention. 本発明の接合方法における押込み撹拌工程、撹拌維持工程及び保持工程を説明するための断面図である。It is sectional drawing for demonstrating the pushing stirring process in the joining method of this invention, a stirring maintenance process, and a holding process. 本発明の接合方法で得られた接合体の断面図である。It is sectional drawing of the conjugate | zygote obtained by the joining method of this invention. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、熱および圧力を、金属部材側から付与することにより、好ましくは金属部材側から局所的に付与することにより、樹脂部材を軟化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。本発明の接合方法において採用される接合方式は、加圧しながら加熱を行う方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、レーザー加熱接合方法、抵抗加熱接合方法(通電加熱接合方法)、誘導加熱接合方法、超音波加熱接合方法等であってもよい。好ましくは摩擦撹拌接合方法が採用される。   The bonding method of the present invention softens the resin member by superimposing the metal member and the resin member and applying heat and pressure from the metal member side, preferably locally from the metal member side. This is a hot-pressure joining method for joining a metal member and a resin member. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of heating while applying pressure. For example, a friction stir welding method, a laser heating joining method, a resistance heating joining method (electric heating) Bonding method), induction heating bonding method, ultrasonic heating bonding method and the like. A friction stir welding method is preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、回転ツールを回転させつつ金属部材に対して押圧することにより発生する摩擦熱を利用した接合方法である。
レーザー加熱接合方法とは、接合部材を拘束した状態で、レーザーを金属部材に照射することにより生じる熱を利用した接合方法である。レーザーとしては、YAGレーザー、ファイバーレーザーまたは半導体レーザーなどが使用される。
抵抗加熱接合方法とは、接合部材を拘束した状態で、金属部材に直接電流を流すことにより生じる熱を利用した接合方法である。
誘導加熱接合方法とは、接合部材を拘束した状態で、電磁誘導作用により金属部材に誘導電流を生じさせ、該電流により生じる熱を利用した接合方法である。
超音波加熱接合方法とは、樹脂部材側から加圧しながら、樹脂部材に超音波振動を起こさせ、該振動により生じる金属部材/樹脂部材間の摩擦熱を利用した接合方法である。
As will be described in detail later, the friction stir welding method is a joining method using frictional heat generated by pressing against a metal member while rotating a rotary tool.
The laser heating bonding method is a bonding method using heat generated by irradiating a metal member with a laser in a state where the bonding member is constrained. As the laser, a YAG laser, a fiber laser, a semiconductor laser, or the like is used.
The resistance heating joining method is a joining method using heat generated by flowing a current directly through a metal member in a state where the joining member is constrained.
The induction heating joining method is a joining method in which an induction current is generated in a metal member by electromagnetic induction while the joining member is constrained, and heat generated by the current is used.
The ultrasonic heating joining method is a joining method using ultrasonic vibration in the resin member while applying pressure from the resin member side, and utilizing frictional heat between the metal member and the resin member generated by the vibration.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて説明するが、後述する樹脂部材を用いる限り、上記した他の接合方法を用いても本発明の効果が得られることは明らかである。   Hereinafter, the joining method of the present invention that employs the friction stir welding method will be described with reference to the drawings. However, as long as the resin member described later is used, the effects of the present invention can be obtained even if other joining methods described above are used. Is clear.

まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、円柱状の回転ツール16を具備している。回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図4参照)回りに回転しつつ、押圧領域P(押圧予定領域)において、矢印A2のように下方に向けて金属部材11を押圧する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化・溶融し、その結果、金属部材11と樹脂部材12とが接合される。   First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding apparatus suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device that friction stir welds a metal member 11 and a resin member 12, and includes a cylindrical rotary tool 16. As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 4), the metal member 11 is pressed downward in the pressing region P (scheduled pressing region) as indicated by an arrow A2. Friction heat is generated by the pressing of the rotary tool 16, and this frictional heat is conducted to the resin member 12 to soften and melt the resin member 12, and as a result, the metal member 11 and the resin member 12 are joined.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(1)樹脂部材
本発明の接合方法において使用される樹脂部材12は、カルボニル基の含有量が異なる少なくとも2種類のポリマーを含むものであり、通常、カルボニル基の含有量が比較的高いポリマー(本明細書中、単に「ポリマーA」ということがある)およびカルボニル基の含有量が比較的低いポリマー(本明細書中、単に「ポリマーB」ということがある)を含む。本発明の樹脂部材12において、ポリマーAは主として金属部材との接合表面を形成し、ポリマーBは主として内層部を形成する。
(1) Resin Member The resin member 12 used in the joining method of the present invention includes at least two types of polymers having different carbonyl group contents, and is generally a polymer having a relatively high carbonyl group content ( In the present specification, the polymer includes a polymer having a relatively low content of a carbonyl group (sometimes simply referred to as “polymer A”). In the resin member 12 of the present invention, the polymer A mainly forms the bonding surface with the metal member, and the polymer B mainly forms the inner layer portion.

ポリマーにおいてカルボニル基の含有量が異なるとは、ポリマー全体に対するポリマー主鎖に結合したカルボニル基の重量割合として算出した値が異なるという意味である。以下、組み合わせは「ポリマーA/ポリマーB」の順序で記載するものとする。   The difference in the carbonyl group content in the polymer means that the value calculated as the weight ratio of the carbonyl group bonded to the polymer main chain with respect to the whole polymer is different. Hereinafter, the combinations are described in the order of “polymer A / polymer B”.

樹脂部材12に含まれるポリマーA/ポリマーBの組み合わせは、それらのカルボニル基含有量が異なる組み合わせであれば、いかなる組み合わせであってよいが、樹脂部材の耐熱性の観点から、カルボン酸変性ポリオレフィン/未変性ポリオレフィンの組み合わせが好ましい。以下、ポリマーA/ポリマーBとしてカルボン酸変性ポリオレフィン/未変性ポリオレフィンを含有させる場合について説明するが、本発明は、後述するカルボニル基の存在量勾配が達成される限り、ポリマーA/ポリマーBとして、カルボニル基の含有量が比較的高いカルボン酸変性ポリオレフィン/カルボニル基の含有量が比較的低いカルボン酸変性ポリオレフィンを含有させることを妨げるものではない。   The combination of polymer A / polymer B contained in the resin member 12 may be any combination as long as their carbonyl group content is different. From the viewpoint of the heat resistance of the resin member, the carboxylic acid-modified polyolefin / A combination of unmodified polyolefins is preferred. Hereinafter, the case where carboxylic acid-modified polyolefin / non-modified polyolefin is contained as polymer A / polymer B will be described. However, as long as the carbonyl group abundance gradient described below is achieved, the present invention is as polymer A / polymer B. This does not prevent the inclusion of a carboxylic acid-modified polyolefin having a relatively high carbonyl group content / a carboxylic acid modified polyolefin having a relatively low carbonyl group content.

カルボン酸変性ポリオレフィンは、ポリオレフィン分子鎖の主鎖および/または側鎖にカルボキシル基が導入されたポリマーである。カルボン酸変性ポリオレフィンとしては、ポリオレフィンの主鎖に不飽和カルボン酸がグラフトされたグラフトコポリマーが好ましく使用される。   The carboxylic acid-modified polyolefin is a polymer in which a carboxyl group is introduced into the main chain and / or side chain of a polyolefin molecular chain. As the carboxylic acid-modified polyolefin, a graft copolymer in which an unsaturated carboxylic acid is grafted on the main chain of the polyolefin is preferably used.

カルボン酸変性ポリオレフィンを構成するポリオレフィンは、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテンなどのα−オレフィンからなる群から選択される1種以上のモノマーからなるホモポリマーまたはコポリマー、またはこれらの混合物である。好ましいポリオレフィンはポリプロピレンである。   The polyolefin constituting the carboxylic acid-modified polyolefin is a homopolymer or copolymer composed of one or more monomers selected from the group consisting of α-olefins such as ethylene, propylene, butene, pentene, hexene, heptene, octene, or the like. It is a mixture. A preferred polyolefin is polypropylene.

カルボン酸変性ポリオレフィンを構成する不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸、無水マレイン酸、またはこれらの混合物が使用される。好ましい不飽和カルボン酸はマレイン酸、無水マレイン酸またはこれらの混合物であり、より好ましくは無水マレイン酸である。   As the unsaturated carboxylic acid constituting the carboxylic acid-modified polyolefin, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, or a mixture thereof is used. Preferred unsaturated carboxylic acids are maleic acid, maleic anhydride or mixtures thereof, more preferably maleic anhydride.

カルボン酸変性ポリオレフィンにおける変性量は特に限定されないが、0.01〜1%であることが好ましい。   The amount of modification in the carboxylic acid-modified polyolefin is not particularly limited, but is preferably 0.01 to 1%.

変性量はポリマー全体に対する不飽和カルボン酸の重量割合として算出した値である。   The amount of modification is a value calculated as a weight ratio of unsaturated carboxylic acid to the whole polymer.

カルボン酸変性ポリオレフィンの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2.0g/10分間以上、特に5.0g/10分間以上のカルボン酸変性ポリオレフィンが好ましく使用される。   The molecular weight of the carboxylic acid-modified polyolefin is not particularly limited. For example, a carboxylic acid-modified polyolefin having an MFR (melt flow rate value) at 230 ° C. of 2.0 g / 10 minutes or more, particularly 5.0 g / 10 minutes or more. Preferably used.

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

カルボン酸変性ポリオレフィンは、例えば、市販のモディックP565(三菱化学社製)、モディックP553A(三菱化学社製)として入手可能である。   The carboxylic acid-modified polyolefin is available as, for example, commercially available Modic P565 (manufactured by Mitsubishi Chemical Corporation) or Modic P553A (manufactured by Mitsubishi Chemical Corporation).

未変性ポリオレフィンとしては、カルボン酸変性ポリオレフィンを構成するポリオレフィンとして説明したポリマーと同様のものが使用される。好ましい未変性ポリオレフィンはポリプロピレンである。   As the unmodified polyolefin, the same polymers as those described as the polyolefin constituting the carboxylic acid-modified polyolefin are used. A preferred unmodified polyolefin is polypropylene.

未変性ポリオレフィンの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間の未変性ポリオレフィンが好ましく使用される。   The molecular weight of the unmodified polyolefin is not particularly limited. For example, an unmodified polyolefin having an MFR (melt flow rate value) at 230 ° C. of 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes is preferably used. .

未変性ポリオレフィンは、例えば、市販のノバテックFY6(日本ポリプロ社製、未変性ポリプロピレン、MFR2.5)、ノバテックMA3(日本ポリプロ社製、未変性ポリプロピレン、MFR11)、ノバテックMA1B(日本ポリプロ社製、未変性ポリプロピレン、MFR21)として入手可能である。   The unmodified polyolefin is, for example, commercially available Novatec FY6 (Nippon Polypro, unmodified polypropylene, MFR2.5), Novatec MA3 (Nippon Polypro, unmodified polypropylene, MFR11), Novatec MA1B (Nippon Polypro, unmodified). Modified polypropylene, MFR 21) is available.

カルボン酸変性ポリオレフィン/未変性ポリオレフィンの組み合わせは、相溶性の観点から、同系統の組み合わせが選択される。同系統とは、当該組み合わせのカルボン酸変性ポリオレフィンおよび未変性ポリオレフィンが共通するモノマーを含有するという意味である。   The combination of carboxylic acid-modified polyolefin / unmodified polyolefin is selected from the same series from the viewpoint of compatibility. The same system means that the combination of the carboxylic acid-modified polyolefin and the unmodified polyolefin contains a common monomer.

このようなカルボン酸変性ポリオレフィン/未変性ポリオレフィンの好ましい組み合わせの具体例として、例えば、以下の組み合わせが挙げられる:
(1)カルボン酸変性ポリプロピレン/未変性ポリプロピレン;
(2)カルボン酸変性ポリプロピレン/未変性エチレン−プロピレン共重合体;
(3)カルボン酸変性エチレン−プロピレン共重合体/未変性ポリプロピレン;
(4)カルボン酸変性ポリエチレン/未変性ポリエチレン;
(5)カルボン酸変性エチレン−プロピレン共重合体/未変性ポリエチレン;
(6)カルボン酸変性ポリエチレン/未変性エチレン−プロピレン共重合体;
(7)カルボン酸変性ポリエチレン/未変性エチレン−1−ブテン共重合体;
(8)カルボン酸変性ポリエチレン/未変性ポリプロピレン;
(9)カルボン酸変性エチレン−1−ブテン共重合体/未変性エチレン−プロピレン共重合体。
Specific examples of such a preferred combination of carboxylic acid-modified polyolefin / unmodified polyolefin include, for example, the following combinations:
(1) Carboxylic acid modified polypropylene / unmodified polypropylene;
(2) Carboxylic acid-modified polypropylene / unmodified ethylene-propylene copolymer;
(3) Carboxylic acid-modified ethylene-propylene copolymer / unmodified polypropylene;
(4) Carboxylic acid modified polyethylene / unmodified polyethylene;
(5) Carboxylic acid-modified ethylene-propylene copolymer / unmodified polyethylene;
(6) Carboxylic acid-modified polyethylene / unmodified ethylene-propylene copolymer;
(7) Carboxylic acid-modified polyethylene / unmodified ethylene-1-butene copolymer;
(8) Carboxylic acid modified polyethylene / unmodified polypropylene;
(9) Carboxylic acid-modified ethylene-1-butene copolymer / unmodified ethylene-propylene copolymer.

上記組み合わせのうち、金属部材に対する接合強度の観点からは、組み合わせ(1)〜(3)が好ましく、(1)〜(2)がより好ましく、(1)がさらに好ましい。   Among the above combinations, from the viewpoint of bonding strength to the metal member, the combinations (1) to (3) are preferable, (1) to (2) are more preferable, and (1) is more preferable.

本発明においてポリマーAおよびポリマーBを含む樹脂部材12は、カルボニル基の存在量が金属部材11との接合表面と内層部との間で特定の勾配を有するものである。すなわち、樹脂部材12は、金属部材11との接合表面におけるカルボニル基の存在量が内層部よりも大きい。ポリマーAは一般的にポリマーBよりも融点が比較的低いところ、上記のようなカルボニル基の存在量勾配を有する樹脂部材12においては、そのようなポリマーAを主として金属部材11との接合表面に局在させ、ポリマーBを主として内層部に存在させることができる。それらの結果として、本発明の樹脂部材12は、樹脂部材全体がポリマーAからなる場合と比較して、全体として優れた耐熱性を達成しながらも、金属部材11に対して十分な強度で接合することができる。   In the present invention, the resin member 12 containing the polymer A and the polymer B has a specific gradient between the bonding surface of the metal member 11 and the inner layer portion in the amount of the carbonyl group. That is, the resin member 12 has a larger amount of carbonyl groups on the bonding surface with the metal member 11 than the inner layer portion. The polymer A generally has a melting point relatively lower than that of the polymer B. In the resin member 12 having the carbonyl group abundance gradient as described above, such a polymer A is mainly used on the bonding surface with the metal member 11. The polymer B can be mainly present in the inner layer portion. As a result, the resin member 12 of the present invention is bonded to the metal member 11 with sufficient strength while achieving excellent heat resistance as a whole as compared with the case where the entire resin member is made of polymer A. can do.

