JP2017096214A - 内燃機関の可変バルブタイミング制御装置 - Google Patents

内燃機関の可変バルブタイミング制御装置 Download PDF

Info

Publication number
JP2017096214A
JP2017096214A JP2015231192A JP2015231192A JP2017096214A JP 2017096214 A JP2017096214 A JP 2017096214A JP 2015231192 A JP2015231192 A JP 2015231192A JP 2015231192 A JP2015231192 A JP 2015231192A JP 2017096214 A JP2017096214 A JP 2017096214A
Authority
JP
Japan
Prior art keywords
spring
region
phase
valve timing
relative rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231192A
Other languages
English (en)
Inventor
恭章 村上
Yasuaki Murakami
恭章 村上
豊和 中嶋
Toyokazu Nakajima
豊和 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015231192A priority Critical patent/JP2017096214A/ja
Publication of JP2017096214A publication Critical patent/JP2017096214A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】ばね有領域とばね無領域との境界を高精度に設定して、VVT位相の制御性を向上する。
【解決手段】VVT機構は、カムトルクに抗して相対回転位相が進角側に移行する方向に第2回転体を付勢するばねを有する。制御部は、ばね有領域とばね無領域との境界となる相対回転位相を設定する境界位相設定部と、設定された相対回転位相から定まる両領域のそれぞれで、実バルブタイミングが一定に保持されているときの油圧制御弁へのデューティを学習する学習部を備える。境界位相設定部は、ばね有領域内において、油圧制御弁をばね無領域の保持デューティで駆動し、実際の相対回転位相が予め定められた不明領域になった場合に、第2回転体において駆動によって掛かる力とカムトルクとが釣り合うときの相対回転位相を境界位相として学習し、実際の相対回転位相がばね無領域になった場合に、境界位相の学習を終了する。
【選択図】図7

Description

本発明は、内燃機関の可変バルブタイミング制御装置に関する。
従来、内燃機関のクランクシャフトに対するカムシャフトの相対回転位相(VVT位相)を変化させて、内燃機関の吸気バルブや排気バルブのバルブタイミングを調整する油圧駆動式の可変バルブタイミング制御装置が知られている。この可変バルブタイミング制御装置では、駆動油圧を制御する油圧制御弁の制御量(デューティ)を演算する際に、目標バルブタイミングと実バルブタイミングとの偏差に応じたフィードバック制御量と、実バルブタイミングを一定に保持するのに必要な保持制御量(保持デューティ)とに基づいて制御量を求め、この制御量で油圧制御弁を駆動して、バルブタイミングを進角又は遅角させるようにしている。
この種の可変バルブタイミング制御装置は、例えば、特許文献1に記載されているように、VVT位相の制御特性が異なる複数の制御領域を有している。具体的には、可変バルブタイミング制御装置は、VVT位相を進角側に移行するためのばねを有し、ばねの付勢力が作用するばね有領域と、ばねの付勢力が作用しないばね無領域とを有している。そして、ばね有領域とばね無領域とで、個別に、保持デューティを学習する処理を行っている。
特開2011−032906号公報 特開2015−017513号公報
しかしながら、前記背景技術の可変バルブタイミング制御装置では、ばねの製造ばらつき・組付ばらつきやばね力の経時変化等によって、ばね有領域とばね無領域との境界が変動することがあり、この場合に、どちらの制御領域に属するかを判定することが難しかった。このために、適切な制御領域で保持デューティを学習することができなくなり、VVT位相の制御性が悪化する問題が発生した。したがって、可変バルブタイミング制御装置において、ばね有領域とばね無領域との境界を高精度に設定することで、VVT位相の制御性を向上することのできる技術が望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態は、クランクシャフトの回転に連動して回転する第1回転体に対する、カムシャフトと共に回転する第2回転体の相対回転位相を、油圧制御弁を介して供給される作動油圧によって変更することによって、機関バルブのバルブタイミングを変更するバルブタイミング可変機構と、前記油圧制御弁を駆動制御する制御部と、を備える内燃機関の可変バルブタイミング制御装置である。この内燃機関の可変バルブタイミング制御装置において、前記バルブタイミング可変機構は、前記カムシャフトのカムトルクに抗して前記相対回転位相が進角側に移行する方向に前記第2回転体を付勢するばねを有する。前記制御部は、前記第2回転体が前記ばねによる付勢力を受ける前記相対回転位相の領域をばね有領域とし、前記第2回転体が前記ばねによる付勢力を受けない前記相対回転位相の領域をばね無領域としたときの、前記ばね有領域と前記ばね無領域との境界となる相対回転位相を境界位相として設定する境界位相設定部と、前記設定された境界位相から定まる前記ばね有領域と前記ばね無領域とのそれぞれで、実際の前記バルブタイミングが一定に保持されているときの前記油圧制御弁へのデューティを保持デューティとして学習する保持デューティ学習部と、を備え、前記学習によって得られた前記ばね有領域の保持デューティと前記ばね無領域の保持デューティとを選択的に用いて、前記油圧制御弁の制御量を設定する。前記境界位相設定部は、前記ばね有領域内において、前記油圧制御弁を前記ばね無領域の保持デューティで駆動し、実際の前記相対回転位相が予め定められた不明領域になった場合に、前記第2回転体において前記駆動によって掛かる力と前記カムトルクとが釣り合うときの前記相対回転位相を前記境界位相として学習し、実際の前記相対回転位相が前記ばね無領域になった場合に、前記境界位相の学習を終了する。
この形態の内燃機関の可変バルブタイミング制御装置によれば、ばねの付勢力が作用する範囲の限界となるばね端の位置が、境界位相として高精度に求められる。したがって、ばね有領域とばね無領域との境界を高精度に設定することができることから、VVT位相の制御性を向上できる。
内燃機関とその周辺を概略的に示す説明図である。 バルブタイミング可変機構と油圧回路とを示す説明図である。 バルブタイミング可変機構の斜視図である。 バルブタイミング可変機構の断面図である。 駆動デューティとVVT応答速度との関係を示すグラフである。 ばね有領域とばね無領域との関係を示す説明図である。 境界位相設定処理を示すフローチャートである。 ばね無し保持デューティを電磁ソレノイド55に出力したときのVVTの様子を示す説明図である。 ステップS170で「YES」と判定されたときのVVTの様子を示す説明図である。 ステップS170で「NO」と判定されたときのVVTの様子を示す説明図である。
次に、本発明の実施形態を説明する。
図1は、内燃機関とその周辺を概略的に示す説明図である。図示するように、内燃機関11の燃焼室12と吸気通路13との間は、吸気バルブ21の開閉動作を通じて連通・遮断される。吸気バルブ21は、クランクシャフト17により回転駆動される吸気カムシャフト22の回転に伴って開閉動作する。内燃機関11における燃焼室12と排気通路18との間は、排気バルブ24の開閉動作を通じて連通・遮断される。排気バルブ24は、クランクシャフト17からの回転伝達を受ける排気カムシャフト25の回転に伴って開閉動作する。
内燃機関11には、吸気バルブ21の開閉タイミング(バルブタイミング)を調整するバルブタイミング可変機構40が設けられている。バルブタイミング可変機構40は、油圧制御弁としてのオイルコントロールバルブ50の駆動による作動油の給排を通じて、クランクシャフト17に対する吸気カムシャフト22の相対回転位相を変化させる。
図2は、バルブタイミング可変機構40と、バルブタイミング可変機構40を動作させる油圧回路とを示す説明図である。図示するように、バルブタイミング可変機構40には、吸気カムシャフト22に一体回転可能に固定されたロータ41(第2回転体)が設けられている。また、バルブタイミング可変機構40には、吸気カムシャフト22と同一軸線上にロータ41を囲むように設けられるとともにクランクシャフト17の回転に連動して回転するハウジング42(第1回転体)が設けられている。ハウジング42の内周面には、吸気カムシャフト22の軸線に向かって突出する突部43が周方向に所定間隔をおいて複数形成されている。ロータ41の外周面には、径方向外方に突出する複数のベーン44が形成されている。複数のベーン44は、隣り合う突部43の間にそれぞれ配置されている。これにより、ハウジング42内における各突部43の間の部分がベーン44によって進角室45と遅角室46とに区画されている。進角室45および遅角室46に対する作動油の給排が切り替えられることにより、クランクシャフト17に対する吸気カムシャフト22の相対回転位相、すなわちハウジング42に対するロータ41の相対回転位相が変更される。以下、この相対回転位相を「VVT位相」と称する)が変更される。「VVT」とは、可変バルブタイミング(Variable Valve Timing)の意味である。ロータ41は、いわゆるVVT駆動部材である。
すなわち、進角室45に作動油を供給するとともに遅角室46から作動油を排出して、ロータ41をハウジング42に対して図中の右回転方向に相対回転させることにより、VVT位相が進角して吸気バルブ21のバルブタイミングが進角する。また、遅角室46に作動油を供給するとともに進角室45から作動油を排出して、ロータ41をハウジング42に対して図中の左回転方向に相対回転させることにより、VVT位相が遅角して吸気バルブ21のバルブタイミングが遅角する。このようにバルブタイミング可変機構40が駆動されて吸気バルブ21のバルブタイミングが変更される。
バルブタイミング可変機構40には、VVT位相をロックするロック状態とVVT位相のロックを解除するロック解除状態とを切り替え可能なロック機構47が設けられている。ロック機構47は、ロータ41のベーン44に形成された収容孔と、その収容孔に進退可能に収容されたロックピン(図示せず)と、ハウジング42に形成されたロック穴(図示せず)とを備えている。ロックピンは、ばねによってロック穴に嵌入する方向に常時付勢されるとともに、解除室48の油圧によってロック穴から抜ける方向に付勢される。
ロック機構47は、解除室48に対する作動油の給排状態を変更することにより、そのロック状態とロック解除状態とを切り替える。すなわち、ロック機構47の解除室48から作動油を排出させて解除室48の油圧を低下させると、ロックピンがばねの付勢力により収容孔から押し出されてロック穴に没入される。その結果、ロック機構47がロック状態となる。一方、ロック機構47の解除室48に作動油を供給して解除室48の油圧を上昇させると、ロックピンがロック穴から抜き出されて収容孔に戻される。その結果、ロック機構47がロック解除状態となる。なお、ロック機構47がロック状態にあるときには、VVT位相が規制されて最進角位相と最遅角位相との間の中間位相となる。そして、機関停止時にロック機構47をロック状態にすることにより、VVT位相を中間位相にロックした状態で機関運転が停止されるため、始動時の実圧縮比を高くして始動性を向上することができる。
バルブタイミング可変機構40とオイルポンプ61との間は、油圧回路によって繋がれている。この油圧回路を通じてバルブタイミング可変機構40に対して、作動油の給排が行われる。油圧回路を構成する複数の油路の途中には、それら油路によるバルブタイミング可変機構40に対する作動油の給排態様を変更するためのオイルコントロールバルブ(以下、「OCV」と称する)50が設けられている。OCV50は、オイルポンプ61に供給油路63を介して接続されるとともに、そのオイルポンプ61により汲み上げられる作動油を貯留するためのオイルパン62に排出油路64を介して接続されている。また、OCV50は、バルブタイミング可変機構40の進角室45に進角油路65を介して接続されるとともに、バルブタイミング可変機構40の遅角室46に遅角油路66を介して接続されている。OCV50は、ロック機構47の解除室48に解除油路67を介して接続されている。OCV50が、[発明の概要]の欄に記載した本発明の一形態における「油圧制御弁」に相当する。
OCV50には、スリーブ51と、スリーブ51内においてその軸方向に変位可能に設けられたスプール53と、スプール53にその変位方向の一方側に向けて弾性力を作用させるばね54と、スプール53がその変位方向の他方側に向けて変位するようにスプール53に電磁力を作用させる電磁ソレノイド55とが設けられている。また、スリーブ51とスプール53には、供給油路63、排出油路64、進角油路65、遅角油路66、および解除油路67とそれぞれ連通する複数のポートが形成されている。電磁ソレノイド55に電圧を印加する時間を制御量としての駆動デューティに応じて変更することによって、OCV50におけるスプール53の位置調節が行われる。駆動デューティは、例えば「0〜100%」という定められた範囲内で変更されるものであって、その範囲内で小さくなるほど電磁ソレノイド55の電磁力が小さくなる一方、大きくなるほど電磁ソレノイド55の電磁力が大きくなる。
駆動デューティを小さくして電磁ソレノイド55の電磁力を小さくすると、その電磁力よりもばね54の付勢力が大きくなって、その付勢力に基づきスプール53が一方側(図中左側)に変位する。一方、駆動デューティを大きくして電磁ソレノイド55の電磁力を大きくすると、その電磁力がばね54の付勢力よりも大きくなって、電磁力に基づきスプール53が他方側(図中右側)に変位する。OCV50は、こうしたスプール53の位置調節を通じて複数の動作モードのいずれかが選択されることにより、その選択された動作モードに対応して上記の各ポート同士の連通遮断状態が切り替えられる。
OCV50の動作モードとしては、例えば以下のようなロックモード、進角モード、および遅角モードが挙げられる。ロックモードは、進角室45および遅角室46に対する作動油の給排を共に停止し、解除室48からの作動油の排出を行うモードである。ロックモードでは、ロック機構47によってVVT位相を固定することができる。
進角モードは、進角室45および解除室48に作動油を供給するとともに、遅角室46から作動油を排出するモードである。進角モードでは、進角室45内の油圧が上昇する一方で遅角室46内の油圧が低下する。これによって、ハウジング42に対し図2の右回転方向に相対回転させる回転力がロータ41に作用する。また、解除室48の油圧が高くなり、ロック機構47によるVVT位相の固定が解除された状態となる。なお、進角モードは、バルブタイミングを進角させる際や現状のタイミングに保持する際に選択される。
遅角モードは、遅角室46および解除室48に作動油を供給するとともに、進角室45から作動油を排出するモードである。遅角モードでは、遅角室46内の油圧が上昇する一方で進角室45内の油圧が低下する。これによって、ハウジング42に対し図2の左回転方向に相対回転させる回転力がロータ41に作用する。また、解除室48の油圧が高くなり、ロック機構47によるVVT位相の固定が解除された状態となる。なお、遅角モードは、バルブタイミングを遅角させる際や現状のタイミングに保持する際に選択される。
OCV50のスプール53と電磁ソレノイド55との間の距離は、ロックモード、進角モード、遅角モードの順で短くなる。このため、OCV50の動作モードに対する電磁ソレノイド55の電磁力(駆動デューティ)の大きさは、ロックモード、進角モード、遅角モードの順で大きくなっている。
進角モードでは、OCV50のスプール53の位置が一方側(図中左側)にあるときほど、進角室45への作動油の供給量が多くなるとともに、遅角室46からの作動油の排出量が多くなる。このため、進角モードでは、駆動デューティの大きさが小さいときほど、吸気バルブ21の実際のバルブタイミング(実バルブタイミングVT)を進角させる際の速度が大きくなる。一方、遅角モードでは、OCV50のスプール53の位置が他方側(図中右側)にあるときほど、遅角室46への作動油の供給量が多くなるとともに、進角室45からの作動油の排出量が多くなる。このため、遅角モードでは、駆動デューティの大きさが大きいときほど、実バルブタイミングVTを遅角させる際の速度が大きくなる。
図3はバルブタイミング可変機構の斜視図であり、図4はバルブタイミング可変機構の断面図である。両図に示すように、バルブタイミング可変機構40のハウジング42は、突部43を有するとともにカバー42aによって覆われる本体部42bと、カバー42aおよび本体部42bが固定されるスプロケット42cとを有している。スプロケット42cは、タイミングチェーン等を介してクランクシャフト17に連結される。これにより、ハウジング42のカバー42aおよび本体部42bは、スプロケット42cと一体となって回転する。さらに、ハウジング42のカバー42aには、VVT位相が上記中間位相となる位置にロータ41を進角側に回転付勢するばね49が設けられている。エンジンストール等によって機関停止時にロック機構47によるVVT位相の固定がされなくても、ばね49の付勢力を用いてVVT位相をロック機構47により固定可能な中間位相にすることができる。
上述したばね49が設けられることにより、VVT位相は、ロータ41がばね49による付勢力を受ける領域、すなわち最遅角位相から中間位相までの領域であるばね有領域と、ロータ41がばね49による付勢力を受けない領域、すなわち中間位相から最進角位相までの領域であるばね無領域とに区分される。なお以下では、「実バルブタイミングVTがばね有領域にある」とは、VVT位相がばね有領域にあることを意味し、「実バルブタイミングVTがばね無領域にある」とは、VVT位相がばね無領域にあることを意味することとする。
吸気バルブ21の実バルブタイミングVTがばね有領域にあるときには、ばね49による付勢力によりロータ41を進角させようとする回転力がロータ41に作用する。このため、実バルブタイミングVTがばね有領域にあるときには、上記の遅角モードを選択して遅角室46内の油圧を上昇させるとともに進角室45内の油圧を低下させることにより、吸気バルブ21の実バルブタイミングVTを一定のタイミングに保持することができる。一方で、実バルブタイミングVTがばね無領域にあるときには、ロータ41にはばね49の付勢力による回転力は作用しないものの、バルブスプリングの弾性力等に基づくフリクションによりロータ41を遅角させようとする回転力が作用する。このため、実バルブタイミングVTがばね無領域にあるときには、上記の進角モードを選択して進角室45内の油圧を上昇させるとともに遅角室46内の油圧を低下させることにより、吸気バルブ21の実バルブタイミングVTを一定のタイミングに保持することができる。
OCV50を調整して行うバルブタイミング制御は、内燃機関11の運転に関する各種制御と併せて制御装置30によって行われる。バルブタイミング制御では、カムポジションセンサ33およびクランクポジションセンサ34からの検出信号に基づいて実バルブタイミングVTを検知するとともに、機関運転状態に応じて目標バルブタイミングVTtを設定する。そして、実バルブタイミングVTを目標バルブタイミングVTtに変更するようにしている。バルブタイミング制御は、機関運転状態等に基づいて駆動デューティDUを算出し、その算出された駆動デューティDUに基づきOCV50の電磁ソレノイド55に対する印加電圧を調整することによって実現される。駆動デューティDUは、例えば、次の式(1)に基づいて算出される。
駆動デューティDU=比例補正項P+微分補正項D+保持デューティH …(1)
式(1)における比例補正項Pは、目標バルブタイミングVTtと実バルブタイミングVTとの偏差に応じて設定されるフィードバック補正値であり、微分補正項Dは、目標バルブタイミングVTtと実バルブタイミングVTとの偏差の変化速度に応じて設定されるフィードバック補正値である。すなわち、実バルブタイミングVTが目標バルブタイミングVTtよりも進角側である場合には、比例補正項Pおよび微分補正項Dの加算値の分だけ駆動デューティDUが大きくなる。このようにOCV50の駆動デューティDUを大きくすることで、実バルブタイミングVTが遅角されて目標バルブタイミングVTtに近づけられる。一方、実バルブタイミングVTが目標バルブタイミングVTtよりも遅角側である場合には、比例補正項Pおよび微分補正項Dの加算値の分だけ駆動デューティDUが小さくなる。このようにOCV50の駆動デューティDUを小さくすることで、実バルブタイミングVTが進角されて目標バルブタイミングVTtに近づけられる。
式(1)における保持デューティHは、吸気バルブ21の実バルブタイミングVTを一定に保持するために必要な駆動デューティDUの値である。式(1)から明らかなように、保持デューティHは、比例補正項Pおよび微分補正項Dの増減に併せて駆動デューティDUを増減させる際の中心値となる。保持デューティHは、例えば作動油の温度等によって異なる値に変化するため、運転状態に応じて学習される。保持デューティHの学習は、実バルブタイミングVTのフィードバック制御中に実バルブタイミングVTが一定に保持されているとき、その時点での駆動デューティDUを最新の保持デューティHとして制御装置30のメモリに記憶することによって実現される。
図5は、駆動デューティとVVT応答速度との関係を示すグラフである。以下、この関係を「VVT応答速度特性」と称する。「VVT応答速度」とは、バルブタイミング可変機構40の制御量に対する実際のVVT位相(以下、単に「実VVT位相」と称する)の変化速度を意味する。図5に示すように、ばね無領域のVVT応答速度特性とばね有領域のVVT応答速度特性とは相違し、ばね有領域のVVT応答速度特性における保持データH1は、ばね無領域のVVT応答速度特性における保持データH0よりも大きくなっている。
このため、式(1)における保持デューティHの大きさは、上述した作動油の温度の他、吸気バルブ21の実バルブタイミングVTがばね有領域とばね無領域のいずれの領域にあるかによっても異なる。このため、ばね有領域とばね無領域のそれぞれで保持デューティHの学習が行われる。そして、バルブタイミング制御では、吸気バルブ21の実バルブタイミングVTがばね有領域にあるときには、ばね有領域で学習された保持デューティHを用いて駆動デューティDUが算出される。吸気バルブ21の実バルブタイミングVTがばね無領域にあるときには、ばね無領域で学習された保持デューティHを用いて駆動デューティDUが算出される。このように、保持デューティHは、実バルブタイミングVTを一定に保持するためのOCV50の制御量(保持制御量)であり、実バルブタイミングVTがばね有領域にあるときとばね無領域にあるときとで個別の値として学習される。この学習は、制御装置30の有する機能の一つである保持デューティ学習部31(図2)によって行われる。
図6は、ばね有領域とばね無領域との関係を示す説明図である。この図は、実VVT位相がとり得る範囲において、ばね有領域とばね無領域とがどの位置に存在するかをイメージ的に示すもので、ばね49等は実際の形状とは異なる。実VVT位相がとり得る範囲は横軸に示されている。実VVT位相がとり得る範囲の遅角側にばね有領域が存在し、進角側にばね無領域が存在する。ばね有領域とばね無領域との境界付近には、領域判定が難しい不明領域が存在する。不明領域が存在するのは、ばね49の製造ばらつき・組付ばらつきやばね力の経時変化等によって、ばね49の付勢力が作用する範囲の限界位相がばらつくためである。本実施形態では、不明領域におけるばね有領域とばね無領域との境界位相を学習によって適切に求める処理を行う。この処理は、制御装置30の有する機能の一つである境界位相設定部32(図2)によって行われる。
図7は、境界位相設定部32によって実行される境界位相設定処理を示すフローチャートである。この境界位相設定処理は、制御装置30のCPUによって、次の開始条件が成立する毎に、実行開始される。開始条件は、下記の(i)、(ii)の両方を満たすことである。
(i)内燃機関11の暖機後、かつ、アイドル状態でフューエルカット中であること。
(ii)VVT位相がアイドル位相付近であること。
制御装置30のCPUは、処理が開始されると、まず、この境界位相設定処理の実行を禁止することを示す処理禁止フラグがオフ状態であるか否かを判定する(ステップS110)。処理禁止フラグは、境界位相設定処理の開始前にはオフ状態となっている。このため、境界位相設定処理の開始後、最初にステップS110を実行するときには、ステップS110において「YES」と判定され、CPUは、ステップS120に処理を進める。ステップS120では、CPUは、ばね無し保持デューティをOCV50の電磁ソレノイド55に出力する。
図8は、ステップS120でばね無し保持デューティを電磁ソレノイド55に出力したときのVVTの様子を示す説明図である。図中のVVT駆動部材41Xは、バルブタイミング可変機構40に含まれるロータ41に相当する。ステップS120で、ばね無し保持デューティが電磁ソレノイド55に出力されると、ばね無し保持デューティに対応した力F1がVVT駆動部材41Xに対し進角側に作用する。また、ばね49の付勢力F2が、VVT駆動部材41Xに対し進角側に作用する。この結果、VVT駆動部材41Xは、吸気カムシャフト22のカムトルクF3に抗して、矢印Yに示すように進角側に移動する。
図7のステップS120の実行後、CPUは、カムポジションセンサ33およびクランクポジションセンサ34からの検出信号に基づいて、実VVT位相を算出する(ステップS130)。次いで、算出された実VVT位相が、予め設定されたばね有領域内に位置するか否かを判定する(ステップS140)。「予め設定されたばね有領域」とは、実VVT位相がとり得る範囲において隙間なく設定された3つの領域のうちの最も遅角側の領域である(図6参照)。
ステップS140で、実VVT位相がばね有領域内に位置すると判定された場合、CPUは、実VVT位相が安定しているか否かを判定する(ステップS150)。安定しているか否かは、実VVT位相の変化速度を求め、その化速度が値0または微小な所定値を下回るか否かから判定する。実VVT位相が安定していないときは、VVT駆動部材41Xが進角側への移動中であることを意味する。このため、ステップS150で「NO」と判定されたとき、処理をステップS110に戻す。
一方、実VVT位相が安定したときは、VVT駆動部材41Xがばね有領域内で停止したときである。このため、ステップS150で「YES」と判定されたとき、CPUは、境界位相が更新されないように、処理禁止フラグをオン状態にセットする(ステップS160)。その後、CPUは、処理をステップS110に戻す。
ステップS140で、実VVT位相がばね有領域内に位置しないと判定された場合、CPUは、ステップS170に処理を進めて、実VVT位相が、予め設定された不明領域内に位置するか否かを判定する。「予め設定された不明領域」とは、実VVT位相がとり得る範囲において隙間なく設定された3つの領域のうちの真ん中の領域である(図6参照)。
ステップS170で、実VVT位相が不明領域内に位置すると判定された場合、CPUは、実VVT位相が安定しているか否かを判定する(ステップS180)。ここで、安定していないと判定されたときには、VVT駆動部材41Xは進角側への移動中であることから、CPUは、処理をステップS110に戻す。
一方、ステップS180で実VVT位相が安定していると判定された場合には、VVT駆動部材41Xは不明領域内で停止したということであることから、CPUは、ステップS130で算出した実VVT位相を境界位相として記憶する(ステップS190)。すなわち、境界位相を、ステップS130で算出した実VVT位相の値で更新する。
図9は、ステップS170で「YES」と判定されたときのVVTの様子を示す説明図である。図9に示すように、VVT駆動部材41Xに対しばね49の付勢力が掛からなくなり、VVT駆動部材41Xに掛かるばね無し保持デューティに対応した力F1と、VVT駆動部材41Xに掛かるカムトルクF3とが釣り合った状態となったとき、VVT駆動部材41Xが不明領域内で停止する。この状態が、ステップS170で「YES」と判定されたときの状態である。このときの実VVT位相は、ばねの付勢力が作用する範囲の限界となるばね端におけるVVT位相に相当する。このため、ステップS190では、ステップS130で算出した実VVT位相を境界位相として記憶することで、ばね端におけるVVT位相を学習することができる。
ステップS190の実行後、CPUは、処理禁止フラグをオン状態にセットし(ステップS200)、その後、処理をステップS110に戻す。
ステップS170で、実VVT位相が不明領域内に位置しないと判定された場合、すなわち、CPUは、実VVT位相がばね無領域であると判定された場合には、CPUは、処理禁止フラグをオン状態にセットし(ステップS210)、その後、処理をステップS110に戻す。
図10は、ステップS170で「NO」と判定されたときのVVTの様子を示す説明図である。ステップS170で「NO」と判定されたときには、図10に示すように、VVT駆動部材41Xは、ばね有領域と不明領域を超えて、ばね無領域に達する。このため、境界位相が更新されないように、ステップS210では、処理禁止フラグをオン状態にセットする。
図7に戻り、ステップS110で、処理禁止フラグがオフ状態でない、すなわちオン状態であると判定された場合、ステップS120以降の処理を実行することがないように、直ちに処理をステップS110に戻す。
上記構成の境界位相設定処理によって求められた境界位相は、保持デューティ学習部31(図2)において用いられる。すなわち、保持デューティ学習部31は、上記求められた境界位相より遅角側をばね有領域、境界位相より進角側をばね無領域と定めて、それぞれの領域で個別に保持デューティHの学習を行う。
以上のように構成された本実施形態に係る内燃機関の制御装置によれば、ばね49の付勢力が作用する範囲の限界となるばね端の位置が、境界位相として高精度に求められる。したがって、ばね有領域とばね無領域との境界を高精度に設定することができることから、VVT位相の制御性を向上できる。また、実VVT位相が、不明領域を超えてばね無領域に達した場合に、境界位相の学習を禁止するようにしていることから、VVT位相の制御性をより向上できる。
また、本実施形態では、境界位相設定処理の実行を内燃機関11の暖機後に限っていることから、誤学習を防止することができる。低温ではオイル粘度が高く、ばね49の付勢力が作用する範囲の中でVVT駆動部材賭してのロータ41が停止する可能性があるためである。本実施形態では、境界位相設定処理の実行を内燃機関11がアイドル状態でフューエルカット中に限っていることから、車両搭載時における車両走行性への影響を回避することができる。
本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、前記実施形態では、バルブタイミングを変更する機関バルブを吸気バルブとしていたが、これに換えて、排気バルブとすることができる。また、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、前述した実施形態および各変形例における構成要素の中の、独立請求項で記載された要素以外の要素は、付加的な要素であり、適宜省略可能である。
11…内燃機関
12…燃焼室
13…吸気通路
17…クランクシャフト
18…排気通路
21…吸気バルブ
22…吸気カムシャフト
24…排気バルブ
25…排気カムシャフト
30…制御装置
31…保持デューティ学習部
32…境界位相設定部
33…カムポジションセンサ
34…クランクポジションセンサ
40…バルブタイミング可変機構
41…ロータ(VVT駆動部材)
42…ハウジング
42a…カバー
42b…本体部
42c…スプロケット
43…突部
44…ベーン
45…進角室
46…遅角室
47…ロック機構
48…解除室
49…ばね
50…オイルコントロールバルブ
51…スリーブ
53…スプール
54…ばね
55…電磁ソレノイド
61…オイルポンプ
62…オイルパン
63…供給油路
64…排出油路
65…進角油路
66…遅角油路
67…解除油路

Claims (1)

  1. クランクシャフトの回転に連動して回転する第1回転体に対する、カムシャフトと共に回転する第2回転体の相対回転位相を、油圧制御弁を介して供給される作動油圧によって変更することによって、機関バルブのバルブタイミングを変更するバルブタイミング可変機構と、前記油圧制御弁を駆動制御する制御部と、を備え、前記バルブタイミング可変機構は、前記カムシャフトのカムトルクに抗して前記相対回転位相が進角側に移行する方向に前記第2回転体を付勢するばねを有する、内燃機関の可変バルブタイミング制御装置において、
    前記制御部は、
    前記第2回転体が前記ばねによる付勢力を受ける前記相対回転位相の領域をばね有領域とし、前記第2回転体が前記ばねによる付勢力を受けない前記相対回転位相の領域をばね無領域としたときの、前記ばね有領域と前記ばね無領域との境界となる相対回転位相を境界位相として設定する境界位相設定部と、
    前記設定された境界位相から定まる前記ばね有領域と前記ばね無領域とのそれぞれで、実際の前記バルブタイミングが一定に保持されているときの前記油圧制御弁へのデューティを保持デューティとして学習する保持デューティ学習部と、
    を備え、前記学習によって得られた前記ばね有領域の保持デューティと前記ばね無領域の保持デューティとを選択的に用いて、前記油圧制御弁の制御量を設定し、
    前記境界位相設定部は、
    前記ばね有領域内において、前記油圧制御弁を前記ばね無領域の保持デューティで駆動し、
    実際の前記相対回転位相が予め定められた不明領域になった場合に、前記第2回転体において前記駆動によって掛かる力と前記カムトルクとが釣り合うときの前記相対回転位相を前記境界位相として学習し、
    実際の前記相対回転位相が前記ばね無領域になった場合に、前記境界位相の学習を終了する、内燃機関の可変バルブタイミング制御装置。
JP2015231192A 2015-11-27 2015-11-27 内燃機関の可変バルブタイミング制御装置 Pending JP2017096214A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231192A JP2017096214A (ja) 2015-11-27 2015-11-27 内燃機関の可変バルブタイミング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231192A JP2017096214A (ja) 2015-11-27 2015-11-27 内燃機関の可変バルブタイミング制御装置

Publications (1)

Publication Number Publication Date
JP2017096214A true JP2017096214A (ja) 2017-06-01

Family

ID=58817998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231192A Pending JP2017096214A (ja) 2015-11-27 2015-11-27 内燃機関の可変バルブタイミング制御装置

Country Status (1)

Country Link
JP (1) JP2017096214A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364863A (zh) * 2019-09-13 2022-04-15 比亚乔公司 具有凸轮轴气门相位变化设备的内燃发动机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364863A (zh) * 2019-09-13 2022-04-15 比亚乔公司 具有凸轮轴气门相位变化设备的内燃发动机
CN114364863B (zh) * 2019-09-13 2024-03-26 比亚乔公司 具有凸轮轴气门相位变化设备的内燃发动机

Similar Documents

Publication Publication Date Title
US9133734B2 (en) Valve timing control apparatus for internal combustion engine
JP5375671B2 (ja) 流量制御弁及びこれを具備する内燃機関のバルブタイミング制御装置
US8739748B2 (en) Valve timing adjuster
US8955479B2 (en) Variable valve timing control apparatus of internal combustion engine and method for assembling the same
US8413624B2 (en) Valve timing control apparatus
JP2013185442A (ja) 内燃機関のバルブタイミング制御装置
JP2011001888A (ja) 内燃機関の制御装置
JP5900428B2 (ja) 内燃機関の制御装置
EP3029286B1 (en) Valve opening/closing timing control device
JP6036600B2 (ja) 弁開閉時期制御装置
JP2017096214A (ja) 内燃機関の可変バルブタイミング制御装置
JP6267608B2 (ja) 内燃機関のバルブタイミング制御装置
US9140197B2 (en) Valve timing control apparatus
JP3892181B2 (ja) 内燃機関のベーン式バルブタイミング制御装置
JP3850598B2 (ja) 内燃機関のベーン式バルブタイミング制御装置
JP6312568B2 (ja) 内燃機関のバルブタイミング制御装置
US9840946B2 (en) Variable valve timing control device of internal combustion engine
JP2008184952A (ja) エンジンの可変動弁装置
US20160025017A1 (en) Control device for internal combustion engine
JP2012184676A (ja) 内燃機関のバルブタイミング制御装置
JP5553174B2 (ja) バルブタイミング調整装置
JP4290117B2 (ja) 内燃機関の液圧式可変バルブタイミング機構の学習制御方法
JP5573609B2 (ja) バルブタイミング調整装置の異常復帰装置
US10526930B2 (en) Valve timing control system and control command unit
WO2013115174A1 (ja) 内燃機関の可変バルブタイミング制御装置