JP2017136923A - 車両の空調装置 - Google Patents

車両の空調装置 Download PDF

Info

Publication number
JP2017136923A
JP2017136923A JP2016018401A JP2016018401A JP2017136923A JP 2017136923 A JP2017136923 A JP 2017136923A JP 2016018401 A JP2016018401 A JP 2016018401A JP 2016018401 A JP2016018401 A JP 2016018401A JP 2017136923 A JP2017136923 A JP 2017136923A
Authority
JP
Japan
Prior art keywords
engine
output
heating
amount
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018401A
Other languages
English (en)
Other versions
JP2017136923A5 (ja
JP6481633B2 (ja
Inventor
強 岡本
Tsutomu Okamoto
強 岡本
渡辺 貴之
Takayuki Watanabe
貴之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016018401A priority Critical patent/JP6481633B2/ja
Priority to US16/073,600 priority patent/US10639962B2/en
Priority to PCT/JP2017/003618 priority patent/WO2017135307A1/ja
Publication of JP2017136923A publication Critical patent/JP2017136923A/ja
Publication of JP2017136923A5 publication Critical patent/JP2017136923A5/ja
Application granted granted Critical
Publication of JP6481633B2 publication Critical patent/JP6481633B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】エンジンの冷却水を加熱するヒートポンプを備えたシステムにおいて目標暖房熱量を確保しながら燃費を向上させることができるようにする。【解決手段】エンジン11に接続された暖房用冷却水回路23にヒートポンプ26とヒータコア25が設けられている。暖房熱量制御として、エンジン出口水温センサ31で検出したエンジン出口水温が高くなるほどヒートポンプ26の出力を減少させると共にエンジン11の出力を増加させて目標暖房熱量を実現する制御を行う。これにより、エンジン出口水温が高くなるほどヒートポンプ26の発熱効率が低くなるのに対応して、ヒートポンプ26の出力を減少させて燃費を向上させながら、エンジン11の出力を増加させて目標暖房熱量を確保する。【選択図】図1