このような樹脂部材12が金属部材11に対して十分な強度で接合されるメカニズムは以下に基づくものと考えられる。例えば、金属部材11と樹脂部材12との接合界面を模式的に表す図2に示すように、樹脂部材12の表面に存在するカルボニル基の酸素原子は、炭素原子との電気陰性度の差に基づいて、δ−の電荷を有する。一方、金属部材11の表面にある金属酸化物層において、金属原子Mは、酸素原子との電気陰性度の差に基づいて、δ+の電荷を有する。これらの結果として、接合時において樹脂部材12表面の溶融により、カルボニル基の酸素原子と金属酸化物層の金属原子との間で静電相互作用による電気化学的結合が生じ、優れた接合強度が得られるものと考えられる。なお、接合には、上記のような化学的結合だけでなく、アンカー効果による機械的結合も寄与するものと考えられる。アンカー効果とは、金属表面の微細な凹凸に樹脂が侵入して形成されたかしめ構造により得られるものである。   The mechanism by which such a resin member 12 is bonded to the metal member 11 with sufficient strength is considered to be based on the following. For example, as shown in FIG. 2 which schematically represents the bonding interface between the metal member 11 and the resin member 12, the oxygen atom of the carbonyl group present on the surface of the resin member 12 is in a difference in electronegativity from the carbon atom. Based on, it has a charge of δ−. On the other hand, in the metal oxide layer on the surface of the metal member 11, the metal atom M has a charge of δ + based on the difference in electronegativity from the oxygen atom. As a result, due to melting of the surface of the resin member 12 at the time of bonding, an electrochemical bond due to electrostatic interaction occurs between the oxygen atom of the carbonyl group and the metal atom of the metal oxide layer, resulting in excellent bonding strength. It is considered to be obtained. In addition, it is considered that not only the chemical bond as described above but also the mechanical bond due to the anchor effect contributes to the bonding. The anchor effect is obtained by a caulking structure formed by a resin intruding into fine irregularities on a metal surface.

本発明において樹脂部材12が後で詳述するカルボニル基の存在量勾配を有すべき金属部材11との接合表面は、図3に示すように、樹脂部材12における金属部材11との接合側の表面120における、少なくとも領域P’を含む領域であり、好ましくは少なくとも領域Qを含む領域であり、より好ましくは少なくとも領域Rを含む領域である。樹脂部材の製造容易性および樹脂部材の耐熱性の観点からは、樹脂部材12がカルボニル基の存在量勾配を有すべき金属部材11との接合表面は、樹脂部材12における金属部材11との接合側の表面120の全面であることが最も好ましい。領域P’は、金属部材11と樹脂部材12とを重ね合わせたとき、金属部材11上における回転ツール16の押圧領域P(図1参照)の直下に対応する樹脂部材12表面上の領域である。領域Qは、金属部材11と樹脂部材12との間で接合のための軟化・溶融が起こる樹脂部材表面の領域であり、上記領域P’を包含する領域である。領域Rは、金属部材11と樹脂部材12とを重ね合わせたとき、金属部材11と接触する樹脂部材12表面上の領域である。   In the present invention, as shown in FIG. 3, the bonding surface of the resin member 12 with the metal member 11 that should have a carbonyl group abundance gradient, which will be described in detail later, is on the bonding side of the resin member 12 with the metal member 11. The surface 120 is a region including at least the region P ′, preferably a region including at least the region Q, and more preferably a region including at least the region R. From the viewpoint of the ease of manufacturing the resin member and the heat resistance of the resin member, the bonding surface of the resin member 12 with the metal member 11 that should have a gradient of carbonyl group abundance is the bonding of the resin member 12 with the metal member 11. The entire surface of the side surface 120 is most preferable. The region P ′ is a region on the surface of the resin member 12 corresponding to a position immediately below the pressing region P (see FIG. 1) of the rotary tool 16 on the metal member 11 when the metal member 11 and the resin member 12 are overlapped. . The region Q is a region on the surface of the resin member where softening / melting for joining between the metal member 11 and the resin member 12 occurs, and includes the region P ′. The region R is a region on the surface of the resin member 12 that contacts the metal member 11 when the metal member 11 and the resin member 12 are overlapped.

樹脂部材12がポリマーAとしてカルボン酸変性ポリプロピレンおよびポリマーBとして未変性ポリプロピレンを含む場合、カルボニル基の存在量は、C=Oピーク強度/CHピーク強度の比率rで示すことができる。この場合、樹脂部材12は、金属部材11との接合表面における比率rが内層部の比率rよりも大きければよく、通常、樹脂部材12における金属部材11との接合表面の比率rは内層部の比率rよりも0.0001〜0.01だけ大きく、好ましくは0.001〜0.01だけ大きく、より好ましくは0.003〜0.01だけ大きい。 When the resin member 12 includes carboxylic acid-modified polypropylene as the polymer A and unmodified polypropylene as the polymer B, the abundance of the carbonyl group can be represented by a ratio r of C = O peak intensity / CH 3 peak intensity. In this case, the ratio r of the bonding surface of the resin member 12 to the metal member 11 should be larger than the ratio r of the inner layer portion, and the ratio r of the bonding surface of the resin member 12 to the metal member 11 is usually equal to that of the inner layer portion. It is larger than the ratio r by 0.0001 to 0.01, preferably larger by 0.001 to 0.01, more preferably larger by 0.003 to 0.01.

金属部材11との接合表面における比率rは通常、0.001より大きい、特に0.001より大きく0.015以下、好ましくは0.003〜0.015である。接合表面における比率rが小さすぎると、十分な接合強度が得られない。
内層部の比率rは通常、0以上、特に0〜0.01であり、好ましくは0〜0.003である。内層部の比率rが大きすぎると、十分な耐熱性が得られない。
The ratio r on the bonding surface with the metal member 11 is usually greater than 0.001, particularly greater than 0.001 and not more than 0.015, preferably 0.003 to 0.015. If the ratio r on the bonding surface is too small, sufficient bonding strength cannot be obtained.
The ratio r of the inner layer portion is usually 0 or more, particularly 0 to 0.01, preferably 0 to 0.003. If the ratio r of the inner layer portion is too large, sufficient heat resistance cannot be obtained.

C=Oピーク強度/CHピーク強度の比率rはIRスペクトル分析により測定することができる。詳しくはIRスペクトル分析により1713〜1792cm−1にあるC=Oピークの強度および1375〜1395cm−1にあるCHピークの強度を測定し、それらの比率を求める。IRスペクトル分析は、ISO8985(JIS K7192)の4.1(赤外分光)に準じた試料調整と測定およびデータ解析を行う。 The ratio r of C = O peak intensity / CH 3 peak intensity can be measured by IR spectrum analysis. For details, measures the intensity of the CH 3 peak in the C = intensity of O peaks and 1375~1395Cm -1 in 1713~1792Cm -1 by IR spectrum analysis to determine their ratio. The IR spectrum analysis performs sample preparation, measurement, and data analysis in accordance with ISO8985 (JIS K7192) 4.1 (infrared spectroscopy).

金属部材11との接合表面における比率rは、樹脂部材12における所定の領域の表面から深さ10μmまでの試料をIRスペクトル分析に供することより測定された値である。測定は、所定の領域において、100mmあたり2個の測定点の割合で行ったときの平均値を求める。
内層部の比率rは、樹脂部材12の厚みをt(μm)としたとき、深さt/2から深さt/2+10μmまでの試料をIRスペクトル分析に供することより測定された値である。測定は、所定の領域において、上記と同様の測定点の割合で行ったときの平均値を求める。
The ratio r on the bonding surface with the metal member 11 is a value measured by subjecting a sample from a surface of a predetermined region in the resin member 12 to a depth of 10 μm for IR spectrum analysis. The measurement is performed to obtain an average value when measured at a ratio of two measurement points per 100 mm 2 in a predetermined region.
The ratio r of the inner layer portion is a value measured by subjecting a sample from a depth t / 2 to a depth t / 2 + 10 μm to IR spectrum analysis, where the thickness of the resin member 12 is t (μm). The measurement is performed by obtaining an average value when the measurement is performed at a ratio of measurement points similar to the above in a predetermined region.

本発明においては、前記接合表面における比率rを有する表層部の厚みは通常、0.01〜1mmであり、好ましくは0.015〜0.50mmである。
内層部の厚みは通常、0.98〜4.98mmであり、好ましくは1.98〜4.98mmである。
In the present invention, the thickness of the surface layer portion having the ratio r on the bonding surface is usually 0.01 to 1 mm, preferably 0.015 to 0.50 mm.
The thickness of the inner layer portion is usually 0.98 to 4.98 mm, preferably 1.98 to 4.98 mm.

本発明において樹脂部材12は、上記のようなカルボニル基の存在量勾配を有する限り、いかなる方法により製造されてもよい。例えば、射出成形法または積層一体化成形法により製造することができる。   In the present invention, the resin member 12 may be manufactured by any method as long as it has the carbonyl group abundance gradient as described above. For example, it can be manufactured by an injection molding method or a laminated integrated molding method.

本発明の樹脂部材12を射出成形法により製造する場合、以下の関係を満たすポリマーAおよびBを用いる:
ポリマーAのMFR>ポリマーBのMFR。
When the resin member 12 of the present invention is manufactured by an injection molding method, polymers A and B satisfying the following relationship are used:
MFR of polymer A> MFR of polymer B.

好ましい実施態様においては、ポリマーAのMFRはポリマーBのMFRよりも1.5倍以上大きく、特に2.0倍以上大きい。ポリマーAのMFRは好ましくは3〜200g/10分間、より好ましくは5〜200g/10分間である。ポリマーBのMFRは好ましくは2〜100g/10分間、より好ましくは2〜80g/10分間である。   In a preferred embodiment, the MFR of polymer A is 1.5 times greater than the MFR of polymer B, in particular 2.0 times greater. The MFR of polymer A is preferably 3 to 200 g / 10 minutes, more preferably 5 to 200 g / 10 minutes. The MFR of polymer B is preferably 2 to 100 g / 10 minutes, more preferably 2 to 80 g / 10 minutes.

射出成形法とは、温調された金型内に溶融したポリマーを射出注入し、保持した後、冷却・固化させることにより成形品を得る方法である。このような射出成形法において、上記関係を満たすポリマーAおよびBを用いる。これにより、保持の間に、金型内の混合溶融物中において、ポリマーAが金型との接触面に優先的に移動するため、表面と内層部との間で上記したカルボニル基の存在量勾配を示す成形体を容易に得ることができる。射出成形法により得られた樹脂部材は表面から内層部にかけてのカルボニル基存在量の勾配は連続的に変化する。   The injection molding method is a method for obtaining a molded product by injecting and holding a molten polymer in a temperature-controlled mold and then cooling and solidifying the polymer. In such an injection molding method, polymers A and B satisfying the above relationship are used. As a result, since the polymer A moves preferentially to the contact surface with the mold in the mixed melt in the mold during the holding, the abundance of the carbonyl group described above between the surface and the inner layer portion. A molded product exhibiting a gradient can be easily obtained. In the resin member obtained by the injection molding method, the gradient of the carbonyl group abundance from the surface to the inner layer portion changes continuously.

射出成形法におけるポリマーAとポリマーBとの使用割合、射出直前の混合溶融物の温度、金型温度、射出速度等の成形条件は、本発明の樹脂部材が得られる限り特に限定されるものではないが、以下の条件が好ましい。
ポリマーAとポリマーBとの使用割合は重量比率(A/B)で15/85〜45/55、特に20/80〜40/60が好ましい。
射出直前の混合溶融物の温度は180〜250℃、特に200〜230℃が好ましい。
金型温度は30〜80℃、特に30〜50℃が好ましい。
射出速度は、例えば、厚み1〜5mmの略平板形状の樹脂部材を製造する場合、30〜200mm/秒、特に50〜200mm/秒が好ましい。射出速度が遅すぎると、ポリマーAの優先移動が十分ではないため、所望のカルボニル基勾配が得られない。
Molding conditions such as the ratio of the polymer A and the polymer B used in the injection molding method, the temperature of the mixed melt immediately before injection, the mold temperature, and the injection speed are not particularly limited as long as the resin member of the present invention is obtained. However, the following conditions are preferred.
The ratio of the polymer A and the polymer B used is preferably 15/85 to 45/55, particularly 20/80 to 40/60 in terms of weight ratio (A / B).
The temperature of the mixed melt immediately before injection is preferably 180 to 250 ° C, particularly 200 to 230 ° C.
The mold temperature is preferably 30 to 80 ° C, particularly preferably 30 to 50 ° C.
For example, when producing a substantially flat resin member having a thickness of 1 to 5 mm, the injection speed is preferably 30 to 200 mm / second, particularly 50 to 200 mm / second. If the injection speed is too slow, the preferential movement of the polymer A is not sufficient, and the desired carbonyl group gradient cannot be obtained.

本発明の樹脂部材12を積層一体化成形法により製造する場合、ポリマーAおよびBのMFRは特に限定されず、それぞれ独立して前記した範囲内のものが使用される。   When the resin member 12 of the present invention is manufactured by the laminated integrated molding method, the MFR of the polymers A and B is not particularly limited, and those within the above-described ranges are used independently.

積層一体化成形法とは、積層数に応じた数の溶融押出機を用いて各層を押出成形すると同時に、それらの層を順次、積層して一体化し、冷却・固化させることにより成形品を得る、いわゆる一体押出成形法のことである。このような積層一体化成形法において、少なくともポリマーAおよびBをそれぞれ層状に押出成形し、ポリマーBからなる内層部の表面に、ポリマーAからなる表層部を積層して一体化し、冷却・固化させる。その結果、表面と内層部との間で上記したカルボニル基の存在量勾配を示す成形体を容易に得ることができる。積層一体化成形法により得られた樹脂部材は表面から内層部にかけてのカルボニル基存在量の勾配は段階的に変化する。   The layered integrated molding method is to extrude each layer using the number of melt extruders corresponding to the number of layers, and at the same time, sequentially laminate and integrate those layers, and cool and solidify to obtain a molded product. This is a so-called integral extrusion method. In such a laminated integrated molding method, at least the polymers A and B are respectively extruded into layers, and the surface layer portion made of the polymer A is laminated and integrated on the surface of the inner layer portion made of the polymer B, and cooled and solidified. . As a result, it is possible to easily obtain a molded article exhibiting the above-described carbonyl group abundance gradient between the surface and the inner layer portion. In the resin member obtained by the laminated integrated molding method, the gradient of the carbonyl group existing amount from the surface to the inner layer portion changes stepwise.

積層一体化成形法におけるポリマーAとポリマーBとの使用割合、溶融押出機の設定温度等の成形条件は、本発明の樹脂部材が得られる限り特に限定されるものではないが、以下の条件が好ましい。
ポリマーAとポリマーBとの使用割合は重量比率(A/B)で1/99〜50/50、特に10/80〜40/60が好ましい。
ポリマーA用の溶融押出機の設定温度は180〜250℃、特に180〜230℃が好ましい。
ポリマーB用の溶融押出機の設定温度は180〜250℃、特に180〜230℃が好ましい。
The molding conditions such as the use ratio of polymer A and polymer B in the laminated integrated molding method and the set temperature of the melt extruder are not particularly limited as long as the resin member of the present invention can be obtained. preferable.
The ratio of the polymer A and the polymer B used is preferably 1/99 to 50/50, particularly 10/80 to 40/60, in terms of weight ratio (A / B).
The set temperature of the melt extruder for polymer A is preferably 180 to 250 ° C, particularly preferably 180 to 230 ° C.
The set temperature of the melt extruder for polymer B is preferably 180 to 250 ° C, particularly preferably 180 to 230 ° C.

以上、樹脂部材12は全体形状として略平板形状を有するものについて説明したが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。   As described above, the resin member 12 has been described as having a substantially flat plate shape as a whole, but is not limited to this, and when the resin member 12 is overlapped with the metal member 11 for bonding, the portion immediately below the metal member 11 is As long as it has a substantially flat plate shape, it may have any shape.

樹脂部材12における少なくとも金属部材11直下の部分の厚みtは通常、1〜5mm、特に2〜5mmであるがこれに限定するものではない。   The thickness t of the resin member 12 at least immediately below the metal member 11 is usually 1 to 5 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12にはその他所望の添加剤が含有されてもよい。その他の添加剤として、例えば、補強剤、安定剤、難燃剤、着色材、発泡剤が挙げられる。例えば、積層一体化成形法により樹脂部材12が表層部および内層部を有する場合、表層部および内層部にはそれぞれ独立して選択された上記その他の添加剤が含有されてもよい。   The resin member 12 may contain other desired additives. Examples of other additives include reinforcing agents, stabilizers, flame retardants, colorants, and foaming agents. For example, when the resin member 12 has a surface layer portion and an inner layer portion by a laminated integrated molding method, the surface layer portion and the inner layer portion may contain the other additives selected independently.

(2)金属部材
金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために樹脂部材12と重ね合わせる部分のみが少なくとも略平板形状を有する限り、いかなる形状を有していてもよい。
(2) Metal member Although the metal member 11 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, the metal member 11 is not limited to this, and only a portion that overlaps the resin member 12 for bonding is provided. As long as it has at least a substantially flat plate shape, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みは通常、0.5〜4mmであるがこれに限定するものではない。   The thickness of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウムおよび5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
Aluminum and aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

(3)回転ツール
図4は、回転ツール16の先端部の拡大図である。図4において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図4に示すように、円柱状の回転ツール16は、先端部(図4では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図4では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。
(3) Rotating Tool FIG. 4 is an enlarged view of the tip portion of the rotating tool 16. In FIG. 4, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 4, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 4). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outward (downward in FIG. 4) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

(4)本発明に係る接合方法の一実施態様(摩擦撹拌接合方法)
上記摩擦撹拌接合装置1を用いて実施される本発明の接合方法(摩擦撹拌接合方法)について具体的に説明する。
(4) One embodiment of the joining method according to the present invention (friction stir welding method)
The joining method (friction stir welding method) of the present invention performed using the friction stir welding apparatus 1 will be specifically described.

本実施態様に係る接合方法は少なくとも以下のステップを含むものであり、前記した樹脂部材12を使用することを特徴とする:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材12を軟化させて金属部材11と樹脂部材12とを接合する第2ステップ。
なお、第1ステップにおいて得られる金属部材11と樹脂部材12とが重ね合わされたものを「ワーク」10と呼ぶ。
The joining method according to the present embodiment includes at least the following steps, and is characterized by using the resin member 12 described above:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed against the metal member 11 to generate frictional heat, and the frictional heat softens the resin member 12 to form the metal member. 2nd step which joins 11 and resin member 12.
The metal member 11 and the resin member 12 obtained in the first step are called “work” 10.

第1ステップにおいては、図1に示すように、樹脂部材12において上記のようなカルボニル基存在量勾配を有する表面(例えば120)が金属部材11と接触するように、金属部材11と樹脂部材12とを重ね合わせる。   In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are arranged such that the surface (for example, 120) having the carbonyl group abundance gradient in the resin member 12 contacts the metal member 11. And overlay.

第2ステップにおいては、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行う。
本実施態様においては、第2ステップにおいて、押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましい。
押込み撹拌工程の後には、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましい。
In the second step, at least a push-in stirring step C2 is performed in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joint interface between the metal member 11 and the resin member 12.
In the present embodiment, in the second step, the preheating step C1 for rotating the rotary tool 16 in a state in which only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 is performed before the pushing and stirring step. It is preferable.
After the indentation stirring step, it is preferable to perform an agitation maintaining step C3 in which the rotation operation of the rotary tool 16 is continued at a position where the rotary tool 16 is advanced to a depth that does not reach the joining boundary surface.

以下、各工程について詳しく説明する。
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図5に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
Hereinafter, each step will be described in detail.
In the preheating step C1, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 5, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N).

予熱工程C1の次の押込み撹拌工程C2は、回転ツール16と受け具17とをさらに相互に近接させることにより、図6に示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させる工程である。押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   In the indentation stirring step C2 next to the preheating step C1, the rotary tool 16 and the receiving member 17 are further brought closer to each other, thereby pushing the rotary tool 16 into the metal member 11 as shown in FIG. In this step, the resin member 12 is advanced to a depth not reaching the joint interface with the resin member 12. In the indentation stirring step C2, the rotary tool 16 is moved to a second pressurization time (for example, 0.25) shorter than the first pressurization time with a second pressurization force (for example, 1500 N) that is greater than the first pressurization force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

押込み撹拌工程C2の次の撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図6に示すように、上記接合境界面に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、5.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   In the stirring maintaining process C3 subsequent to the pushing stirring process C2, by stopping the mutual proximity of the rotary tool 16 and the receiving member 17, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at a position (referred to as “reference position”). In the stirring maintaining step C3, the rotary tool 16 is moved to a third pressurizing time (for example, 5.75) longer than the first pressurizing time with a third pressurizing force (for example, 500 N) smaller than the first pressurizing force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3の後には、上記回転ツール16の回転を停止し、その状態で上記回転ツール16を所定の加圧力で所定の加圧時間だけ保持する保持工程C4を行ってもよい。
保持工程C4は、同じく図6に示すように、回転ツール16の回転を停止し、その状態で回転ツール16を所定の加圧力で所定の時間だけ保持する工程である。保持工程C4では、回転ツール16を、第3の加圧力より大きいが第2の加圧力より小さい第4の加圧力(例えば、1000N)で、第3の加圧時間より短いが第2の加圧時間より長い第4の加圧時間(例えば、5.00秒)だけ保持する。
After the stirring maintaining step C3, a holding step C4 may be performed in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined pressurizing time with a predetermined pressure in that state.
Similarly, as shown in FIG. 6, the holding step C <b> 4 is a step in which the rotation of the rotary tool 16 is stopped and the rotary tool 16 is held for a predetermined time with a predetermined pressure in that state. In the holding step C4, the rotary tool 16 is moved at a fourth pressure force (for example, 1000 N) that is larger than the third pressure force but smaller than the second pressure force and shorter than the third pressurization time but the second pressure force. Hold for a fourth pressurization time (for example, 5.00 seconds) longer than the pressure time.

