JP2017152462A - 静電気保護回路、半導体集積回路装置、及び、電子機器 - Google Patents

静電気保護回路、半導体集積回路装置、及び、電子機器 Download PDF

Info

Publication number
JP2017152462A
JP2017152462A JP2016031697A JP2016031697A JP2017152462A JP 2017152462 A JP2017152462 A JP 2017152462A JP 2016031697 A JP2016031697 A JP 2016031697A JP 2016031697 A JP2016031697 A JP 2016031697A JP 2017152462 A JP2017152462 A JP 2017152462A
Authority
JP
Japan
Prior art keywords
circuit
node
voltage
transistor
circuit block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031697A
Other languages
English (en)
Other versions
JP6714825B2 (ja
Inventor
池田 益英
Masuhide Ikeda
益英 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016031697A priority Critical patent/JP6714825B2/ja
Priority to US15/420,979 priority patent/US10389111B2/en
Priority to CN201710093623.1A priority patent/CN107104099B/zh
Publication of JP2017152462A publication Critical patent/JP2017152462A/ja
Application granted granted Critical
Publication of JP6714825B2 publication Critical patent/JP6714825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • H02H9/046Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere responsive to excess voltage appearing at terminals of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】ホールド電圧を高く設定することが可能な静電気保護回路において、直列に接続された複数の回路ブロックに抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐ。
【解決手段】この静電気保護回路は、第1のノードと第2のノードとの間に直列に接続された複数の回路ブロックを備え、複数の回路ブロックの内の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたアノード、及び、当該回路ブロックの他端に接続されたカソードを有するサイリスターを含み、通常動作時において第1のノードの電位が第2のノードの電位よりも高いときに、複数の回路ブロックの内の他の回路ブロックの両端間の電圧が、サイリスターのアノードとカソードとの間の電圧よりも小さい。
【選択図】図3

