JP2017106534A - 軸受用軸 - Google Patents

軸受用軸 Download PDF

Info

Publication number
JP2017106534A
JP2017106534A JP2015240277A JP2015240277A JP2017106534A JP 2017106534 A JP2017106534 A JP 2017106534A JP 2015240277 A JP2015240277 A JP 2015240277A JP 2015240277 A JP2015240277 A JP 2015240277A JP 2017106534 A JP2017106534 A JP 2017106534A
Authority
JP
Japan
Prior art keywords
bearing
bearing shaft
shaft
nitrogen
rolling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240277A
Other languages
English (en)
Other versions
JP6637304B2 (ja
Inventor
泰延 大野
Yasunobu Ono
泰延 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015240277A priority Critical patent/JP6637304B2/ja
Priority to KR1020187018113A priority patent/KR20180091021A/ko
Priority to PCT/JP2016/086215 priority patent/WO2017099071A1/ja
Priority to DE112016005662.1T priority patent/DE112016005662T5/de
Priority to CN201680071790.XA priority patent/CN108368869B/zh
Priority to US16/060,388 priority patent/US10458461B2/en
Publication of JP2017106534A publication Critical patent/JP2017106534A/ja
Application granted granted Critical
Publication of JP6637304B2 publication Critical patent/JP6637304B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】耐久性に優れた軸受用軸を提供する。【解決手段】軸受用軸1は、転動体2が接触する軌道面(側面)を含む外周面を備える軸受用軸1であって、炭素を0.7%以上含有する鋼により構成されている。軌道面には、窒素富化層1aが形成されている。窒素富化層1aの表面(軸受用軸1の側面における、ショットピーニングにより形成された硬化層1bの表面)における圧縮残留応力の絶対値は、600MPa以上1700MPa以下である。このようにすれば、軸受用軸1の長寿命化を図ることができる。【選択図】図1

Description

この発明は、軸受用軸に関し、より特定的には、外輪を回転させる態様で使用する軸受に用いられる軸受用軸に関する。
従来、遊星歯車減速機などの機械装置に用いられる軸受が知られている。このような軸受は、外輪を回転させる態様で使用される。この場合、内輪側に位置する軸受用軸では負荷域が常に同じ位置になるため、疲労剥離に関して寿命が短くなるという問題がある。
このような問題に対処するため、たとえば特開2015−7265号公報では、0.1〜0.5質量%の炭素およびその他の合金元素を含む合金鋼により軸受用軸を作成し、当該軸受用軸に対して浸炭窒化処理、高周波焼入処理および焼戻し処理を施した後、ショットピーニング処理を行うことにより、軸受用軸の表面に硬化層を形成する技術が開示されている。
上記特開2015−7265号公報では、上述した硬化層を軸受用軸の表面に形成することにより、当該硬化層の表面硬度を十分高くするするとともに、硬化層に圧縮残留応力を発生させることによって、転動疲労強度や耐ピーリング性を向上させることができるとしている。
特開2015−7265号公報
しかし、上記遊星歯車減速機などの機械装置においては、上述した軸受用軸が疲労剥離に関して最も厳しい状態で使用されるため、当該軸受用軸の寿命が機械装置全体の寿命を制約する。そのため、軸受用軸に対しては、さらなる耐久性の向上が求められている。
この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、耐久性に優れた軸受用軸を提供することである。
この発明に従った軸受用軸は、転動体が接触する軌道面を含む外周面を備える軸受用軸であって、炭素を0.7%以上含有する鋼により構成されている。軌道面には、窒素富化層が形成されている。窒素富化層の表面における圧縮残留応力の絶対値は600MPa以上1700MPa以下である。
本発明によれば、軸受用軸の長寿命化を図ることができる。
本実施形態に従った軸受の断面模式図である。 図1に示した軸受を構成する軸受用軸の断面模式図である。 図1に示した軸受を構成するニードルころの断面模式図である。 図1に示した軸受を構成する保持器の部分断面模式図である。 図2に示した軸受用軸の変形例を示す断面模式図である。 図3に示したニードルころの変形例を示す部分断面模式図である。 図4に示した保持器の変形例を示す部分断面模式図である。 図1に示した軸受を適用した遊星歯車減速機の模式図である。 図8の線分IX−IXにおける断面模式図である。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
<軸受の構成>
図1は、本実施形態に従った軸受の断面模式図を示す断面模式図である。図1を参照して、本実施形態に従った軸受の構成を説明する。
図1に示すように、軸受10は、軸受用軸1と、ニードルころである転動体2と、保持器3とを備える。軸受用軸1は、円柱状の形状を有する。軸受用軸1の軌道面である側面上に複数の転動体2が配置されている。複数の転動体2は、軸受用軸1の側面において、周方向に間隔を隔てて配置されている。複数の転動体2は、軸受用軸1の側面に等間隔となるように配置されている。
軸受用軸1は、炭素を0.7%以上含有する鋼により構成される。軌道面には、窒素富化層1aが形成されている。窒素富化層1aは、軸受用軸1の内周部1cより窒素濃度が高くなっている。軌道面において、窒素富化層1aの表面には硬化層1bが形成されている。軸受用軸1の側面では、窒素富化層1aの表面(すなわち硬化層1bの表面)における圧縮残留応力の絶対値が600MPa以上1700MPa以下である。
保持器3は、軸受用軸1の側面上に配置され、当該側面の周方向に沿った環状の形状を有する。保持器3には転動体2を内部に保持するためのポケットが複数形成されている。当該ポケットの内部に転動体2が収容されることにより、転動体2の位置が決定される。
<軸受用軸の構成>
図2は、図1に示した軸受を構成する軸受用軸の断面模式図である。図2を参照して、軸受用軸1の構成を具体的に説明する。
図2に示すように、軸受用軸1の表面(軌道面としての側面および当該側面に交差するように伸びる端面)には窒素富化層1aが形成されている。軸受用軸1の側面には、窒素富化層1aの表面に硬化層1bが形成されている。当該硬化層1bは、ショットピーニングを行うことにより形成されている。上述のように、当該硬化層1bの表面における圧縮残留応力の絶対値は600MPa以上1700MPa以下である。
当該硬化層1bの表面における硬度はHv850以上Hv1000以下である。また、硬化層1bの表面粗さは算術平均粗さRaで0.2μm以下である。さらに、硬化層1bにおける残留オーステナイト量は9体積%以下である。
軸受用軸1は、たとえば高炭素クロム軸受鋼により構成される。軸受用軸1を構成する鋼としては、たとえばJIS規格SUJ2を用いてもよい。
<ニードルころの構成>
図3は、図1に示した軸受を構成する転動体2の断面模式図である。図3を参照して、転動体2の構成を具体的に説明する。
図3に示すように、転動体2はニードルころであって、その表面(軸受用軸1と接触する側面および当該側面と交差する方向に伸びる端面)には窒素富化層2aが形成されている。窒素富化層2aは、転動体2の内周部2cより窒素濃度が高くなっている。転動体の表面における表層部での残留オーステナイト量は軸受用軸の軌道面に形成された窒素富化層の表層部における残留オーステナイト量より多くなっている。具体的には、転動体の表面における表層部での残留オーステナイト量は9体積%以上50体積%以下である。当該残留オーステナイト量は9体積%超えであってもよい。
<保持器の構成>
図4は、図1に示した軸受を構成する保持器を示す部分断面模式図である。図4を参照して、保持器3を説明する。
保持器3は、上述のように環状の形状を有している。保持器3には、転動体2(図1参照)を内部に保持するためのポケット3aが複数形成されている。ポケット3aは、互いにほぼ等しい間隔を隔てて形成されている。保持器3の材料としては任意の材料を用いることができる。保持器3を構成する材料としては、たとえば鋼を用いることができる。保持器3は、鋼に対してプレス加工を行うことにより形成されていてもよい。また、保持器3を構成する材料として樹脂を用いてもよい。
<製造方法>
軸受10の製造方法としては、まず軸受10を構成する部材(軸受用軸1、転動体2、保持器3)を以下のように準備する。そして、当該部材を組立てる工程を実施することにより、軸受10を得ることができる。
軸受用軸1の製造方法:
上述した軸受用軸1の製造方法としては、まず軸受用軸1を構成する組成の鋼により棒状の素材(たとえばJIS規格SUJ2からなる素材)を準備する。そして、当該素材に対して旋削加工など従来周知の機械加工工程を適用することで、軸受用軸1の形状に当該素材を加工する(機械加工工程)。その後、熱処理工程を実施する。具体的には、上記のように加工された素材に対して浸炭窒化処理、調質処理、焼入処理、焼戻し処理などを実施する。熱処理の具体的な条件例としては、たとえば、浸炭窒化処理の処理温度について、A1点以上の温度である800℃以上1000℃未満といった温度条件を用いることができる。
その後、熱処理された素材に対して研削などの従来周知の機械加工を行うことで、軸受用軸1の寸法となるように当該素材を仕上げ加工する。
さらに、軸受用軸1の側面(転走面となるべき側面)に対して、ショットピーニング処理を行う。このようにして、軸受用軸1を得ることができる。なお、上述した仕上げ加工とショットピーニング処理との順番を変え、先にショットピーニング処理を行ってもよい。
転動体2の製造方法:
転動体2の製造方法としては、従来周知の製造方法を用いることができる。たとえば、転動体2として鋼(たとえば高炭素クロム軸受鋼)からなる棒状の素材を準備する。当該素材に対して従来周知の機械加工を行うことにより、転動体2の形状となるよう当該素材を加工する。その後、熱処理工程を実施する。具体的には、上記のように加工された素材に対して浸炭窒化処理などを実施する。熱処理の具体的な条件例としては、たとえば、浸炭窒化処理の処理温度について、A1点以上の温度である800℃以上1000℃未満といった温度条件を用いることができる。
その後、熱処理された素材に対して研削などの従来周知の機械加工を行うことで、転動体2の寸法となるように当該素材を加工する。このようにして、転動体2を得ることができる。
保持器3の製造方法:
保持器3の製造方法としては、従来周知の製造方法を用いることができる。
<作用効果>
本実施形態に従った軸受用軸1は、上述のように転動体2が接触する軌道面(側面)を含む外周面を備える軸受用軸1であって、炭素を0.7%以上含有する鋼により構成されている。軌道面には、窒素富化層1aが形成されている。窒素富化層1aの表面(軸受用軸1の側面におけるショットピーニングにより形成された硬化層1bの表面)における圧縮残留応力の絶対値は600MPa以上1700MPa以下である。
また、本実施形態に従った軸受10は、軌道面を有する外周面を含む軸受用軸1と、当該軌道面に接触する表面を含む転動体2とを備える。軸受用軸1は、炭素を0.7%以上含有する鋼により構成される。軌道面には、窒素富化層1aが形成されている。窒素富化層1aの表面(硬化層1bの表面)における圧縮残留応力の絶対値は600MPa以上1700MPa以下である。
このようにすれば、軌道面における窒素富化層1aの表面(硬化層1bの表面)に十分大きな圧縮残留応力を付与しているので、当該表面における亀裂の発生や当該亀裂の進展を抑制することができる。このため、軸受用軸1における上記表面での疲労亀裂の発生を抑制できる。この結果、軸受用軸1の疲労に対する耐力を向上させることができるので、軸受用軸1および軸受10の長寿命化を図ることができる。ここで、圧縮残留応力の測定方法としては、X線回折による測定方法を用いることができる。
なお、上記圧縮残留応力の絶対値の下限値は1000MPaであってもよい。この場合、上述した疲労に対する耐力を明確に高める(たとえば疲労剥離に関する寿命を従来より長くする)ことができる。また、上記圧縮残留応力の絶対値の下限値は1300MPaであってもよい。この場合、軸受用軸1の疲労に対する耐力を確実に向上させることができる。
上記軸受10において、転動体2の表面における表層部(窒素富化層2a)での残留オーステナイト量は、軸受用軸1の軌道面に形成された窒素富化層1aの表層部(硬化層1b)における残留オーステナイト量より多くてもよい。ここで、残留オーステナイト量の測定方法としては、X線回折による測定方法を用いることができる。
この場合、転動体2の残留オーステナイト量が軸受用軸1の表層部(硬化層1b)における残留オーステナイト量より多くなっているので、軸受用軸1の軌道面と転動体2との間に異物が噛み込んだ場合であっても、転動体2の表面が当該異物により変形できる。このため、当該異物の存在に起因して軸受用軸1側に傷や亀裂などの破損部が発生する可能性を低減できる。
なお、転動体2の表面における表層部(窒素富化層2a)での残留オーステナイト量は9体積%以上50体積%以下であってもよい。転動体2の表層部における残留オーステナイト量の上限を50体積%としたのは、当該上限を超えると使用時に結晶組織が変態することで発生する寸法変化が軸受10の特性に影響を与える可能性が高くなるためである。
なお、転動体2の表層部での残留オーステナイト量の上限は30体積%としてもよい。この場合、結晶組織の変態による寸法変化の影響をより低減できる。また、転動体2の表層部での残留オーステナイト量の下限は15体積%としてもよい。この場合、異物の噛み込み時に転動体2側で当該異物に起因する変形を容易に起こすことができるため、当該異物により軸受用軸1にて傷などが発生する可能性をより低減できる。
上記軸受10において、上述のように転動体2の表面には窒素富化層2aが形成されている。この場合、転動体2の疲労強度や耐摩耗性を向上させることができる。なお、ここで窒素富化層2aとは、鋼中の窒素濃度を、素材の鋼が含有する窒素濃度に対して増加させた層である。
上記軸受用軸1において、軌道面(側面)に形成された窒素富化層1aの表面(硬化層1bの表面)における硬度(ビッカース硬度)はHv850以上Hv1000以下である。この場合、当該硬化層1bの表面の硬度を十分に高くしているので、異物の噛込みなどに起因する軸受用軸1における圧痕などの発生を抑制できる。このため、異物混入条件下での軸受用軸1における疲労剥離に対する耐久性を高めることができる。
上記軸受用軸1において、軌道面(側面)に形成された窒素富化層1aの表面粗さ(硬化層1bの表面における表面粗さ)は算術平均粗さRaで0.2μm以下である。この場合、軸受用軸1の窒素富化層1aの表面(硬化層1bの表面)に転動体2を接触させて軌道面として用いるときに、軸受用軸1の当該表面の表面粗さが大きすぎて軌道面として利用できない、といった問題の発生を抑制できる。
なお、上記窒素富化層1aの表面粗さ(硬化層1bの表面における表面粗さ)の上限は算術平均粗さRaで0.05μmであってもよい。この場合、軸受用軸の当該表面に接触させた転動体を円滑に転動させることができる。また、上記窒素富化層の表面粗さの上限は算術平均粗さRaで0.03μmであってもよい。
上記軸受用軸1において、軌道面(側面)に形成された窒素富化層1aの表層部(硬化層1b)における残留オーステナイト量は9体積%以下である。この場合、表層部(硬化層1b)における残留オーステナイト量が低く抑えられているので、軌道面を構成する当該表層部(硬化層1b)における硬度や強度を十分高めることができる。また、上記表層部(硬化層1b)における残留オーステナイト量は5体積%以下であってもよく、3体積%以下であってもよい。
上記軸受用軸1において、上述のように当該軸受用軸1を構成する鋼は高炭素クロム軸受鋼である。この場合、軸受用軸1の内周部1cについても十分高い硬度や強度を得ることができる。
<変形例>
図5は、図2に示した軸受用軸1の変形例を示す断面模式図である。図5に示すように、軸受用軸1の変形例は、基本的には図2に示した軸受用軸1と同様の構成を備え、同様の効果を得ることができるが、軸受用軸1の端面から軸受用軸1の中心軸に沿って延びる油穴21と、軸受用軸1の内部において当該油穴21に接続されるとともに軸受用軸1の径方向に延びる分岐穴22とが形成されている点が図2に示した軸受用軸1と異なっている。分岐穴22の端部は軸受用軸1の側面(転動体2と接触する軌道面)に到達し、当該側面に形成された開口部に繋がっている。このような油穴21および分岐穴22が形成されることにより、油穴21および分岐穴22を介して軸受用軸1と転動体2との接触部に潤滑油を容易に供給することができる。なお、油穴21は軸受用軸1を中心軸方向に貫通するように設けられていてもよい。
図6は、図3に示した転動体2の変形例を示す部分断面模式図である。図6に示すように、転動体2の変形例は、基本的には図3に示した転動体2と同様の構成を備え同様の効果を得ることができるが、側面において転動体2の中心軸方向での両端部にクラウニング2dが形成されている点が図3に示した転動体2と異なっている。つまり、上記軸受10において、転動体2は、クラウニング付ころでとなっている。この場合、転動体2の端部における軸受用軸1と転動体2との接触部の接触面圧が局所的に高くなることを防止できる。この結果、軸受用軸1における剥離などの不良の発生を抑制できる。なお、転動体2のクラウニングの形状としては任意の態様を採用することができるが、たとえば対数クラウニングを適用することができる。
図7は、図4に示した保持器3の変形例を示す部分断面模式図である。図7に示すように、保持器3の変形例は、基本的には図4に示した保持器3と同様の構成を備えるが、ポケットに保持される転動体2の中心軸より外側に保持器3の構造(隣接する2つのポケットの間に位置し、転動体2の中心軸に沿って延びる支柱部)が配置されるように構成されている点が、図4に示した保持器3と異なっている。このような構成とすることにより、図7に示した保持器3では図4に示した保持器3より隣接するポケット間の距離を小さくし、結果的に保持される転動体2の数を図4に示した保持器3より多くすることができる。このため、図4に示した保持器を用いる場合より、軸受10の定格荷重を増加させることができる。
<適用例>
図8は、本実施形態に係る軸受用軸1または軸受10を適用した遊星歯車減速機(遊星減速機とも呼ぶ)を示す模式図である。図9は、図8の線分IX−IXにおける部分断面模式図である。図8および図9に示すように、本実施形態に係る軸受用軸1または軸受10を適用した遊星歯車減速機は、入力軸11と、当該入力軸11と同軸状に取り付けられた太陽歯車12と、太陽歯車12の外径側において減速機のケーシング(図示しない)に同心状態に固定された内歯歯車13と、太陽歯車12と内歯歯車13との間に介在し周方向に等間隔に(図示の場合は入力軸11から見て約90°づつ周方向にずれた4個所に)配置された複数個の遊星歯車14と、各遊星歯車14の回転を支持する遊星ピンとしての軸受用軸1と、すべての軸受用軸1を回転自在な状態に連結した環状のキャリヤ16と、キャリヤ16と同心状態であって一体に設けられた出力軸17とにより構成される。
図9に示すように、遊星歯車14と、当該遊星歯車14を支持する遊星ピンとしての軸受用軸1との間には転動体2(ニードルころ)が配置されている。軸受用軸1は、本実施形態に従った軸受用軸1であり、転動体2と接触する側面(軌道面)に窒素富化層1a(図1参照)および硬化層1b(図1参照)が形成されている。また、転動体2も図3に示した転動体2と同様の構成を備えている。
軸受用軸1は、図9に示すように遊星歯車14の両側に突き出す長さに形成されている。軸受用軸1において遊星歯車14の端面から突き出た部分の一方を突出部19、他方を突出部20とする。軸受用軸1の軸心に油穴21が貫通状態に設けられている。油穴21の中間部分である交差部23において分岐穴22が当該油穴21に直交するように設けられる。分岐穴22の両端部は軸受用軸1の側面(外径面)における開口部に連なっている。
上述した突出部19は、遊星歯車14との間に滑り軸受28(サイドワッシャ)を介した状態で、キャリヤ16に嵌合固定されている。また、他方の突出部20も遊星歯車14との間に滑り軸受28を介した状態で抜け止め部材27に嵌合固定されている。抜け止め部材27は、各遊星歯車14の軸受用軸1ごとに個別の部材であってもよいが、キャリヤ16と同様の環状の部材であってもよい。あるいは、抜け止め部材27はキャリヤ16と一体になっていてもよい。
このように、遊星歯車14において本実施形態に従った軸受用軸1および転動体2を用いることで、軸受用軸1の疲労に対する耐力を向上させることができ、軸受用軸1の長寿命化を図ることができる。この結果、当該軸受用軸1によって遊星減速機の寿命が制約されることを避けることができる。
なお、上述した遊星歯車減速機の潤滑方式として油浴潤滑方式を採用することができる。たとえば、減速機を概ねその中心付近まで潤滑油に浸す(図8の潤滑油の油面L参照)。減速機が駆動されると、遊星歯車14は自転しつつ、図8の矢印Xで示す方向へ点Pを中心として公転して油内に出入りする。油中にあるとき油穴21に流入した油は、分岐穴22を経て転動体2と軸受用軸1との接触部に供給される。
また、上述した遊星歯車減速機をモータなどの駆動部と接続して一体としてもよい。当該駆動部としては、任意の構成の駆動部を用いることができるが、たとえば電導モータ、あるいは斜板式モータなどの油圧モータを用いることができる。また、本実施形態に係る遊星歯車減速機は、たとえば建設機械のキャタピラを駆動する駆動部に適用されてもよい。この場合、軸受用軸1として内部に油穴21や分岐穴22が形成されていない軸受用軸1を適用してもよい。
以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
本実施形態は、遊星歯車減速機などの軸受用軸に特に有利に適用される。
1 軸受用軸、1a,2a 窒素富化層、1b 硬化層、1c,2c 内周部、2 転動体、2d クラウニング、3 保持器、3a ポケット、10 軸受、11 入力軸、12 太陽歯車、13 内歯歯車、14 遊星歯車、16 キャリヤ、17 出力軸、19,20 突出部、21 油穴、22 分岐穴、23 交差部、27 抜け止め部材、28 滑り軸受。

Claims (5)

  1. 転動体が接触する軌道面を含む外周面を備える軸受用軸であって、
    炭素を0.7%以上含有する鋼により構成され、
    前記軌道面には、窒素富化層が形成され、
    前記窒素富化層の表面における圧縮残留応力の絶対値が600MPa以上1700MPa以下である、軸受用軸。
  2. 前記窒素富化層の表面における硬度はHv850以上Hv1000以下である、請求項1に記載の軸受用軸。
  3. 前記窒素富化層の表面粗さは算術平均粗さRaで0.2μm以下である、請求項1または請求項2に記載の軸受用軸。
  4. 前記窒素富化層の表層部における残留オーステナイト量が9体積%以下である、請求項1〜請求項3のいずれか1項に記載の軸受用軸。
  5. 前記鋼は高炭素クロム軸受鋼である、請求項1〜請求項4のいずれか1項に記載の軸受用軸。
JP2015240277A 2015-12-09 2015-12-09 軸受 Active JP6637304B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015240277A JP6637304B2 (ja) 2015-12-09 2015-12-09 軸受
KR1020187018113A KR20180091021A (ko) 2015-12-09 2016-12-06 베어링용 축 및 베어링
PCT/JP2016/086215 WO2017099071A1 (ja) 2015-12-09 2016-12-06 軸受用軸及び軸受
DE112016005662.1T DE112016005662T5 (de) 2015-12-09 2016-12-06 Lagerwelle und Lager
CN201680071790.XA CN108368869B (zh) 2015-12-09 2016-12-06 轴承用轴和轴承
US16/060,388 US10458461B2 (en) 2015-12-09 2016-12-06 Bearing shaft and bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240277A JP6637304B2 (ja) 2015-12-09 2015-12-09 軸受

Publications (2)

Publication Number Publication Date
JP2017106534A true JP2017106534A (ja) 2017-06-15
JP6637304B2 JP6637304B2 (ja) 2020-01-29

Family

ID=59059355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240277A Active JP6637304B2 (ja) 2015-12-09 2015-12-09 軸受

Country Status (1)

Country Link
JP (1) JP6637304B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282854A (ja) * 2004-03-03 2005-10-13 Nsk Ltd 転がり軸受
JP2005314794A (ja) * 2004-03-30 2005-11-10 Nsk Ltd 転がり軸受
JP2006071022A (ja) * 2004-09-02 2006-03-16 Nsk Ltd 転がり軸受
JP2009019639A (ja) * 2003-02-28 2009-01-29 Ntn Corp エンジンのローラ付きカムフォロアの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019639A (ja) * 2003-02-28 2009-01-29 Ntn Corp エンジンのローラ付きカムフォロアの製造方法
JP2005282854A (ja) * 2004-03-03 2005-10-13 Nsk Ltd 転がり軸受
JP2005314794A (ja) * 2004-03-30 2005-11-10 Nsk Ltd 転がり軸受
JP2006071022A (ja) * 2004-09-02 2006-03-16 Nsk Ltd 転がり軸受

Also Published As

Publication number Publication date
JP6637304B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
WO2017099071A1 (ja) 軸受用軸及び軸受
JP4810157B2 (ja) 転がり軸受
JP5982782B2 (ja) 風力発電設備用転がり軸受
EP2789705B1 (en) Machine part, rolling bearing, conical roller bearing and method for manufacturing machine part
JP4186568B2 (ja) 転がり軸受及び転がり軸受の内輪の製造方法
JP2010025311A (ja) 転がり軸受及びその製造方法
JP2009203526A (ja) 転がり軸受
JP2008151236A (ja) 転がり軸受
JP2017106535A (ja) 軸受
JP2013160314A (ja) 転がり軸受
JP4968106B2 (ja) 転がり軸受
JP2013238274A (ja) ラジアル転がり軸受用内輪およびその製造方法
WO2022202922A1 (ja) 軌道輪及びシャフト
JP6637304B2 (ja) 軸受
JP5233305B2 (ja) ころ軸受及びその製造方法
JP4872371B2 (ja) 遊星歯車機構用ピニオンシャフト
JP2011226535A (ja) 減速機用プラネタリギヤ装置
JP2007182603A (ja) 転動部材の製造方法、転動部材および転がり軸受
JP2000230544A (ja) ころ軸受およびその製造方法
JP2012241862A (ja) 転がり軸受
JP2005226714A (ja) 転動部品及びこれを用いた転動装置、並びにこれらの製造方法
JP2006274342A (ja) ピニオンシャフト
JP2009041652A (ja) 転がり軸受およびその製造方法
JP2024044971A (ja) 軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6637304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250