上で例示した加圧力、加圧時間、及びツール回転数は、あくまで一例であって、適宜変更が可能である。ただし、例えば、1mm以上2mm以下の厚みの金属部材11と2mm以上4mm以下の厚みの樹脂部材12とを接合する場合の、主として生産性(時間短縮と歩留まりとのバランス)の観点から、予熱工程C1における第1の加圧力は、700N以上1200N未満の値、第1の加圧時間は、0.5秒以上2.0秒未満の値が好ましく、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値、第2の加圧時間は、0.1秒以上0.5秒未満の値が好ましく、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値、第3の加圧時間は、1.0秒以上10秒未満の値が好ましい。また、保持工程C4における第4の加圧力は、例えば700N以上1200N未満の値、第4の加圧時間は、例えば1秒以上の値が好ましい。   The pressurizing force, pressurizing time, and tool rotation speed exemplified above are merely examples, and can be appropriately changed. However, for example, in the case of joining the metal member 11 having a thickness of 1 mm or more and 2 mm or less and the resin member 12 having a thickness of 2 mm or more and 4 mm or less, mainly from the viewpoint of productivity (a balance between time reduction and yield), the preheating step The first applied pressure in C1 is preferably 700 N or more and less than 1200 N, and the first pressurizing time is preferably 0.5 second or more and less than 2.0 seconds. The second applied pressure in the indentation stirring step C2 is The value of 1200N or more and less than 1800N, and the second pressurization time is preferably a value of 0.1 second or more and less than 0.5 second, and the third pressure in the stirring and maintaining step C3 is a value of 100N or more and less than 700N, The third pressurization time is preferably 1.0 second or more and less than 10 seconds. Further, the fourth pressing force in the holding step C4 is preferably a value of 700 N or more and less than 1200 N, for example, and the fourth pressurizing time is preferably a value of 1 second or more, for example.

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域Pの範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押し込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing region P of the metal member 11 and the range in the vicinity of the pressing region P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1では、摩擦熱は、金属部材11と樹脂部材12との接合境界面を介して、樹脂部材12にも伝わる。摩擦熱は樹脂部材12の内部に伝わり、樹脂部材12における上記押圧領域P直下の対応領域P’の範囲及び当該領域P’の近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、樹脂部材12が軟化・溶融し易くなる。   In the preheating step C <b> 1, the frictional heat is also transmitted to the resin member 12 through the joint interface between the metal member 11 and the resin member 12. The frictional heat is transmitted to the inside of the resin member 12, and the range of the corresponding region P 'immediately below the pressing region P in the resin member 12 and the range in the vicinity of the region P' are preheated. Thereby, the resin member 12 becomes easy to soften and melt in the next indentation stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The first pressurizing force and the first pressurizing time in the preheating step C1 are set from the viewpoint of ease of pushing in the rotary tool 16 and the ease of softening / melting of the resin member 12, and values thereof. Varies depending on, for example, the number of rotations of the rotary tool 16 and the types of materials of the metal member 11 and the resin member 12.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。この回転ツール16の押込みにより、金属部材11と樹脂部材12との接合境界面が受け具17側(図例では下側)に移動する。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. By pressing the rotary tool 16, the joining boundary surface between the metal member 11 and the resin member 12 moves to the receiving member 17 side (lower side in the illustrated example).

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11 and contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、本実施態様では、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化・溶融が促進される。   Therefore, in this embodiment, when the shoulder portion 16b of the rotary tool 16 enters a depth that does not reach the joining boundary surface in the push stirring step C2, the push of the rotary tool 16 is stopped. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, and a large amount of frictional heat is transmitted to the resin member 12 to promote softening and melting of the resin member 12.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value changes depending on, for example, the number of rotations of the rotary tool 16 and the types of materials of the metal member 11 and the resin member 12.

押込み撹拌工程C2では、樹脂部材12が上記押圧領域P直下の対応領域P’の範囲及び当該領域P’の近傍の範囲Q(例えば図6の円αで示される領域および円βで示される領域)で軟化・溶融する。これにより、接合後の樹脂硬化時、前記したように、樹脂部材におけるカルボニル基の酸素原子と、金属部材における金属酸化物層の金属原子との間で静電相互作用による電気化学的結合が生じ、優れた接合強度が得られる。   In the indentation stirring step C2, the resin member 12 has a corresponding region P ′ immediately below the pressing region P and a range Q in the vicinity of the region P ′ (for example, a region indicated by a circle α and a region indicated by a circle β in FIG. 6). ) Softens and melts. As a result, when the resin is cured after bonding, as described above, an electrochemical bond due to electrostatic interaction occurs between the oxygen atom of the carbonyl group in the resin member and the metal atom of the metal oxide layer in the metal member. Excellent bonding strength can be obtained.

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置に維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の対応領域P’の範囲を超えて、広い範囲で十分に軟化・溶融する。これにより、接合後の樹脂硬化時、前記したように、樹脂部材におけるカルボニル基の酸素原子と、金属部材における金属酸化物層の金属原子との間で静電相互作用による電気化学的結合が生じ、優れた接合強度が得られる。   In the stirring maintaining step C3, the rotating tool 16 is maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than that of the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted in a wide range beyond the range of the corresponding region P ′ immediately below the pressing region P. As a result, when the resin is cured after bonding, as described above, an electrochemical bond due to electrostatic interaction occurs between the oxygen atom of the carbonyl group in the resin member and the metal atom of the metal oxide layer in the metal member. Excellent bonding strength can be obtained.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The third pressurizing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening and melting of the resin member 12 as described above, and the values thereof are, for example, the rotary tool 16. Depending on the number of rotations and the types of materials of the metal member 11 and the resin member 12.

保持工程C4では、回転ツール16の回転が停止されることにより、摩擦熱の発生が終了する。すなわち、摩擦撹拌接合としての実質的な動作が終了し、ワーク10の冷却が開始する。ワーク10の冷却期間中、加圧力が押込み撹拌工程C2よりも小さいが撹拌維持工程C3よりも大きくなることにより、回転が停止された回転ツール16が金属部材11と樹脂部材12との押圧領域Pを受け具17との間に挟んでクランプする。これにより、金属部材11と樹脂部材12との間の冷却中の密着力が高められ、冷却完了後の接合強度が高められる。   In the holding step C4, the rotation of the rotary tool 16 is stopped, whereby the generation of frictional heat is completed. That is, the substantial operation as the friction stir welding is finished, and cooling of the workpiece 10 is started. During the cooling period of the workpiece 10, the rotating tool 16 whose rotation has been stopped is pressed between the metal member 11 and the resin member 12 because the applied pressure is smaller than the indentation agitation step C <b> 2 but greater than the agitation maintenance step C <b> 3. It clamps by pinching between the receiving tools 17. Thereby, the adhesive force during cooling between the metal member 11 and the resin member 12 is increased, and the bonding strength after completion of cooling is increased.

保持工程C4の第4の加圧力及び第4の加圧時間は、上記のような冷却期間中の押圧領域Pの密着力向上の観点から設定され、その値は、例えば金属部材11及び樹脂部材12の素材の種類等に依存して変化する。   The fourth pressurizing force and the fourth pressurizing time in the holding step C4 are set from the viewpoint of improving the adhesion of the pressing region P during the cooling period as described above, and the values thereof are, for example, the metal member 11 and the resin member. It varies depending on the type of 12 materials.

本実施態様では、少なくとも前記した工程C2を経て、好ましくは以上のような工程C1,C2およびC3ならびに所望により工程C4を経て、最終的に、図7に示すように、回転ツール16の回転及び押圧で発生した摩擦熱により樹脂部材12が軟化・溶融して金属部材11と樹脂部材12とが広い範囲で高強度に接合された金属部材11と樹脂部材12との接合体20が得られる。   In this embodiment, at least through the above-described step C2, preferably through the above-described steps C1, C2 and C3 and optionally through step C4, finally, as shown in FIG. The resin member 12 is softened and melted by the frictional heat generated by the pressing, and the joined member 20 of the metal member 11 and the resin member 12 in which the metal member 11 and the resin member 12 are joined with high strength in a wide range is obtained.

以上、回転ツールを金属部材の接触面上、面方向で連続的に移動させることなく、点状に金属部材と樹脂部材との接合を行う場合(点接合)について説明したが、上記面方向において回転ツールを連続的に移動させながら、線状に金属部材と樹脂部材との接合を行う場合(線接合)においても本発明の効果が得られることは明らかである。   As described above, the case where the metal member and the resin member are joined to each other in a dotted manner without continuously moving the rotating tool in the surface direction on the contact surface of the metal member (point joining) has been described. It is clear that the effect of the present invention can be obtained even when the metal member and the resin member are joined linearly (line joining) while continuously moving the rotary tool.

[実施例1]
(樹脂部材)
ポリマーAとして、無水マレイン酸変性ポリプロピレン、MFR5.7)を用いた。変性量は約0.5%であった。
ポリマーBとして、ノバテックFY6(日本ポリプロ社製、未変性ポリプロピレン、MFR2.5)を用いた。
[Example 1]
(Resin member)
As polymer A, maleic anhydride-modified polypropylene, MFR 5.7) was used. The amount of modification was about 0.5%.
As polymer B, Novatec FY6 (Nippon Polypro, unmodified polypropylene, MFR2.5) was used.

ポリマーAおよびBを用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。詳しくは20重量部のポリマーAおよび80重量部のポリマーBを230℃に加熱して、混合溶融物を得た。混合溶融物を、40℃に温調された金型内に射出速度を50mm/秒で注入した後、冷却・固化させ、樹脂部材12を得た。   A resin member 12 having dimensions of 100 mm in length, 30 mm in width, and 3 mm in thickness was produced by using the polymers A and B by an injection molding method. Specifically, 20 parts by weight of polymer A and 80 parts by weight of polymer B were heated to 230 ° C. to obtain a mixed melt. The mixed melt was poured into a mold whose temperature was adjusted to 40 ° C. at an injection speed of 50 mm / second, and then cooled and solidified to obtain a resin member 12.

樹脂部材12の接合側表面120における領域R(図3参照;金属部材11との接触領域)においてC=Oピーク強度/CHピーク強度の比率rをIRスペクトル分析に基づく前記した方法により測定した。測定は、前記した測定点の割合で行い、それらの平均値を表に示した。
樹脂部材12の接合側表面120における領域R以外の領域についても、樹脂部材12における接合側表面120とは反対側の表面についても、上記と同様に、比率rを測定したところ、いずれの比率rも領域Rにおいてと同様の値を示した。
In the region R (see FIG. 3, contact region with the metal member 11) on the bonding-side surface 120 of the resin member 12, the ratio r of C = O peak intensity / CH 3 peak intensity was measured by the method described above based on IR spectrum analysis. . The measurement was performed at the ratio of the measurement points described above, and the average value thereof was shown in the table.
When the ratio r was measured in the same manner as above for the region other than the region R on the bonding-side surface 120 of the resin member 12 and also on the surface opposite to the bonding-side surface 120 of the resin member 12, any ratio r was measured. Also showed the same value as in region R.

樹脂部材12の接合側表面120における領域Rの内層部において、比率rをIRスペクトル分析に基づく前記した方法により測定した。測定は、前記した測定点の割合で行い、それらの平均値を表に示した。
樹脂部材12の接合側表面120における領域R以外の領域の内層部についても、樹脂部材12における接合側表面120とは反対側の表面の内層部についても、上記と同様に、比率rを測定したところ、いずれの比率rも領域Rの内層部においてと同様の値を示した。
In the inner layer portion of the region R on the bonding-side surface 120 of the resin member 12, the ratio r was measured by the method described above based on IR spectrum analysis. The measurement was performed at the ratio of the measurement points described above, and the average value thereof was shown in the table.
The ratio r was measured in the same manner as described above for the inner layer portion of the region other than the region R on the bonding side surface 120 of the resin member 12 and also for the inner layer portion of the surface opposite to the bonding side surface 120 of the resin member 12. However, each ratio r showed the same value as in the inner layer portion of the region R.

(金属部材)
金属部材としては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)を用いた。
(回転ツール)
回転ツールとしては、図4の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
(Metal member)
As the metal member, a flat plate member (thickness: 1.2 mm) made of a 6000 series aluminum alloy was used.
(Rotation tool)
As the rotating tool, a tool tool having dimensions of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm in each part of FIG. 4 was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた(重ね代30mm)。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlaid as shown in FIG. 1 (overlap allowance 30 mm).

第2ステップ:
図5に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000r)。
次いで、図6に示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図6に示すように、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間5.75秒、ツール回転数3000rpm)。
次いで、図7に示すように、接合体20から回転ツール16を抜き取り、放置冷却した。
Second step:
As shown in FIG. 5, the rotary tool 16 was rotated in a state where only the tip of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1.00 seconds). Tool rotation speed 3000r).
Next, as shown in FIG. 6, the rotary tool 16 is pushed into the metal member 11 to a depth that does not reach the joining interface between the metal member 11 and the resin member 12 (pushing stirring step C2: pressure 1500N, pressure applied). Pressure time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 6, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface (stirring maintaining step C3: pressurizing pressure 500 N, pressurizing time) 5.75 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 7, the rotary tool 16 was extracted from the joined body 20 and allowed to cool.

(接合強度)
図8に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、接合部の剪断強度Sを樹脂部材12の母材強度に影響を受けることなく測定した。接合強度を剪断強度Sに基づいて評価した。
○;2.0kN≦S;
△;1.0kN≦S<2.0kN(実用上問題なし);
×;S<1.0kN(実用上問題あり)。
(Joint strength)
As shown in FIG. 8, the joined body of the metal member 11 and the resin member 12 was placed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength S of the joint is affected by the base material strength of the resin member 12. Measured without any. The joint strength was evaluated based on the shear strength S.
○; 2.0 kN ≦ S;
Δ: 1.0 kN ≦ S <2.0 kN (no problem in practical use);
X: S <1.0 kN (problem in practical use).

(耐熱性)
樹脂部材12の融点TをISO 3146により測定した。耐熱性を融点Tに基づいて評価した。
○;163℃≦T;
△;161℃≦T<163℃(実用上問題なし);
×;T<161℃(実用上問題あり)。
(Heat-resistant)
The melting point T of the resin member 12 was measured by ISO 3146. The heat resistance was evaluated based on the melting point T.
○: 163 ° C. ≦ T;
Δ: 161 ° C. ≦ T <163 ° C. (no problem in practical use);
×: T <161 ° C. (practical problem).

[実施例2および比較例1〜10]
ポリマーA〜Cの配合比率を表に記載のように変更したこと以外、実施例1と同様の方法により、樹脂部材の製造ならびに評価を行った。
ポリマーCとしては、ノバテックBC06C(日本ポリプロ社製、未変性ポリプロピレン、MFR60)を用いた。ポリマーCは詳しくはホモポリプロピレンの中にポリエチレンやエチレン-プロピレン共重合体が分散しているものである。
[Example 2 and Comparative Examples 1 to 10]
Resin members were produced and evaluated in the same manner as in Example 1 except that the blending ratios of Polymers A to C were changed as shown in the table.
As the polymer C, Novatec BC06C (Nippon Polypro, unmodified polypropylene, MFR60) was used. Specifically, the polymer C is a polymer in which polyethylene or ethylene-propylene copolymer is dispersed in homopolypropylene.

Figure 0006098551
Figure 0006098551

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
16:回転ツール
17:受け具
20:接合体
100:接合強度を測定するための治具
120:樹脂部材における金属部材との接合側の表面
P:金属部材表面における回転ツールによる押圧領域(押圧予定領域)
P’:押圧領域Pの直下に対応する樹脂部材表面の領域
Q:接合時に樹脂部材表面において軟化・溶融が起こる領域
1: Friction stir welding apparatus 10: Work 11: Metal member 12: Resin member 16: Rotating tool 17: Receiving tool 20: Joined body 100: Jig for measuring joint strength 120: Joining of metal member to resin member Side surface P: Pressing area (scheduled pressing area) by rotating tool on metal member surface
P ′: a region on the surface of the resin member corresponding directly below the pressing region P Q: a region where softening / melting occurs on the surface of the resin member during bonding

Claims (5)

金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させて、熱および圧力を金属部材側から付与することにより、この摩擦熱で樹脂部材を軟化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法に基づく熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
前記第2ステップが、前記回転ツールを金属部材に押し込んで金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程を備えており、
前記回転ツールが先端部に、該回転ツールの円形の先端面を含むショルダ部、および該回転ツールの円形の先端面から外方に突設された、前記ショルダ部よりも小径の円柱状のピン部を有し、
前記第2ステップが、前記押込み撹拌工程の前に、前記回転ツールの先端部における前記ピン部および前記ショルダ部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程をさらに備えており、
前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させ、
樹脂部材として、金属部材との接合表面におけるカルボニル基の存在量が内層部におけるカルボニル基の存在量よりも大きい樹脂部材を用い
前記樹脂部材がポリマーAおよびポリマーBを含み、
前記ポリマーAがカルボン酸変性ポリオレフィンであり、
前記ポリマーBが未変性ポリオレフィンであり、
前記樹脂部材におけるカルボニル基の存在量をC=Oピーク強度/CH ピーク強度の比率rで示したとき、前記樹脂部材における金属部材との接合表面の比率rが内層部の比率rよりも0.0001〜0.01だけ大きく、
前記樹脂部材における金属部材との接合表面の比率rが0.001より大きく0.015以下であり、
前記樹脂部材における内層部の比率rが0〜0.003であることを特徴とする金属部材と樹脂部材との接合方法。
The first step that overlay the metal member and the resin member; and
While rotating the rotary tool, the metal member is pressed to generate frictional heat, and by applying heat and pressure from the metal member side , the resin member is softened by this frictional heat, and the metal member and the resin member are separated. A joining method of a metal member and a resin member by a hot-pressure joining method based on a friction stir welding method including a second step of joining,
The second step includes a pushing and stirring step of pushing the rotating tool into the metal member to enter a depth not reaching the joint interface between the metal member and the resin member,
The rotary tool has a shoulder portion including a circular tip surface of the rotary tool at the tip portion, and a cylindrical pin having a smaller diameter than the shoulder portion, which protrudes outward from the circular tip surface of the rotary tool. Part
The second step further includes a preheating step of rotating the rotating tool in a state where only the pin portion and the shoulder portion at the tip portion of the rotating tool are in contact with the surface portion of the metal member before the pushing and stirring step. With
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
In the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force,
As the resin member, a resin member in which the amount of carbonyl groups present on the bonding surface with the metal member is larger than the amount of carbonyl groups present in the inner layer portion ,
The resin member includes polymer A and polymer B,
The polymer A is a carboxylic acid-modified polyolefin,
The polymer B is an unmodified polyolefin,
When the abundance of carbonyl groups in the resin member is represented by a ratio r of C = O peak intensity / CH 3 peak intensity, the ratio r of the bonding surface with the metal member in the resin member is less than the ratio r of the inner layer portion. .0001-0.01 bigger,
The ratio r of the bonding surface with the metal member in the resin member is greater than 0.001 and less than or equal to 0.015,
The method for joining a metal member and a resin member, wherein the ratio r of the inner layer portion in the resin member is 0 to 0.003 .
前記樹脂部材を、230℃でのMFRについて以下の関係を満たすポリマーAおよびBを用いて射出成形法により製造する請求項に記載の金属部材と樹脂部材との接合方法:
ポリマーAのMFR>ポリマーBのMFR。
The method for joining a metal member and a resin member according to claim 1 , wherein the resin member is manufactured by an injection molding method using polymers A and B that satisfy the following relationship with respect to MFR at 230 ° C .:
MFR of polymer A> MFR of polymer B.
前記樹脂部材を、ポリマーBからなる内層部の表面に、ポリマーAからなる表層部を積層して一体化する積層一体化成形法により製造する請求項に記載の金属部材と樹脂部材との接合方法。 The metal member and the resin member according to claim 1 , wherein the resin member is manufactured by a laminated integrated molding method in which a surface layer portion made of a polymer A is laminated and integrated on a surface of an inner layer portion made of a polymer B. Method. 前記第2ステップが、前記回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項1〜3のいずれかに記載の金属部材と樹脂部材との接合方法。
The second step further comprises an agitation maintaining step of continuing the rotating operation of the rotating tool at a position where the rotating tool has entered to a depth that does not reach the joining boundary surface,
Of claims 1 to 3 which rotates only between the rotary tool is longer than between the pressed while the first pressurization in the first pressure is less than the third pressure third pressurization in the stirring hold step The joining method of the metal member and resin member in any one .
前記第2ステップが、前記撹拌維持工程の後に、前記回転ツールの回転を停止し、その状態で回転ツールを所定の加圧力で所定の加圧時間だけ保持する保持工程をさらに備えている請求項に記載の金属部材と樹脂部材との接合方法。 The second step further includes a holding step of stopping the rotation of the rotary tool after the stirring maintaining step and holding the rotary tool at a predetermined pressurizing time for a predetermined pressurizing time in that state. 5. A method for joining the metal member and the resin member according to 4 .
JP2014043053A 2014-03-05 2014-03-05 Method of joining metal member and resin member Expired - Fee Related JP6098551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043053A JP6098551B2 (en) 2014-03-05 2014-03-05 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043053A JP6098551B2 (en) 2014-03-05 2014-03-05 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2015168102A JP2015168102A (en) 2015-09-28
JP6098551B2 true JP6098551B2 (en) 2017-03-22

Family

ID=54201308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043053A Expired - Fee Related JP6098551B2 (en) 2014-03-05 2014-03-05 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6098551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961159B2 (en) * 2017-02-09 2021-11-05 睦月電機株式会社 Joining method of metal member and synthetic resin molded member and its joining body
CN114571056A (en) * 2022-02-28 2022-06-03 太原理工大学 Method for connecting metal and carbon fiber composite material by using electric activation assisted ultrasonic wave

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945355B2 (en) * 2006-07-21 2012-06-06 日本ポリエチレン株式会社 Welding material and fuel tank using the same
JP2008208296A (en) * 2007-02-28 2008-09-11 Toyobo Co Ltd Resin composition for laser welding and formed article using the same
JP5135061B2 (en) * 2008-05-23 2013-01-30 住友軽金属工業株式会社 Method of joining metal material and resin material, and joined body of metal material and resin material
JP5838116B2 (en) * 2012-04-11 2015-12-24 株式会社日立製作所 Laser bonding method

Also Published As

Publication number Publication date
JP2015168102A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102805B2 (en) Dissimilar member joining method
JP6098551B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6102876B2 (en) Method of joining metal member and resin member
JP6098605B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6330760B2 (en) Method of joining metal member and resin member
JP2016068130A (en) Method of joining metal member with resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP2017006949A (en) Friction stir welding method and jointing device for the same
JP2015189177A (en) Method for bonding metallic member to resin member, and resin member for use in the method
JP6614205B2 (en) Method of joining metal member and resin member and metal member or resin member used in the method
JP6098564B2 (en) Method of joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees