JP2017118643A - 自励式無効電力補償装置 - Google Patents

自励式無効電力補償装置 Download PDF

Info

Publication number
JP2017118643A
JP2017118643A JP2015250001A JP2015250001A JP2017118643A JP 2017118643 A JP2017118643 A JP 2017118643A JP 2015250001 A JP2015250001 A JP 2015250001A JP 2015250001 A JP2015250001 A JP 2015250001A JP 2017118643 A JP2017118643 A JP 2017118643A
Authority
JP
Japan
Prior art keywords
command value
voltage
reactive power
level
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015250001A
Other languages
English (en)
Other versions
JP6538544B2 (ja
Inventor
涼太 奥山
Ryota Okuyama
涼太 奥山
森島 直樹
Naoki Morishima
直樹 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2015250001A priority Critical patent/JP6538544B2/ja
Publication of JP2017118643A publication Critical patent/JP2017118643A/ja
Application granted granted Critical
Publication of JP6538544B2 publication Critical patent/JP6538544B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】低出力運転時における中性点電位の変動を抑制可能な自励式無効電力補償装置を提供する。【解決手段】自励式無効電力補償装置100は、直流正母線および直流負母線の間に直列に接続される第1および第2のコンデンサC1,C2と、3レベルインバータ1と、3レベルインバータ1を制御する制御装置10とを備える。制御装置10は、電力指令値Qrefに従った無効電力を電力系統3に出力するように、3レベルインバータ1を制御するとともに、コンデンサC1,C2の中性点N1の電位変動を抑制するためのバランス制御を実行するように構成される。制御装置10は、電力指令値Qrefの絶対値が所定値よりも小さくなる範囲を、電力指令値Qrefに基づいた無効電力の制御を行なわない不感帯とするように構成された不感帯回路44を含む。【選択図】図1

Description

本発明は、マルチレベルインバータを備えた自励式無効電力補償装置に関する。
近年、高圧大容量化を比較的容易に実現でき、出力高調波が少ない等の理由から、マルチレベルインバータが注目されている。たとえばSTATCOM(Static Synchronous Compensator)、SVG(Static Var Generator)あるいは自励式SVC(Static Var Compensator)などの自励式無効電力補償装置においては、高耐圧および大定格電流を有する半導体スイッチング素子を用いた電力変換装置に、中性点クランプ式のマルチレベルインバータを用いる構成が提案されている。
このマルチレベルインバータにおいては、従来より、スイッチングパターンにより、直流電源回路の中性点が半導体スイッチング素子およびダイオードを介して交流ラインに接続される期間があり、この期間に中性点を流れる電流によって中性点電位が変動することが知られている。このような中性点電位の変動は、半導体スイッチング素子への過大な印加電圧を招くおそれがある。
このような不都合を防止するための一つの方法として、たとえば、特開2013−255317号公報(特許文献1)には、直列接続された2つのコンデンサの直流電圧が互いに等しくなるように、当該2つのコンデンサの直流電圧の電圧差に応じて、3レベルインバータの電圧指令を補正する構成が開示されている。この特許文献1では、2つのコンデンサの直流電圧の電圧差に基づいて生成した補償量を、必要に応じて極性変換して3レベルインバータの各相出力電圧指令に加算することにより、最終的な出力電圧指令を生成する。以下では、中性点電位の変動を抑制するための制御を「バランス制御」と呼ぶこととする。
特開2013−255317号公報
しかしながら、上記特許文献1に記載されるバランス制御によれば、マルチレベルインバータの出力電力が0付近となる低出力運転時は、マルチレベルインバータに流れる電流の大きさが小さくなるため、2つのコンデンサの直流電圧を等しくするために両コンデンサの充電もしくは放電を促すことが難しくなり、結果的にバランス制御の効きが悪くなる。
このように、低出力運転時は、バランス制御を有効に実行することが難しいため、両コンデンサの直流電圧がアンバランスになる可能性が高くなる。両コンデンサの直流電圧がアンバランスになると、半導体スイッチング素子に過電圧が印加されるおそれが生じる。
この発明は、上記のような課題を解決するためになされたものであり、その目的は、低出力運転時における中性点電位の変動を抑制可能な自励式無効電力補償装置を提供することである。
この発明のある局面に従う自励式無効電力補償装置は、直流正母線および直流負母線の間に直列に接続される第1および第2のコンデンサと、マルチレベルインバータと、マルチレベルインバータを制御する制御装置とを備える。マルチレベルインバータは、電力系統と、直流正母線、直流負母線、および第1および第2のコンデンサの中性点との間に接続され、直流電圧と少なくとも3つの電圧値の間で変化する交流電圧とを相互に変換可能に構成される。制御装置は、インバータ制御部を含む。インバータ制御部は、電力指令値に従った無効電力を電力系統に出力するように、マルチレベルインバータを制御するとともに、中性点の電位変動を抑制するためのバランス制御を実行するように構成される。制御装置はさらに、電力指令値の絶対値が所定値よりも小さくなる範囲を、電力指令値に基づいた無効電力の制御を行なわない不感帯とするように構成された不感帯回路を含む。
この発明によれば、低出力運転時における中性点電位の変動を抑制可能な自励式無効電力補償装置を提供することができる。
本発明の実施の形態1に係る自励式無効電力補償装置の主回路構成を示す概略ブロック図である。 図1に示した3レベルインバータの構成を詳細に説明する回路図である。 制御装置による、3レベルインバータの1相分のPWM制御を説明するための信号波形図である。 中性点電位制御回路の構成を示す図である。 不感帯回路の構成を示す図である。 無効電力指令値の絶対値およびゲートブロック信号の波形を示す図である。 本発明の実施の形態2に係る自励式無効電力補償装置の主回路構成を示す概略ブロック図である。 不感帯回路の構成を示す図である。 無効電力指令値の波形を示す図である。
以下に本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中における同一または相当部分には同一の符号を付してその説明は繰返さない。
[実施の形態1]
(自励式無効電力補償装置の構成)
図1は、本発明の実施の形態1に係る自励式無効電力補償装置100の主回路構成を示す概略ブロック図である。図1を参照して、自励式無効電力補償装置100は、マルチレベルインバータ1と、コンデンサC1,C2と、電流検出器4と、電圧検出器5〜7と、制御装置10とを備える。
マルチレベルインバータ1は、変換器用変圧器2を介して電力系統3に接続される。後述するように、マルチレベルインバータ1は三相3レベルインバータにより構成される。以下の説明では、マルチレベルインバータ1を「3レベルインバータ1」と称する。
コンデンサC1,C2は直流正母線L1および直流負母線L2(図2参照)の間に直列に接続されて、直流正母線L1と直流負母線L2との間の電圧を平滑化する。コンデンサC1,C2の接続点である中性点N1には直流中性点母線L3が接続される。
3レベルインバータ1は、直流正母線L1、直流負母線L2およびコンデンサC1,C2の中性点N1に接続される。3レベルインバータ1Aは、直流正母線L1および直流負母線L2の間の直流電圧と3つの電圧値の間で変化する交流電圧とを相互に変換可能に構成される。
電流検出器4は、3レベルインバータ1の出力電流Iを検出し、電流Iを示す信号を制御装置10に出力する。電圧検出器5は、変換器用変圧器2の二次側の三相交流電圧Vsを検出し、三相交流電圧Vsを示す信号を制御装置10に出力する。
直流正母線L1と直流負母線L2との間の電圧は中性点N1により電圧Vp,Vnに分圧される。電圧検出器6は、コンデンサC1の両端の電圧Vpを検出し、電圧Vpを示す信号を制御装置10に出力する。電圧検出器7は、コンデンサC2の両端の電圧Vnを検出して、電圧Vnを示す信号を制御装置10に出力する。
制御装置10は、3レベルインバータ1の動作を制御する。後に詳細に説明するが、3レベルインバータ1は、半導体スイッチング素子を含む半導体スイッチにより構成される。なお本実施の形態では、半導体スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)が用いられる。また、本実施の形態では半導体スイッチング素子の制御方式としてPWM(Pulse Width Modulation)制御を適用することができる。
制御装置10は、電流検出器4からの3レベルインバータ1の出力電流Iを示す信号、電圧検出器5からの三相交流電圧Vsを示す信号、および電圧検出器6,7が検出した電圧Vp,Vnを示す信号等を受けてPWM制御を実行する。
(3レベルインバータの構成)
図2は、図1に示した3レベルインバータ1の構成を詳細に説明する回路図である。図2を参照して、3レベルインバータ1は、IGBT素子Q1u,Q1v,Q1w(総称してIGBT素子Q1とも称する)、IGBT素子Q2u,Q2v,Q2w(総称してIGBT素子Q2とも称する)、ダイオードD1u,D1v,D1w(総称してダイオードD1とも称する)、ダイオードD2u,D2v,D2w(総称してダイオードD2とも称する)、および交流スイッチS1〜S3を含む。
IGBT素子Q1u,Q1v,Q1wのドレインはともに直流正母線L1に接続され、それらのソースはそれぞれ交流端子T1,T2,T3に接続される。IGBT素子Q2u,Q2v,Q2wのドレインはそれぞれ交流端子T1,T2,T3に接続され、それらのソースはともに直流負母線L2に接続される。
ダイオードD1,D2のアノードはそれぞれIGBT素子Q1,Q2のソースに接続され、それらのカソードはそれぞれIGBT素子Q1,Q2のドレインに接続される。すなわち、ダイオードD1,D2は、それぞれIGBT素子Q1,Q2に逆並列に接続される。
交流スイッチS1〜S3の各々は、IGBT素子Q3,Q4およびダイオードD3,D4を含む。交流スイッチS1〜S3のIGBT素子Q4のソースはそれぞれ交流端子T1,T2,T3に接続され、交流スイッチS1〜S3のIGBT素子Q3のソースはともに中性点N1に接続される。交流スイッチS1〜S3の各々において、IGBT素子Q3,Q4のドレインは互いに接続され、ダイオードD3,D4はそれぞれIGBT素子Q3,Q4に逆並列に接続される。
IGBT素子Q1〜Q4の各々は、制御装置10によってPWM制御され、三相交流電圧Vsに同期して所定のタイミングでオンオフされる。たとえば、IGBT素子Q1u,Q1v,Q1wは、三相交流電圧Vsに同期して順次オンオフされる。IGBT素子Q1u,Q1v,Q1wがオンされている期間ではそれぞれIGBT素子Q2u,Q2v,Q2wがオフされ、IGBT素子Q1u,Q1v,Q1wがオフされている期間ではそれぞれIGBT素子Q2u,Q2v,Q2wがオンされる。
3レベルインバータ1は、直流正母線L1、直流負母線L2および直流中性点母線L3を介して供給される正電圧、負電圧および中性点電圧に基づいて三相交流電圧を生成し、生成した三相交流電圧を交流端子T1〜T3に出力する。中性点電圧は正電圧と負電圧との中間電圧である。生成される三相交流電圧は、たとえば、正電圧、中性点電圧、負電圧、中性点電圧、正電圧、・・・と変化する3レベルの交流電圧である。
図3は、制御装置10による、3レベルインバータ1の1相分のPWM制御を説明するための信号波形図である。IGBT素子Q1〜Q4のゲートには、それぞれゲート信号φ1〜φ4が与えられる。図3はゲート信号φ1〜φ4の作成方法および波形を示す図である。図3には、電圧指令値V*、正側三角波キャリア信号CA1、負側三角波キャリア信号CA2およびゲート信号φ1〜φ4の波形を示している。
キャリア信号CA1,CA2の周期および位相は同じである。キャリア信号CA1,CA2の周期は電圧指令値V*の周期よりも十分に小さい。
電圧指令値V*のレベルと正側三角波キャリア信号CA1のレベルの高低が比較される。電圧指令値V*のレベルが正側三角波キャリア信号CA1のレベルよりも高い場合は、ゲート信号φ1,φ3がそれぞれHレベルおよびLレベルにされる。電圧指令値V*のレベルが正側三角波キャリア信号CA1のレベルよりも低い場合は、ゲート信号φ1,φ3がそれぞれLレベルおよびHレベルにされる。
したがって、電圧指令値V*のレベルが正である期間では、ゲート信号φ1およびφ3がキャリア信号CA1に同期して交互にHレベルにされ、IGBT素子Q1,Q3が交互にオンされる。また、電圧指令値V*のレベルが負である期間では、ゲート信号φ1,φ3はそれぞれLレベルおよびHレベルに固定され、IGBT素子Q1がオフ状態に固定されるとともにIGBT素子Q3がオン状態に固定される。
電圧指令値V*のレベルと負側三角波キャリア信号CA2のレベルの高低が比較される。電圧指令値V*のレベルが負側三角波キャリア信号CA2のレベルよりも高い場合は、ゲート信号φ2,φ4がそれぞれLレベルおよびHレベルにされる。電圧指令値V*のレベルが負側三角波キャリア信号CA2のレベルよりも低い場合は、ゲート信号φ2,φ4がそれぞれHレベルおよびLレベルにされる。
したがって、電圧指令値V*のレベルが正である期間では、ゲート信号φ2,φ4はそれぞれLレベルおよびHレベルに固定され、IGBT素子Q2がオフ状態に固定されるとともにIGBT素子Q4がオン状態に固定される。また、電圧指令値V*のレベルが負である期間では、ゲート信号φ2およびφ4がキャリア信号CA2に同期して交互にHレベルにされ、IGBT素子Q2,Q4が交互にオンされる。
(動作)
次に、本実施の形態に係る自励式無効電力補償装置100の動作について説明する。
制御装置10は、3レベルインバータ1から電力系統3へ出力される無効電力Qを制御する。具体的には、自励式無効電力補償装置100が出力する無効電力の基準値を無効電力指令値Qrefとすると、制御装置10は、無効電力指令値Qrefと3レベルインバータ1から出力される無効電力Qとの差に応じた電圧指令値V*を生成し、生成した電圧指令値V*に基づいて、3レベルインバータ1に含まれるIGBT素子Q1〜Q4を駆動するためのゲート信号φ1〜φ4を生成する。
制御装置10はさらに、コンデンサC1,C2の接続点である中性点N1の電位変動を抑制するために、コンデンサC1,C2の直流電圧を互いに等しくする制御(バランス制御)を実行する。
バランス制御では、従来より、2つのコンデンサの直流電圧の電圧差に基づいて零相電圧指令値を生成し、生成した零相電圧指令値を3レベルインバータの電圧指令値V*に重畳させる方法が採用されている(たとえば、特許文献1参照)。当該方法では、零相電圧指令値加算後の電圧指令値V*とキャリア信号CA1,CA2とが比較されることにより、3レベルインバータに含まれるIGBT素子を駆動するためのゲート信号が生成される。
たとえば、3レベルインバータ1において、コンデンサC1の電圧VpがコンデンサC2の電圧Vnよりも大きい場合を想定する(Vp>Vn)。このような場合、バランス制御では、コンデンサC1の放電およびコンデンサC2の充電を促すように、ゲート信号φ1〜φ4がHレベルにされる時間が調整される。
具体的には、3レベルインバータ1は、出力電圧に対する出力電流の極性に応じて、コンデンサC1,C2の充電および放電が切替えられる。出力電圧のレベルが正である期間では、出力電流が正であるときにIGBT素子Q1がオンされる時間を短くすると、コンデンサC1の放電およびコンデンサC2の充電が促され、出力電流が負であるときにIGBT素子Q1がオンされる時間を長くすると、コンデンサC1の充電およびコンデンサC2の放電が抑制される。
一方、出力電圧のレベルが負である期間では、出力電流が正であるときにIGBT素子Q2がオンされる時間を短くすると、コンデンサC1の放電およびコンデンサC2の充電が促され、出力電流が負であるときにIGBT素子Q2がオンされる時間を長くすると、コンデンサC1の充電およびコンデンサC2の放電が抑制される。
なお、IGBT素子Q1,Q2がオンされる時間の調整は、3レベルインバータ1から出力される無効電流Iqの極性に応じて、電圧指令値V*に重畳する零相電圧指令値の極性を切替えることによって行なうことができる。
しかしながら、3レベルインバータ1の出力電力が0付近のときには、出力電流が発生しない、もしくは出力電流の大きさが小さいため、上述したコンデンサC1,C2の充放電を促すことができず、バランス制御の効きが悪くなる。その結果、低出力運転時はコンデンサC1,C2の直流電圧がアンバランスになる可能性が高くなり、半導体スイッチング素子に過電圧が印加されるおそれが生じる。
このような不具合を回避するため、本実施の形態に係る自励式無効電力補償装置100では、無効電力指令値Qrefに基づいた出力制御を行なわない不感帯を設定する。バランス制御が有効に実行されない低出力運転時に対応するように不感帯を設定することで、コンデンサC1,C2の直流電圧がアンバランスになることを抑制する。
(制御装置の構成)
次に、制御装置10の構成について説明する。
制御装置10において、有効電流成分および無効電流成分はそれぞれd軸、q軸とする回転座標系(dq座標系)で制御される。d軸は系統電圧と同位相の成分となり、q軸は系統電圧に直交した成分となるように、系統電圧に基づき制御される。
図1を参照して、制御装置10は、インバータ制御部42と、不感帯回路44とを含む。インバータ制御部42は、三相交流電圧Vs、3レベルインバータ1の出力電流I、コンデンサC1,C2の電圧Vp,Vnなどをモニタしながらゲート信号を供給することにより、3レベルインバータ1を制御する。
具体的には、インバータ制御部42は、電圧検出部12と、電流検出部14と、無効電力検出部16と、減算器18,22と、PI演算部20,24と、電圧指令生成部28と、中性点電位制御回路40と、加算器26,30,32,34と、ゲート制御回路36と、論理積回路38とを含む。
電圧検出部12は、電圧検出器5によって検出された三相交流電圧Vsを三相/二相変換することにより、系統電圧検出値Vd,Vqを検出する。
電流検出部14は、電流検出器4により検出された3レベルインバータ1の出力電流Iに基づいて、3レベルインバータ1から電力系統3へ出力される無効電流Iqおよび有効電流Idを検出する。具体的には、電流検出部14は、電流検出器4により検出された三相交流電流Iを三相/二相変換することによって無効電流Iqおよび有効電流Idを検出する。
無効電力検出部16は、電圧検出部12により検出された系統電圧検出値Vd,Vqおよび電流検出部14により検出された無効電流Iqおよび有効電流Idに基づいて3レベルインバータ1から電力系統3へ出力される無効電力Qを検出する。具体的には、無効電力検出部16は、数式(Q=Vd×Iq−Vq×Id)を用いて無効電力Qを算出する。無効電力検出部16は、検出した無効電力QAを減算器18へ出力する。本実施の形態では、無効電力Qは、進み無効電力を出力しているときに正、遅れ無効電力を出力しているときに負になるものと定義する。
減算器18は、電力指令値Qrefと無効電力検出部16により検出された無効電力Qとの偏差ΔQを演算し、その偏差ΔQをPI演算部20に与える。PI演算部20は、少なくとも比例要素(P:Proportional element)および積分要素(Integral element)を含んで構成され、偏差ΔQを入力として比例積分演算を行なうことにより、3レベルインバータ1に要求される無効電流Iqref(以下、無効電流基準値Iqrefとも称する)を生成する。
減算器22は、無効電流基準値Iqrefと電流検出部14により検出された無効電流Iqとの偏差ΔIqを演算し、その偏差ΔIqをPI演算部24に与える。PI演算部24は、偏差ΔIqを入力として比例積分演算を行ない、偏差ΔIqを0とするための無効電圧の電圧基準値を生成する。
加算器26は、電圧検出部12により検出された系統電圧検出値Vqと、PI演算部24により生成された電圧基準値とを加算し、その加算結果を、3レベルインバータ1に要求される無効電圧Vq*(以下、無効電圧基準値Vq*とも称する)として電圧指令生成部28へ出力する。
すなわち、減算器18,22、PI演算部20,24および加算器26は、3レベルインバータ1から出力される交流電圧のうち、無効電流Iqに関わる成分を制御する。
電圧指令生成部28は、電圧検出部12により検出された系統電圧検出値Vd、および加算器26により生成された無効電圧基準値Vq*を三相/二相変換することにより、3レベルインバータ1から出力すべき電圧として、電圧指令値Vu0*,Vv0*,Vw0*を生成する。
中性点電位制御回路40は、電圧検出器6が検出したコンデンサC1の電圧Vp、電圧検出器7が検出したコンデンサC2の電圧Vn、および電流検出部14が検出した無効電流Iqを受けて、電圧Vp,Vnの電圧差を0にするための電圧指令値V1*を生成する。中性点電位制御回路40の詳細な構成については後述する。
加算器30は、電圧指令値Vu0*およびV1*を加算して電圧指令値Vu*を生成する。加算器32は、電圧指令値Vv0*およびV1*を加算して電圧指令値Vv*を生成する。加算器34は、電圧指令値Vw0*およびV1*を加算して電圧指令値Vw*を生成する。
ゲート制御回路36は、PWM制御に従って、3レベルインバータ1が電圧指令値Vu*,Vv*,Vw*に相当する三相交流電圧を出力するためのゲート信号を生成する。ゲート制御回路36は、生成したゲート信号を論理積回路38の一方入力へ出力する。
(中性点電位制御回路の構成)
図4は、中性点電位制御回路40の構成を示す図である。図4では、3レベルインバータ1のU相アームを制御するための構成を代表的に示す。
図4を参照して、中性点電位制御回路40は、減算器50と、増幅器52と、乗算器54,56と、極性判別回路58とを含む。
減算器50は、電圧検出器6が検出したコンデンサC1の電圧Vpから電圧検出器7が検出したコンデンサC2の電圧Vnを減算して電圧差(Vp−Vn)の値を出力する。
増幅器52は、電圧差(Vp−Vn)を示す値に所定のゲインGを乗算して、零相電圧指令値を生成する。乗算器54は、零相電圧指令値と6次高調波信号(sin6θ)との積を演算する。なお、6次高調波信号(sin6θ)は、電流検出部14での三相/二相変換に用いられる位相θを6倍した位相6θに基づいて、図示しない正弦波発生器により生成される信号である。
極性判別回路58は、電流検出部14により検出した無効電流Iqの極性を判別し、判別結果を示す信号を乗算器56へ出力する。無効電流Iqの極性は、3レベルインバータ1が進み無効電流を出力しているときに正となり、遅れ無効電流を出力しているときに負となるものと定義する。極性判別回路58は、無効電流Iqの極性が正のときに値「−1」の信号を出力し、無効電流Iqの極性が負のときに値「+1」の信号を出力する。
乗算器56は、零相電圧指令値および6次高調波信号の積に、極性判別回路58の出力信号をさらに乗算し、電圧指令値Vu0*,Vv0*,Vw0*に重畳する電圧指令値V1*を生成する。
加算器30は、電圧指令値Vu0*,V1*を加算して電圧指令値Vu*を生成する。ゲート制御回路36は、電圧指令値Vu*に基づいて、3レベルインバータ1に含まれるIGBT素子Q1〜Q4を駆動するための信号(ゲート信号φ1〜φ4)を生成する。
ゲート制御回路36は、比較器60,64と、NOT回路62,66とを含む。比較器60は、電圧指令値Vu*と正側三角波キャリア信号CA1との高低を比較し、Vu*>CA1のときにゲート信号φ1をHレベルにし、Vu*<CA1のときにゲート信号φ1をLレベルにする。NOT回路62は、比較器60から出力されるゲート信号φ1を反転して、ゲート信号φ3を生成する。
比較器64は、電圧指令値Vu*と負側三角波キャリア信号CA2との高低を比較し、Vu*<CA2のときにゲート信号φ2をHレベルにし、Vu*>CA2のときにゲート信号φ2をLレベルにする。NOT回路66は、比較器64から出力されるゲート信号φ2を反転して、ゲート信号φ4を生成する。
再び図1を参照して、論理積回路38は、一方入力にゲート制御回路36からのゲート信号を受け、他方入力に不感帯回路44からのゲートブロック信号GBを受ける。
ゲートブロック信号GBは、3レベルインバータ1に含まれる全てのIGBT素子Q1〜Q4のスイッチング動作を停止(すべてオフ)するための信号である。ゲートブロック信号GBは、3レベルインバータ1のゲートブロックを実行するときにL(論理ロー)レベルに活性化され、ゲートブロックを実行しないとき、またはゲートブロックを解除するとき、すなわち、ゲートブロック状態の3レベルインバータ1のIGBT素子Q1〜Q4を再びスイッチング動作させるときにH(論理ハイ)レベルに非活性化される。
不感帯回路44は、無効電力指令値Qrefの絶対値の大きさに基づいてゲートブロック信号GBを生成する。以下、図5および図6を参照して、不感帯回路44の詳細な構成について説明する。
(不感帯回路の構成)
図5は、不感帯回路44の構成を示す図である。図5を参照して、不感帯回路44は、絶対値演算部70と、比較器72,74と、SRフリップフロップ76と、NOT回路78とを含む。
絶対値演算部70は、無効電力指令値Qrefの絶対値|Qref|を演算する。比較器72は、反転入力端子(−端子)に絶対値|Qref|が入力され、非反転入力端子(+端子)に所定値QA(QA>0)が入力される。所定値QAは、インバータ制御部42がバランス制御を有効に実行することができる、3レベルインバータ1の出力電力の絶対値の最小値に相当する。所定値QAは、たとえば、3レベルインバータ1の定格出力の約5%に設定される。
絶対値|Qref|が所定値QAより小さい場合、比較器72は、Hレベルの信号を出力する。絶対値|Qref|が所定値QA以上の場合、比較器72は、Lレベルの信号を出力する。比較器72の出力信号は、SRフリップフロップ76のセット端子(S)に与えられる。
比較器74は、非反転入力端子(+端子)に絶対値|Qref|が入力され、反転入力端子(−端子)に所定値QBが入力される。所定値QBは、所定値QAよりも大きい(QB>QA)。
絶対値|Qref|が所定値QB以上の場合、比較器74は、Hレベルの信号を出力する。絶対値|Qref|が所定値QBより小さい場合、比較器74は、Lレベルの信号を出力する。比較器74の出力信号は、SRフリップフロップ76のリセット端子(R)に与えられる。
SRフリップフロップ76は、比較器72の出力信号がHレベルであり、比較器74の出力信号がLレベルのときに、出力端子(Q)からHレベルの信号を出力する。SRフリップフロップ76は、比較器72の出力信号がLレベルであり、比較器74の出力信号がHレベルのときに、出力端子(Q)からLレベルの信号を出力する。すなわち、SRフリップフロップ76は、絶対値|Qref|が所定値QAより小さいとき、Hレベルの信号を出力し、絶対値|Qref|が所定値QB以上のとき、Lレベルの信号を出力する。
SRフリップフロップ76の出力は、NOT回路78に入力される。NOT回路78は、SRフリップフロップ76の出力信号の反転信号を出力する。NOT回路78の出力信号は、ゲートブロック信号GBとして、論理積回路38の他方入力に与えられる。ゲートブロック信号GBは、絶対値|Qref|が所定値QAより小さいとき、Lレベルとなり、絶対値|Qref|が所定値QB以上のとき、Hレベルとなる信号である。
論理積回路38は、ゲート信号φ1〜φ4とゲートブロック信号GBとの論理積を演算する。ゲートブロック信号GBがLレベルのとき、論理積回路38の出力信号はLレベルとなる。すなわち、ゲートブロック信号GBがHレベルに非活性化されていれば、ゲート信号φ1〜φ4はそのまま、3レベルインバータ1に含まれるIGBT素子Q1〜Q4にそれぞれ与えられる。したがって、3レベルインバータ1は、無効電力指令値Qrefに従った無効電力Qを出力するとともに、バランス制御を実行することができる。
一方、ゲートブロック信号GBがLレベルに活性化されると、ゲート信号φ1〜φ4はすべてLレベルに固定される。これにより、3レベルインバータ1は停止状態(ゲートブロック状態)となる。
図6は、無効電力指令値の絶対値|Qref|およびゲートブロック信号GBの波形を示す図である。図6を参照して、不感帯回路44は、無効電力指令値の絶対値|Qref|が0以上QA以下となる範囲に、無効電力指令値Qrefに基づいた3レベルインバータ1の制御を行なわない不感帯を設定する。言い換えれば、不感帯の下限値は−QAであり、上限値はQAである。
図6の時刻t1にて、無効電力指令値の絶対値|Qref|が減少して所定値QAよりも小さくなると、すなわち、|Qref|が不感帯に入ると、ゲートブロック信号GBはLレベルに活性化される。これにより、3レベルインバータ1はゲートブロック状態となる。
無効電力指令値の絶対値|Qref|が不感帯に入った後、時刻t2において|Qref|が所定値QB以上となると、不感帯回路44は、|Qref|が不感帯から外れたと判定して、ゲートブロック信号GBをHレベルに非活性化する。これにより、IGBT素子Q1〜Q4がゲート信号φ1〜φ4を受けて、再びスイッチング動作を開始することにより、3レベルインバータ1は交流出力を再開する。
このように、本実施の形態1によれば、無効電力指令値Qrefが不感帯に入っている時間(たとえば、図6の時刻t1〜t2までの時間に相当)において、3レベルインバータ1をゲートブロック状態とすることで、無効電力指令値Qrefに基づいた制御を非実行とすることができる。これにより、3レベルインバータ1は、バランス制御が有効に行なわれない出力範囲では動作しないため、コンデンサC1,C2の直流電圧のアンバランスが拡大することを抑制することができる。
なお、本実施の形態1では、不感帯に入った無効電力指令値Qrefが不感帯から外れたか否かを判定するために用いられる所定値QBを、無効電力指令値Qrefが不感帯に入ったか否かを判定するために用いられる所定値QAよりも大きくなるように設定している(図6参照)。これにより、無効電力指令値Qrefに基づいた制御の実行/非実行の切替えにヒステリシスを持たせることができるため、切替えによるハンチングの発生を防止することができる。
[実施の形態2]
図7は、本発明の実施の形態2に係る自励式無効電力補償装置100Aの主回路構成を示す概略ブロック図である。本実施の形態2に係る自励式無効電力補償装置100Aは、図1に示した実施の形態1に係る自励式無効電力補償装置100と基本的に同様の構成を有している。自励式無効電力補償装置100Aは、自励式無効電力補償装置100における制御装置10を、制御装置10Aに置き換えたものである。
図7を参照して、制御装置10Aは、インバータ制御部42Aと、不感帯回路44Aとを含む。インバータ制御部42Aは、図1に示したインバータ制御部42と基本的に同様の構成を有しており、論理積回路38を含まない点でインバータ制御部42とは異なっている。
不感帯回路44Aは、無効電力指令値Qrefを受けて無効電力指令値Qref1を生成し、生成した無効電力指令値Qref1をインバータ制御部42Aに与える。
インバータ制御部42Aは、不感帯回路44Aから与えられる無効電力指令値Qref1と無効電力検出部16により検出された無効電力Qとの偏差ΔQを0とするための電圧指令値Vu0*,Vv0*,Vw0*を生成するとともに、電圧Vp,Vnの電圧差を0にするための電圧指令値V1*を生成する。インバータ制御部42Aは、電圧指令値Vu0*,Vv0*,Vw0*の各々とV1*とを加算して電圧指令値Vu*,Vv*,Vw*を生成すると、電圧指令値Vu*,Vv*,Vw*に基づいて、3レベルインバータ1に含まれるIGBT素子Q1〜Q4を駆動するための信号(ゲート信号φ1〜φ4)を生成する。
すなわち、インバータ制御部42Aは、不感帯回路44Aにより生成された無効電力指令値Qref1に一致した無効電力を出力するとともに、中性点N1の電位変動を抑制するように、3レベルインバータ1を動作させる。
以下、図8および図9を参照して、不感帯回路44Aの詳細な構成について説明する。
(不感帯回路の構成)
図8は、不感帯回路44Aの構成を示す図である。図8を参照して、不感帯回路44Aは、比較器80,82と、SRフリップフロップ84と、下限リミッタ88と、上限リミッタ90と、乗算器92,94と、加算器96とを含む。
比較器80は、非反転入力端子(+端子)に無効電力指令値Qrefが入力され、反転入力端子(−端子)に所定値QA(QA>0)が入力される。所定値QAは、インバータ制御部42Aがバランス制御を有効に実行することができる、3レベルインバータ1の出力電力の絶対値の最小値に相当する。所定値QAは、たとえば、3レベルインバータ1の定格出力の約5%に設定される。
無効電力指令値Qrefが所定値QA以上の場合、比較器80は、Hレベルの信号を出力する。無効電力指令値Qrefが所定値QAより小さい場合、比較器80は、Lレベルの信号を出力する。比較器80の出力信号は、SRフリップフロップ84のセット端子(S)に与えられる。
比較器82は、反転入力端子(−端子)に無効電力指令値Qrefが入力され、非反転入力端子(+端子)に所定値(−QA)が入力される。所定値(−QA)は、所定値QAにマイナスを付けたものである。
無効電力指令値Qrefが所定値(−QA)より小さい場合、比較器82は、Hレベルの信号を出力する。無効電力指令値Qrefが所定値(−QA)以上の場合、比較器82は、Lレベルの信号を出力する。比較器82の出力信号は、SRフリップフロップ84のリセット端子(R)に与えられる。
SRフリップフロップ84は、比較器80の出力信号がHレベルであり、比較器82の出力信号がLレベルのときに、出力端子(Q)からHレベルの信号(信号値が「1」)を出力し、出力端子(/Q)からLレベルの信号(信号値が「0」)を出力する。SRフリップフロップ84は、比較器80の出力信号がLレベルであり、比較器82の出力信号がHレベルのときに、出力端子(Q)からLレベルの信号(信号値が「0」)を出力し、出力端子(/Q)からHレベルの信号(信号値が「1」)を出力する。
SRフリップフロップ84はまた、比較器80の出力信号がLレベルであり、比較器82の出力信号がLレベルのときに、直前の値を保持する。これは、比較器80の出力信号がHレベル、比較器82の出力信号がLレベルで、出力端子(Q)の出力信号がHレベルの状態から、比較器80の出力信号がLレベルになった場合は、出力端子(Q)の出力信号はHレベルのままであることを意味する。また、比較器80の出力信号がLレベル、比較器82の出力信号がHレベルで、出力端子(/Q)の出力信号がHレベルの状態から、比較器82の出力信号がLレベルになった場合には、出力端子(/Q)の出力信号がHレベルのままであることを意味する。
すなわち、SRフリップフロップ84は、無効電力指令値Qrefが所定値QA以上となった時点からQrefが所定値(−QA)以下となる時点までの間、出力端子(Q)からHレベルの信号を出力し、出力端子(/Q)からLレベルの信号を出力する。SRフリップフロップ84はまた、無効電力指令値Qrefが所定値(−QA)以下となった時点からQrefが所定値QA以上となる時点までの間、出力端子(Q)からLレベルの信号を出力し、出力端子(/Q)からHレベルの信号を出力する。
下限リミッタ88は、無効電力指令値Qrefを所定値QA以上に制限して出力する。すなわち、下限リミッタ88は、所定値QAを下限値QAとして有しており、無効電力指令値Qrefが下限値QA以上である場合には、出力値を無効電力指令値Qrefとする。一方、無効電力指令値Qrefが下限値QAより小さい場合には、無効電力指令値Qrefを下限値QAとする。
上限リミッタ90は、無効電力指令値Qrefを所定値(−QA)以下に制限して出力する。すなわち、上限リミッタ90は、所定値(−QA)を上限値(−QA)として有しており、無効電力指令値Qrefが上限値(−QA)以下である場合には、出力値を無効電力指令値Qrefとする。一方、無効電力指令値Qrefが上限値(−QA)より大きい場合には、無効電力指令値Qrefを上限値(−QA)とする。
乗算器92は、SRフリップフロップ84の出力端子(Q)からの出力信号と下限リミッタ88の出力信号とを乗算する。乗算器94は、SRフリップフロップ84の出力端子(/Q)からの出力信号と上限リミッタ90の出力信号とを乗算する。加算器96は、乗算器92の出力信号と乗算器94の出力信号とを加算して、無効電力指令値Qref1を生成する。
図9は、無効電力指令値Qref,Qref1の波形を示す図である。図9(a)を参照して、無効電力指令値Qrefは、進み無効電力(正の電力)と遅れ無効電力(負の電力)との間を変化する波形を有するものとする。図9(b)は、図9(a)に示す無効電力指令値Qrefに基づいて生成された無効電力指令値Qref1の波形を示している。
図9(a)を参照して、不感帯回路44Aは、無効電力指令値Qrefが−QA以上QA以下となる範囲に、無効電力指令値Qrefに基づいた3レベルインバータ1の制御を行なわない不感帯を設定する。
無効電力指令値Qrefが所定値QA以上となる時刻t1から無効電力指令値Qrefが所定値(−QA)以下となる時刻t3までの時間では、SRフリップフロップ84の出力端子(Q),(/Q)からHレベル、Lレベルの信号がそれぞれ出力される。したがって、下限リミッタ88の出力信号に基づいて無効電力指令値Qref1が生成されるため、無効電力指令値Qref1は所定値QA以上に制限されている。
一方、無効電力指令値Qrefが所定値(−QA)以下となる時刻t3から無効電力指令値Qrefが所定値QA以上となる時刻t5までの時間では、SRフリップフロップ84の出力端子(Q),(/Q)からLレベル、Hレベルの信号がそれぞれ出力される。したがって、上限リミッタ90の出力信号に基づいて無効電力指令値Qref1が生成されるため、無効電力指令値Qref1は所定値(−QA)以下に制限されている。
図9(b)から分かるように、無効電力指令値Qrefが不感帯に入っている時間(時刻t2〜時刻t3までの時間、および時刻t4〜時刻t5までの時間)において、無効電力指令値Qref1は、所定値QAまたは(−QA)に固定されている。すなわち、無効電力指令値Qref1は、不感帯をジャンプするように生成される。
このように、本実施の形態2によれば、3レベルインバータ1の制御に用いられる無効電力指令値Qref1は不感帯をジャンプするように生成されるため、実質的に、無効電力指令値Qrefに基づいた制御を非実行とすることができる。これにより、3レベルインバータ1は、バランス制御が有効に行なわれない出力範囲では動作しないため、コンデンサC1,C2の直流電圧がアンバランスになることを抑制することができる。
なお、本実施の形態では3レベルインバータを示したが、第1および第2のマルチレベルインバータは、直流電圧と少なくとも3つの電圧値を有する交流電圧とを相互に変換する回路であればよい。したがって、直流電圧と5つの電圧値を有する交流電圧とを相互に変換する5レベルインバータを、第1および第2のマルチレベルインバータに適用することができる。
また本実施の形態では、三相の電力系統3に適用可能な自励式無効電力補償装置を示したが、電力系統は三相に限定されず、単相のものであってもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 マルチレベルインバータ(3レベルインバータ)、2 変換器用変圧器、3 電力系統、4 電流検出器、5,6,7 電圧検出器、10 制御装置、12 電圧検出部、14 電流検出部、16 無効電力検出部、18,22,50 減算器、20,24 PI演算部、26,30,32,34 加算器、36 ゲート制御回路、38 論理積回路、40 中性点電位制御回路、42,42A インバータ制御部、44,44A 不感帯回路、52 増幅器、54,56,92,94 乗算器、60,64,72,74,80,82 比較器、62,66,78 NOT回路、70 絶対値演算部、76,84 SRフリップフロップ、88 下限リミッタ、90 上限リミッタ、100,100A 自励式無効電力補償装置、C1,C2 コンデンサ、N1 中性点、GB ゲートブロック信号、Qref,Qref1 無効電力指令値。

Claims (5)

  1. 直流正母線および直流負母線の間に直列に接続される第1および第2のコンデンサと、
    電力系統と、前記直流正母線、前記直流負母線、および前記第1および第2のコンデンサの中性点との間に接続され、直流電圧と少なくとも3つの電圧値の間で変化する交流電圧とを相互に変換可能に構成されたマルチレベルインバータと、
    前記マルチレベルインバータを制御する制御装置とを備え、
    前記制御装置は、
    電力指令値に従った無効電力を前記電力系統に出力するように、前記マルチレベルインバータを制御するとともに、前記中性点の電位変動を抑制するためのバランス制御を実行するように構成されたインバータ制御部と、
    前記電力指令値の絶対値が所定値よりも小さくなる範囲を、前記電力指令値に基づいた無効電力の制御を行なわない不感帯とするように構成された不感帯回路とを含む、自励式無効電力補償装置。
  2. 前記不感帯回路は、前記電力指令値が前記不感帯に入ると、前記インバータ制御部から前記マルチレベルインバータへの制御信号の入力を遮断して前記マルチレベルインバータを停止するように構成される、請求項1に記載の自励式無効電力補償装置。
  3. 前記不感帯回路は、前記電力指令値が前記不感帯に入ると、前記電力指令値の絶対値を前記所定値に固定して前記インバータ制御部に出力するように構成される、請求項1に記載の自励式無効電力補償装置。
  4. 前記不感帯回路は、前記電力指令値が前記不感帯に入った後、前記電力指令値の絶対値が前記所定値よりも大きくなったときに、前記電力指令値が前記不感帯から外れたと判定して、前記電力指令値を前記インバータ制御部に出力するように構成される、請求項3に記載の自励式無効電力補償装置。
  5. 前記インバータ制御部は、前記電力指令値と前記マルチレベルインバータの出力電力との差に応じた電圧指令値に、前記第1のコンデンサの両端の電圧と前記第2のコンデンサの両端の電圧との差に基づいた電圧指令値を加算するように構成される、請求項1〜4のいずれか1項に記載の自励式無効電力補償装置。
JP2015250001A 2015-12-22 2015-12-22 自励式無効電力補償装置 Expired - Fee Related JP6538544B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015250001A JP6538544B2 (ja) 2015-12-22 2015-12-22 自励式無効電力補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015250001A JP6538544B2 (ja) 2015-12-22 2015-12-22 自励式無効電力補償装置

Publications (2)

Publication Number Publication Date
JP2017118643A true JP2017118643A (ja) 2017-06-29
JP6538544B2 JP6538544B2 (ja) 2019-07-03

Family

ID=59232223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015250001A Expired - Fee Related JP6538544B2 (ja) 2015-12-22 2015-12-22 自励式無効電力補償装置

Country Status (1)

Country Link
JP (1) JP6538544B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880392A (zh) * 2018-08-13 2018-11-23 珠海格力电器股份有限公司 一种死区补偿方法、装置及系统、一种驱动控制器
JP2020184811A (ja) * 2019-04-26 2020-11-12 株式会社日立製作所 電力変換装置および異常検出方法
WO2021001931A1 (ja) 2019-07-02 2021-01-07 東芝三菱電機産業システム株式会社 電力変換装置および電力変換システム
JP2021072698A (ja) * 2019-10-30 2021-05-06 田淵電機株式会社 Npcインバータの制御方法、および、電力変換システム
CN112997395A (zh) * 2018-11-14 2021-06-18 东芝三菱电机产业系统株式会社 电力转换装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247405B (zh) * 2019-07-18 2021-10-29 阳光电源股份有限公司 一种无功调度控制方法、系统及数据处理模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527856A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 無効電力補償装置
JP2000014011A (ja) * 1998-06-22 2000-01-14 Hitachi Ltd 電圧無効電力制御装置
JP2007020306A (ja) * 2005-07-07 2007-01-25 Toshiba Corp 電力変換装置又は無効電力補償装置による電力系統の交流電圧制御方法
US20110141786A1 (en) * 2010-09-29 2011-06-16 General Electric Company Dc-link voltage balancing system and method for multilevel converters
JP2013021891A (ja) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp 電力変換装置
JP2013143836A (ja) * 2012-01-11 2013-07-22 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置
JP2013255317A (ja) * 2012-06-06 2013-12-19 Meidensha Corp 3レベルインバータの制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527856A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 無効電力補償装置
JP2000014011A (ja) * 1998-06-22 2000-01-14 Hitachi Ltd 電圧無効電力制御装置
JP2007020306A (ja) * 2005-07-07 2007-01-25 Toshiba Corp 電力変換装置又は無効電力補償装置による電力系統の交流電圧制御方法
US20110141786A1 (en) * 2010-09-29 2011-06-16 General Electric Company Dc-link voltage balancing system and method for multilevel converters
JP2013021891A (ja) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp 電力変換装置
JP2013143836A (ja) * 2012-01-11 2013-07-22 Toshiba Mitsubishi-Electric Industrial System Corp 3レベル電力変換装置
US20150002066A1 (en) * 2012-01-11 2015-01-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation Three-level power conversion apparatus
JP2013255317A (ja) * 2012-06-06 2013-12-19 Meidensha Corp 3レベルインバータの制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880392A (zh) * 2018-08-13 2018-11-23 珠海格力电器股份有限公司 一种死区补偿方法、装置及系统、一种驱动控制器
CN112997395A (zh) * 2018-11-14 2021-06-18 东芝三菱电机产业系统株式会社 电力转换装置
EP3883115A4 (en) * 2018-11-14 2022-06-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation CURRENT CONVERSION DEVICE
CN112997395B (zh) * 2018-11-14 2024-01-02 东芝三菱电机产业系统株式会社 电力转换装置
JP2020184811A (ja) * 2019-04-26 2020-11-12 株式会社日立製作所 電力変換装置および異常検出方法
JP7219665B2 (ja) 2019-04-26 2023-02-08 株式会社日立製作所 電力変換装置および異常検出方法
WO2021001931A1 (ja) 2019-07-02 2021-01-07 東芝三菱電機産業システム株式会社 電力変換装置および電力変換システム
US11881710B2 (en) 2019-07-02 2024-01-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus and power conversion system
JP2021072698A (ja) * 2019-10-30 2021-05-06 田淵電機株式会社 Npcインバータの制御方法、および、電力変換システム
JP7275003B2 (ja) 2019-10-30 2023-05-17 ダイヤゼブラ電機株式会社 Npcインバータの制御方法、および、電力変換システム

Also Published As

Publication number Publication date
JP6538544B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6538544B2 (ja) 自励式無効電力補償装置
Yang et al. A fast and fixed switching frequency model predictive control with delay compensation for three-phase inverters
Lee et al. A novel carrier-based PWM method for Vienna rectifier with a variable power factor
EP2491644B1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
JP5624792B2 (ja) 電力変換装置
JP6178433B2 (ja) 電力変換装置
Nieves et al. Enhanced control strategy for MMC-based STATCOM for unbalanced load compensation
JP2016208820A (ja) 三相インバータのオフセット電圧生成装置及び三相インバータ制御装置
JP5374336B2 (ja) 電力変換装置
JP2018129963A (ja) 電力変換器の制御装置
JP6538542B2 (ja) 自励式無効電力補償装置
JP2009201248A (ja) クランプ式電力変換装置
JP2008245349A (ja) 系統連系インバータ装置
JP7375553B2 (ja) 電力変換装置
JP2016063687A (ja) 電力変換装置
KR102430096B1 (ko) 3-레벨 npc 인버터의 중성점 전압 제어장치 및 방법
JP2017153277A (ja) 自励式無効電力補償装置
JP2012130228A (ja) 3相v結線コンバータの制御装置
Pushparani et al. Simulation and Analysis of SVHM Technique for DCMLI under Transient Conditions with Non-Linear Loads
Niu et al. Flexible third harmonic voltage modulation of boost seven-level active neutral-point-clamped inverter with reduced voltage ripple
JP6818956B1 (ja) 電力変換装置
Behrouzian et al. Individual capacitor voltage balancing in H-bridge cascaded multilevel STATCOM at zero current operating mode
Lyu et al. A neutral-point voltage balance controller for the equivalent SVPWM strategy of NPC three-level inverters
Elnady et al. Multilevel inverter operated by voltage orientation control
JP6502870B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R150 Certificate of patent or registration of utility model

Ref document number: 6538544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees