JP2017116423A - 光ファイバ特性測定装置および光ファイバ特性測定方法 - Google Patents

光ファイバ特性測定装置および光ファイバ特性測定方法 Download PDF

Info

Publication number
JP2017116423A
JP2017116423A JP2015252479A JP2015252479A JP2017116423A JP 2017116423 A JP2017116423 A JP 2017116423A JP 2015252479 A JP2015252479 A JP 2015252479A JP 2015252479 A JP2015252479 A JP 2015252479A JP 2017116423 A JP2017116423 A JP 2017116423A
Authority
JP
Japan
Prior art keywords
light
unit
optical fiber
optical
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015252479A
Other languages
English (en)
Other versions
JP6686423B2 (ja
Inventor
古川 靖
Yasushi Furukawa
靖 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2015252479A priority Critical patent/JP6686423B2/ja
Publication of JP2017116423A publication Critical patent/JP2017116423A/ja
Application granted granted Critical
Publication of JP6686423B2 publication Critical patent/JP6686423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】被測定光ファイバの長さが未知である場合、被測定光ファイバよりも短い遅延ファイバを用いる場合であっても、ブリルアン散乱光を用いた光ファイバ特性測定を行うことができる光ファイバ特性測定装置を提供する。【解決手段】光ファイバ特性測定装置は、周波数変調された連続光を出力する光源部と、連続光を、ポンプ光と、参照光とに分岐させる第1光分岐部と、第1光分岐部から出射されたポンプ光を被測定光ファイバの一端から入射させ、被測定光ファイバ内のポンプ光のブリルアン散乱により発生した後方散乱光を被測定光ファイバから受信する第2光分岐部と、後方散乱光と、参照光とを干渉させることにより、被測定光ファイバの特性を測定する演算部と、を備る。第1光分岐部から出射されたポンプ光が被測定光ファイバ内に入射して後方散乱光として演算部に至る第1光路の長さが、参照光が演算部に至る第2光路の長さよりも長い。【選択図】図1

Description

本発明は、光ファイバ特性測定装置および光ファイバ特性測定方法に係り、特に、被測定対象である光ファイバ内におけるブリルアン散乱により生じた後方散乱光に基づいて光ファイバの特性を測定する光ファイバ特性測定装置および光ファイバ特性測定方法に関する。
光伝送媒体の1つである光ファイバ中に光を入射することによって発生するブリルアン散乱は、その光ファイバに加わる歪みや光ファイバの温度によって変化する。このブリルアン散乱に起因した光の周波数シフト量を測定することで、光ファイバの長さ方向の歪み分布や温度分布を測定する方法が知られている。例えば、橋、ビルなどの構造物に光ファイバを張り巡らせ、上記の方法に基づいてこの光ファイバの歪み箇所を特定することで、これらの構造物に生じた歪みを検知することができる。このような測定方法として、いわゆるBOTDR(Brillouin Optical Time Domain Reflectometry)方式およびBOCDR(Brillouin Optical Correlation Domain Reflectometry)方式などが知られている。
BOTDR方式の測定方法は、被測定光ファイバの一端から光パルスを入射することによって得られるブリルアン散乱光を検出して、ブリルアン散乱光の入射光に対する周波数シフト量(以下、ブリルアン周波数シフト量と称する)およびブリルアン散乱光が戻ってくるまでの時間を測定する。このブリルアン散乱光は、被測定光ファイバの歪みや温度に依存して速度が変化する音響波によって散乱された後方散乱光である。上記のブリルアン周波数シフト量を測定することで、被測定光ファイバの歪みの大きさや温度を測定することができ、さらに、ブリルアン散乱光が戻ってくるまでの時間を測定することで、被測定光ファイバの長さ方向における位置を特定することができる。
一方、BOCDR方式の測定方法は、被測定光ファイバの一端から周波数変調された連続光であるポンプ光を入射することによって得られるブリルアン散乱光を検出してブリルアン周波数シフト量を測定する。特許文献1に記載されているように、このBOCDR方式の測定方法においては、ブリルアン散乱光と参照光とを干渉させることにより、被測定光ファイバ中の、「相関ピーク」と呼ばれる特定の位置におけるブリルアン散乱光を選択的に抽出する。例えば、正弦波周波数変調が与えられた連続光を被測定光ファイバ内に入射する場合、被測定光ファイバ内における相関ピークの間隔は、正弦波周波数変調の変調周波数に反比例する。さらに、連続光の変調周波数を掃引することで、被測定光ファイバの長さ方向に沿って相関ピークを移動させることができる。相関ピークを移動しつつ各相関ピーク点におけるブリルアン周波数シフト量を求めることにより、被測定光ファイバの長さ方向における歪み分布や温度分布を測定することができる。
BOCDR方式の測定方法において利用される相関ピークとは、被測定光ファイバに入射するポンプ光で生じるブリルアン散乱光と、光源から分岐した参照光との相関が高い位置を意味する。すなわち、相関ピークとは、ブリルアン散乱光と参照光との周波数差が時間的に変動しない位置を意味する。被測定光ファイバ上には複数の相関ピークが生じる可能性がある。この複数の相関ピークの中で、被測定光ファイバに入射するポンプ光の光路長と、参照光の光路長とが等しくなる位置を、「0次相関ピーク」と呼ぶ。また、0次相関ピークのとなりに生じるn番目(nは正の整数)の相関ピークを「n次相関ピーク」と呼ぶ。このn次相関ピークは、被測定光ファイバに入射するポンプ光の変調周波数を掃引することでその位置が変化するが、0次相関ピークの位置は基本的には変調周波数によらず固定である。
一般的に、被測定光ファイバの長さ方向の歪み分布や温度分布を測定する方法としては、上記のn次相関ピークの掃引を利用する方法や、0次相関ピークの位置を位相シフタを用いて変化させる方法などがある。n次相関ピークの掃引を利用する場合、被測定光ファイバ上にn次相関ピークが位置するように、0次相関ピークの位置を被測定光ファイバから離れた位置に設定する必要がある。従来技術においては、特許文献1(図1)に記載されているように、参照光の光路に遅延ファイバと呼ばれる光ファイバを設けることで、0次相関ピークの位置を被測定光ファイバから離れた位置に調節している。
参照光の光路に遅延ファイバを設けることにより、参照光の光路長が長くなるため、被測定光ファイバに入射するポンプ光の光路上における0次相関ピークの位置が光源から離れる方向に向かう遠方に移動する。このようにして、0次相関ピークが、被測定光ファイバが物理的に存在しない遠方に仮想的に位置するようにすれば、被測定光ファイバの歪み分布や温度分布をn次相関ピークを用いて測定することができる。正弦波周波数変調が与えられたポンプ光を被測定光ファイバ内に入射する場合、変調周波数を低減させることでn次相関ピークを被測定光ファイバの光源から近い端部に移動させ、変調周波数を増大させることでn次相関ピークを被測定光ファイバの光源から遠い端部に移動させることができる。
上記のBOCDR方式の測定方法は、被測定光ファイバ中の数cm程度の狭い領域でのブリルアン散乱光を、被測定光ファイバの長さ方向における特定の位置に対応した干渉出力として選択的に出力することができる。また、光パルスではなく連続光を被測定光ファイバに入射させるため、被測定光ファイバ内で生じる後方散乱光の信号強度が高く、測定値の積分処理が不要であるため、測定時間を短縮することができる。このBOCDR方式の測定方法における空間分解能および測定時間は、光パルスを被測定光ファイバに入射させるBOTDR方式の測定方法における空間分解能(通常1m以上)や、測定時間(数分から数十分)よりも優れている。
しかしながら、被測定光ファイバが物理的に存在しない遠方に0次相関ピークを配置する、すなわち、被測定光ファイバの光源から遠い端部よりも遠方に0次相関ピークを配置するためには、被測定光ファイバよりも長い遅延ファイバを参照光の光路に設ける必要がある。このため、予め被測定光ファイバの長さを把握し、これに応じた遅延ファイバを準備しなければならない場合がある。また、橋、ビルなどの大きな構造物に被測定光ファイバを張り巡らせる場合などにおいては、非常に長い遅延ファイバを参照光の光路に設けることになりコストが増大してしまう場合がある。
特許第5105302号公報
丸山富士之介,"テンポラルゲート法とアポダイズ法を用いたブリルアン光相関領域リフレクトメトリ",第55回応用物理学会光波センシング研究会,2015年6月
本発明の一態様は、被測定光ファイバの長さが未知である場合、あるいは、被測定光ファイバよりも短い遅延ファイバを用いる場合であっても、ブリルアン散乱光を用いた光ファイバ特性測定を可能とする光ファイバ特性測定装置および光ファイバ特性測定方法を提供する。
本発明の一態様の光ファイバ特性測定装置は、周波数変調された連続光を出力する光源部と、前記連続光を、ポンプ光と、参照光とに分岐させる第1光分岐部と、前記第1光分岐部から出射された前記ポンプ光を被測定光ファイバの一端から入射させ、前記被測定光ファイバ内の前記ポンプ光のブリルアン散乱により発生した後方散乱光を前記被測定光ファイバから受信する第2光分岐部と、前記後方散乱光と、前記参照光とを干渉させることにより、前記被測定光ファイバの特性を測定する演算部と、を備えてよい。前記第1光分岐部から出射された前記ポンプ光が前記被測定光ファイバ内に入射して前記後方散乱光として前記演算部に至る第1光路の長さが、前記参照光が前記演算部に至る第2光路の長さよりも長くてよい。
上記の一態様の光ファイバ特性測定装置は、前記第1光路上に、前記ポンプ光に所定の遅延を生じさせる光遅延部をさらに備えてよい。
上記の一態様の光ファイバ特性測定装置において、前記光遅延部は、前記第1光路の長さを増大させるための光ファイバを備えてよい。
上記の一態様の光ファイバ特性測定装置において、前記光遅延部は、前記第1光分岐部と、前記第2光分岐部との間に配置されてよい。
上記の一態様の光ファイバ特性測定装置において、前記演算部は、前記後方散乱光と、前記参照光とを合波して合波光を生成する合波部と、前記合波部から入力された前記合波光に含まれる前記後方散乱光と、前記参照光とを干渉させることにより、前記後方散乱光と、前記参照光との周波数差分を示す干渉信号を検出する検出部と、前記検出部から入力された前記干渉信号に基づいて、ブリルアン散乱のスペクトルを取得する取得部と、前記取得部から入力された前記ブリルアン散乱のスペクトルから、ブリルアン周波数シフト量を演算する演算制御部と、を備えてよい。
上記の一態様の光ファイバ特性測定装置は、前記第1光分岐部と、前記第2光分岐部との間に配置され、前記第1光分岐部から入力された前記ポンプ光を前記第2光分岐部に通過または遮断するゲート部をさらに備えてよい。前記演算制御部は、前記第1光分岐部から出射された前記ポンプ光の前記第2光分岐部への通過または遮断を制御する第1制御信号を前記ゲート部に出力し、前記ブリルアン散乱のスペクトルの取得の開始および停止を制御する第2制御信号を前記取得部に出力してよい。
上記の一態様の光ファイバ特性測定装置において、前記演算制御部は、前記ブリルアン散乱のスペクトルが前記光源部から出力された前記周波数変調された連続光の一周期分のデータを含むように、前記ブリルアン散乱のスペクトルの取得の開始および停止を制御する前記第2制御信号を前記取得部に出力してよい。
本発明の一態様の光ファイバ特性測定方法は、周波数変調された連続光を出力することと、前記連続光を、ポンプ光と、参照光とに分岐させることと、前記参照光に対して、前記ポンプ光を遅延させることと、前記ポンプ光を被測定光ファイバの一端から入射させ、前記被測定光ファイバ内の前記ポンプ光のブリルアン散乱により発生した後方散乱光を前記被測定光ファイバから受信することと、前記後方散乱光と、前記参照光とを干渉させることにより、前記被測定光ファイバの特性を測定することと、を備えてよい。
上記の一態様の光ファイバ特性測定方法において、前記被測定光ファイバの特性を測定することは、前記後方散乱光と、前記参照光とを干渉させることにより、前記後方散乱光と、前記参照光との周波数差分を示す干渉信号を検出することと、前記干渉信号に基づいて、ブリルアン散乱のスペクトルを取得することと、前記ブリルアン散乱のスペクトルから、ブリルアン周波数シフト量を演算することと、を備えてよい。
上記の一態様の光ファイバ特性測定方法は、前記後方散乱光と前記参照光との周波数差が時間的に変動しない相関ピークが前記被測定光ファイバ内に複数存在する場合、前記ポンプ光の光路上に設けられたゲート部の開閉を制御することにより、前記ポンプ光をパルス化するとともに、前記被測定光ファイバから受信した前記後方散乱光のスペクトル取得を開始および停止することをさらに備えてよい。前記被測定光ファイバの一端から、前記複数の相関ピークのうち測定対象である相関ピーク(以下、第1相関ピークとする)までの距離に応じて、前記ゲート部を開いた時刻と、前記ブリルアン散乱のスペクトルの取得の開始した時刻との時間差、および、前記ゲート部を閉じた時刻と、前記ブリルアン散乱のスペクトルの取得を停止した時刻との時間差を制御することを備えてよい。
本発明の一態様の光ファイバ特性測定装置および光ファイバ特性測定方法は、被測定光ファイバの長さが未知である場合、あるいは、被測定光ファイバよりも短い遅延ファイバを用いる場合であっても、ブリルアン散乱光を用いた光ファイバ特性測定を行うことができる。
第1実施形態における光ファイバ特性測定装置の一例を示すブロック図である。 第1実施形態における、光ファイバ特性測定装置の処理の流れの一例を示すフローチャートである。 第2実施形態における光ファイバ特性測定装置の一例を示すブロック図である。 第2実施形態における、光ファイバ特性測定装置の処理の流れの一例を示すフローチャートである。
以下、図面を参照して、本発明に係る光ファイバ特性測定装置のいくつかの実施形態について説明する。
(第1実施形態)
図1は、本発明の第1実施形態における光ファイバ特性測定装置の一例を示すブロック図である。図1に示すように、第1実施形態の光ファイバ特性測定装置1は、例えば、光源部10と、第1光分岐部20と、光遅延部30と、光増幅部35と、第2光分岐部40と、光コネクタ50と、演算部60とを備える。演算部60は、例えば、合波部70と、検出部80と、取得部90と、演算制御部100と、変調部110とを備える。
光源部10は、周波数変調された連続光を出力する。光源部10は、例えば、正弦波状に周波数変調された連続光を出力する。光源部10は、例えば、分布帰還型レーザダイオードなどの半導体レーザを含む。光源部10から出力される光を変調させるためには、例えば、変調部110から入力される変調信号を用いる。
第1光分岐部20は、光源部10から入力された連続光を、適当な強度比(例えば1対1)の2つの光に分岐させる。2つの光のうち、一方の光は、被測定光ファイバFUTに入射されるポンプ光である。このポンプ光は、光遅延部30と、光増幅部35と、第2光分岐部40と、光コネクタ50とを通過し、被測定光ファイバFUTの一端に入射される。2つの光の内、他方の光は、光ヘテロダイン検波を行う場合における参照光である。この参照光は、第2導光部4を通過し、合波部70に入射される。
光遅延部30は、第1光分岐部20から入射されたポンプ光に所定の遅延を生じさせる。光遅延部30は、例えば、所定の長さの光ファイバを含む。光ファイバの長さを変更することで、遅延時間を調節することができる。光ファイバは、例えば、数十m以上の長さを有する。あるいは、光遅延部30は、第1光分岐部20から入射されたポンプ光が所定の遅延を生じるように位相調整を行う位相シフタを含んでもよい。光遅延部30によって、第1光分岐部20で分岐されたポンプ光と参照光との間に所定の遅延時間が生成されるため、被測定光ファイバFUTからの戻り光(ブリルアン散乱の後方散乱光、またはストークス光ともいう)と参照光との間にも所定の遅延時間が生成される。この遅延時間は予め任意に設定することができる。第1実施形態においては、光遅延部30を設けることで、第1光分岐部20から出射されたポンプ光が被測定光ファイバFUTに入射して、被測定光ファイバFUTからの後方散乱光として第2光分岐部40を介して合波部70に入射するポンプ光の光路(第1光分岐部20、光遅延部30、光増幅部35、第2光分岐部40、光コネクタ50、被測定光ファイバFUT、光コネクタ50、第2光分岐部40、第1導光部2、および合波部70を順に通る光路。以下、「第1光路6」と称する。)の長さが、第1光分岐部20で分岐された参照光が、第2導光部4を通って、合波部70に入射する参照光の光路(以下、「第2光路8」と称する。)よりも長く設定されている。光遅延部30は、第1光路6の長さを増大させる。
光増幅部35は、光遅延部30から入力されたポンプ光を増幅する。光増幅部35は、第1光分岐部20と、光遅延部30との間に設けられてもよい。ポンプ光の増幅が不要であれば、光増幅部35は設けなくてもよい。また、光遅延部30の前後に、ポンプ光の光周波数を所定の量だけシフトする変調器(図示しない)を設けてもよい。変調器としては、例えば、SSB(Single Side-Band Modulation)変調器などが用いられてよい。また、第2導光部4の光路上に、参照光を増幅するための光増幅器など(図示しない)を設けてもよい。また、第2導光部4の光路上に、参照光の光周波数を所定の量だけシフトする変調器(図示しない)を設けてもよい。
第2光分岐部40は、第1ポートと、第2ポートと、第3ポートとを備える。第1ポートは、光増幅部35と接続される。第2ポートは、光コネクタ50を介して被測定光ファイバFUTと接続される。第3ポートは、合波部70と接続される。この構成に基づき、第2光分岐部40は、第1ポートから入力されたポンプ光を第2ポートに出力する。また、第2ポートから入力された被測定光ファイバFUTからの後方散乱光を第3ポートに出力する。第2光分岐部40は、例えば、光サーキュレータなどを含む。
光コネクタ50は、第2光分岐部40の第2ポートから伸びる経路と被測定光ファイバFUTとを結ぶコネクタである。第2光分岐部40の第2ポートから出射されたポンプ光は、光コネクタ50を介して、被測定光ファイバFUTに入力される。また、被測定光ファイバFUTからの後方散乱光は、光コネクタ50を介して、第2光分岐部40の第2ポートに入力される。
合波部70は、第2光分岐部40の第3ポートにより出力され、第1導光部2を通過して合波部70に入力された測定光ファイバFからの後方散乱光と、第1光分岐部20により出力され、第2導光部4を通過して合波部70に入力された参照光とを合波し、合波光を生成する。さらに、合波部70は、合波した光を適当な強度比(例えば1対1)の2つの光に分岐し、検出部80に出力する。例えば、分岐された2つの光の各々は、測定光ファイバFからの後方散乱光の50%と、参照光の50%とを含む。
第1導光部2の光路上に、測定光ファイバFからの後方散乱光を増幅するための光増幅器(図示しない)などが設けられてもよい。
検出部80は、合波部70から入力された合波光に含まれる後方散乱光と、参照光とを干渉させることによって光ヘテロダイン検波を行う。検出部80は、例えば、2つのフォトダイオード(PD: Photodiode)82および84と、検波部86とを備えるバランスド・フォトダイオードである。検出部80は、合波部70により出力された光を受光し、後方散乱光と参照光との周波数差分を示す信号を干渉信号(ビート信号)として取得部90に出力する。ポンプ光または参照光を予め周波数シフトしている場合には、検出部80は、光ホモダイン検波を行ってもよい。
取得部90は、検出部80から入力された電気的なビート信号の周波数特性を観測する。取得部90は、例えば、スペクラムアナライザなどを含んでよい。あるいは、取得部90は、オシロスコープなどの時間軸測定器で時間的に連続なデータを取得した後、別途、高速フーリエ変換などの技術を用いてスペクトルデータに変換してもよい。
演算制御部100は、取得部90で測定したスペクトルデータからブリルアン周波数シフト量を演算するとともに、被測定光ファイバFUT上の測定位置を制御する制御信号を変調部110に出力する。演算制御部100は、例えば、パーソナルコンピュータのような演算装置などを含んでよい。また、演算制御部100は、演算により得られたブリルアン周波数シフト量を、歪みや温度などの物理情報として表示する表示部を含んでよい。また、被測定光ファイバFUTの歪みや温度などの情報を、その測定対象である物体の状態を意味する情報に解釈して表示部に表示してもよい。表示部は、例えば、液晶ディスプレイや有機EL(Electroluminescence)表示装置などである。
変調部110は、演算制御部100から入力された制御信号に基づき、光源部10から出射される光を変調させるための変調信号を光源部10に出力する。変調部110は、例えば、任意波形発生器やファンクションジェネレータなどの信号発生器を含む。変調部110は、光源部10から出力されるレーザ連続光を、例えば、正弦波状に周波数変調された連続光にする変調信号を光源部10に注入する。変調信号としては、例えば、直流電流に交流電流を重畳させた信号が用いられる。
次に、第1実施形態の光ファイバ特性測定装置1の動作について説明する。図2は、第1実施形態における、光ファイバ特性測定装置1の処理の流れの一例を示すフローチャートである。
光源部10は、周波数変調された連続光を第1光分岐部20に出力する(ステップS101)。光源部10は、例えば、正弦波状に周波数変調された連続光を第1光分岐部20に出力する。
次に、第1光分岐部20は、光源部10から入力された連続光を、ポンプ光と参照光とに分岐させる(ステップS103)。第1光分岐部20は、ポンプ光を光遅延部30に出力する(ステップS105)。
次に、光遅延部30は、第1光分岐部20から入力されたポンプ光を、光増幅部35に出力する。光増幅部35は、ポンプ光の増幅処理を行った後、ポンプ光を第2光分岐部40および光コネクタ50を介して、被測定光ファイバFUTに出力する(ステップS107)。周波数変調されたポンプ光が被測定光ファイバFUTに入射されると、被測定光ファイバFUT内においてブリルアン散乱が生じる。ここで、ブリルアン散乱により発生する後方散乱光は、被測定光ファイバFUTの歪みや温度に依存して速度が変化する音響波の影響を受け、その周波数がシフトしている。光源部10の波長が約1.55μmでありかつ被測定光ファイバFUTとして汎用の通信用シングルモードファイバを用いた場合、被測定光ファイバFUTからの後方散乱光は、被測定光ファイバFUTに入射された連続光の周波数に対して10.8GHz程度周波数がシフトしている。このブリルアン周波数シフト量は、被測定光ファイバFUTに加わる歪みや温度によって変動する。
次に、第2光分岐部40は、被測定光ファイバFUTから後方散乱光を受け取って、第1導光部2に出力する(ステップS109)。次に、第1導光部2は、第2光分岐部40から入力された後方散乱光を、合波部70に出力する。
上記のステップS105、S107、およびS109と並行して、またはステップS105、S107、およびS109の前若しくは後において、第1光分岐部20は、第1光分岐部20で分岐された参照光を、第2導光部4に出力する(ステップS111)。次に、第2導光部4は、参照光を合波部70に出力する。
次に、合波部70は、第1導光部2から入力された後方散乱光と、第2導光部4から入力された参照光とを合波する。次に、合波部70は、合波した光を適当な強度比(例えば1対1)の2つの光に分岐し、検出部80に出力する。検出部80は、合波部70から入力された光を干渉させることによって光ヘテロダイン検波を行う。検出部80は、例えば、2つのPD82および84と、検波部86とを用いて、合波部70から入力される戻り光と参照光との周波数差分を示す干渉信号(ビート信号)を検出する。検出部80は、検出した干渉信号、すなわちブリルアン散乱の信号に対して適当なレベル調整などを行った後、取得部90に出力する(ステップS113)。
次に、取得部90は、検出部80から入力された干渉信号を測定し、ブリルアン散乱のスペクトルを測定する(ステップS115)。次に、取得部90は、測定したブリルアン散乱のスペクトルを、スペクトルデータとして演算制御部100に出力する。
ここで、第1実施形態においては、第1光分岐部20で分岐されたポンプ光の光路(第1光路6)に光遅延部30が設けられているため、第1光路6の長さが、参照光の光路である第2光路8よりも長い。このため、ポンプ光の光路長と、参照光との光路長が等しい位置である0次相関ピークの位置が、第1光分岐部20と、被測定光ファイバFUTとの間、すなわち、第1光路6内における被測定光ファイバFUTの前段の位置に調節される。例えば、0次相関ピークの位置が、光遅延部30内の光路上に発生する。この結果、被測定光ファイバFUT上には、0次相関ピークではなく、被測定光ファイバFUTの特性測定に利用されるn次相関ピーク(nは正の整数)が発生する。
次に、演算制御部100は、取得部90から入力されたスペクトルデータからブリルアン周波数シフト量を演算することにより、被測定光ファイバFUTの特性(被測定光ファイバFUTの長さ方向における歪み分布、温度分布等)を測定する(ステップS117)。
次に、演算制御部100は、被測定光ファイバFUT上の測定位置を制御する制御信号を変調部110に出力する。例えば、正弦波周波数変調が与えられた連続光を被測定光ファイバFUT内に入射する場合、変調周波数を小さくすることで、n次相関ピークを被測定光ファイバFUTの光源部10から遠い側に移動させることができる。また、変調周波数を大きくすることで、n次相関ピークを被測定光ファイバFUTの光源部10に近い側に移動させることができる。この第1実施形態におけるn次相関ピークの移動方向と変調周波数の関係は、参照光の光路上に遅延部を設ける従来技術、すなわち、0次相関ピークが光源からみて被測定光ファイバの遠方に位置する構成におけるn次相関ピークの移動方向と変調周波数の関係とは逆向きである。さらに、連続光の変調周波数を掃引することで、被測定光ファイバの長さ方向に沿って相関ピークを移動させることができる。相関ピークを移動しつつ各相関ピーク点におけるブリルアン周波数シフト量を求めることにより、被測定光ファイバの長さ方向における歪み分布や温度分布を測定することができる。
次に、変調部110は、演算制御部100から入力された制御信号に基づき、光源部10から出射される光を変調させるための変調信号を光源部10に出力し、本フローチャートの処理を終了する。
以上説明した第1実施形態の光ファイバ特性測定装置1は、周波数変調された連続光を出力する光源部10と、前記連続光を、ポンプ光と、参照光とに分岐させる第1光分岐部20と、前記第1光分岐部20から出射された前記ポンプ光を被測定光ファイバFUTの一端から入射させ、前記被測定光ファイバFUT内の前記ポンプ光のブリルアン散乱により発生した後方散乱光を前記被測定光ファイバFUTから受信する第2光分岐部40と、前記後方散乱光と、前記参照光とを干渉させることにより、前記被測定光ファイバFUTの特性を測定する演算部60と、を備え、前記第1光分岐部20から出射された前記ポンプ光が前記被測定光ファイバFUT内に入射して前記後方散乱光として前記演算部60に至る第1光路の長さが、前記参照光が前記演算部60に至る第2光路の長さよりも長い。すなわち、第1光分岐部20で分岐されたポンプ光の光路(第1光路6)に光遅延部30が設けられているため、第1光路6の長さが、参照光の光路である第2光路8よりも長い。このため、ポンプ光の光路長と、参照光との光路長が等しい位置である0次相関ピークの位置が、第1光分岐部20と、被測定光ファイバFUTとの間、すなわち、第1光路6内における被測定光ファイバFUTの前段の位置に調節される。被測定光ファイバFUTの長さに応じて光遅延部(例えば、光ファイバ)の長さを変更する必要がなくなるため、被測定光ファイバFUTの長さが未知である場合であっても被測定光ファイバFUTの特性を測定することができる。また、被測定光ファイバFUTよりも短い遅延ファイバを用いた場合であっても、被測定光ファイバFUTの特性を測定することができる。
上記の第1実施形態において、光遅延部30は、第1光分岐部20と第2光分岐部40との間に配置されるものとして説明しているが、光遅延部30は、第2光分岐部40と合波部70との間に配置されてもよい。光遅延部30は、ポンプ光の第1光路6上の適当な位置に設けられてよい。この場合、光遅延部30と合波部70との間に、後方散乱光を増幅するための光増幅器などを設けてもよい。
また、光遅延部30を設けずに、光増幅部35内の光路を長くすることで、ポンプ光の光路である第1光路6の長さを参照光の光路である第2光路8よりも長くする構成を採用してもよい。
(第2実施形態)
次に、本発明の第2実施形態について説明する。第1実施形態と比較して、第2実施形態における光ファイバ特性測定装置は、ポンプ光の光路上にゲート部を設ける点、および検出部80と演算制御部100との間にゲート付き取得部92を設ける点が異なる、このため、第2実施形態の説明において、上記の第1実施形態と同様の部分には同じ参照番号を付与し、その説明を省略あるいは簡略化する。
第1実施形態では、主に、被測定光ファイバFUTにおいてn次相関ピークが一つのみ発生する例を対象に説明を行った。しかしながら、隣り合う二つの相関ピークの間隔は、光源の変調周波数によって変化するため、光源の変調周波数が高く、相関ピークの間隔が被測定光ファイバFUTの長さよりも短い場合、被測定光ファイバFUT上に複数の相関ピークが発生する場合がある。この場合、取得部90においてブリルアン散乱のスペクトルを測定する際、複数存在する相関ピークのうち、被測定光ファイバFUT上のどの地点で観測されたものであるかを判別する必要がある。
被測定光ファイバ上に存在する複数の相関ピークを判別するための方法として、特許文献1および非特許文献1に示すテンポラルゲート法などが知られている。この方法においては、被測定光ファイバ上に発生した複数の相関ピークのうち一つのみを取り出せるように、ポンプ光の光路上にゲート部が設けられる。このゲート部が開いている間のみ、ポンプ光はパルス状に送出されるため、その光パルスが通過している部位の被測定光ファイバからのみブリルアン散乱光(後方散乱光)が戻ることになる。光ファイバ特性測定装置内に設けられた演算部は、戻り光である後方散乱光を連続して受光することになるが、ある特定の部位(ポンプ光の光パルスが通過した位置)からの後方散乱光のみを選択的に受光するように、取得部に入力される受光信号に対してもゲート処理を行うことで、相関ピークを選択することができる。
このテンポラルゲート法は、光パルスを被測定光ファイバに入射させ、後方散乱光を連続してサンプリングすることで特定の部位における後方散乱光を判別するという点で、BOTDR方式と類似する。しかしながら、BOTDR方式における空間分解能の限界が1m程度であるのに対して、テンポラルゲート法を用いたBOCDR方式における空間分解能は数cmである。このため、テンポラルゲート法を用いたBOCDR方式は、BOTDR方式と比較して、高い空間分解能を有している。
そこで、本発明の第2実施形態では、上記の第1実施形態の利点を維持しつつ、被測定光ファイバ上に発生した複数の相関ピークの中から特定の部位だけを観測することが可能な光ファイバ特性測定装置について説明する。
図3は、第2実施形態における光ファイバ特性測定装置の一例を示すブロック図である。図3に示す光ファイバ特性測定装置1Aは、光増幅部35と、第2光分岐部40との間にゲート部120を含む。ゲート部120は、第1光分岐部20と、光遅延部30との間、または、光遅延部30と、光増幅部35との間に設けられてもよい。さらに、光ファイバ特性測定装置1Aは、検出部80と演算制御部100との間にゲート付き取得部92を含む。演算制御部100は、ゲート部120の動作を制御するための第1ゲート信号S1(第1制御信号)をゲート部120に出力する。さらに、演算制御部100は、ゲート付き取得部92の動作を制御するための第2ゲート信号S2(第2制御信号)をゲート付き取得部92に出力する。
ゲート部120は、光増幅部35から入力されたポンプ光を第2光分岐部40に通過させるか(開状態)、あるいは、ポンプ光を遮断する(閉状態)ゲート処理を行う。ゲート部120は、消光比の高い光スイッチや、強度変調器、半導体光アンプ(SOA: Semiconductor Optical Amplifier)などを含む。例えば、半導体光アンプは、ポンプ光を増幅する機能を兼ね備える。
ゲート部120の開閉状態は、演算制御部100からの第1ゲート信号S1によって制御される。ゲート部120を開状態とすることを示す第1ゲート信号S1が演算制御部100から入力された場合、ゲート部120は開状態となる。この場合、光増幅部35から入力されたポンプ光は、ゲート部120を通過し、第2光分岐部40に出力される。一方、ゲート部120を閉状態とすることを示す第1ゲート信号S1が演算制御部100から入力された場合、ゲート部120は閉状態となる。この場合、光遅延部30から入力されたポンプ光は、ゲート部120を通過せずに遮断され、ゲート部120からは何も出力されない。
ゲート付き取得部92は、演算制御部100からの第2ゲート信号S2に基づいて、検出部80から入力された干渉信号の測定を開始、あるいは測定を停止する。ゲート付き取得部92の測定開始および測定停止が制御される理由は、時系列に並んだ後方散乱光のうち、被測定光ファイバFUT上の特定の部位だけを測定するためである。所定の時間において測定を行うことは、被測定光ファイバFUT上の特定の位置(所定の距離)における測定を行うことを意味する。
次に、第2実施形態の光ファイバ特性測定装置1Aの動作について説明する。図4は、第2実施形態における、光ファイバ特性測定装置1Aの処理の流れの一例を示すフローチャートである。
光源部10は、周波数変調された連続光を第1光分岐部20に出力する(ステップS201)。
次に、第1光分岐部20は、光源部10から入力された連続光を、ポンプ光と参照光とに分岐させる(ステップS203)。第1光分岐部20は、ポンプ光を光遅延部30に出力する(ステップS205)。
次に、光遅延部30は、第1光分岐部20から入力されたポンプ光を、光増幅部35に出力する。光増幅部35は、ポンプ光の増幅処理を行った後、ポンプ光をゲート部120に出力する。演算制御部100から入力される第1ゲート信号S1に基づいて、ゲート部120の開閉状態が制御される。これにより、ゲート部120は、パルス化されたポンプ光を、第2光分岐部40に出力する。ゲート部120によってパルス状となった各光パルスには、元の変調された連続光の一周期分が含まれている必要がある。この一周期が、相関ピーク一つ分に相当する時間である。
次に、第2光分岐部40は、ゲート部120から入力されたパルス化されたポンプ光を、光コネクタ50を介して、被測定光ファイバFUTに出力する(ステップS209)。パルス化されたポンプ光は、被測定光ファイバFUT中を伝播する。光パルスが通過した被測定光ファイバFUTの各部位からは、後方散乱光が、光パルスの通過した順に時系列で戻ってくる。
次に、第2光分岐部40は、被測定光ファイバFUTから後方散乱光を受け取って、第1導光部2に出力する(ステップS211)。次に、第1導光部2は、第2光分岐部40から入力された後方散乱光を、合波部70に出力する。
上記のステップS205、S207、S209、およびS211と並行して、またはステップS205、S207、S209、およびS211の前若しくは後において、第1光分岐部20は、第1光分岐部20で分岐された参照光を、第2導光部4に出力する(ステップS213)。次に、第2導光部4は、参照光を合波部70に出力する。
次に、合波部70は、第1導光部2から入力された後方散乱光と、第2導光部4から入力された参照光とを合波する。次に、合波部70は、合波した光を、検出部80に出力する。検出部80は、合波部70から入力された光を干渉させることによって光ヘテロダイン検波を行う。検出部80は、検出した干渉信号、すなわちブリルアン散乱の信号に対して適当なレベル調整などを行った後、ゲート付き取得部92に出力する(ステップS215)。
次に、ゲート付き取得部92は、検出部80から入力された干渉信号を受信する。次に、演算制御部100から入力される第2ゲート信号S2に基づいて、ゲート付き取得部92の測定開始および測定停止が制御される。ゲート付き取得部92は、第1ゲート信号S1に基づいてゲート部120が開状態となってから所定の時間だけ遅延した時刻にブリルアン散乱のスペクトルの測定を行う(ステップS217)。演算制御部100は、第1ゲート信号S1および第2ゲート信号S2を用いて、ゲート部120の開閉処理と、ゲート付き取得部92の開閉処理(測定開始および測定停止の制御)との遅延タイミングを制御することにより、被測定光ファイバFUTの観測位置を掃引する。例えば、ゲート部120の開閉処理と、ゲート付き取得部92の開閉処理との遅延タイミングを少しずつずらすことで、被測定光ファイバFUT上の観測位置を少しずつ変えながら掃引測定を行うことができる。
ここで、第1実施形態と同様に、第1光分岐部20で分岐されたポンプ光の光路(第1光路6)に光遅延部30が設けられているため、第1光路6の長さが、参照光の光路である第2光路8よりも長い。このため、ポンプ光の光路長と、参照光との光路長が等しい位置である0次相関ピークの位置が、第1光分岐部20と、被測定光ファイバFUTとの間、すなわち、第1光路6内における被測定光ファイバFUTの前段の位置に調節される。この結果、被測定光ファイバFUT上には、0次相関ピークではなく、被測定光ファイバFUTの特性測定に利用されるn次相関ピークが発生する。
次に、ゲート付き取得部92は、測定したブリルアン散乱のスペクトルを、スペクトルデータとして演算制御部100に出力する。演算制御部100は、ゲート付き取得部92から入力されたスペクトルデータからブリルアン周波数シフト量を演算することにより、被測定光ファイバFUTの特性(被測定光ファイバFUTの長さ方向における歪み分布、温度分布等)を測定する(ステップS219)。
次に、演算制御部100は、被測定光ファイバFUT上の測定位置を制御する制御信号を変調部110に出力する。次に、変調部110は、演算制御部100から入力された制御信号に基づき、光源部10から出射される光を変調させるための変調信号を光源部10に出力し、本フローチャートの処理を終了する。このように、光源部10から出射される光を変調させるための変調信号を制御することで、被測定光ファイバFUT上の測定位置をより詳細に制御することができる。
以上説明した第2実施形態の光ファイバ特性測定装置1Aによれば、第1光分岐部20で分岐されたポンプ光の光路(第1光路6)に光遅延部30が設けられているため、第1光路6の長さが、参照光の光路である第2光路8よりも長い。このため、ポンプ光の光路長と、参照光との光路長が等しい位置である0次相関ピークの位置が、第1光分岐部20と、被測定光ファイバFUTとの間、すなわち、第1光路6内における被測定光ファイバFUTの前段の位置に調節される。被測定光ファイバFUTの長さに応じて遅延部(例えば、光ファイバ)の長さを変更する必要がなくなるため、被測定光ファイバFUTの長さが未知である場合であっても被測定光ファイバFUTの特性を測定することができる。また、被測定光ファイバFUTよりも短い遅延ファイバを用いた場合であっても、被測定光ファイバFUTの特性を測定することができる。
また、第2実施形態の光ファイバ特性測定装置1Aによれば、BOCDR方式のテンポラルゲート法を組み入れることにより、例えば、光遅延部30の長さが被測定光ファイバFUTの長さよりも短い場合などに複数の相関ピークが被測定光ファイバFUT上に発生したとしても、複数の相関ピークの中から、観測対象の位置と対応する一つの相関ピークのみを選択的に測定することができる。すなわち、後方散乱光と参照光との周波数差が時間的に変動しない相関ピークが被測定光ファイバFUT内に複数存在する場合、ポンプ光の光路上に設けられたゲート部120の開閉を制御することにより、ポンプ光をパルス化する。さらに、被測定光ファイバFUTの一端から、複数の相関ピークのうち測定対象である相関ピーク(第1相関ピーク)までの距離に応じて、ゲート部120を開いた時刻と、ブリルアン散乱のスペクトルの取得の開始した時刻との時間差、および、ゲート部120を閉じた時刻と、ブリルアン散乱のスペクトルの取得を停止した時刻との時間差を制御することで、複数の相関ピークの中から、測定対象の位置と対応する一つの相関ピークのみを選択的に測定することができる。
上記の第2実施形態において、光遅延部30は、第1光分岐部20と光増幅部35との間に配置されるものとして説明しているが、光遅延部30は、第2光分岐部40と合波部70との間に配置されてもよい。この場合、光遅延部30と合波部70との間に、後方散乱光を増幅するための光増幅器などを設けてもよい。
また、光遅延部30を設けずに、光増幅部35内の光路を長くすることで、ポンプ光の光路である第1光路6の長さを参照光の光路である第2光路8よりも長くする構成を採用してもよい。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
1,1A……光ファイバ特性測定装置、2……第1導光部、4……第2導光部、6……第1光路、8……第2光路、10……光源部、20……第1光分岐部、30……光遅延部、35……光増幅部、40……第2光分岐部、50……光コネクタ、60……演算部、70……合波部、80……検出部、82,84……フォトダイオード、86……検波部、90……取得部、92……ゲート付き取得部、100……演算制御部、110……変調部、120……ゲート部、FUT……被測定光ファイバ

Claims (10)

  1. 周波数変調された連続光を出力する光源部と、
    前記連続光を、ポンプ光と、参照光とに分岐させる第1光分岐部と、
    前記第1光分岐部から出射された前記ポンプ光を被測定光ファイバの一端から入射させ、前記被測定光ファイバ内の前記ポンプ光のブリルアン散乱により発生した後方散乱光を前記被測定光ファイバから受信する第2光分岐部と、
    前記後方散乱光と、前記参照光とを干渉させることにより、前記被測定光ファイバの特性を測定する演算部と、
    を備え、
    前記第1光分岐部から出射された前記ポンプ光が前記被測定光ファイバ内に入射して前記後方散乱光として前記演算部に至る第1光路の長さが、前記参照光が前記演算部に至る第2光路の長さよりも長い、
    光ファイバ特性測定装置。
  2. 前記第1光路上に、前記ポンプ光に所定の遅延を生じさせる光遅延部をさらに備える、
    請求項1に記載の光ファイバ特性測定装置。
  3. 前記光遅延部は、前記第1光路の長さを増大させるための光ファイバを備える、
    請求項2に記載の光ファイバ特性測定装置。
  4. 前記光遅延部は、前記第1光分岐部と、前記第2光分岐部との間に配置される、
    請求項2または3に記載の光ファイバ特性測定装置。
  5. 前記演算部は、
    前記後方散乱光と、前記参照光とを合波して合波光を生成する合波部と、
    前記合波部から入力された前記合波光に含まれる前記後方散乱光と、前記参照光とを干渉させることにより、前記後方散乱光と、前記参照光との周波数差分を示す干渉信号を検出する検出部と、
    前記検出部から入力された前記干渉信号に基づいて、ブリルアン散乱のスペクトルを取得する取得部と、
    前記取得部から入力された前記ブリルアン散乱のスペクトルから、ブリルアン周波数シフト量を演算する演算制御部と、
    を備える、
    請求項1から4の何れか一項に記載の光ファイバ特性測定装置。
  6. 前記第1光分岐部と、前記第2光分岐部との間に配置され、前記第1光分岐部から入力された前記ポンプ光を前記第2光分岐部に通過または遮断するゲート部をさらに備え、
    前記演算制御部は、
    前記第1光分岐部から出射された前記ポンプ光の前記第2光分岐部への通過または遮断を制御する第1制御信号を前記ゲート部に出力し、
    前記ブリルアン散乱のスペクトルの取得の開始および停止を制御する第2制御信号を前記取得部に出力する、
    請求項5に記載の光ファイバ特性測定装置。
  7. 前記演算制御部は、前記ブリルアン散乱のスペクトルが前記光源部から出力された前記周波数変調された連続光の一周期分のデータを含むように、前記ブリルアン散乱のスペクトルの取得の開始および停止を制御する前記第2制御信号を前記取得部に出力する、
    請求項6に記載の光ファイバ特性測定装置。
  8. 周波数変調された連続光を出力することと、
    前記連続光を、ポンプ光と、参照光とに分岐させることと、
    前記参照光に対して、前記ポンプ光を遅延させることと、
    前記ポンプ光を被測定光ファイバの一端から入射させ、前記被測定光ファイバ内の前記ポンプ光のブリルアン散乱により発生した後方散乱光を前記被測定光ファイバから受信することと、
    前記後方散乱光と、前記参照光とを干渉させることにより、前記被測定光ファイバの特性を測定することと、
    を備える光ファイバ特性測定方法。
  9. 前記被測定光ファイバの特性を測定することは、
    前記後方散乱光と、前記参照光とを干渉させることにより、前記後方散乱光と、前記参照光との周波数差分を示す干渉信号を検出することと、
    前記干渉信号に基づいて、ブリルアン散乱のスペクトルを取得することと、
    前記ブリルアン散乱のスペクトルから、ブリルアン周波数シフト量を演算することと、
    を備える
    請求項8に記載の光ファイバ特性測定方法。
  10. 前記後方散乱光と前記参照光との周波数差が時間的に変動しない相関ピークが前記被測定光ファイバ内に複数存在する場合、前記ポンプ光を遅延させることと、前記後方散乱光を前記被測定光ファイバから受信することとの間に、前記ポンプ光の光路上に設けられたゲート部の開閉を制御することにより、前記ポンプ光をパルス化することをさらに備え、
    前記ブリルアン散乱のスペクトルを取得することは、前記被測定光ファイバの一端から、前記複数の相関ピークのうち測定対象である第1相関ピークの位置までの距離に応じて、前記ゲート部を開いた時刻と、前記ブリルアン散乱のスペクトルの取得の開始した時刻との時間差、および、前記ゲート部を閉じた時刻と、前記ブリルアン散乱のスペクトルの取得を停止した時刻との時間差を制御することを備える、
    請求項9に記載の光ファイバ特性測定方法。
JP2015252479A 2015-12-24 2015-12-24 光ファイバ特性測定装置および光ファイバ特性測定方法 Active JP6686423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015252479A JP6686423B2 (ja) 2015-12-24 2015-12-24 光ファイバ特性測定装置および光ファイバ特性測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252479A JP6686423B2 (ja) 2015-12-24 2015-12-24 光ファイバ特性測定装置および光ファイバ特性測定方法

Publications (2)

Publication Number Publication Date
JP2017116423A true JP2017116423A (ja) 2017-06-29
JP6686423B2 JP6686423B2 (ja) 2020-04-22

Family

ID=59231723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252479A Active JP6686423B2 (ja) 2015-12-24 2015-12-24 光ファイバ特性測定装置および光ファイバ特性測定方法

Country Status (1)

Country Link
JP (1) JP6686423B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376261B1 (ja) * 2017-09-27 2018-08-22 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
WO2019221534A1 (ko) * 2018-05-16 2019-11-21 한국표준과학연구원 시간차를 갖는 펌프광과 탐색광의 위상 코드 변조를 사용하는 광섬유 bocda 센서
JP2020143935A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 音響モード伝搬速度測定方法及び音響モード伝搬速度測定装置
CN111692972A (zh) * 2020-06-16 2020-09-22 中国科学院国家授时中心 一种单纤单向光纤长度测量方法及系统
CN112654839A (zh) * 2018-09-07 2021-04-13 横河电机株式会社 光纤特性测定装置以及光纤特性测定方法
CN114562942A (zh) * 2020-11-27 2022-05-31 深圳中科飞测科技股份有限公司 一种测量系统和测量方法
EP4124834A1 (en) * 2021-07-29 2023-02-01 Yokogawa Electric Corporation Optical fiber characteristics measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014584A (ja) * 2001-07-02 2003-01-15 Kazuo Hotate 光ファイバ特性測定装置及び方法
JP2013152182A (ja) * 2012-01-26 2013-08-08 Yokogawa Electric Corp ブリルアン光パルス試験器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014584A (ja) * 2001-07-02 2003-01-15 Kazuo Hotate 光ファイバ特性測定装置及び方法
JP2013152182A (ja) * 2012-01-26 2013-08-08 Yokogawa Electric Corp ブリルアン光パルス試験器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376261B1 (ja) * 2017-09-27 2018-08-22 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP2019060743A (ja) * 2017-09-27 2019-04-18 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
US11662229B2 (en) 2018-05-16 2023-05-30 Korea Research Institute Of Standards And Science Optical fiber BOCDA sensor using phase code modulation of pump light and probe light which have time difference
KR102040598B1 (ko) * 2018-05-16 2019-11-27 한국표준과학연구원 시간차를 갖는 펌프광과 탐색광의 위상 코드 변조를 사용하는 광섬유 bocda 센서
WO2019221534A1 (ko) * 2018-05-16 2019-11-21 한국표준과학연구원 시간차를 갖는 펌프광과 탐색광의 위상 코드 변조를 사용하는 광섬유 bocda 센서
CN112654839A (zh) * 2018-09-07 2021-04-13 横河电机株式会社 光纤特性测定装置以及光纤特性测定方法
CN112654839B (zh) * 2018-09-07 2023-09-05 横河电机株式会社 光纤特性测定装置以及光纤特性测定方法
JP2020143935A (ja) * 2019-03-04 2020-09-10 日本電信電話株式会社 音響モード伝搬速度測定方法及び音響モード伝搬速度測定装置
JP7287008B2 (ja) 2019-03-04 2023-06-06 日本電信電話株式会社 音響モード伝搬速度測定方法及び音響モード伝搬速度測定装置
US11815421B2 (en) 2019-03-04 2023-11-14 Nippon Telegraph And Telephone Corporation Acoustic mode propagation speed measurement method and acoustic mode propagation speed measurement device
CN111692972A (zh) * 2020-06-16 2020-09-22 中国科学院国家授时中心 一种单纤单向光纤长度测量方法及系统
CN114562942A (zh) * 2020-11-27 2022-05-31 深圳中科飞测科技股份有限公司 一种测量系统和测量方法
EP4124834A1 (en) * 2021-07-29 2023-02-01 Yokogawa Electric Corporation Optical fiber characteristics measurement system

Also Published As

Publication number Publication date
JP6686423B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6686423B2 (ja) 光ファイバ特性測定装置および光ファイバ特性測定方法
JP6552983B2 (ja) ブリルアン散乱測定方法およびブリルアン散乱測定装置
JP6308160B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
EP3640618B1 (en) High rate distributed acoustic sensing using high power light pulses
JP5654891B2 (ja) 光ファイバ特性測定装置及び方法
JP6868246B2 (ja) ブリルアン周波数シフトを測定する装置及び方法
JPWO2017090516A1 (ja) ガス検知システム
US9304058B2 (en) Measuring modal content of multi-moded fibers
CN102645236A (zh) 基于梳状频谱连续探测光的botda系统
WO2020071128A1 (ja) 後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法
JP6791218B2 (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
KR20110075679A (ko) 브릴루앙 상관 영역 측정법을 이용한 분포형 광섬유 센서 장치 및 그 센싱 방법
US20220381589A1 (en) Optical fiber characteristic measurement device and optical fiber characteristic measurement method
KR101889351B1 (ko) 유효 측정점 개수가 확대된 공간선택적 브릴루앙 분포형 광섬유 센서 및 브릴루앙 산란을 이용한 센싱 방법
JP3883458B2 (ja) 反射式ブリルアンスペクトル分布測定方法および装置
RU2458325C1 (ru) Способ измерения температурного распределения и устройство для его осуществления
JP7272327B2 (ja) 光ファイバ特性測定装置、光ファイバ特性測定プログラム、及び光ファイバ特性測定方法
KR100725211B1 (ko) 다중모드 도파로의 다중모드간 차등시간지연 측정장치 및 그 측정방법
KR101823454B1 (ko) 다수의 상관점 동시 측정이 가능한 공간선택적 브릴루앙 분포형 광섬유 센서 및 브릴루앙 산란을 이용한 센싱 방법
JP5053120B2 (ja) 光ファイバの後方ブリルアン散乱光測定方法及び装置
JP5827140B2 (ja) レーザ光特性測定方法及び測定装置
JP5613627B2 (ja) レーザ光コヒーレンス関数測定方法及び測定装置
JP6602689B2 (ja) 光線路特性解析装置及び信号処理方法
CN115900787A (zh) 光谱域反射仪的实现方法及系统
JP6342857B2 (ja) 光反射測定装置および光反射測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150