JP2017048442A - 光電気化学反応装置 - Google Patents

光電気化学反応装置 Download PDF

Info

Publication number
JP2017048442A
JP2017048442A JP2015174527A JP2015174527A JP2017048442A JP 2017048442 A JP2017048442 A JP 2017048442A JP 2015174527 A JP2015174527 A JP 2015174527A JP 2015174527 A JP2015174527 A JP 2015174527A JP 2017048442 A JP2017048442 A JP 2017048442A
Authority
JP
Japan
Prior art keywords
photoelectrochemical reaction
electrolyte
flow path
series
photoelectrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015174527A
Other languages
English (en)
Other versions
JP6768273B2 (ja
Inventor
昭彦 小野
Akihiko Ono
昭彦 小野
御子柴 智
Satoshi Mikoshiba
智 御子柴
由紀 工藤
Yuki Kudo
由紀 工藤
良太 北川
Ryota Kitagawa
良太 北川
田村 淳
Atsushi Tamura
淳 田村
義経 菅野
Yoshitsune Sugano
義経 菅野
栄史 堤
Eiji Tsutsumi
栄史 堤
正和 山際
Masakazu Yamagiwa
正和 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015174527A priority Critical patent/JP6768273B2/ja
Priority to US15/251,825 priority patent/US10590550B2/en
Publication of JP2017048442A publication Critical patent/JP2017048442A/ja
Application granted granted Critical
Publication of JP6768273B2 publication Critical patent/JP6768273B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】光から化学物質への変換効率を高める。
【解決手段】光電気化学反応装置は、実施形態の光電気化学反応装置は、複数の第1の光電気化学反応ユニットを備える第1のユニットグループと複数の第2の光電気化学反応ユニットを備える第2のユニットグループとを含む複数のユニットグループを有する。複数の第1の光電気化学反応ユニットの電解液槽のそれぞれは、互いに直列に接続されている。複数の第2の光電気化学反応ユニットの電解液槽のそれぞれは、互いに直列に接続されている。複数の第2の光電気化学反応ユニットにおける互いに直列に接続された電解液槽は、複数の第1の光電気化学反応ユニットにおける互いに直列に接続された電解液槽に並列に接続されている。
【選択図】図1

Description

実施形態の発明は、光電気化学反応装置に関する。
近年、エネルギー問題や環境問題の観点から、植物の光合成を模倣して太陽光を電気化学的に化学物質に変換する人工光合成技術の開発が進められている。太陽光を化学物質に変換してボンベやタンクに貯蔵する場合、太陽光を電気に変換して蓄電池に貯蔵する場合に比べて、エネルギーの貯蔵コストを低減することができ、また貯蔵ロスも少ないという利点がある。
太陽光を電気化学的に化学物質へ変換する光電気化学反応装置としては、例えば二酸化炭素(CO)を還元する還元触媒を有する電極と、水(HO)を酸化する酸化触媒を有する電極とを備え、これら電極を二酸化炭素が溶解した水中に浸漬させる二電極方式の装置が知られている。このとき、各電極は電線等を介して電気的に接続される。酸化触媒を有する電極においては、光エネルギーによりHOを酸化して酸素(1/2O)を得ると共に、電位を得る。還元触媒を有する電極においては、酸化反応を生起する電極から電位を得ることによって、二酸化炭素を還元して蟻酸(HCOOH)等を生成する。このように、二電極方式の装置においては、二酸化炭素の還元電位を2段励起により得ているため、太陽光から化学エネルギーへの変換効率が低い。
また、一対の電極で光電変換層を挟持した積層体(シリコン太陽電池等)を用いた光電気化学反応装置も検討されている。光照射側の電極では、光エネルギーにより水(2HO)を酸化して酸素(O)と水素イオン(4H)を得る。反対側の電極では、光照射側電極で生成した水素イオン(4H)と光電変換層に生じた電位(e)とを用いて、化学物質として水素(2H)等を得る。また、シリコン太陽電池を積層させた電気化学反応装置も知られている。上記光電気化学反応装置では、高い変換効率を有することが好ましい。
特開2012−505310号公報 特開2012−177159号公報 特開2014−097910号公報
実施形態の発明が解決しようとする課題は、光から化学物質への変換効率を高めることである。
実施形態の光電気化学反応装置は、複数の第1の光電気化学反応ユニットを備える第1のユニットグループと複数の第2の光電気化学反応ユニットを備える第2のユニットグループとを含み、第1および第2の光電気化学反応ユニットのそれぞれが被還元物質を含む第1の電解液を収容する第1の収容部と被酸化物質を含む第2の電解液を収容する第2の収容部とを有する電解液槽と、第1の電解液に浸漬された還元電極層と、第2の電解液に浸漬された酸化電極層と、還元電極層に電気的に接続された第1の面と酸化電極層に電気的に接続された第2の面とを有する光電変換層と、を備える複数のユニットグループを有する。複数の第1の光電気化学反応ユニットの電解液槽のそれぞれは、互いに直列に接続されている。複数の第2の光電気化学反応ユニットの電解液槽のそれぞれは、互いに直列に接続されている。複数の第2の光電気化学反応ユニットにおける互いに直列に接続された電解液槽は、複数の第1の光電気化学反応ユニットにおける互いに直列に接続された電解液槽に並列に接続されている。
光電気化学反応装置の構成例を示す模式図である。 光電気化学反応ユニットの構成例および動作例を示す模式図である。 光電変換セルの構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例の一部を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応ユニットの他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の設置例を示す模式図である。 酸化側電解液および還元側電解液のpHの変化の評価結果を示す図である。
以下、実施形態について、図面を参照して説明する。なお、図面は模式的であり、例えば各構成要素の厚さ、幅等の寸法は実際の構成要素の寸法と異なる場合がある。また、実施形態において、実質的に同一の構成要素には同一の符号を付け、説明を省略する場合がある。本明細書において「接続する」の用語は、直接接続する場合に限定されず、間接的に接続する意味を含んでいてもよい。
図1は光電気化学反応ユニットを具備する光電気化学反応装置の構成例を示す模式図である。図2は光電気化学反応ユニットの構成例および動作例を示す模式図である。図1に示す光電気化学反応装置は、複数の光電気化学反応ユニット10を具備する。
複数の光電気化学反応ユニット10は、2以上の光電気化学反応ユニット10を有する第1のユニットグループと2以上の光電気化学反応ユニット10を有する第2のユニットグループとを含む複数のユニットグループに分けられている。図1において、複数の光電気化学反応ユニット10は、ユニットグループG1と、ユニットグループG2と、ユニットグループG3と、を含む3グループに分けられている。ユニットグループの数は図1に示す数に限定されない。
各ユニットグループの光電気化学反応ユニット10の数は、2以上20以下であることが好ましい。光電気化学反応ユニット10の数が20を超えると、一部の光電気化学反応ユニット10において酸化還元反応が起こりにくくなる。図1において、ユニットグループG1ないしユニットグループG3のそれぞれは、4つの光電気化学反応ユニット10を有する。光電気化学反応ユニット10の数はユニットグループ毎に異なってもよい。光電気化学反応ユニット10のサイズは縦1cm×横1cm×高さ1cm以上縦1m×横1m×高さ1m以下であることが好ましい。光電気化学反応装置のサイズは縦1m×横1m×高さ1m以上縦5m×横5m×高さ5m以下、好ましくは縦1m×横1m×高さ1m以上縦2m×横2m×高さ2m以下であることが好ましい。
複数の光電気化学反応ユニット10のそれぞれは、収容部11と収容部12とを有する電解液槽1と、還元電極層31と酸化電極層32と光電変換層33とを有する光電変換セル3と、を具備する。