Description

本発明は、車両の動力源であるエンジンの冷却水を加熱するヒートポンプを備えた車両の空調装置に関する発明である。
近年、低燃費、低排気エミッションの社会的要請から車両の動力源としてエンジンとモータとを搭載したハイブリッド車が注目されている。このようなハイブリッド車においては、エンジンを停止してモータの動力で走行するEV走行を行うことで燃費を向上させるようにしたものがある。しかし、冬季等に暖房用の熱量(つまりエンジンの冷却水の熱量)を確保するためにエンジンを稼働する時間が長くなると、燃費が悪化する傾向がある。
そこで、特許文献1に記載されているように、エンジン以外に冷却水を加熱する加熱装置を搭載するようにしたものがある。このものは、冷却水を加熱する加熱装置としてヒートポンプや排気熱回収器を設け、冷却水の温度、排出ガスの温度、エンジン出力に基づいて、ヒートポンプのコンプレッサの回転速度を制御することで、ヒートポンプの消費電力を抑制するようにしている。
特開2007−283830号公報
冷却水温が高いほどヒートポンプの発熱効率(例えば消費エネルギに対する冷却水加熱量の割合)が低下するため、冷却水温が高いほどヒートポンプの出力を小さくすれば、ヒートポンプの消費電力を抑制して燃費を向上させることができる。しかし、単に冷却水温が高いほどヒートポンプの出力を小さくするだけでは、冷却水加熱量が不足して目標暖房熱量を確保できなくなる可能性がある。また、上記特許文献1の技術では、冷却水温やエンジン出力に応じてヒートポンプの出力を設定し、冷却水温やエンジン出力が高いほどヒートポンプのコンプレッサの回転速度を低くしてヒートポンプの出力を小さくするようにしている。このため、エンジン出力によっては、冷却水温が高くてもヒートポンプの出力をあまり小さくすることができず、燃費を効果的に向上させることができない可能性がある。
そこで、本発明が解決しようとする課題は、エンジンの冷却水を加熱するヒートポンプを備えたシステムにおいて目標暖房熱量を確保しながら燃費を向上させることができる車両の空調装置を提供することにある。
上記課題を解決するために、本発明は、車両の動力源であるエンジン(11)と該エンジンの冷却水を加熱するヒートポンプ(26)との間で冷却水が循環する暖房用冷却水回路(23)を備えた車両の空調装置において、前記暖房用冷却水回路を流れる冷却水の温度を検出する水温センサ(31)と、前記水温センサで検出した冷却水の温度(以下「冷却水温」という)に応じて前記ヒートポンプの出力と前記エンジンの出力を設定して所定の目標暖房熱量を実現する暖房熱量制御を実行する出力制御部(39)とを備えた構成としたものである。
この構成では、冷却水温に応じてヒートポンプの出力とエンジンの出力を設定して目標暖房熱量を実現する暖房熱量制御を実行することができる。この暖房熱量制御では、冷却水温に応じてヒートポンプの発熱効率が変化するのに対応して、ヒートポンプの出力とエンジンの出力を変化させることができる。これにより、ヒートポンプの発熱効率が低い水温領域で、ヒートポンプの出力を減少させて燃費を向上させながら、エンジンの出力を増加させることでエンジンの冷却水加熱量を増加させて目標暖房熱量を確保することができる。
図1は本発明の実施例1におけるハイブリッド車の制御システムの概略構成を示す図である。 図2はエンジン出口水温とヒートポンプの発熱効率との関係を示す図である。 図3はエンジン加熱増加量のマップの一例を概念的に示す図である。 図4は実施例1の暖房熱量制御ルーチンの処理の流れを示すフローチャートである。 図5は実施例2の暖房熱量制御ルーチンの処理の流れを示すフローチャートである。 図6は不足熱量の算出方法を説明する図である。 図7はヒートポンプ出力の算出方法を説明する図である。 図8はエンジン加熱増加量の算出方法を説明する図である。 図9は実施例3の暖房熱量制御ルーチンの処理の流れを示すフローチャートである。 図10はヒートポンプの発熱効率の特性の一例を示す図である。 図11はエンジンの発電効率の特性の一例を示す図である。 図12はヒートポンプ出力とエンジン加熱増加量の算出方法を説明する図である。 図13はエンジン出力増加量のマップの一例を概念的に示す図である。 図14は実施例3の暖房熱量制御の実行例を示すタイムチャートである。
以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。
本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてハイブリッド車の制御システムの概略構成を説明する。
車両の動力源として内燃機関であるエンジン11とモータジェネレータ(以下「MG」と表記する)12とが搭載されている。エンジン11の出力軸(つまりクランク軸)の動力がMG12を介して変速機13に伝達される。この変速機13の出力軸の動力がデファレンシャルギヤ機構14や車軸15等を介して車輪16(つまり駆動輪)に伝達される。変速機13は、複数段の変速段の中から変速段を段階的に切り換える有段変速機であっても良いし、無段階に変速する無段変速機(いわゆるCVT)であっても良い。
エンジン11の動力を車輪16に伝達する動力伝達経路のうちのエンジン11と変速機13との間に、MG12の回転軸が動力伝達可能に連結されている。尚、エンジン11とMG12との間(又はMG12と変速機13との間)に、動力伝達を断続するためのクラッチを設けるようにしても良い。
エンジン11の動力で駆動される発電機17の発電電力が高圧バッテリ18に充電される。また、MG12を駆動するインバータ19が高圧バッテリ18に接続され、MG12がインバータ19を介して高圧バッテリ18と電力を授受する。発電機17には、DC−DCコンバータ20を介して低圧バッテリ21が接続されている。
高圧バッテリ18と低圧バッテリ21は、いずれも充放電可能なバッテリであり、高圧バッテリ18と低圧バッテリ21との間に、DC−DCコンバータ20が接続されている。更に、DC−DCコンバータ20には、高圧バッテリ18からDC−DCコンバータ20を介して供給される電力又は低圧バッテリ21から供給される電力を消費する低圧負荷が接続されている。
また、車室内を暖房するための暖房装置として、エンジン11の冷却水の熱を利用する温水暖房装置22が搭載されている。この温水暖房装置22は、エンジン11の冷却水通路(いわゆるウォータジャケット)に、暖房用冷却水回路23が接続されている。この暖房用冷却水回路23には、電動ウォータポンプ24と暖房用のヒータコア25が設けられている。更に、暖房用冷却水回路23には、冷却水を加熱する熱源として、エンジン11以外にヒートポンプ26が設けられている。エンジン11の下流側にヒートポンプ26が配置され、このヒートポンプ26の下流側にヒータコア25が配置されている。
電動ウォータポンプ24は、低圧バッテリ21の電力で駆動される。この電動ウォータポンプ24により冷却水が暖房用冷却水回路23を循環して流れる。この際、本実施例1では、冷却水が、エンジン11→ヒートポンプ26→ヒータコア25→エンジン11の順で循環して流れる。
ヒートポンプ26は、電動コンプレッサ27で低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒にした後、加熱器28で高温高圧のガス冷媒から熱を放出させて高圧の液状冷媒にする。この後、膨張弁29で高圧の液状冷媒を減圧膨張させて低温低圧の液状冷媒にした後、室外熱交換器30で低温低圧の液状冷媒に熱を吸収させて低温低圧のガス冷媒にする。
ヒートポンプ26の加熱器28は、冷媒と冷却水との間で熱交換して冷媒の熱で冷却水を加熱する。一方、ヒータコア25は、冷却水と空気との間で熱交換して冷却水の熱で空気を加熱する。ヒータコア25の近傍には、温風を発生させるブロアファン32が配置されている。
暖房用冷却水回路23には、暖房用冷却水回路23を流れる冷却水の温度を検出する水温センサとして、エンジン11から流出する冷却水の温度であるエンジン出口水温を検出するエンジン出口水温センサ31が配置されている。
また、アクセルセンサ34によってアクセル開度(つまりアクセルペダルの操作量)が検出される。シフトスイッチ35によってシフトレバーの操作位置が検出される。ブレーキスイッチ36によってブレーキ操作(又はブレーキセンサによってブレーキ操作量)が検出される。車速センサ37によって車速が検出される。加速度センサ38によって加速度が検出される。
ハイブリッドECU39は、車両全体を総合的に制御する制御装置であり、上述した各種のセンサやスイッチの出力信号を読み込んで、車両の運転状態を検出する。このハイブリッドECU39は、エンジンECU40とMG−ECU41とエアコンECU42との間で制御信号やデータ信号等を送受信する。
エンジンECU40は、エンジン11の運転を制御する制御装置である。MG−ECU41は、インバータ19を制御してMG12を制御すると共に発電機17やDC−DCコンバータ20を制御する制御装置である。エアコンECU42は、温水暖房装置22(例えば電動ウォータポンプ24、電動コンプレッサ27、ブロアファン32等)を制御する制御装置である。
ハイブリッドECU39は、各ECU40〜42によって車両の運転状態に応じて、エンジン11、MG12、発電機17、DC−DCコンバータ20、温水暖房装置22等を制御する。更に、ハイブリッドECU39は、高圧バッテリ18を監視する電源ECU43との間でも制御信号やデータ信号等を送受信する。
その際、ハイブリッドECU39は、走行モードを、例えば、エンジン走行モードとアシスト走行モードとEV走行モードとの間で切り換える。エンジン走行モードでは、エンジン11の動力のみで車輪16を駆動して車両を走行させるエンジン走行を行う。アシスト走行モードでは、エンジン11の動力とMG12の動力の両方で車輪16を駆動して車両を走行させるアシスト走行を行う。EV走行モードでは、MG12の動力のみで車輪16を駆動して車両を走行させるEV走行を行う。このEV走行は、例えば、エンジン出口水温がエンジン停止可能な暖機完了水温以上になったときに許可される。
また、ハイブリッドECU39は、車両を制動する際(例えばアクセルオフ時やブレーキオン時に制動力を発生させる際)に、走行モードを回生発電モードに切り換える。この回生発電モードでは、車輪16の動力でMG12を駆動することで、車両の運動エネルギをMG12で電気エネルギに変換する回生発電を行い、その発電電力である回生電力を高圧バッテリ18に充電する。これにより、アシスト走行やEV走行の実施可能時間を長くして燃費を向上させることができる。
ところで、図2に示すように、エンジン出口水温が高いほどヒートポンプ入口水温(つまりヒートポンプ26に流入する冷却水の温度)が高くなってヒートポンプ26の発熱効率(例えばヒートポンプ26の消費エネルギに対する冷却水加熱量の割合)が低下する。このため、エンジン出口水温が高いほどヒートポンプ26の出力を小さくすれば、ヒートポンプ26の消費電力を抑制して燃費を向上させることができる。しかし、単にエンジン出口水温が高いほどヒートポンプ26の出力を小さくするだけでは、冷却水加熱量が不足して目標暖房熱量を確保できなくなる可能性がある。
そこで、ハイブリッドECU39は、エンジン出口水温に応じてヒートポンプ26の出力とエンジン11の出力を設定して目標暖房熱量を実現する暖房熱量制御を実行する。この暖房熱量制御では、エンジン出口水温に応じてヒートポンプ26の発熱効率が変化するのに対応して、ヒートポンプ26の出力とエンジン11の出力を変化させることができる。これにより、ヒートポンプ26の発熱効率が低い水温領域で、ヒートポンプ26の出力を減少させて燃費を向上させながら、エンジン11の出力を増加させることでエンジン11の冷却水加熱量を増加させて目標暖房熱量を確保することができる。更に、ハイブリッドECU39は、暖房熱量制御によるエンジン11の出力増加分だけ発電機17の発電量を増加させる。ただし、車両の駆動力を変動させても良いと判断した場合には、暖房熱量制御によるエンジン11の出力増加によって発電量だけでなく車両の駆動力も増加させても良い。
本実施例1では、ハイブリッドECU39により後述する図4の暖房熱量制御ルーチンを実行することで次のような暖房熱量制御を行う。本実施例1の暖房熱量制御では、エンジン出口水温が高くなるほどヒートポンプ26の出力を減少させると共にエンジン11の出力を増加させて目標暖房熱量を実現する制御を行う。
以下、本実施例1でハイブリッドECU39が実行する図4の暖房熱量制御ルーチンの処理内容を説明する。
図4に示す暖房熱量制御ルーチンは、ハイブリッドECU39の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう出力制御部としての役割を果たす。
本ルーチンが起動されると、まず、ステップ101で、エンジン出口水温センサ31で検出したエンジン出口水温を取得する。
この後、ステップ102に進み、高圧バッテリ18の残容量を表すSOCを取得する。このSOCは、例えば、次式により定義される。
SOC=残容量/満充電容量×100
この後、ステップ103に進み、目標暖房水温等に基づいて目標暖房熱量(つまり要求暖房負荷)を設定する。ここで、目標暖房熱量は、例えば、ヒータコア25の単位時間当りの冷却水放熱量(つまり空気加熱量)の目標値である。また、目標暖房水温は、例えば、ヒータコア入口水温(つまりヒータコア25に流入する冷却水の温度)の目標値であり、外気温、車室内温度、目標車室内温度等に基づいて設定される。
この後、ステップ104に進み、要求走行負荷と要求発電負荷とに応じて基本エンジン加熱量をマップ又は数式等により算出する。ここで、基本エンジン加熱量は、要求走行負荷と要求発電負荷とに応じて設定されるエンジン11の基本出力におけるエンジン11の単位時間当りの冷却水加熱量である。また、要求走行負荷は、例えばアクセル開度等に基づいて設定される要求走行出力である。要求発電負荷は、例えば高圧バッテリ18のSOC等に基づいて設定される要求発電量である。
この後、ステップ105に進み、エンジン出口水温に応じてエンジン加熱増加量(つまりエンジン11の単位時間当りの冷却水加熱量の増加量)をマップ又は数式等により算出する。図3に示すように、エンジン加熱増加量のマップ又は数式等は、エンジン出口水温が高いほどエンジン加熱増加量が大きくなるように設定されている。
この後、ステップ106に進み、基本エンジン加熱量にエンジン加熱増加量を加算して総エンジン加熱量を求める。
総エンジン加熱量=基本エンジン加熱量+エンジン加熱増加量
この後、ステップ107に進み、目標暖房熱量から総エンジン加熱量を減算してヒートポンプ26の出力(つまりヒートポンプ26の単位時間当りの冷却水加熱量)を求める。
ヒートポンプ出力=目標暖房熱量−総エンジン加熱量
この後、ステップ108に進み、エンジン加熱増加量に応じてエンジン11の出力増加量をマップ又は数式等により算出する。このエンジン11の出力増加量をエンジン11の基本出力に加算してエンジン11の出力を求める。
この後、ステップ109に進み、高圧バッテリ18のSOCが所定値以下か否かを判定する。ここで、所定値は、例えば、高圧バッテリ18のSOCの上限値よりも少し小さい値に設定されている。
このステップ109で、高圧バッテリ18のSOCが所定値以下と判定された場合には、ステップ110に進み、上記ステップ107で設定したヒートポンプ26の出力と上記ステップ108で設定したエンジン11の出力をそのまま採用する(つまり補正しない)。
この後、ステップ112に進み、上記ステップ108で設定したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる(つまり要求発電量に対して上乗せする)。
一方、上記ステップ109で、高圧バッテリ18のSOCが所定値よりも大きいと判定された場合には、ステップ111に進む。このステップ111では、上記ステップ108で設定したエンジン11の出力増加量を減量補正してエンジン11の出力を減量補正し、上記ステップ107で設定したヒートポンプ26の出力を増量補正する。この場合、例えば、高圧バッテリ18のSOCに応じた出力補正量をマップ又は数式等により算出する。出力補正量のマップ又は数式等は、例えば、高圧バッテリ18のSOCが大きいほど出力補正量が大きくなるように設定されている。この出力補正量を用いて、上記ステップ108で設定したエンジン11の出力増加量を減量補正してエンジン11の出力を減量補正する。更に、上記ステップ107で設定したヒートポンプ26の出力を、エンジン11の出力の減量補正分(例えば減量補正による冷却水加熱量の減少量に相当する分)だけ増量補正する。
この後、ステップ112に進み、上記ステップ111で減量補正したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる(つまり要求発電量に対して上乗せする)。
以上説明した本実施例1では、暖房熱量制御の際に、エンジン出口水温が高くなるほどヒートポンプ26の出力を減少させると共にエンジン11の出力を増加させて目標暖房熱量を実現するようにしている。このようにすれば、エンジン出口水温が高くなるほどヒートポンプ26の発熱効率が低くなるのに対応して、ヒートポンプ26の出力を減少させて燃費を向上させながら、エンジン11の出力を増加させて目標暖房熱量を確保することができる。これにより、ヒートポンプ26とエンジン11を協調させて燃費を向上させながら目標暖房熱量を確保することができる。
更に、本実施例1では、暖房熱量制御によるエンジン11の出力増加分だけ発電機17の発電量を増加させるようにしている。これにより、暖房熱量制御によるエンジン11の出力増加によって車両の駆動力が増加することを防止して、暖房熱量制御によるドライバビリティの悪化を防止することができる。ただし、車両の駆動力増加によるドライバビリティ悪化が問題無いと判断した場合は、駆動力を増加させても良い。
ところで、高圧バッテリ18のSOCが上限値に達すると、発電機17の発電電力を高圧バッテリ18に充電できなくなる。そこで、本実施例1では、暖房熱量制御の実行中に高圧バッテリ18のSOCに応じてヒートポンプ26の出力とエンジン11の出力を補正するようにしている。具体的には、高圧バッテリ18のSOCが所定値よりも大きいときに、エンジン11の出力を減量補正し、ヒートポンプ26の出力を増量補正するようにしている。このようにすれば、高圧バッテリ18のSOCが上限値に近付いたときに、エンジン11の出力を減量補正することで発電機17の発電量を減少させて高圧バッテリ18のSOCが上限値に到達することを抑制することができる。更に、エンジン11の出力の減量補正分(例えば減量補正による冷却水加熱量の減少量に相当する分)だけヒートポンプ26の出力を増量補正することで目標暖房熱量を確保することができる。
次に、図5乃至図8を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一又は類似部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
ヒートポンプ26は、出力(例えば電動コンプレッサ27の回転速度)によっても発熱効率が変化し、エンジン出口水温に応じて発熱効率が高くなる出力の範囲が変化する。このような特性を考慮して、本実施例2では、ハイブリッドECU39により後述する図5の暖房熱量制御ルーチンを実行することで次のような暖房熱量制御を行う。本実施例2の暖房熱量制御では、ヒートポンプ26の出力をエンジン出口水温に応じて設定された所定範囲内の値に設定し、その設定したヒートポンプ26の出力において目標暖房熱量を実現するようにエンジン11の出力を設定する制御を行う。
以下、本実施例2でハイブリッドECU39が実行する図5の暖房熱量制御ルーチンの処理内容を説明する。この図5のルーチンも特許請求の範囲でいう出力制御部としての役割を果たす。
図5の暖房熱量制御ルーチンでは、まず、ステップ201で、エンジン出口水温センサ31で検出したエンジン出口水温を取得する。この後、ステップ202に進み、高圧バッテリ18のSOCを取得する。この後、ステップ203に進み、目標暖房水温等に基づいて目標暖房熱量を設定する。この後、ステップ204に進み、要求走行負荷と要求発電負荷とに応じて基本エンジン加熱量をマップ又は数式等により算出する。
この後、ステップ205に進み、図6に示すように、目標暖房熱量から基本エンジン加熱量を減算して不足熱量を求める。
不足熱量=目標暖房熱量−基本エンジン加熱量
この後、ステップ206に進み、エンジン出口水温、外気温、車速、冷媒圧力等に基づいて、現在のヒートポンプ26の発熱効率(つまりヒートポンプ26の消費エネルギに対する冷却水加熱量の割合)の特性を算出する。この場合、図7に示すように、ヒートポンプ26の発熱効率の特性として、ヒートポンプ26の出力と発熱効率との関係を求める。尚、エンジン出口水温、外気温、車速、冷媒圧力等に応じたヒートポンプ26の発熱効率の特性を予めハイブリッドECU39のROM等に記憶しておくようにしても良い。
この後、ステップ207に進み、図7に示すように、ヒートポンプ26の発熱効率の特性を用いて、ヒートポンプ26の出力を所定範囲内の値に設定する。ここで、所定範囲は、ヒートポンプ26の発熱効率が閾値以上となるヒートポンプ26の出力範囲であり、閾値は、例えば発熱効率の最大値×0.9等に設定されている。本実施例2では、ヒートポンプ26の出力をヒートポンプ26の発熱効率が最も高くなる出力値(つまり発熱効率が最大値となる出力値)に設定する。
このようにしてヒートポンプ26の出力を設定した後、ステップ208に進み、図8に示すように、不足熱量からヒートポンプ26の出力(つまり冷却水加熱量)を減算してエンジン加熱増加量を求める。
エンジン加熱増加量=不足熱量−ヒートポンプ出力
この後、ステップ209に進み、エンジン加熱増加量に応じてエンジン11の出力増加量をマップ又は数式等により算出する。このエンジン11の出力増加量をエンジン11の基本出力に加算してエンジン11の出力を求める。
この後、ステップ210に進み、高圧バッテリ18のSOCが所定値以下か否かを判定する。このステップ210で、高圧バッテリ18のSOCが所定値以下と判定された場合には、ステップ211に進み、上記ステップ207で設定したヒートポンプ26の出力と上記ステップ209で設定したエンジン11の出力をそのまま採用する(つまり補正しない)。この後、ステップ213に進み、上記ステップ209で設定したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる。
一方、上記ステップ210で、高圧バッテリ18のSOCが所定値よりも大きいと判定された場合には、ステップ212に進む。このステップ212では、上記ステップ209で設定したエンジン11の出力増加量を減量補正してエンジン11の出力を減量補正し、上記ステップ207で設定したヒートポンプ26の出力を増量補正する。この後、ステップ213に進み、上記ステップ212で減量補正したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる。
以上説明した本実施例2では、暖房熱量制御の際に、ヒートポンプ26の出力を、エンジン出口水温に応じて設定されたヒートポンプ26の発熱効率の特性において発熱効率が閾値以上となる範囲内の出力値に設定する。具体的には、ヒートポンプ26の出力をヒートポンプ26の発熱効率が最も高くなる出力値に設定する。その設定したヒートポンプ26の出力において目標暖房熱量を実現するようにエンジン11の出力を設定するようにしている。このようにしても、ヒートポンプ26とエンジン11を協調させて燃費を向上させながら目標暖房熱量を確保することができる。しかも、ヒートポンプ26の出力をそのときのエンジン出口水温においてヒートポンプ26の発熱効率が最も高くなる出力値に設定することができるため、燃費を効果的に向上させることができる。
尚、上記実施例2では、ヒートポンプ26の出力をヒートポンプ26の発熱効率が最も高くなる出力値に設定したが、これに限定されず、ヒートポンプ26の発熱効率が閾値以上となる範囲内であれば、ヒートポンプ26の出力をヒートポンプ26の発熱効率が最も高くなる出力値以外の値に設定するようにしても良い。
また、ヒートポンプ26の出力は、電動コンプレッサ27の回転速度に応じて変化するため、ヒートポンプ26の出力の代用情報として、電動コンプレッサ27の回転速度を用いるようにしても良い。つまり、電動コンプレッサ27の回転速度を、エンジン出口水温に応じて設定されたヒートポンプ26の発熱効率の特性において発熱効率が閾値以上となる範囲内の回転速度値に設定するようにしても良い。
次に、図9乃至図14を用いて本発明の実施例3を説明する。但し、前記実施例1,2と実質的に同一又は類似部分については説明を省略又は簡略化し、主として前記実施例1,2と異なる部分について説明する。
本実施例3では、ハイブリッドECU39により後述する図9の暖房熱量制御ルーチンを実行することで次のような暖房熱量制御を行う。本実施例3の暖房熱量制御では、エンジン出口水温等に基づいてヒートポンプ26の発熱効率(つまりヒートポンプ26の消費エネルギに対する冷却水加熱量の割合)の特性を設定する。また、エンジン11の発電効率(つまりエンジン11の消費燃料量に対する発電機17の発電量の割合)の特性を設定する。そして、目標暖房熱量を実現できる条件下でヒートポンプ26の発熱効率とエンジン11の発電効率とを合わせた総合効率が最も高くなるようにヒートポンプ26の出力とエンジン11の出力を設定する制御を行う。
以下、本実施例3でハイブリッドECU39が実行する図9の暖房熱量制御ルーチンの処理内容を説明する。この図9のルーチンも特許請求の範囲でいう出力制御部としての役割を果たす。
図9の暖房熱量制御ルーチンでは、まず、ステップ301で、エンジン出口水温センサ31で検出したエンジン出口水温を取得する。この後、ステップ302に進み、高圧バッテリ18のSOCを取得する。この後、ステップ303に進み、目標暖房水温等に基づいて目標暖房熱量を設定する。この後、ステップ304に進み、要求走行負荷と要求発電負荷とに応じて基本エンジン加熱量をマップ又は数式等により算出する。
この後、ステップ305に進み、目標暖房熱量から基本エンジン加熱量を減算して不足熱量を求める。
不足熱量=目標暖房熱量−基本エンジン加熱量
この後、ステップ306に進み、エンジン出口水温、外気温、車速、冷媒圧力等に基づいて、現在のヒートポンプ26の発熱効率の特性を算出する。この場合、図10に示すように、ヒートポンプ26の発熱効率の特性として、ヒートポンプ26の出力と発熱効率との関係を求める。尚、エンジン出口水温、外気温、車速、冷媒圧力等に応じたヒートポンプ26の発熱効率の特性を予めハイブリッドECU39のROM等に記憶しておくようにしても良い。
この後、ステップ307に進み、エンジン出口水温、外気温等に基づいて、現在のエンジン11の発電効率の特性を算出する。この場合、図11に示すように、エンジン11の発電効率の特性として、エンジン11の出力増加によるエンジン加熱増加量と発電効率との関係を求める。尚、エンジン出口水温、外気温等に応じたエンジン11の発電効率の特性を予めハイブリッドECU39のROM等に記憶しておくようにしても良い。
この後、ステップ308に進み、目標暖房熱量を確保できる条件下でヒートポンプ26の発熱効率とエンジン11の発電効率とを合わせた総合効率が最も高くなるようにヒートポンプ26の出力とエンジン加熱増加量を算出する。
例えば、ヒートポンプ26の発熱効率Kh とエンジン11の発電効率Ke とを掛け合わせた効率を総合効率Kとする。
総合効率K=ヒートポンプ発熱効率Kh ×エンジン発電効率Ke
また、目標暖房熱量を確保するには、ヒートポンプ26の出力(つまり冷却水加熱量)とエンジン加熱増加量が下記(A)式を満たす必要がある。
不足熱量=ヒートポンプ出力+エンジン加熱増加量 …(A)
図12に示すように、現在のヒートポンプ26の発熱効率の特性と現在のエンジン11の発電効率の特性とを用いて、上記(A)式を満たすヒートポンプ26の出力とエンジン加熱増加量の組み合わせの中で総合効率Kが最も高くなるヒートポンプ26の出力とエンジン加熱増加量の組み合わせを探索する。これにより、目標暖房熱量を確保できる条件下で総合効率Kが最も高くなるヒートポンプ26の出力とエンジン加熱増加量を求める。
この後、ステップ309に進み、エンジン加熱増加量に応じてエンジン11の出力増加量をマップ又は数式等により算出する。図13に示すように、エンジン11の出力増加量のマップ又は数式等は、エンジン加熱増加量が大きいほどエンジン11の出力増加量が大きくなるように設定されている。このエンジン11の出力増加量をエンジン11の基本出力に加算してエンジン11の出力を求める。このようにして、目標暖房熱量を確保できる条件下で総合効率Kが最も高くなるヒートポンプ26の出力とエンジン11の出力を求める。
この後、ステップ310に進み、高圧バッテリ18のSOCが所定値以下か否かを判定する。このステップ310で、高圧バッテリ18のSOCが所定値以下と判定された場合には、ステップ311に進み、上記ステップ308で設定したヒートポンプ26の出力と上記ステップ309で設定したエンジン11の出力をそのまま採用する(つまり補正しない)。この後、ステップ313に進み、上記ステップ309で設定したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる。
一方、上記ステップ310で、高圧バッテリ18のSOCが所定値よりも大きいと判定された場合には、ステップ312に進む。このステップ312では、上記ステップ309で設定したエンジン11の出力増加量を減量補正してエンジン11の出力を減量補正し、上記ステップ308で設定したヒートポンプ26の出力を増量補正する。この後、ステップ313に進み、上記ステップ312で減量補正したエンジン11の出力増加量に相当する分だけ発電機17の発電量を増加させる。
以上説明した本実施例3では、暖房熱量制御の際に、エンジン出口水温等に基づいてヒートポンプ26の発熱効率の特性とエンジン11の発電効率の特性を設定する。そして、ヒートポンプ26の発熱効率の特性とエンジン11の発電効率の特性とに基づいて、目標暖房熱量を実現できる条件下で総合効率Kが最も高くなるようにヒートポンプ26の出力とエンジン11の出力を設定するようにしている。このようにしても、ヒートポンプ26とエンジン11を協調させて燃費を向上させながら目標暖房熱量を確保することができる。しかも、ヒートポンプ26の発熱効率とエンジン11の発電効率とを合わせた総合効率を最も高くすることができるため、燃費をより効果的に向上させることができる。
図14を用いて、本実施例3の暖房熱量制御の実行例を説明する。尚、図14は、要求暖房負荷が一定で、要求走行負荷+要求発電負荷が一定の場合を示している。また、図14中のエンジン出口水温は、暖房熱量制御によるエンジン11の出力増加を実施しない場合(つまりエンジン加熱増加量を含まない場合)の水温を示している。
本実施例3の暖房熱量制御では、目標暖房熱量を確保できる条件下で総合効率Kが最も高くなるヒートポンプ26の出力とエンジン11の出力を求める。図14に示すように、高圧バッテリ18のSOCが所定値以下のときには、総合効率Kが最も高くなるヒートポンプ26の出力とエンジン11の出力をそのまま採用する。これにより、燃費を効果的に向上させながら目標暖房熱量を確保する。
その後、高圧バッテリ18のSOCが所定値を越えた場合には、その時点t1 で、高圧バッテリ18のSOCに応じた補正を開始して、エンジン11の出力増加量を減量補正してエンジン11の出力を減量補正し、ヒートポンプ26の出力を増量補正する。これにより、発電機17の発電量を減少させて高圧バッテリ18のSOCが上限値に到達することを抑制しながら目標暖房熱量を確保する。
尚、上記各実施例では、暖房熱量制御によるエンジン11の出力増加分だけ発電機17の発電量を増加させるようにしている。しかし、これに限定されず、暖房熱量制御によるエンジン11の出力増加分だけMG12の出力トルクを減少させる(又はMG12の発電量を増加させる)ようにしても良い。また、暖房熱量制御の実行中に高圧バッテリ18のSOCに応じてヒートポンプ26の出力とエンジン11の出力を補正する処理を省略するようにしても良い。
また、上記実施例では、ハイブリッドECU39で、暖房熱量制御ルーチンを実行するようにしている。しかし、これに限定されず、ハイブリッドECU39以外の他のECU(例えばエンジンECU40やMG−ECU41やエアコンECU42等のうちの少なくとも一つ)で暖房熱量制御ルーチンを実行するようにしても良い。或は、ハイブリッドECU39と他のECUの両方で暖房熱量制御ルーチンを実行するようにしても良い。
また、上記実施例において、ECUが実行する機能の一部又は全部を、一つ或は複数のIC等によりハードウェア的に構成しても良い。
その他、本発明は、図1に示す構成の車両に限定されず、車両の動力源であるエンジンの冷却水を加熱するヒートポンプを備えた種々の構成の車両に適用して実施できる。
11…エンジン、23…暖房用冷却水回路、26…ヒートポンプ、31…エンジン出口水温センサ、39…ハイブリッドECU

Claims (6)

  1. 車両の動力源であるエンジン(11)と該エンジンの冷却水を加熱するヒートポンプ(26)との間で前記冷却水が循環する暖房用冷却水回路(23)を備えた車両の空調装置において、
    前記暖房用冷却水回路を流れる冷却水の温度を検出する水温センサ(31)と、
    前記水温センサで検出した冷却水の温度(以下「冷却水温」という)に応じて前記ヒートポンプの出力と前記エンジンの出力を設定して所定の目標暖房熱量を実現する暖房熱量制御を実行する出力制御部(39)と
    を備えている車両の空調装置。
  2. 前記出力制御部は、前記暖房熱量制御として、前記冷却水温が高くなるほど前記ヒートポンプの出力を減少させると共に前記エンジンの出力を増加させて前記目標暖房熱量を実現する制御を行う請求項1に記載の車両の空調装置。
  3. 前記出力制御部は、前記暖房熱量制御として、前記ヒートポンプの出力を前記冷却水温に応じて設定された所定範囲内の値に設定し、その設定したヒートポンプの出力において前記目標暖房熱量を実現するように前記エンジンの出力を設定する制御を行う請求項1に記載の車両の空調装置。
  4. 前記エンジンの動力で駆動される発電機(17)を備え、
    前記出力制御部は、前記暖房熱量制御による前記エンジンの出力増加分だけ前記発電機の発電量を増加させる請求項2又は3に記載の車両の空調装置。
  5. 前記エンジンの動力で駆動される発電機(17)を備え、
    前記出力制御部は、前記暖房熱量制御として、前記冷却水温に基づいて前記ヒートポンプの消費エネルギに対する冷却水加熱量の割合である発熱効率の特性を設定すると共に、前記エンジンの消費燃料量に対する前記発電機の発電量の割合である発電効率の特性を設定し、前記目標暖房熱量を実現できる条件下で前記ヒートポンプの発熱効率と前記エンジンの発電効率とを合わせた総合効率が最も高くなるように前記ヒートポンプの出力と前記エンジンの出力を設定する制御を行う請求項1に記載の車両の空調装置。
  6. 前記発電機の発電電力を充電するバッテリ(18)を備え、
    前記出力制御部は、前記暖房熱量制御の実行中に前記バッテリの残容量に応じて前記ヒートポンプの出力と前記エンジンの出力を補正する請求項4又は5に記載の車両の空調装置。
JP2016018401A 2016-02-02 2016-02-02 車両の空調装置 Active JP6481633B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016018401A JP6481633B2 (ja) 2016-02-02 2016-02-02 車両の空調装置
US16/073,600 US10639962B2 (en) 2016-02-02 2017-02-01 Air-conditioner for vehicle
PCT/JP2017/003618 WO2017135307A1 (ja) 2016-02-02 2017-02-01 車両の空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018401A JP6481633B2 (ja) 2016-02-02 2016-02-02 車両の空調装置

Publications (3)

Publication Number Publication Date
JP2017136923A true JP2017136923A (ja) 2017-08-10
JP2017136923A5 JP2017136923A5 (ja) 2018-04-26
JP6481633B2 JP6481633B2 (ja) 2019-03-13

Family

ID=59500876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018401A Active JP6481633B2 (ja) 2016-02-02 2016-02-02 車両の空調装置

Country Status (3)

Country Link
US (1) US10639962B2 (ja)
JP (1) JP6481633B2 (ja)
WO (1) WO2017135307A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112078326A (zh) * 2020-09-02 2020-12-15 北京车和家信息技术有限公司 混合动力车辆及其驾舱制热控制方法、装置和系统
WO2021162037A1 (ja) * 2020-02-12 2021-08-19 日立Astemo株式会社 車両の熱を制御するための制御装置、制御方法、及びシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373265B2 (ja) * 2018-01-29 2023-11-02 株式会社デンソー 制御装置
CN111252020B (zh) * 2020-03-10 2021-06-18 长城汽车股份有限公司 一种能量协调控制方法、系统及车辆
CN114810369B (zh) * 2021-06-07 2023-06-02 长城汽车股份有限公司 一种发动机采暖控制方法、装置、存储介质及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203145A (ja) * 1997-01-28 1998-08-04 Toyota Motor Corp ハイブリッド車用の暖房制御装置
JP2007278624A (ja) * 2006-04-07 2007-10-25 Denso Corp ヒートポンプサイクル
JP2007283830A (ja) * 2006-04-13 2007-11-01 Toyota Motor Corp 車両用空調装置
JP2013166413A (ja) * 2012-02-14 2013-08-29 Denso Corp 車両用空調装置
JP2015074408A (ja) * 2013-10-11 2015-04-20 株式会社デンソー 車両制御装置
US20150115048A1 (en) * 2013-10-29 2015-04-30 Denso International America, Inc. Thermostatic controlled heat pump water circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920178B2 (ja) * 2011-12-05 2016-05-18 株式会社デンソー ヒートポンプサイクル
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
JP5870903B2 (ja) * 2012-11-07 2016-03-01 株式会社デンソー 冷凍サイクル装置
JP6197745B2 (ja) * 2013-07-31 2017-09-20 株式会社デンソー 車両用冷凍サイクル装置
JP6197657B2 (ja) * 2014-01-14 2017-09-20 株式会社デンソー 車両用熱管理システム
JP6314821B2 (ja) * 2014-01-29 2018-04-25 株式会社デンソー 車両用空調装置
JP6303615B2 (ja) * 2014-03-05 2018-04-04 株式会社デンソー 車両用熱管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203145A (ja) * 1997-01-28 1998-08-04 Toyota Motor Corp ハイブリッド車用の暖房制御装置
JP2007278624A (ja) * 2006-04-07 2007-10-25 Denso Corp ヒートポンプサイクル
JP2007283830A (ja) * 2006-04-13 2007-11-01 Toyota Motor Corp 車両用空調装置
JP2013166413A (ja) * 2012-02-14 2013-08-29 Denso Corp 車両用空調装置
JP2015074408A (ja) * 2013-10-11 2015-04-20 株式会社デンソー 車両制御装置
US20150115048A1 (en) * 2013-10-29 2015-04-30 Denso International America, Inc. Thermostatic controlled heat pump water circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162037A1 (ja) * 2020-02-12 2021-08-19 日立Astemo株式会社 車両の熱を制御するための制御装置、制御方法、及びシステム
CN112078326A (zh) * 2020-09-02 2020-12-15 北京车和家信息技术有限公司 混合动力车辆及其驾舱制热控制方法、装置和系统
CN112078326B (zh) * 2020-09-02 2022-04-19 北京车和家信息技术有限公司 混合动力车辆及其驾舱制热控制方法、装置和系统

Also Published As

Publication number Publication date
US10639962B2 (en) 2020-05-05
WO2017135307A1 (ja) 2017-08-10
US20190030990A1 (en) 2019-01-31
JP6481633B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6481633B2 (ja) 車両の空調装置
JP6406215B2 (ja) 車両の制御装置
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
CA2564280C (en) Heating control system for vehicle
JP6089887B2 (ja) ハイブリッド車の制御装置
US20150217757A1 (en) Vehicle control system
JP5699919B2 (ja) 暖機運転制御装置
JP2017105265A (ja) 車両の制御装置
US10675946B2 (en) Vehicle air-conditioning control device
US20160244052A1 (en) Hybrid vehicle and method for controlling same
JP2015166204A (ja) 車両制御装置
US20140316624A1 (en) Hybrid vehicle and control method thereof
CN110159462B (zh) 混合动力车辆
JP6394580B2 (ja) 車両の制御装置
JP6414087B2 (ja) 車両の空調装置
JP6701715B2 (ja) 車両の空調装置
JP2014129054A (ja) 車両用昇温装置
JP3915689B2 (ja) 車両制御装置及びその車両制御装置を備えたハイブリッド車両
JP6409735B2 (ja) ハイブリッド車の制御装置
JP6070531B2 (ja) ハイブリッド車の制御装置
JP6032192B2 (ja) ハイブリッド車の制御装置
JP2011046214A (ja) ハイブリッド車両の制御装置
JP2005330818A (ja) 電動過給機を備えたパワートレインの制御装置
JP2019142367A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R151 Written notification of patent or utility model registration

Ref document number: 6481633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250