Description

本発明は、半導体集積回路装置の内部回路をESD(Electro-Static Discharge:静電気の放電)から保護する静電気保護回路に関する。さらに、本発明は、そのような静電気保護回路を内蔵した半導体集積回路装置、及び、そのような半導体集積回路装置を用いた電子機器等に関する。
半導体集積回路装置において、人体や搬送機器等に帯電した静電気が内部回路に印加されることによる内部回路の破壊を防止するために、静電気保護回路を設けることが行われている。例えば、静電気保護回路は、高電位側の電源電位が供給される第1の端子と低電位側の電源電位が供給される第2の端子との間に接続される。
静電気の放電等によって第1の端子に正の電荷が印加されると、正の電荷が静電気保護回路を介して第2の端子に放出されるので、内部回路に過大な電圧が印加されることがなく、内部回路の破壊を防止することができる。一方、通常動作時において誤動作しないためには、静電気保護回路のトリガー電圧及びホールド電圧を電源電圧よりも高く設定することが望ましい。
関連する技術として、特許文献1の図1及び図2には、第1電源端子と第2電源端子との間に縦積み接続された第1クランプ回路及び第2クランプ回路を備えるESD保護回路が開示されている。第1クランプ回路は、第1高電位側ノードにドレインが接続され、第1低電位側ノードにソース及びゲートが接続された第1保護トランジスターを有する。
第2クランプ回路は、第2高電位側ノードに一端が接続された抵抗素子と、第2低電位側ノードと抵抗素子の他端との間に設けられた容量素子と、抵抗素子と容量素子との接続点の電位に応じた論理値の制御信号を出力するインバーターと、第2高電位側ノードにドレインが接続され、第2低電位側ノードにソースが接続され、ゲート及びバックゲートに制御信号が供給される第2保護トランジスターとを有する。
ここで、第2クランプ回路の応答時間を決定する抵抗素子及び容量素子等は、RCタイマーとも呼ばれている。RCタイマーを有する2つのクランプ回路を縦積みにすることによってもホールド電圧を高く設定することができるが、RCタイマーの働きによってトリガー電圧が電源電圧よりも低くなり、通常動作時に放電電流が流れてしまうおそれがある。特許文献1の図1及び図2に示されているESD保護回路によれば、第1電源端子と第2電源端子との間に2つのクランプ回路を縦積みにしてホールド電圧を高く設定すると共に、通常動作時における放電電流の増大を抑制することが可能になる。
ただし、電源投入直後において、第1保護トランジスターのソース・ドレイン間電圧と第2保護トランジスターのソース・ドレイン間電圧とが異なる値を示す場合には、精度良く被保護回路の破壊を防止することができないおそれがある。さらに、第2保護トランジスターのソース・ドレイン間に、第1保護トランジスターのソース・ドレイン間に加わる電圧よりも高い電圧が加わるので、長時間の通常動作により、第2保護トランジスターが破壊又は劣化し易くなる。
そこで、特許文献1の図9に示されているように、第1クランプ回路及び第2クランプ回路に、同一の抵抗値を有する第1抵抗素子及び第2抵抗素子をそれぞれ並列に接続することも提案されている。第1抵抗素子に流れる電流は第1クランプ回路に流れるリーク電流よりも十分に大きく、第2抵抗素子に流れる電流は第2クランプ回路に流れるリーク電流よりも十分に大きい。それにより、第1保護トランジスターのソース・ドレイン間電圧と第2保護トランジスターのソース・ドレイン間電圧とが均等になり、被保護回路の破壊を精度良く防止することができると共に、第2保護トランジスターの破壊又は劣化を防ぐことができる。
特開2014−120547号公報(段落0005−0006、0082−0086、図1、図2、図9)
特許文献1の図9に示されているように、ESD保護回路において、第1クランプ回路及び第2クランプ回路に第1抵抗素子及び第2抵抗素子をそれぞれ並列に接続する場合には、回路面積(チップサイズ)の増大を招いてしまう。また、電源端子間に印加される電圧が急峻に立ち上がると直ちに放電動作を開始する構成とした場合には、ESDイミュニティ試験によって発生したサージ電流の全てが、半導体集積回路装置に内蔵された静電気保護回路に流れ込む可能性がある。
そこで、上記の点に鑑み、本発明の第1の目的は、ホールド電圧を高く設定することが可能な静電気保護回路において、直列に接続された複数の回路ブロックに抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことである。
また、本発明の第2の目的は、半導体集積回路装置の内部回路をESDから有効に保護しつつ、ESDイミュニティ試験によって発生したサージ電流の全てが静電気保護回路に流れ込むことを防止することである。さらに、本発明の第3の目的は、そのような静電気保護回路を内蔵した半導体集積回路装置、及び、そのような半導体集積回路装置を用いた電子機器等を提供することである。
以上の課題の少なくとも一部を解決するために、本発明の第1の観点に係る静電気保護回路は、第1の端子に第1のノードを介して接続されると共に、第2の端子に第2のノードを介して接続された静電気保護回路であって、第1のノードと第2のノードとの間に直列に接続された複数の回路ブロックを備え、複数の回路ブロックの内の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたアノード、及び、当該回路ブロックの他端に接続されたカソードを有するサイリスターを含み、通常動作時において第1のノードの電位が第2のノードの電位よりも高いときに、複数の回路ブロックの内の他の回路ブロックの両端間の電圧が、サイリスターのアノードとカソードとの間の電圧よりも小さい。
本発明の第1の観点によれば、複数の回路ブロックが直列に接続されるので、ホールド電圧を高く設定することが可能になる。また、少なくとも1つの回路ブロックが、リーク電流が小さいサイリスターを含み、通常動作時において他の回路ブロックの両端間の電圧がサイリスターのアノードとカソードとの間の電圧よりも小さくなるように、他の回路ブロックにおいて印加電圧に対する電流が比較的大きいデバイス又は接続が用いられるので、通常動作時において複数の回路ブロックに印加される電圧の比率が、回路ブロックに流れる電流によって決定される。
それにより、複数の回路ブロックに抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。その結果、特許文献1の図9に示されている従来技術と比較して、分圧のための抵抗素子が不要になるので、回路面積(チップサイズ)を小さくすることができる。また、サイリスターのリーク電流が小さいことから、通常動作時において他の回路ブロックに過電圧がかかり難く、他の回路ブロックを構成するデバイスの選択肢を広げることができる。
ここで、複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたコレクター、及び、当該回路ブロックの他端に接続されたエミッターを有するバイポーラトランジスターと、バイポーラトランジスターのベースとエミッターとの間に接続された抵抗素子と、バイポーラトランジスターのコレクターとベースとの間に接続され、第1のノードの電位が第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が降伏電圧に達すると、抵抗素子又はバイポーラトランジスターのベースに電流を流すツェナーダイオードとを含むようにしても良い。
このように、ツェナーダイオード及び抵抗素子によってバイポーラトランジスターのベースに流れる電流を制御する構成とすることにより、当該回路ブロックにおけるトリガー電圧とホールド電圧との関係を調整することができる。
あるいは、複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたドレイン、及び、当該回路ブロックの他端に接続されたソースを有し、第1のノードの電位が第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が所定の電圧に達すると放電電流を流すMOSトランジスターを含むようにしても良い。
例えば、ゲートがソースに接続されてブレークダウン電圧が低いMOSトランジスターを用いる場合には、当該回路ブロックのトリガー電圧及びホールド電圧が相対的に低い特性となる。従って、そのようなMOSトランジスターを用いることにより、電源電圧の仕様に合わせて静電気保護回路のホールド電圧を木目細かく設定することができる。
あるいは、複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたコレクター、及び、当該回路ブロックの他端に接続されたエミッターを有し、第1のノードの電位が第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が所定の電圧に達すると放電電流を流すバイポーラトランジスターを含むようにしても良い。
例えば、ベースが抵抗素子を介してエミッターに接続されてブレークダウン電圧が低いバイポーラトランジスターを用いる場合には、当該回路ブロックのトリガー電圧及びホールド電圧が相対的に低い特性となる。従って、そのようなバイポーラトランジスターを用いることにより、電源電圧の仕様に合わせて静電気保護回路のホールド電圧を木目細かく設定することができる。
その場合に、MOSトランジスターのドレイン又はソース、又は、バイポーラトランジスターのコレクターにおいて、コンタクトが接触する部分を含む所定の領域がシリサイド化され、その他の領域がシリサイド化されていないことが望ましい。それにより、静電気保護回路の破壊電流を大きくすることができ、静電気耐量が向上する。
以上において、静電気保護回路が、サイリスターのPゲートに接続された一端、又は、サイリスターのNゲートに接続された他端を有し、第1のノードの電位が第2のノードの電位よりも高くなって両端間の電圧が降伏電圧に達すると、サイリスターを含む回路ブロックに電流を流すダイオード又はトランジスターをさらに備えるようにしても良い。そのように接続されたダイオード又はトランジスターによって、静電気保護回路のトリガー電圧を設定することができる。
あるいは、静電気保護回路が、(i)ダイオード又はトランジスターを含み、第1のノードと第2のノードとの間に印加される過電圧を検出して検出信号を生成する過電圧検出回路と、(ii)過電圧検出回路によって生成される検出信号を少なくとも遅延させてサイリスターのゲートに供給する遅延回路とをさらに備えるようにしても良い。それにより、半導体集積回路装置の内部回路をESDから有効に保護しつつ、ESDイミュニティ試験によって発生したサージ電流の全てが静電気保護回路に流れ込むことを防止することができる。その結果、静電気保護回路の小型化が可能になる。
本発明の第2の観点に係る半導体集積回路装置は、上記いずれかの静電気保護回路を備える。本発明の第2の観点によれば、ホールド電圧を高く設定できると共に小型化が可能な静電気保護回路を内蔵して、チップサイズの増大が抑制された高耐圧の半導体集積回路装置を提供することができる。
本発明の第3の観点に係る電子機器は、上記の半導体集積回路装置を備える。本発明の第3の観点によれば、チップサイズの増大が抑制された高耐圧の半導体集積回路装置を用いて、低コストで信頼性の高い電子機器を提供することができる。
ここで、電子機器が、半導体集積回路装置と共に回路基板に実装され、第1の端子に接続されたカソードと、第2の端子に接続されたアノードとを有するツェナーダイオードをさらに備えるようにしても良い。回路基板にツェナーダイオードを設けることにより、ESDイミュニティ試験によって発生するサージ電流はツェナーダイオードに流れる。従って、半導体集積回路装置に内蔵された静電気保護回路に流れる電流が減少するので、静電気保護回路のさらなる小型化が可能になる。
本発明の一実施形態に係る半導体集積回路装置の構成例を示す回路図。 本発明の一実施形態に係る半導体集積回路装置の構成例を示す回路図。 本発明の第1の実施形態に係る静電気保護回路の構成例を示す回路図。 図3に示すサイリスターのレイアウト例を示す図。 図3に示すサイリスター及びダイオードを用いた静電気保護回路を示す回路図。 図5に示す静電気保護回路のI−V特性の例を示す図。 図3に示す静電気保護回路のI−V特性の例を示す図。 図3に示す静電気保護回路の通常動作における等価回路を示す回路図。 図8に示す等価回路のI−V特性の例を示す図。 本発明の第2の実施形態において用いられる回路ブロックを示す回路図。 NチャネルMOSトランジスターの第1のレイアウト例を示す図。 NチャネルMOSトランジスターの第2のレイアウト例を示す図。 NPNバイポーラトランジスターのレイアウト例を示す図。 本発明の第3の実施形態に係る静電気保護回路の構成例を示す回路図。 第3の実施形態の変形例において用いられる回路ブロックを示す図。 NチャネルMOSトランジスターの第1のレイアウト例を示す図。 NチャネルMOSトランジスターの第2のレイアウト例を示す図。 本発明の第4の実施形態に係る静電気保護回路の構成例を示す回路図。 第4の実施形態の変形例において用いられる回路ブロックを示す回路図。 本発明の第5の実施形態において用いられる回路ブロックを示す回路図。 図20に示すサイリスターのレイアウト例を示す図。 本発明の第6の実施形態に係る静電気保護回路の構成例を示す回路図。 本発明の第7の実施形態に係る静電気保護回路の構成例を示す回路図。 図23に示すサイリスターの第1のレイアウト例を示す図。 図23に示すサイリスターの第2のレイアウト例を示す平面図。 図23に示すサイリスターの第3のレイアウト例を示す平面図。 本発明の第8の実施形態に係る静電気保護回路の構成例を示す回路図。 図27に示すサイリスターのレイアウト例を示す図。 本発明の第9の実施形態に係る静電気保護回路の構成例を示す回路図。 本発明の第10の実施形態に係る静電気保護回路の構成例を示す回路図。 ESDイミュニティ試験の規格における放電電流波形を示す図。 ESDイミュニティ試験のレベルを説明するための図。 本発明の第11の実施形態に係る静電気保護回路の構成例を示す回路図。 本発明の第1の実施形態に係る電子機器の構成例を示す回路図。 本発明の第2の実施形態に係る電子機器の構成例を示すブロック図。
以下に、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、同一の構成要素には同一の参照番号を付して、重複する説明を省略する。
図1及び図2は、本発明の一実施形態に係る半導体集積回路装置の構成例を示す回路図である。この半導体集積回路装置は、電源端子P1及びP2と、信号端子P3と、ダイオード1及び2と、電源配線3及び4と、本発明のいずれかの実施形態に係る静電気保護回路10と、内部回路20とを含んでいる。電源配線3及び4の各々は、抵抗成分を有している。また、内部回路20は、PチャネルMOSトランジスターQP20と、NチャネルMOSトランジスターQN20とを含んでいる。
図1及び図2においては、信号端子P3が内部回路20の出力側(トランジスターQP20及びQN20のドレイン)に接続されているが、信号端子P3は、内部回路20の入力側(トランジスターQP20及びQN20のゲート)に接続されても良い。いずれにしても、静電気保護回路10の動作仕様は、内部回路20のトランジスターのゲート破壊電圧によって主に決定される。
例えば、静電気保護回路10は、高電位側の電源電位VDDが供給される電源端子P1と低電位側の電源電位VSSが供給される電源端子P2との間に接続されても良い。また、静電気保護回路10は、電源端子P1と信号端子P3との間に接続されても良いし、信号端子P3と電源端子P2との間に接続されても良い。以下の実施形態においては、一例として、図1及び図2に示すように、静電気保護回路10が、電源端子P1にノードN1を介して接続されると共に、電源端子P2にノードN2を介して接続される場合について説明する。
静電気の放電等によって電源端子P2に正の電荷が印加されると、正の電荷がダイオード2を介して信号端子P3に放出され、又は、ダイオード2及び1を介して電源端子P1に放出されるので、内部回路20に過大な電圧が印加されることがなく、内部回路20の破壊を防止することができる。従って、問題となるのは、ダイオード1及び2の内の少なくとも一方に逆電圧が印加される場合である。
図1には、静電気の放電等によって信号端子P3に正の電荷が印加される一方、電源端子P2が接地されている場合の放電経路が示されている。静電気の放電等によって、サージ電流IESDが、ダイオード1、電源配線3、静電気保護回路10、及び、電源配線4の経路で流れる。
放電動作において、逆電圧が印加されるダイオード2と並列に接続されたトランジスターQN20のドレイン・ソース間電圧が、トランジスターQN20が破壊に至る破壊電圧VDMGよりも小さければ、静電気保護回路10が内部回路20を保護することができる。そのためには、次式(1)を満たす必要がある。
+V+VPC<VDMG ・・・(1)
ここで、Vはダイオード1の順方向電圧であり、Vは電源配線3の抵抗成分にサージ電流IESDが流れた際に発生する電圧であり、VPCは静電気保護回路10にサージ電流IESDが流れた際に発生する電圧である。
また、図2には、静電気の放電等によって信号端子P3に負の電荷が印加される一方、電源端子P1が接地されている場合の放電経路が示されている。静電気の放電等によって、サージ電流IESDが、電源配線3、静電気保護回路10、電源配線4、及び、ダイオード2の経路で流れる。
放電動作において、逆電圧が印加されるダイオード1と並列に接続されたトランジスターQP20のソース・ドレイン間電圧が、トランジスターQP20が破壊に至る破壊電圧VDMGよりも小さければ、静電気保護回路10が内部回路20を保護することができる。そのためには、次式(2)を満たす必要がある。
+V+VPC<VDMG ・・・(2)
ここで、Vはダイオード2の順方向電圧であり、Vは電源配線4の抵抗成分にサージ電流IESDが流れた際に発生する電圧であり、VPCは静電気保護回路10にサージ電流IESDが流れた際に発生する電圧である。
式(1)及び式(2)から分かるように、図1に示す場合と図2に示す場合とにおいて、内部回路20を保護するための条件は、同じ式で表すことができる。即ち、放電経路上のデバイスに発生する電圧の総和が、内部回路20の素子が破壊に至る破壊電圧VDMGよりも小さいことが、内部回路20を保護するための条件となる。そのような静電気保護回路10を設けることにより、各種の半導体集積回路装置において、静電気の放電等による内部回路20の破壊を防止することができる。
<第1の実施形態>
図3は、本発明の第1の実施形態に係る静電気保護回路の構成例を示す回路図である。図3に示すように、第1の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された複数の回路ブロック(例えば、放電回路又はクランプ回路)を含んでいる。複数の回路ブロックを直列に接続することにより、ホールド電圧を高く設定することが可能になる。
複数の回路ブロックの内の少なくとも1つの回路ブロックは、サイリスターを含んでいる。また、通常動作時においてノードN1の電位がノードN2の電位よりも高いときに、複数の回路ブロックの内でサイリスターを含まない他の回路ブロックの両端間の電圧が、サイリスターのアノードとカソードとの間の電圧よりも小さくなっている。
図3には、一例として、ノードN1とノードN2との間に直列に接続された3つの回路ブロック11〜13が示されている。ここで、回路ブロック13が、サイリスターを含んでおり、回路ブロック11及び回路ブロック12は、サイリスターを含まない他の回路ブロックに該当する。図3に示すのは一例であり、回路ブロックの数や接続順序は任意である。例えば、ノードN1側から、回路ブロック11、回路ブロック13、回路ブロック12の順序で、それらの回路ブロックを接続しても良い。
回路ブロック11は、NPNバイポーラトランジスターQC11と、抵抗素子R11と、ツェナーダイオードZD11とを含んでいる。トランジスターQC11は、回路ブロック11の一端(ノードN1)に接続されたコレクターと、回路ブロック11の他端(ノードN3)に接続されたエミッターとを有している。
抵抗素子R11は、トランジスターQC11のベースとエミッターとの間に接続されている。ツェナーダイオードZD11は、トランジスターQC11のコレクターとベースとの間に接続されており、トランジスターQC11のコレクターに接続されたカソードと、トランジスターQC11のベースに接続されたアノードとを有している。
ツェナーダイオードZD11は、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック11の両端間の電圧が降伏電圧(回路ブロック11のトリガー電圧)に達すると、抵抗素子R11又はトランジスターQC11のベースに電流を流す。即ち、抵抗素子R11に電流が流れると共に、トランジスターQC11のベース・エミッター間電圧が閾値電圧以上になると、トランジスターQC11のベースにも電流が流れる。トランジスターQC11のベースに電流が流れると、トランジスターQC11がオン状態となって、ノードN1からノードN3に電流を流すので、ノードN1とノードN3との間の電圧がクランプされる。本願においては、回路ブロック11のような構成を、ツェナートリガー・バイポーラトランジスターという。
同様に、回路ブロック12は、NPNバイポーラトランジスターQC12と、抵抗素子R12と、ツェナーダイオードZD12とを含んでいる。トランジスターQC12は、回路ブロック12の一端(ノードN3)に接続されたコレクターと、回路ブロック12の他端(ノードN4)に接続されたエミッターとを有している。
抵抗素子R12は、トランジスターQC12のベースとエミッターとの間に接続されている。ツェナーダイオードZD12は、トランジスターQC12のコレクターとベースとの間に接続されており、トランジスターQC12のコレクターに接続されたカソードと、トランジスターQC12のベースに接続されたアノードとを有している。
ツェナーダイオードZD12は、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック12の両端間の電圧が降伏電圧(回路ブロック12のトリガー電圧)に達すると、抵抗素子R12又はトランジスターQC12のベースに電流を流す。即ち、抵抗素子R12に電流が流れると共に、トランジスターQC12のベース・エミッター間電圧が閾値電圧以上になると、トランジスターQC12のベースにも電流が流れる。トランジスターQC12のベースに電流が流れると、トランジスターQC12がオン状態となって、ノードN3からノードN4に電流を流すので、ノードN3とノードN4との間の電圧がクランプされる。
このように、ツェナーダイオードZD11又はZD12、及び、抵抗素子R11又はR12によってバイポーラトランジスターQC11又はQC12のベースに流れる電流を制御する構成とすることにより、回路ブロック11又は12におけるトリガー電圧とホールド電圧との関係を調整することができる。
回路ブロック13は、サイリスターTH13と、抵抗素子R13a及びR13bとを含んでいる。サイリスターTH13は、PNPバイポーラトランジスターQA13と、NPNバイポーラトランジスターQC13とで構成される。ここで、トランジスターQA13のエミッターがサイリスターTH13のアノードに相当し、トランジスターQC13のエミッターがサイリスターTH13のカソードに相当する。また、トランジスターQA13のベースがサイリスターTH13のNゲートに相当し、トランジスターQC13のベースがサイリスターTH13のPゲートに相当する。
トランジスターQA13のエミッターは、回路ブロック13の一端(ノードN4)に接続されており、コレクターは、抵抗素子R13bを介して回路ブロック13の他端(ノードN2)に接続されており、ベースは、抵抗素子R13aを介して回路ブロック13の一端(ノードN4)に接続されている。また、トランジスターQC13のコレクターは、トランジスターQA13のベースに接続されており、エミッターは、回路ブロック13の他端(ノードN2)に接続されており、ベースは、トランジスターQA13のコレクターに接続されている。
さらに、ノードN1とトランジスターQC13のベース(サイリスターTH13のPゲート)との間に、ダイオードD13が接続されている。ダイオードD13は、ノードN1に接続されたカソードと、トランジスターQC13のベースに接続されたアノードとを有している。ダイオードD13は、ノードN1の電位がノードN2の電位よりも高くなってカソードとアノードとの間の電圧が降伏電圧に達すると、回路ブロック13に電流を流す。即ち、抵抗素子R13bに電流が流れると共に、トランジスターQC13のベース・エミッター間電圧が閾値電圧以上になると、トランジスターQC13のベースにも電流が流れる。そのように接続されたダイオードD13によって、静電気保護回路のトリガー電圧を設定することができる。なお、ダイオードD13として、ツェナーダイオードを用いても良い。
トランジスターQC13のベースに電流が流れると、トランジスターQC13がオン状態となって、ノードN4からノードN2に電流を流す。また、抵抗素子R13aの両端間に電位差が生じて、トランジスターQA13のエミッター・ベース間電圧が閾値電圧以上になると、トランジスターQA13がオン状態になる。以上の動作により、ノードN4とノードN2との間の電圧がクランプされる。
トランジスターQC11及びQC12は、ラテラルバイポーラトランジスターでも良く、P型半導体基板(例えば、シリコン基板)内に設けられたPウェルに形成され、P型半導体基板及びノードN2に低電位側の電源電位VSSが供給されるものとする。その場合に、トランジスターQC11及びQC12のエミッターをノードN2から電気的に分離するためには、トリプルウェル構造が用いられる。トリプルウェル構造とは、例えば、P型半導体基板内にN型の埋め込み拡散層を形成し、さらにその上にPウェルを形成して構成される3層構造のことである。
Pウェル内に、NPNバイポーラトランジスターのコレクターとなるN型の不純物拡散領域と、NPNバイポーラトランジスターのエミッターとなるN型の不純物拡散領域と、Pウェルに電位を与えるためのP型の不純物拡散領域とが形成される。また、ツェナーダイオードもPウェル内に形成される。Pウェルの抵抗成分によって、NPNバイポーラトランジスターのベースとエミッターとの間に接続される抵抗素子が構成される。
図4は、図3に示すサイリスターのレイアウト例を示す図である。図4(A)は、平面図であり、図4(B)は、図4(A)に示すB−Bにおける断面図である。図4に示すように、P型半導体基板(例えば、シリコン基板)100内に、Nウェル110及びPウェル120が形成されている。
Nウェル110内には、N不純物拡散領域131及びP不純物拡散領域132が形成されている。Nウェル110及びN不純物拡散領域131は、トランジスターQA13のベース、即ち、図3に示すサイリスターTH13のNゲートに該当すると共に、トランジスターQC13のコレクターに該当する。また、P不純物拡散領域132は、トランジスターQA13のエミッター、即ち、図3に示すサイリスターTH13のアノードに該当する。
Pウェル120内には、N不純物拡散領域133及びP不純物拡散領域134が形成されている。Pウェル120及びP不純物拡散領域134は、トランジスターQC13のベース、即ち、図3に示すサイリスターTH13のPゲートに該当すると共に、トランジスターQA13のコレクターに該当する。N不純物拡散領域133は、トランジスターQC13のエミッター、即ち、図3に示すサイリスターTH13のカソードに該当する。
不純物拡散領域131〜134には、それぞれのコンタクト141〜144が電気的に接続されている。不純物拡散領域131〜134において、コンタクト141〜144が接触する部分を含む領域131a〜134aがシリサイド化されていても良い。
図3に示すサイリスターTH13を構成するトランジスターQC13及びQA13のベース間のPN接合部は、Pウェル120とNウェル110であり、それらの不純物濃度は低い。従って、サイリスターTH13の耐圧は、半導体集積回路装置の内部回路20(図1又は図2)において使用されているデバイス(被保護回路)の耐圧よりも十分高く、また、サイリスターTH13のリーク電流は、被保護回路のリーク電流よりも十分小さい。
図5は、図3に示すサイリスター及びダイオードを用いた静電気保護回路の構成例を示す回路図である。図5に示すように、ノードN1とノードN2との間に回路ブロック13が接続されている。また、ダイオードD13のカソードは、ノードN1に接続されている。従って、回路ブロック13のトリガー電圧は、ダイオードD13の降伏電圧で設定される。
図6は、図5に示す静電気保護回路のI−V特性の例を示す図である。図6において、横軸は、電圧(V)を表しており、縦軸は、電流(A)を表している。ノードN1の電位がノードN2の電位よりも高くなって回路ブロック13の両端間の電圧がトリガー電圧に達すると、ダイオードD13がオン状態となって、ノードN1からノードN2に電流を流す。それにより、ノードN1とノードN2との間の電圧がクランプされる。図6において、回路ブロック13のトリガー電圧は、動作最大電圧以上に設定されている。
図7は、図3に示す静電気保護回路のI−V特性の例を示す図である。図7において、横軸は、電圧(V)を表しており、縦軸は、電流(A)を表している。図7に示すように、図3に示す静電気保護回路の両端間電圧は、回路ブロック13の両端間電圧V13に、回路ブロック11の両端間電圧V11及び回路ブロック12の両端間電圧V12を足し合わせたものとなる。図7において、静電気保護回路のトリガー電圧及びホールド電圧は、動作最大電圧以上に設定されている。静電気保護回路のトリガー電圧は、ダイオードD13の降伏電圧によって設定されるので、回路面積の大きいRCタイマーを設ける必要はない。
また、回路ブロック11及び12のツェナーダイオードZD11及びZD12のPN接合部においては、P型の不純物拡散領域及びN型の不純物拡散領域の両方の不純物濃度が高いので、サイリスターTH13よりもリーク電流が大きい。従って、回路ブロック11及び12のツェナートリガー・バイポーラトランジスターのリーク電流は、例えば、サイリスターTH13のリーク電流の5倍以上であり、さらに好ましくは、サイリスターTH13のリーク電流の10倍以上である。
以下においては、一例として、回路ブロック11〜13に同じ電圧が印加された場合に、回路ブロック11及び12の各々のリーク電流が、回路ブロック13のリーク電流よりも10倍大きい場合について説明する。なお、説明を簡単にするために、リーク電流は電源電圧に対して線形であるものと仮定する。
図8は、図3に示す静電気保護回路の通常動作における等価回路を示す回路図である。図8において、抵抗R1は、直列接続された回路ブロック11及び12のツェナートリガー・バイポーラトランジスターを表しており、抵抗値Rを有する。また、抵抗R2は、回路ブロック13のサイリスターTH13等を表しており、抵抗値10Rを有する。
図9は、図8に示す等価回路のI−V特性の例を示す図である。図9において、横軸は、抵抗R2の両端に印加される電圧(V)を表しており、縦軸は、抵抗R1又はR2に流れるリーク電流(任意単位)を表している。また、実線は抵抗R2の特性を示しており、破線は抵抗R1の特性を示している。直列接続された抵抗R1及びR2に印加される電圧の合計は、一定値(動作最大電圧)である。
図9において、抵抗R1の両端間に16Vの電圧が印加されたときに流れるリーク電流は10であり、抵抗R2の両端間に16Vの電圧が印加されたときに流れるリーク電流は1である。抵抗R1及びR2は直列に接続されているので、抵抗R1に流れる電流と抵抗R2に流れる電流とが等しいという条件から、○印で示されている点が動作点となる。
ここで、抵抗R1、即ち、直列接続された回路ブロック11及び12のツェナートリガー・バイポーラトランジスターに印加される電圧は、動作最大電圧の10分の1以下の電圧となるので、各々のツェナートリガー・バイポーラトランジスターのコレクター・エミッター間に印加される電圧は、それぞれの動作最大電圧よりも十分低い電圧となる。従って、ツェナートリガー・バイポーラトランジスターに電圧リミッターを設けなくても、通常動作において、ツェナートリガー・バイポーラトランジスターに過電圧がかかることはなく、ツェナートリガー・バイポーラトランジスターは、特性の劣化や破壊には至らない。
また、ツェナートリガー・バイポーラトランジスターは、サイリスターTH13と比較してリーク電流が大きい。従って、通常動作時において回路ブロック11〜13に印加される電圧の比率が、回路ブロック11〜13に流れるリーク電流によって決定される。それにより、回路ブロック11〜13に抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。
第1の実施形態においては、回路ブロック11及び12においてツェナートリガー・バイポーラトランジスターを用いる場合について説明したが、ツェナートリガー・バイポーラトランジスター以外にも、様々なデバイスを用いることができる。また、回路ブロック11及び12において、異なるデバイスを用いても良い。
<第2の実施形態>
図10は、本発明の第2の実施形態において用いられる回路ブロックの構成例を示す回路図である。第2の実施形態においては、図3に示す第1の実施形態に係る静電気保護回路において、回路ブロック11又は12の替りに、図10(A)〜図10(D)に示す回路ブロック14a〜14dのいずれかが設けられている。その他の点に関しては、第2の実施形態は、第1の実施形態と同様でも良い。
図10(A)に示すように、回路ブロック14aは、ゲートがソースに接続されたNチャネルMOSトランジスターQN14を含んでいる。トランジスターQN14は、回路ブロック14aの一端(ノードNA)に接続されたドレインと、回路ブロック14aの他端(ノードNB)に接続されたソース及びゲートとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック14aの両端間の電圧がブレークダウン電圧に達すると放電電流を流す。トランジスターQN14のソース及びバックゲート(Pウェル)をノードN2から電気的に分離する場合に、トランジスターQN14を形成するためには、トリプルウェル構造が用いられる。
図10(B)に示すように、回路ブロック14bは、ゲートがソースに接続されたPチャネルMOSトランジスターQP14を含んでいる。トランジスターQP14は、回路ブロック14bの一端(ノードNA)に接続されたソース及びゲートと、回路ブロック14bの他端(ノードNB)に接続されたドレインとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック14bの両端間の電圧がブレークダウン電圧に達すると放電電流を流す。PチャネルMOSトランジスターを用いる場合には、P型半導体基板内に設けられたNウェルにPチャネルMOSトランジスターを形成すれば良いので、トリプルウェル構造を用いる必要はなく、ツインウェル構造を用いてPチャネルMOSトランジスターを形成することができる。
図10(C)に示すように、回路ブロック14cは、NPNバイポーラトランジスターQC14と、抵抗素子R14とを含んでいる。トランジスターQC14は、回路ブロック14cの一端(ノードNA)に接続されたコレクターと、回路ブロック14cの他端(ノードNB)に接続されたエミッターとを有している。また、抵抗素子R14は、トランジスターQC14のベースとエミッターとの間に接続されている。トランジスターQC14は、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック14cの両端間の電圧がブレークダウン電圧に達すると放電電流を流す。
図10(D)に示すように、回路ブロック14dは、PNPバイポーラトランジスターQA14と、抵抗素子R14とを含んでいる。トランジスターQA14は、回路ブロック14dの一端(ノードNA)に接続されたエミッターと、回路ブロック14dの他端(ノードNB)に接続されたコレクターとを有している。また、抵抗素子R14は、トランジスターQA14のベースとエミッターとの間に接続されている。トランジスターQA14は、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック14dの両端間の電圧がブレークダウン電圧に達すると放電電流を流す。
図11は、図10(A)に示すNチャネルMOSトランジスターの第1のレイアウト例を示す図である。図11(A)は、平面図であり、図11(B)は、図11(A)に示すB−Bにおける断面図である。
図11に示すように、Pウェル30内に、NチャネルMOSトランジスターのドレインとなるN不純物拡散領域32と、ソースとなるN不純物拡散領域33及び34と、Pウェル30に電位を与えるためのP不純物拡散領域35とが形成されている。また、Pウェル30上には、ゲート絶縁膜(図示せず)を介して、ポリシリコン等のゲート電極36及び37が形成されている。図11には、2つのゲート電極36及び37が示されているが、3つ以上のゲート電極を設けるようにしても良い。
不純物拡散領域32〜35には、それぞれのコンタクト42〜45が電気的に接続されている。NチャネルMOSトランジスターのドレイン及びソースとなるN不純物拡散領域32〜34において、コンタクト42〜44が接触する部分を含む所定の領域32a〜34aがシリサイド化され、その他の領域38がシリサイド化されていない。また、P不純物拡散領域35において、コンタクト45が接触する部分を含む領域35aがシリサイド化されている。
トランジスター等の放電素子の不純物拡散領域上にシリサイド層が存在する場合には、非常に低い印加電圧でその放電素子が破壊されることが分かっている。剥離解析結果において、破壊されたMOSトランジスターのゲート電極近傍にノッチ状の電流の流れた痕跡があったことから、そこに局所的な電流集中が発生したことが破壊原因であると考えられる。局所的な電流集中が発生し易い理由として、サリサイド技術による不純物拡散領域の低抵抗化が挙げられる。
例えば、NチャネルMOSトランジスターに逆方向電圧が印加される場合に、パッド(端子)から注入された電荷は、ドレイン上のコンタクトからN不純物拡散領域に注入され、N不純物拡散領域とPウェル(チャネル領域)とのジャンクションでアバランシェ降伏(電子なだれ)を引き起こす。そして、チャネル領域内に流れ出した電荷により、チャネル電位とソース電位(基準電位)との間に、ダイオードの順方向電流が流れるのに必要な電位差が生じ、ドレイン−チャネル−ソースで形成される寄生バイポーラトランジスターが作動して、印加電圧をクランプした状態で放電が行われる。
放電素子としてのNチャネルMOSトランジスターの不純物拡散領域上にシリサイド層が存在しない場合には、不純物拡散領域の比抵抗が大きいので、ドレイン上のコンタクトからゲート電極に向けて、一点に集中することなく均一な放電が行われて、放電素子が破壊され難くなる。そこで、本実施形態においては、図11に示すように、NチャネルMOSトランジスターのドレイン及びソースとなるN不純物拡散領域32〜34において、シリサイド化されていない領域38が設けられている。それにより、静電気保護回路の破壊電流を大きくすることができ、静電気耐量が向上する。
図12は、図10(A)に示すNチャネルMOSトランジスターの第2のレイアウト例を示す図である。図12(A)は、平面図であり、図12(B)は、図12(A)に示すB−Bにおける断面図である。第2のレイアウト例においては、図11に示す第1のレイアウト例におけるドレインとソースの位置が逆になっている。
図12に示すように、Pウェル30内に、NチャネルMOSトランジスターのドレインとなるN不純物拡散領域31及び32と、ソースとなるN不純物拡散領域33と、Pウェル30に電位を与えるためのP不純物拡散領域35とが形成されている。また、Pウェル30上には、ゲート絶縁膜(図示せず)を介して、ポリシリコン等のゲート電極36及び37が形成されている。
不純物拡散領域31〜33及び35には、それぞれのコンタクト41〜43及び45が電気的に接続されている。NチャネルMOSトランジスターのドレイン及びソースとなるN不純物拡散領域31〜33において、コンタクト41〜43が接触する部分を含む所定の領域31a〜33aがシリサイド化され、その他の領域38がシリサイド化されていない。第2のレイアウト例におけるように、ドレインを外側に配置すると、Pウェルとドレインとの間に形成されるダイオードも放電経路となり、NチャネルMOSトランジスターのオン抵抗が下がる方向に作用する。
図13は、図10(C)に示すNPNバイポーラトランジスターのレイアウト例を示す図である。図13(A)は、平面図であり、図13(B)は、図13(A)に示すB−Bにおける断面図である。
図13に示すように、NPNバイポーラトランジスターのベースとなるPウェル50内に、コレクターとなるN不純物拡散領域51と、エミッターとなるN不純物拡散領域52及び53と、Pウェル50に電位を与えるためのP不純物拡散領域54とが形成されている。また、Pウェル50の抵抗成分によって、NPNバイポーラトランジスターのベースとエミッターとの間に接続される抵抗素子が構成される。
不純物拡散領域51〜54には、それぞれのコンタクト61〜64が電気的に接続されている。NPNバイポーラトランジスターのコレクターとなるN不純物拡散領域51において、コンタクト61が接触する部分を含む所定の領域51aがシリサイド化され、その他の領域55がシリサイド化されていない。
また、NPNバイポーラトランジスターのエミッターとなるN不純物拡散領域52及び53において、コンタクト62及び63が接触する部分を含む領域52a及び53aがシリサイド化され、P不純物拡散領域54において、コンタクト64が接触する部分を含む領域54aがシリサイド化されている。
放電素子としてのNPNバイポーラトランジスターの不純物拡散領域上にシリサイド層が存在しない場合には、不純物拡散領域の抵抗値が大きいので、コレクター上のコンタクトからエミッターに向けて、一点に集中することなく均一な放電が行われることにより、放電素子が破壊され難くなる。
そこで、本実施形態においては、図13に示すように、NPNバイポーラトランジスターのコレクターとなるN不純物拡散領域51において、シリサイド化されていない領域55が設けられている。それにより、静電気保護回路の破壊電流を大きくすることができ、静電気耐量が向上する。
第2の実施形態においても、図3に示す回路ブロック13のサイリスターTH13よりはリーク電流が大きいトランジスターが用いられる。従って、通常動作時においてノードN1の電位がノードN2の電位よりも高いときに、図10に示す回路ブロック14a〜14dの各々の両端間電圧が、サイリスターTH13のアノードとカソードとの間の電圧よりも小さくなっている。
<第3の実施形態>
図14は、本発明の第3の実施形態に係る静電気保護回路の構成例を示す回路図である。第3の実施形態においては、図3に示す第1の実施形態に係る静電気保護回路において、回路ブロック11及び12の替りに、回路ブロック15及び16が設けられている。その他の点に関しては、第3の実施形態は、第1の実施形態と同様でも良い。
図14に示すように、第3の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック15、16、及び、13を含んでいる。図14に示すのは一例であり、回路ブロックの数や接続順序は任意である。
回路ブロック15は、ゲートがドレインに接続されたNチャネルMOSトランジスターQN15を含んでいる。トランジスターQN15は、回路ブロック15の一端(ノードN1)に接続されたドレイン及びゲートと、回路ブロック15の他端(ノードN3)に接続されたソースとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック15の両端間の電圧が閾値電圧に達すると放電電流を流す。
同様に、回路ブロック16は、ゲートがドレインに接続されたNチャネルMOSトランジスターQN16を含んでいる。トランジスターQN16は、回路ブロック16の一端(ノードN3)に接続されたドレイン及びゲートと、回路ブロック16の他端(ノードN4)に接続されたソースとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック14の両端間の電圧が閾値電圧に達すると放電電流を流す。
トランジスターQN15又はQN16のソース及びバックゲート(Pウェル)をノードN2から電気的に分離する場合に、トランジスターQN15又はQN16を形成するためには、トリプルウェル構造が用いられる。
トランジスターQN15及びQN16は、回路ブロック15及び16の各々に閾値電圧以上の電圧が印加されると常にオン状態となるように接続されているので、各トランジスターのドレイン・ソース間の電圧は、それぞれの動作最大電圧よりも十分低い電圧となる。従って、通常動作において、トランジスターQN15及びQN16は、特性の劣化や破壊には至らない。
また、トランジスターQN15及びQN16は、回路ブロック15及び16の各々に閾値電圧以上の電圧が印加されると常にオン状態となるように接続されているので、通常動作時において回路ブロック15、16、及び、13に印加される電圧の比率が、回路ブロック15、16、及び、13に流れる電流によって決定される。それにより、回路ブロック15、16、及び、13に抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。
図15は、本発明の第3の実施形態の変形例において用いられる回路ブロックを示す図である。図14に示す第3の実施形態に係る静電気保護回路において、回路ブロック15又は16の替りに、図15(A)及び図15(B)に示す回路ブロック15a及び15bのいずれかを設けても良い。
回路ブロック15aは、ノードNAとノードNBとの間に接続されたトランジスターQN15を含んでいる。トランジスターQN15のゲートは、オープン状態とされている。通常動作時において、トランジスターQN15のドレインからソースにリーク電流が流れる。また、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック15aの両端間の電圧がブレークダウン電圧に達すると、トランジスターQN15は放電電流を流す。
回路ブロック15bは、ノードNAとノードNBとの間に直列に接続されたトランジスターQN15及びQN16を含んでいる。トランジスターQN15及びQN16のゲートは、オープン状態とされても良いし、又は、ドレインに接続されても良い。トランジスターQN15及びQN16は、同一のPウェルに形成されている。
図16は、図15(B)に示すNチャネルMOSトランジスターの第1のレイアウト例を示す図である。図16(A)は、平面図であり、図16(B)は、図16(A)に示すB−Bにおける断面図である。
第1のレイアウト例においては、直列接続された複数のNチャネルMOSトランジスターが設けられる場合に、それらの内で最も高い電位が印加されるNチャネルMOSトランジスターのゲートの両側のN不純物拡散領域の部分をシリサイド化しない領域とする。一方、直列接続された複数のPチャネルMOSトランジスターが設けられる場合には、それらの内で最も低い電位が印加されるPチャネルMOSトランジスターのゲートの両側のP不純物拡散領域の部分をシリサイド化しない領域とする。
図16に示すように、Pウェル70内に、トランジスターQN15のドレインとなるN不純物拡散領域71と、トランジスターQN15のソース及びトランジスターQN16のドレインとなるN不純物拡散領域72及び73とが形成されている。また、トランジスターQN16のソースとなるN不純物拡散領域74及び75と、Pウェル30に電位を与えるためのP不純物拡散領域76とが形成されている。さらに、Pウェル30上には、ゲート絶縁膜(図示せず)を介して、トランジスターQN15のゲート電極81及び82と、トランジスターQN16のゲート電極83及び84とが形成されている。
不純物拡散領域71及び74〜76には、それぞれのコンタクト91及び94〜96が電気的に接続されている。NチャネルMOSトランジスターのドレイン及びソースとなるN不純物拡散領域71〜75において、コンタクト91、94、及び、95が接触する部分を含む所定の領域71a〜75aがシリサイド化され、その他の領域77がシリサイド化されていない。また、P不純物拡散領域76において、コンタクト96が接触する部分を含む領域76aがシリサイド化されている。
第1のレイアウト例においては、トランジスターQN15のドレイン及びソースとなるN不純物拡散領域71〜73の比抵抗が大きいので、トランジスターQN15のドレイン上のコンタクト91からゲート81及び82に向けて、一点に集中することなく均一な放電が行われる。それにより、静電気保護回路の破壊電流を大きくすることができ、静電気耐量が向上する。
図17は、図15(B)に示すNチャネルMOSトランジスターの第2のレイアウト例を示す図である。図17(A)は、平面図であり、図17(B)は、図17(A)に示すB−Bにおける断面図である。
第2のレイアウト例においては、直列接続された複数のNチャネルMOSトランジスターが設けられる場合に、全てのNチャネルMOSトランジスターのゲートの両側のN不純物拡散領域の部分をシリサイド化しない領域とする。一方、直列接続された複数のPチャネルMOSトランジスターが設けられる場合には、全てのPチャネルMOSトランジスターのゲートの両側のP不純物拡散領域の部分をシリサイド化しない領域とする。その他の点に関しては、第2のレイアウト例は、第1のレイアウト例と同様でも良い。
不純物拡散領域71及び74〜76には、それぞれのコンタクト91及び94〜96が電気的に接続されている。NチャネルMOSトランジスターのドレイン及びソースとなるN不純物拡散領域71〜75において、コンタクトコンタクト91及び94〜95が接触する部分を含む所定の領域71a、74a、及び、75aがシリサイド化され、その他の領域77がシリサイド化されていない。また、P不純物拡散領域76において、コンタクト96が接触する部分を含む領域76aがシリサイド化されている。
第2のレイアウト例においては、トランジスターQN15及びQN16のドレイン及びソースとなるN不純物拡散領域71〜75の比抵抗が大きいので、第1のレイアウト例よりもホールド電圧が高くなる。
<第4の実施形態>
図18は、本発明の第4の実施形態に係る静電気保護回路の構成例を示す回路図である。第4の実施形態においては、図3に示す第1の実施形態に係る静電気保護回路において、回路ブロック11及び12の替りに、回路ブロック17及び18が設けられている。その他の点に関しては、第4の実施形態は、第1の実施形態と同様でも良い。
図18に示すように、第4の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック17、18、及び、13を含んでいる。図18に示すのは一例であり、回路ブロックの数や接続順序は任意である。
回路ブロック17は、ゲートがソースに接続されたデプレッション型のNチャネルMOSトランジスターQN17を含んでいる。トランジスターQN17は、回路ブロック17の一端(ノードN1)に接続されたドレインと、回路ブロック15の他端(ノードN3)に接続されたソース及びゲートとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック17の両端間に正の電圧が印加されると放電電流を流す。
同様に、回路ブロック18は、ゲートがソースに接続されたデプレッション型のNチャネルMOSトランジスターQN18を含んでいる。トランジスターQN18は、回路ブロック18の一端(ノードN3)に接続されたドレインと、回路ブロック18の他端(ノードN4)に接続されたソース及びゲートとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック18の両端間に正の電圧が印加されると放電電流を流す。
トランジスターQN17又はQN18において、ゲートがオープン状態とされても良い。また、直列接続された複数のNチャネルMOSトランジスターが設けられる場合に、それらのNチャネルMOSトランジスターは、同一のPウェルに形成されても良い。それらのNチャネルMOSトランジスターのゲートは、オープン状態とされても良いし、又は、ソースに接続されても良い。
デプレッション型のトランジスターQN17及びQN18は、回路ブロック17及び18の各々に正の電圧が印加されると常にオン状態となるので、トランジスターQN17及びQN18のドレイン・ソース間の電圧は、それぞれの動作最大電圧よりも十分低い電圧となる。従って、通常動作において、トランジスターQN17及びQN18は、特性の劣化や破壊には至らない。
また、デプレッション型のトランジスターQN17及びQN18は、回路ブロック17及び18の各々に正の電圧が印加されると常にオン状態となるので、通常動作時において回路ブロック17、18、及び、13に印加される電圧の比率が、回路ブロック17、18、及び、13に流れる電流によって決定される。それにより、回路ブロック17、18、及び、13に抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。
図19は、本発明の第4の実施形態の変形例において用いられる回路ブロックの構成例を示す回路図である。第4の実施形態の変形例においては、図18に示す第4の実施形態に係る静電気保護回路において、回路ブロック17又は18の替りに、図19に示す回路ブロック19が用いられる。
回路ブロック19は、ゲートがソースに接続されたデプレッション型のPチャネルMOSトランジスターQP19を含んでいる。トランジスターQP19は、回路ブロック19の一端(ノードNA)に接続されたソース及びゲートと、回路ブロック19の他端(ノードNB)に接続されたドレインとを有し、ノードN1の電位がノードN2の電位よりも高くなって回路ブロック19の両端間に正の電圧が印加されると放電電流を流す。
トランジスターQP19において、ゲートがオープン状態とされても良い。また、直列接続された複数のPチャネルMOSトランジスターが設けられる場合に、それらのPチャネルMOSトランジスターは、同一のNウェルに形成されても良い。それらのPチャネルMOSトランジスターのゲートは、オープン状態とされても良いし、又は、ソースに接続されても良い。
デプレッション型のトランジスターQP19は、回路ブロック19の両端間に正の電圧が印加されると常にオン状態となるので、トランジスターQP19のソース・ドレイン間の電圧は、トランジスターQP19の動作最大電圧よりも十分低い電圧となる。従って、通常動作において、トランジスターQP19は、特性の劣化や破壊には至らない。
また、デプレッション型のトランジスターQP19は、回路ブロック19の両端間に正の電圧が印加されると常にオン状態となるので、通常動作時において複数の回路ブロックに印加される電圧の比率が、それらの回路ブロックに流れる電流によって決定される。それにより、それらの回路ブロックに抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。
<第5の実施形態>
図20は、本発明の第5の実施形態において用いられる回路ブロックの構成例を示す回路図である。第5の実施形態に係る静電気保護回路は、図3に示す第1の実施形態に係る静電気保護回路において、回路ブロック11〜13の接続順序を変更すると共に、ダイオードD13の接続先を変更したものである。その他の点に関しては、第5の実施形態は、第1の実施形態と同様でも良い。
ダイオードD13は、トランジスターQA13のベース(サイリスターTH13のNゲート)とノードN2との間に接続されており、トランジスターQA13のベースに接続されたカソードと、ノードN2に電気的に接続されたアノードとを有している。ダイオードD13は、ノードN1の電位がノードN2の電位よりも高くなってカソードとアノードとの間の電圧が降伏電圧に達すると、回路ブロック13に電流を流す。即ち、抵抗素子R13aに電流が流れると共に、トランジスターQA13のエミッター・ベース間電圧が閾値電圧以上になると、トランジスターQA13のベースにも電流が流れる。
トランジスターQA13のベースに電流が流れると、トランジスターQA13がオン状態となって、ノードN1からノードN3に電流を流す。また、抵抗素子R13bの両端間に電位差が生じて、トランジスターQC13のベース・エミッター間電圧が閾値電圧以上になると、トランジスターQC13がオン状態になる。以上の動作により、ノードN1とノードN3との間の電圧がクランプされる。
図20に示す静電気保護回路のホールド電圧は、回路ブロック11〜13のホールド電圧の和になる。また、トリガー電圧は、ダイオードD13の降伏電圧によって設定することができる。
図21は、図20に示すサイリスターのレイアウト例を示す図である。図21(A)は、平面図であり、図21(B)は、図21(A)に示すB−Bにおける断面図である。図21に示すように、P型半導体基板(例えば、シリコン基板)100内にNウェル110及びPウェル121が形成され、さらに、Nウェル110内にPウェル120が形成されて、トリプルウェル構造が構成されている。その他の点に関しては、図21に示すレイアウト例は、図4に示すレイアウト例と同様でも良い。トリプルウェル構造を用いることにより、トランジスターQC13のエミッターをP型半導体基板100の電位から電気的に分離することができる。
本実施形態によっても、第1の実施形態と同様の効果を奏することができる。さらに、ダイオードD13として、Pウェル121とN不純物拡散領域とで構成されるダイオードを使用することができる。また、ダイオードD13の降伏電圧の特性に合わせて、回路構成を決めることができる。
<第6の実施形態>
図22は、本発明の第6の実施形態に係る静電気保護回路の構成例を示す回路図である。第6の実施形態に係る静電気保護回路は、図20に示す第5の実施形態に係る静電気保護回路において、回路ブロック11〜13の接続順序を変更すると共に、図14に示す回路ブロック15を追加したものである。その他の点に関しては、第6の実施形態は、第5の実施形態と同様でも良い。
図22に示すように、第6の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック11、13、15、及び、12を含んでいる。図22に示すのは一例であり、回路ブロックの数や接続順序は任意である。図22に示す静電気保護回路のホールド電圧は、回路ブロック11、13、15、及び、12のホールド電圧の和になる。また、トリガー電圧は、回路ブロック11のトリガー電圧とダイオードD13の降伏電圧との和になる。
図22においては、ダイオードD13が、トランジスターQA13のベース(サイリスターTH13のNゲート)とノードN2との間に接続されているが、ダイオードD13は、トランジスターQA13のベースとノードN5との間に接続されても良い。その場合に、静電気保護回路のトリガー電圧は、回路ブロック11のトリガー電圧と、回路ブロック12のトリガー電圧と、ダイオードD13の降伏電圧との和になる。従って、静電気保護回路のトリガー電圧を、ダイオードD13の降伏電圧と幾つかのデバイスのトリガー電圧との和で設定することができる。
このように、静電気保護回路のトリガー電圧及びホールド電圧は、各デバイスのトリガー電圧及びホールド電圧を考慮して組み合わせることにより、比較的任意に設定することができる。さらに、デバイスとして、ツェナートリガー・バイポーラトランジスター又はツェナートリガー・サイリスターを用いる場合には、ツェナーダイオードの降伏電圧をイオンドーピングによって任意に設定することができるので、トリガー電圧及びホールド電圧をより木目細やかに設定することが可能になる。
<第7の実施形態>
図23は、本発明の第7の実施形態に係る静電気保護回路の構成例を示す回路図である。第7の実施形態においては、図20に示す第5の実施形態に係る静電気保護回路において、回路ブロック13の替りに、回路ブロック13から抵抗素子13bが削除された回路ブロック13aが設けられている。その他の点に関しては、第7の実施形態は、第5の実施形態と同様でも良い。
図23に示すように、第6の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック13a、11、及び、12を含んでいる。図23に示すのは一例であり、回路ブロックの数や接続順序は任意である。図23に示す静電気保護回路のホールド電圧は、回路ブロック13a、11、及び、12のホールド電圧の和になる。また、トリガー電圧は、ダイオードD13の降伏電圧によって設定することができる。
例えば、回路ブロック13aのサイリスターTH13は、ツインウェル構造を用いて形成される。また、サイリスターTH13のPゲートは、Pウェルの寄生抵抗(図示せず)を介してノードN2(P型半導体基板)に電気的に接続される。従って、図20に示す回路ブロック13の抵抗素子R13bを別途設ける必要がなくなるので、回路面積を小さくすることができる。
図24は、図23に示すサイリスターをツインウェル構造で構成した場合の第1のレイアウト例を示す図である。図24(A)は、平面図であり、図24(B)は、図24(A)に示すB−Bにおける断面図である。第1のレイアウト例においては、カソードを共通とする2つのサイリスターが左右対称に配置されている。以下においては、図中左側のサイリスターについて説明する。
図24に示すように、P型半導体基板(例えば、シリコン基板)100内に、Nウェル110、及び、Pウェル120及び121が形成されている。Nウェル110内には、N不純物拡散領域131及びP不純物拡散領域132が形成されている。Nウェル110及びN不純物拡散領域131は、トランジスターQA13のベース、即ち、図23に示すサイリスターTH13のNゲートに該当すると共に、トランジスターQC13のコレクターに該当する。また、P不純物拡散領域132は、トランジスターQA13のエミッター、即ち、図23に示すサイリスターTH13のアノードに該当する。
Pウェル120内には、N不純物拡散領域133が形成されている。Pウェル120は、トランジスターQC13のベース、即ち、図23に示すサイリスターTH13のPゲートに該当すると共に、トランジスターQA13のコレクターに該当する。N不純物拡散領域133は、トランジスターQC13のエミッター、即ち、図23に示すサイリスターTH13のカソードに該当する。Pウェル121内には、ノードN2に電気的に接続されたP不純物拡散領域135が形成されている。トランジスターQC13のベースは、Pウェル120の寄生抵抗を介してP型半導体基板100に電気的に接続される。
このように、サイリスターTH13をツインウェル構造で構成し、サイリスターTH13のPゲートに該当するPウェル120を、サイリスターTH13のNゲートに該当するNウェル110によって平面視で囲むことにより、サイリスターTH13のPゲートとP型半導体基板100との間を、高いインピーダンスを介して接続することができる。従って、サイリスターTH13のPゲートの電位を制御するためのP不純物拡散領域と、Pゲートに接続される抵抗素子とが不要になり、回路面積を小さくすることができる。一方、トランジスターQC13はオンし易くなるので、NゲートのみでサイリスターTH13を確実にオン状態とすることができる。
図25は、図23に示すサイリスターをツインウェル構造で構成した場合の第2のレイアウト例を示す平面図であり、図26は、図23に示すサイリスターをツインウェル構造で構成した場合の第3のレイアウト例を示す平面図である。図25及び図26に示すように、Nゲートの電位を制御するためのN不純物拡散領域131は、P不純物拡散領域132及びN不純物拡散領域133の図中上下の位置に配置しても良い。図25又は図26に示すように不純物拡散領域131〜133を配置すると、図中横方向に静電気保護回路を小型化することができる。
<第8の実施形態>
図27は、本発明の第8の実施形態に係る静電気保護回路の構成例を示す回路図である。第8の実施形態においては、図3に示す第1の実施形態に係る静電気保護回路において、回路ブロック13の替りに、回路ブロック13から抵抗素子R13aが削除された回路ブロック13bが設けられている。その他の点に関しては、第8の実施形態は、第1の実施形態と同様でも良い。
図27に示すように、第8の実施形態に係る静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック11、12、及び、13bを含んでいる。図27に示すのは一例であり、回路ブロックの数や接続順序は任意である。図27に示す静電気保護回路のホールド電圧は、回路ブロック11、12、及び、13bのホールド電圧の和になる。また、トリガー電圧は、ダイオードD13の降伏電圧によって設定することができる。
例えば、回路ブロック13bのサイリスターTH13は、トリプルウェル構造を用いて形成される。また、サイリスターTH13のNゲートは、ディープNウェル及びNウェルの寄生抵抗(図示せず)を介してノードN1に電気的に接続される。従って、図3に示す回路ブロック13の抵抗素子13aを別途設ける必要がなくなるので、回路面積を小さくすることができる。
図28は、図27に示すサイリスターをトリプルウェル構造で構成した場合のレイアウト例を示す図である。図28(A)は、平面図であり、図28(B)は、図28(A)に示すB−Bにおける断面図である。このレイアウト例においては、アノードを共通とする2つのサイリスターが左右対称に配置されている。以下においては、図中左側のサイリスターについて説明する。
図28に示すように、P型半導体基板(例えば、シリコン基板)100内に、ディープNウェル101、Nウェル110及び111、及び、Pウェル120が形成されている。Nウェル110内には、P不純物拡散領域132が形成されている。Nウェル110は、トランジスターQA13のベース、即ち、図27に示すサイリスターTH13のNゲートに該当すると共に、トランジスターQC13のコレクターに該当する。また、P不純物拡散領域132は、トランジスターQA13のエミッター、即ち、図27に示すサイリスターTH13のアノードに該当する。
Pウェル120内には、N不純物拡散領域133及びP不純物拡散領域134が形成されている。Pウェル120及びP不純物拡散領域134は、トランジスターQC13のベース、即ち、図27に示すサイリスターTH13のPゲートに該当すると共に、トランジスターQA13のコレクターに該当する。N不純物拡散領域133は、トランジスターQC13のエミッター、即ち、図27に示すサイリスターTH13のカソードに該当する。Nウェル111内には、ノードN1に電気的に接続されたN不純物拡散領域136が形成されている。トランジスターQA13のベースは、Nウェル110、ディープNウェル101、及び、Nウェル111の寄生抵抗を介してノードN1に電気的に接続される。
このように、サイリスターTH13をトリプルウェル構造で構成し、サイリスターTH13のNゲートに該当するNウェル110を、サイリスターTH13のPゲートに該当するPウェル120によって平面視で囲むことにより、サイリスターTH13のNゲートとノードN1との間を、高いインピーダンスを介して接続することができる。従って、サイリスターTH13のNゲートの電位を制御するためのN不純物拡散領域と、Nゲートに接続される抵抗素子とが不要になり、回路面積を小さくすることができる。一方、トランジスターQA13はオンし易くなるので、PゲートのみでサイリスターTH13を確実にオン状態とすることができる。
<第9の実施形態>
図29は、本発明の第9の実施形態に係る静電気保護回路の構成例を示す回路図である。第9の実施形態に係る静電気保護回路においては、図23に示す回路ブロック13a、11、及び、12と、図27に示す回路ブロック13bとが、ノードN1とノードN2との間に直列に接続されている。ダイオードD3のカソードは、回路ブロック13aのサイリスターTH13のNゲートに接続されており、ダイオードD3のアノードは、回路ブロック13bのサイリスターTH13のPゲートに接続されている。その他の点に関しては、第9の実施形態は、第7又は第8の実施形態と同様でも良い。
例えば、回路ブロック13aのサイリスターTH13は、ツィンウェル構造で構成される。回路ブロック13aのレイアウトは、図24に示すレイアウトと同様でも良い。また、回路ブロック13bのサイリスターTH13は、トリプルウェル構造で構成される。回路ブロック13bのレイアウトは、図28に示すレイアウトと同様でも良い。
第9の実施形態によれば、静電気保護回路のホールド電圧が、図23又は図27に示す静電気保護回路と比較して、サイリスター1段分だけ高くなる。サイリスターのホールド電圧は比較的低いので、静電気保護回路のホールド電圧を木目細かく調整することが可能になる。
<第10の実施形態>
第1〜第9の実施形態においては、トリガー電圧を設定するために1つのダイオードD13が使用されているが、第10の実施形態に係る静電気保護回路においては、ダイオードD13の替りに、過電圧検出回路150が設けられている。その他の点に関しては、第10の実施形態は、第1〜第9の実施形態のいずれかと同様でも良い。
図30は、本発明の第10の実施形態に係る静電気保護回路の構成例を示す回路図である。第10の実施形態においては、図3に示す第1の実施形態に係る静電気保護回路において、ダイオードD13の替りに、過電圧検出回路150が設けられている。例えば、図30に示す過電圧検出回路150は、直列に接続された複数のダイオードD14〜D16を含んでいる。ダイオードD14〜D16の降伏電圧は、サイリスターTH13のブレークダウン電圧よりも低く設定されている。
過電圧検出回路150は、図30に示すサイリスターTH13のPゲートに接続された一端、又は、図20に示すサイリスターTH13のNゲートに接続された他端を有し、ノードN1の電位がノードN2の電位よりも高くなって両端間の電圧が降伏電圧(ブレークダウン電圧)に達すると、サイリスターTH13を含む回路ブロック13に電流を流す。
過電圧検出回路150において、降伏電圧が低い複数のダイオードD14〜D16を直列に接続することにより、比較的任意にトリガー電圧を設定することができる。さらに、ダイオードD14〜D16の降伏電圧が低いと、降伏後のオン抵抗が小さくなるので、ダイオードD14〜D16のサイズを小さくすることができる。
また、過電圧検出回路150においては、ダイオード以外にも、ある一定の電圧が印加されると電流を流すデバイスを用いることができる。例えば、図10(A)に示すように、ゲートがソースに接続されたNチャネルMOSトランジスターQN14を用いたり、又は、図10(B)に示すように、ゲートがソースに接続されたPチャネルMOSトランジスターQP14を用いても良い。
あるいは、図10(C)に示すNPNバイポーラトランジスターQC14及び抵抗素子R14を用いたり、又は、図10(D)に示すPNPバイポーラトランジスターQA14及び抵抗素子R14を用いても良い。上記のように接続されたダイオード又はトランジスターによって、静電気保護回路のトリガー電圧を設定することができる。
以上の実施形態によれば、複数の回路ブロックが直列に接続されるので、ホールド電圧を高く設定することが可能になる。また、少なくとも1つの回路ブロックが、リーク電流が小さいサイリスターを含み、通常動作時において他の回路ブロックの両端間の電圧がサイリスターのアノードとカソードとの間の電圧よりも小さくなるように、他の回路ブロックにおいて印加電圧に対する電流が比較的大きいデバイス又は接続が用いられるので、通常動作時において複数の回路ブロックに印加される電圧の比率が、回路ブロックに流れる電流によって決定される。
それにより、複数の回路ブロックに抵抗素子を並列に接続することなく、電源投入直後における被保護回路の破壊を精度良く防止すると共に、長時間の通常動作における保護デバイスの破壊又は劣化を防ぐことができる。その結果、特許文献1の図9に示されている従来技術と比較して、分圧のための抵抗素子が不要になるので、回路面積(チップサイズ)を小さくすることができる。また、サイリスターのリーク電流が小さいことから、通常動作時において他の回路ブロックに過電圧がかかり難く、他の回路ブロックを構成するデバイスの選択肢を広げることができる。
<第11の実施形態>
図31は、ESDイミュニティ試験(静電気放電イミュニティ試験)の規格(IEC61000−4−2)における放電電流波形を示す図である。この規格は、帯電した操作者からの直接あるいは近接した物体を介しての静電気放電に曝される電子機器に対する規格である。図31においてA5に示す最初のピークの立ち上がり時間trは、0.8nsec±25%と非常に短い。それに対し、人体モデル(HBM)の試験法では、立ち上がり時間は、約10nsecである。図31においてA6に示すセカンドピークでは、A5に示す最初のピークに比べて立ち上がりは遅いが、長い期間において電流印加が行われる。
図32は、ESDイミュニティ試験のレベルを説明するための図である。図32(A)は、ESDイミュニティ試験の規格(IEC61000−4−2)に従うESD試験に対して推奨される試験レベルの範囲(厳しさレベル)を示している。図32(B)は、ESD発生機器の出力電流波形定義を示している。
図32(B)において、Ipは最初の放電ピーク電流を表しており、trは放電スイッチ立ち上がり時間を表しており、I30は30nsでの電流値を表しており、I60は60nsでの電流値を表している。例えば、試験レベル1の場合に、指示電圧が2kVであり、最初の放電ピーク電流が7.5A流れ、30nsでの電流値が4Aである。
ESDイミュニティ試験は、電子機器の実際の使用状況に即した現実的なESDレベルにおいて、動作の継続性や信頼性を検証するために行われる。例えば、半導体集積回路装置(IC)を回路基板(試験用基板)に実装し、ICに電源を供給した状態で、ICの電源端子等に対して放電ガンによる放電パルスが印加される。この放電パルスが要因となって、ICの電源端子間に大電流が流れる。
第1〜第10の実施形態に係る静電気保護回路は、印加される電圧がトリガーとなって放電動作を開始するので、サージ電流に対する反応が早く、ESDイミュニティ試験によって発生したサージ電流の全てが、IC内部の静電気保護回路に流れ込む可能性がある。従って、試験レベル1を満足するためには、7.5A以上の電流が流れても破壊しないように静電気保護回路を設計する必要がある。
例えば、図34を参照すると、半導体集積回路装置(IC)200が搭載された電子機器の通常動作時において、電子機器の電源回路210からIC200に電源電圧が供給される。電源端子P1と電源端子P2との間にバイパスコンデンサーCB1が接続されている場合には、バイパスコンデンサーCB1によってノイズ対策が施されることになる。このバイパスコンデンサーCB1は、例えば、IC200が実装される回路基板201に設けられる。
そのような電子機器に対してESDイミュニティ試験を実施すると、バイパスコンデンサーCB1によって、ある程度はノイズ成分を除去できる。しなしながら、電源回路210の出力インピーダンスが高く、かつ、回路基板201の配線の寄生抵抗RB1及びRB2の抵抗値が低い場合には、ESDイミュニティ試験によって発生したサージ電流の殆ど全てがIC200内に流れ込む可能性がある。以下に説明する第11の実施形態は、そのような課題を解決することを目的としている。
図33は、本発明の第11の実施形態に係る静電気保護回路の構成例を示す回路図である。第11の実施形態に係る静電気保護回路においては、ノードN1とノードN2との間に直列に接続された複数の回路ブロックを含む構成に、過電圧検出回路160及びインバーター170が追加されている。その他の点に関しては、第11の実施形態は、第1〜第10の実施形態のいずれかと同様でも良い。
図33に示すように、静電気保護回路は、ノードN1とノードN2との間に直列に接続された回路ブロック11、12、及び、13aを含んでいる。図33に示すのは一例であり、回路ブロックの数や接続順序は任意である。回路ブロック11、12、及び、13aの各々は、図23に示す第6の実施形態において説明したものと同一である。
さらに、静電気保護回路は、過電圧検出回路160と、インバーター170とを含んでいる。過電圧検出回路160は、例えば、ダイオード又はトランジスター(図33には、一例として、ツェナーダイオードZD60を示す)と、抵抗素子R60と、キャパシターC60とを含み、ノードN1とノードN2との間に印加される過電圧を検出して検出信号を生成する。
ツェナーダイオードZD60は、ノードN1の電位がノードN2の電位よりも高くなってカソードとアノードとの間の電圧が降伏電圧に達すると、インバーター170の入力ノードN5とノードN2との間の電圧をクランプする。従って、ツェナーダイオードZD60は、第1〜第10の実施形態のいずれかにおいて説明したダイオードD13と同様に、静電気保護回路のトリガー電圧を設定することができる。あるいは、ツェナーダイオードZD60の替りに、図10に示すようなMOSトランジスター又はバイポーラトランジスターを用いても良い。
インバーター170は、例えば、PチャネルMOSトランジスターQP70と、NチャネルMOSトランジスターQN70とを含み、過電圧検出回路160によって生成される検出信号を少なくとも遅延させて回路ブロック13aのサイリスターTH13のゲートに供給する遅延回路に相当する。インバーター170は、入力ノードN5に印加される検出信号を遅延させると共にレベルを反転して出力信号を生成し、出力ノードN6から出力信号を出力する。
インバーター170における遅延時間は、例えば、10nsであるものとする。インバーター170の出力ノードN6は、回路ブロック13aのサイリスターTH13のPゲートに接続されており、サイリスターTH13のPゲートが、インバーター170の出力信号によって制御される。
過電圧検出回路160は、ノードN1の電位がノードN2の電位よりも高くなってノードN1とノードN2との間の電圧がある一定電圧に達すると、インバーター170の入力ノードN5に印加される検出信号をローレベルに活性化する。あるいは、過電圧検出回路160は、静電気の放電等によってノードN1とノードN2との間の電圧が急峻に立ち上がると、インバーター170の入力ノードN5に印加される検出信号をローレベルに活性化する。
インバーター170は、検出信号がローレベルに活性化されてから10nsが経過した後に、出力信号をハイレベルに活性化する。それにより、回路ブロック13aのサイリスターTH13がオン状態となる。図33においては、サイリスターTH13のPゲートが制御される構成が示されているが、サイリスターTH13のNゲートを制御するようにしても良い。
以上のように、インバーター170を介してサイリスターTH13を駆動すると、ESDイミュニティ試験によってサージ電流が発生してから10nsが経過するまでの期間においては、サイリスターTH13が、未だオフ状態を保つ。即ち、図31においてA5に示す最初の放電ピーク電流Ipが流れる期間においては、静電気保護回路がオフ状態であるので、サージ電流が電源回路又はバイパスコンデンサーに流れ込み、試験レベル1における最初の放電ピーク電流7.5AがIC内部に流れ込むことはない。その結果、静電気保護回路としては、図31においてA6に示すセカンドピークの電流4Aを考慮して設計すれば良い。
本実施形態によれば、半導体集積回路装置の内部回路をESDから有効に保護しつつ、ESDイミュニティ試験によって発生したサージ電流の全てが静電気保護回路に流れ込むことを防止することができる。その結果、静電気保護回路の小型化が可能になる。さらに、本発明の第1〜第11の実施形態によれば、ホールド電圧を高く設定できると共に小型化が可能な静電気保護回路を内蔵して、チップサイズの増大が抑制された高耐圧の半導体集積回路装置を提供することができる。
<電子機器1>
次に、本発明の各実施形態に係る電子機器について説明する。
図34は、本発明の第1の実施形態に係る電子機器の構成例を示す回路図である。この電子機器は、本発明の一実施形態に係る半導体集積回路装置200と、ツェナーダイオードZD1と、バイパスコンデンサーCB1と、電源回路210とを含んでいる。ツェナーダイオードZD1及びバイパスコンデンサーCB1は、半導体集積回路装置200と共に回路基板201に実装されている。回路基板201の配線には、寄生抵抗RB1及びRB2が存在する。
電源回路210は、回路基板201に電源電圧を供給する。それにより、半導体集積回路装置200の電源端子P1に高電位側の電源電位VDDが供給され、電源端子P2に低電位側の電源電位VSSが供給される。ツェナーダイオードZD1は、半導体集積回路装置200と共に回路基板201に実装されて、半導体集積回路装置200の電源端子P1及びP2の近傍に配置されている。
ツェナーダイオードZD1は、電源端子P1に接続されたカソードと、電源端子P2に接続されたアノードとを有している。ツェナーダイオードZD1は、電源端子P1の電位が電源端子P2の電位よりも高くなってカソード・アノード間の電圧が降伏電圧に達すると放電電流を流す。
本実施形態によれば、回路基板201にツェナーダイオードZD1を設けることにより、ESDイミュニティ試験によって発生するサージ電流はツェナーダイオードZD1に流れる。従って、静電気保護回路10に流れる電流が減少するので、静電気保護回路10のさらなる小型化が可能になる。
<電子機器2>
図35は、本発明の第2の実施形態に係る電子機器の構成例を示すブロック図である。図35に示すように、この電子機器は、CPU220と、操作部230と、ROM(リードオンリー・メモリー)240と、RAM(ランダムアクセス・メモリー)250と、通信部260と、表示部270と、音声出力部280とを含んでも良い。
ここで、CPU220、及び、ROM240〜音声出力部280の少なくとも一部は、本発明の一実施形態に係る半導体集積回路装置に内蔵される。なお、図35に示す構成要素の一部を省略又は変更しても良いし、あるいは、図35に示す構成要素に他の構成要素を付加しても良い。
CPU220は、ROM240等に記憶されているプログラムに従って、外部から供給されるデータ等を用いて各種の信号処理や制御処理を行う。例えば、CPU220は、操作部230から供給される操作信号に応じて各種の信号処理を行ったり、外部との間でデータ通信を行うために通信部260を制御したり、表示部270に各種の画像を表示させるための画像信号を生成したり、音声出力部280に各種の音声を出力させるための音声信号を生成したりする。
操作部230は、例えば、操作キーやボタンスイッチ等を含む入力装置であり、ユーザーによる操作に応じた操作信号をCPU220に出力する。ROM240は、CPU220が各種の信号処理や制御処理を行うためのプログラムやデータ等を記憶している。また、RAM250は、CPU220の作業領域として用いられ、ROM240から読み出されたプログラムやデータ、操作部230を用いて入力されたデータ、又は、CPU220がプログラムに従って実行した演算結果等を一時的に記憶する。
通信部260は、例えば、アナログ回路及びデジタル回路で構成され、CPU220と外部装置との間のデータ通信を行う。表示部270は、例えば、LCD(液晶表示装置)等を含み、CPU220から供給される画像信号に基づいて各種の画像を表示する。また、音声出力部280は、例えば、スピーカー等を含み、CPU220から供給される音声信号に基づいて音声を出力する。
電子機器としては、例えば、腕時計や置時計等の時計、タイマー、携帯電話機等の移動端末、デジタルスチルカメラ、デジタルムービー、テレビ、テレビ電話、防犯用テレビモニター、ヘッドマウント・ディスプレイ、パーソナルコンピューター、プリンター、ネットワーク機器、複合機、車載装置(ナビゲーション装置等)、電卓、電子辞書、電子ゲーム機器、ロボット、測定機器、及び、医療機器(例えば、電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、及び、電子内視鏡)等が該当する。以上の実施形態によれば、チップサイズの増大が抑制された高耐圧の半導体集積回路装置を用いて、低コストで信頼性の高い電子機器を提供することができる。
本発明においては、上記の幾つかの実施形態を組み合わせて用いることもできる。このように、本発明は、以上説明した実施形態に限定されるものではなく、当該技術分野において通常の知識を有する者によって、本発明の技術的思想内で多くの変形が可能である。
1、2…ダイオード、3、4…電源配線、10…静電気保護回路、11〜19、13a、13b、14a〜14d、15a、15b…回路ブロック、20…内部回路、30、50、70、120、121…Pウェル、31〜35、51〜54、71〜76、131〜136…不純物拡散領域、36、37、81〜84…ゲート電極、41〜45、61〜64、91〜96、141〜144…コンタクト、100…P型半導体基板、101…ディープNウェル、110、111…Nウェル、150、160…過電圧検出回路、170…インバーター、200…半導体集積回路装置、201…回路基板、210…電源回路、220…CPU、230…操作部、240…ROM、250…RAM、260…通信部、270…表示部、280…音声出力部、P1、P2…電源端子、P3…信号端子、ZD1〜ZD60…ツェナーダイオード、D13〜D16…ダイオード、QA13、QA14…PNPバイポーラトランジスター、QC11〜QC14…NPNバイポーラトランジスター、QP14〜QP70…PチャネルMOSトランジスター、QN13〜QN70…NチャネルMOSトランジスター、TH13…サイリスター、R11〜R60、R13a、R13b…抵抗素子、RB1、RB2…寄生抵抗、C60…キャパシター、CB1…バイパスコンデンサー

Claims (10)

  1. 第1の端子に第1のノードを介して接続されると共に、第2の端子に第2のノードを介して接続された静電気保護回路であって、
    前記第1のノードと前記第2のノードとの間に直列に接続された複数の回路ブロックを備え、
    前記複数の回路ブロックの内の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたアノード、及び、当該回路ブロックの他端に接続されたカソードを有するサイリスターを含み、
    通常動作時において前記第1のノードの電位が前記第2のノードの電位よりも高いときに、前記複数の回路ブロックの内の他の回路ブロックの両端間の電圧が、前記サイリスターのアノードとカソードとの間の電圧よりも小さい、静電気保護回路。
  2. 前記複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、
    当該回路ブロックの一端に接続されたコレクター、及び、当該回路ブロックの他端に接続されたエミッターを有するバイポーラトランジスターと、
    前記バイポーラトランジスターのベースとエミッターとの間に接続された抵抗素子と、
    前記バイポーラトランジスターのコレクターとベースとの間に接続され、前記第1のノードの電位が前記第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が降伏電圧に達すると、前記抵抗素子又は前記バイポーラトランジスターのベースに電流を流すツェナーダイオードと、
    を含む、請求項1記載の静電気保護回路。
  3. 前記複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたドレイン、及び、当該回路ブロックの他端に接続されたソースを有し、前記第1のノードの電位が前記第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が所定の電圧に達すると放電電流を流すMOSトランジスターを含む、請求項1記載の静電気保護回路。
  4. 前記複数の回路ブロックの内の他の少なくとも1つの回路ブロックが、当該回路ブロックの一端に接続されたコレクター、及び、当該回路ブロックの他端に接続されたエミッターを有し、前記第1のノードの電位が前記第2のノードの電位よりも高くなって当該回路ブロックの両端間の電圧が所定の電圧に達すると放電電流を流すバイポーラトランジスターを含む、請求項1記載の静電気保護回路。
  5. 前記MOSトランジスターのドレイン又はソース、又は、前記バイポーラトランジスターのコレクターにおいて、コンタクトが接触する部分を含む所定の領域がシリサイド化され、その他の領域がシリサイド化されていない、請求項3又は4記載の静電気保護回路。
  6. 前記サイリスターのPゲートに接続された一端、又は、前記サイリスターのNゲートに接続された他端を有し、前記第1のノードの電位が前記第2のノードの電位よりも高くなって両端間の電圧が降伏電圧に達すると、前記サイリスターを含む回路ブロックに電流を流すダイオード又はトランジスターをさらに備える、請求項1〜5のいずれか1項記載の静電気保護回路。
  7. ダイオード又はトランジスターを含み、前記第1のノードと前記第2のノードとの間に印加される過電圧を検出して検出信号を生成する過電圧検出回路と、
    前記過電圧検出回路によって生成される検出信号を少なくとも遅延させて前記サイリスターのゲートに供給する遅延回路と、
    をさらに備える、請求項1〜5のいずれか1項記載の静電気保護回路。
  8. 請求項1〜7のいずれか1項記載の静電気保護回路を備える半導体集積回路装置。
  9. 請求項8記載の半導体集積回路装置を備える電子機器。
  10. 前記半導体集積回路装置と共に回路基板に実装され、前記第1の端子に接続されたカソードと、前記第2の端子に接続されたアノードとを有するツェナーダイオードをさらに備える、請求項9記載の電子機器。
JP2016031697A 2016-02-23 2016-02-23 静電気保護回路、半導体集積回路装置、及び、電子機器 Active JP6714825B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016031697A JP6714825B2 (ja) 2016-02-23 2016-02-23 静電気保護回路、半導体集積回路装置、及び、電子機器
US15/420,979 US10389111B2 (en) 2016-02-23 2017-01-31 Electrostatic protection circuit, semiconductor integrated circuit device, and electronic device
CN201710093623.1A CN107104099B (zh) 2016-02-23 2017-02-21 静电保护电路、半导体集成电路装置以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031697A JP6714825B2 (ja) 2016-02-23 2016-02-23 静電気保護回路、半導体集積回路装置、及び、電子機器

Publications (2)

Publication Number Publication Date
JP2017152462A true JP2017152462A (ja) 2017-08-31
JP6714825B2 JP6714825B2 (ja) 2020-07-01

Family

ID=59630323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031697A Active JP6714825B2 (ja) 2016-02-23 2016-02-23 静電気保護回路、半導体集積回路装置、及び、電子機器

Country Status (3)

Country Link
US (1) US10389111B2 (ja)
JP (1) JP6714825B2 (ja)
CN (1) CN107104099B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262199A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 半導体装置および撮像装置
WO2021090569A1 (ja) * 2019-11-06 2021-05-14 ソニーセミコンダクタソリューションズ株式会社 受光装置および測距装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361186B1 (en) * 2018-02-07 2019-07-23 Infineon Technologies Ag Suppression of parasitic discharge path in an electrical circuit
KR20190140216A (ko) * 2018-06-11 2019-12-19 에스케이하이닉스 주식회사 Esd 보호 회로를 포함하는 반도체 집적 회로 장치
CN108879636B (zh) * 2018-07-19 2019-11-19 维沃移动通信有限公司 一种瞬态电压抑制二极管tvs装置、终端设备和控制方法
CN110875302B (zh) * 2018-08-31 2022-08-12 无锡华润上华科技有限公司 瞬态电压抑制器件及其制造方法
JP2021022666A (ja) * 2019-07-29 2021-02-18 セイコーエプソン株式会社 静電気保護回路
CN118017454A (zh) * 2019-12-06 2024-05-10 华为技术有限公司 一种esd保护电路
TWI768451B (zh) * 2020-08-31 2022-06-21 創意電子股份有限公司 半導體結構以及靜電放電保護電路
US20220311242A1 (en) * 2021-03-25 2022-09-29 Texas Instruments Incorporated Integrated circuit with electrostatic discharge protected power supply
US11848322B2 (en) * 2021-07-12 2023-12-19 Changxin Memory Technologies, Inc. Electro-static discharge protection circuit and semiconductor device
CN114200371B (zh) * 2021-08-09 2023-07-11 威凯检测技术有限公司 一种用于静电放电抗扰度试验的能力验证装置
CN114374196B (zh) * 2021-12-24 2023-06-06 芯耀辉科技有限公司 静电防护钳位电路、接口模块及电子设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982601A (en) * 1998-07-30 1999-11-09 Winbond Electronics Corp. Direct transient-triggered SCR for ESD protection
US6501632B1 (en) * 1999-08-06 2002-12-31 Sarnoff Corporation Apparatus for providing high performance electrostatic discharge protection
JP3675303B2 (ja) 2000-05-31 2005-07-27 セイコーエプソン株式会社 静電気保護回路が内蔵された半導体装置及びその製造方法
US7589944B2 (en) * 2001-03-16 2009-09-15 Sofics Bvba Electrostatic discharge protection structures for high speed technologies with mixed and ultra-low voltage supplies
US7190046B2 (en) * 2004-03-29 2007-03-13 International Business Machines Corporation Bipolar transistor having reduced collector-base capacitance
JP2007234718A (ja) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd 半導体集積回路装置
US8218276B2 (en) * 2006-05-31 2012-07-10 Alpha and Omega Semiconductor Inc. Transient voltage suppressor (TVS) with improved clamping voltage
US8432651B2 (en) * 2010-06-09 2013-04-30 Analog Devices, Inc. Apparatus and method for electronic systems reliability
US8647920B2 (en) * 2010-07-16 2014-02-11 Imec Vzw Method for forming 3D-interconnect structures with airgaps
JP5726583B2 (ja) * 2011-03-16 2015-06-03 リコー電子デバイス株式会社 Esd保護回路
CN103378089A (zh) * 2012-04-28 2013-10-30 上海华虹Nec电子有限公司 一种高压静电保护结构
JP2014120547A (ja) 2012-12-14 2014-06-30 Renesas Electronics Corp Esd保護回路
JP2014132717A (ja) 2013-01-07 2014-07-17 Seiko Epson Corp 静電気放電保護回路及び半導体回路装置
US8916902B2 (en) * 2013-04-17 2014-12-23 Ubleds Co., Ltd. LED module packaging structure with an IC chip
JP6375618B2 (ja) 2013-12-09 2018-08-22 セイコーエプソン株式会社 静電気保護回路及び半導体集積回路装置
JP6237183B2 (ja) 2013-12-09 2017-11-29 セイコーエプソン株式会社 静電気保護回路及び半導体集積回路装置
US9496337B2 (en) * 2013-12-19 2016-11-15 Infineon Technologies Austria Ag Method for producing a semiconductor device having a beveled edge termination
JP6398649B2 (ja) 2014-11-25 2018-10-03 セイコーエプソン株式会社 静電気保護回路及び半導体集積回路装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262199A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 半導体装置および撮像装置
WO2021090569A1 (ja) * 2019-11-06 2021-05-14 ソニーセミコンダクタソリューションズ株式会社 受光装置および測距装置

Also Published As

Publication number Publication date
CN107104099A (zh) 2017-08-29
CN107104099B (zh) 2023-08-25
US20170244244A1 (en) 2017-08-24
JP6714825B2 (ja) 2020-07-01
US10389111B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
JP6714825B2 (ja) 静電気保護回路、半導体集積回路装置、及び、電子機器
US10411095B2 (en) Semiconductor integrated circuit with guard ring
US7719806B1 (en) Systems and methods for ESD protection
JP3773506B2 (ja) 半導体集積回路装置
JP3901671B2 (ja) 半導体集積回路装置
US7705404B2 (en) Electrostatic discharge protection device and layout thereof
US20120250198A1 (en) Esd protection circuit for a semiconductor integrated circuit
US10348085B2 (en) Static electricity protection circuit, semiconductor integrated circuit device, and electronic apparatus
JP2017112478A (ja) 静電気保護回路、半導体集積回路装置、及び、電子機器
TW201322408A (zh) 靜電放電保護裝置及其方法
JP2013055102A (ja) 半導体集積回路及び保護回路
KR101128897B1 (ko) 반도체 장치
JP2015180050A (ja) 半導体集積回路装置及びそれを用いた電子機器
US10454269B2 (en) Dynamically triggered electrostatic discharge cell
JP5241109B2 (ja) 半導体集積回路装置
TW201742211A (zh) 半導體裝置
JP2014120547A (ja) Esd保護回路
JP6714824B2 (ja) 静電気保護回路、半導体集積回路装置、及び、電子機器
JP2019036647A (ja) 静電気保護回路、半導体装置、及び、電子機器
US9711497B2 (en) Semiconductor unit with proection circuit and electronic apparatus
CN107863339B (zh) 一种esd钳位电路及集成电路
US20020089018A1 (en) Semiconductor device
KR101239102B1 (ko) Esd보호 회로
JP2021022687A (ja) 静電気保護回路
JP2014053497A (ja) Esd保護回路

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200520

R150 Certificate of patent or registration of utility model

Ref document number: 6714825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150