同じユニットグループの光電気化学反応ユニット10の電解液槽のそれぞれは、互いに直列に接続されている。ユニットグループG1の光電気化学反応ユニット10では、収容部11のそれぞれが流路51を介して互いに直列に接続され、収容部12のそれぞれが流路52を介して互いに直列に接続されている。ユニットグループG2の光電気化学反応ユニット10では、収容部11のそれぞれが流路51を介して互いに直列に接続され、収容部12のそれぞれが流路52を介して互いに直列に接続されている。ユニットグループG3の光電気化学反応ユニット10では、収容部11のそれぞれが流路51を介して互いに直列に接続され、収容部12のそれぞれが流路52を介して互いに直列に接続されている。光電気化学反応装置は、流路51および流路52の少なくとも一つの流路を具備していていればよい。
2以上のユニットグループの互いに直列に接続された電解液槽1は、互いに並列に接続されている。例えば、ユニットグループG2の光電気化学反応ユニット10の収容部11は、流路51、流路53、および流路55を介してユニットグループG1の光電気化学反応ユニット10の収容部11に並列に接続されている。ユニットグループG2の光電気化学反応ユニット10の収容部12は、流路52、流路54、および流路56を介してユニットグループG1の光電気化学反応ユニット10の収容部12に並列に接続されている。ユニットグループG3の光電気化学反応ユニット10の収容部11は、流路51、流路53、および流路55を介してユニットグループG1の光電気化学反応ユニット10の収容部11に並列に接続されている。ユニットグループG3の光電気化学反応ユニット10の収容部12は、流路52、流路54、および流路56を介してユニットグループG2の光電気化学反応ユニット10の収容部12に並列に接続されている。
光電気化学反応装置の各構成要素について説明する。電解液槽1の形状は、収容部となる空洞を有する立体形状であれば特に限定されない。光電気化学反応ユニット10は、収容部11と収容部12との間にイオン交換膜4をさらに備えていてもよい。図2において、収容部11および収容部12は、例えばイオン交換膜4により互いに区切られている。イオン交換膜4としては、例えばアストム社のネオセプタ(登録商標)や旭硝子社のセレミオン(登録商標)、Aciplex(登録商標)、Fumatech社のFumasep(登録商標)、fumapem(登録商標)、デュポン社のテトラフルオロエチレンをスルホン化して重合したフッ素樹脂であるナフィオン(登録商標)、LANXESS社のlewabrane(登録商標)、IONTECH社のIONSEP(登録商標)、PALL社のムスタング(登録商標)、mega社のralex(登録商標)、ゴアテックス社のゴアテックス(登録商標)等を用いることができる。また、炭化水素を基本骨格とした膜や、アニオン交換ではアミン基を有する膜を用いてイオン交換膜が構成されていてもよい。
収容部11は、被還元物質を含む電解液21を収容する。被還元物質は、還元反応により還元される物質である。被還元物質としては、例えば水素イオンや二酸化炭素が挙げられる。電解液21に含まれる水の量や電解液成分を変えることで、反応性を変化させ、非還元物質の選択性や生成する化学物質の割合を変えることができる。
収容部12は、被酸化物質を含む電解液22を収容する。被酸化物質は、酸化反応により酸化される物質である。被酸化物質としては、例えば水、またはアルコールもしくはアミン等の有機物や酸化鉄などの無機酸化物などが挙げられる。電解液22は、電解液21と同じ物質を含んでいてもよい。この場合、電解液21および電解液22が1つの電解液であるとみなされてもよい。
電解液22のpHは、電解液21のpHよりも高いことが好ましい。これにより、水素イオンや水酸化物イオン等が移動し易くなる。また、pHの差による液間電位差により酸化還元反応を効果的に進行させることができる。
還元電極層31は、電解液21に浸漬される。還元電極層31は、例えば被還元物質の還元触媒を含む。還元反応により生成される化合物は、還元触媒の種類等によって異なる。還元反応により生成される化合物としては、例えば一酸化炭素(CO)、蟻酸(HCOOH)、メタン(CH)、メタノール(CHOH)、エタン(C)、エチレン(C)、エタノール(COH)、ホルムアルデヒド(HCHO)、エチレングリコール等の炭素化合物、または水素が挙げられる。還元反応により生成される化合物は、例えば生成物流路を介して回収されてもよい。このとき、生成物流路は、例えば収容部11に接続されている。還元反応により生成される化合物は、流路51および流路55を介して回収されてもよい。
還元電極層31は、例えば薄膜状、格子状、粒子状、ワイヤー状の構造を有してもよい。必ずしも還元電極層31に還元触媒を設けなくてもよい。還元電極層31以外に設けられた還元触媒層を還元電極層31に電気的に接続してもよい。
酸化電極層32は、電解液22に浸漬される。酸化電極層32は、例えば被酸化物質の酸化触媒を含む。酸化反応により生成される化合物は、酸化触媒の種類等によって変化する。酸化反応により生成される化合物としては、例えば水素イオンが挙げられる。酸化反応により生成される化合物は、例えば生成物流路を介して回収されてもよい。このとき、生成物流路は、例えば収容部12に接続される。酸化反応により生成される化合物は、流路52および流路56を介して回収されてもよい。
酸化電極層32は、例えば薄膜状、格子状、粒子状、ワイヤー状の構造を有してもよい。必ずしも酸化電極層32に酸化触媒を設けなくてもよい。酸化電極層32以外に設けられた酸化触媒層を酸化電極層32に電気的に接続してもよい。
酸化電極層32が積層され、かつ電解液22に浸漬される場合であって、酸化電極層32を介して光電変換層33に光を照射して酸化還元反応を行う場合、酸化電極層32は、透光性を有する必要がある。酸化電極層32の光の透過率は、例えば酸化電極層32に照射される光の照射量の少なくとも10%以上、より好ましくは30%以上であることが好ましい。これに限定されず、例えば還元電極層31を介して光電変換層33に光を照射してもよい。
光電変換層33は、還元電極層31に電気的に接続された面331と、酸化電極層32に電気的に接続された面332と、を有する。図2において、還元電極層31は面331に接し、酸化電極層32は面332に接している。これに限定されず、面331と還元電極層31との間、および面331と還元電極層31との間は例えば伝熱性を有する配線で接続されていてもよい。配線等により光電変換層と還元電極層または酸化電極層とを接続する場合、機能ごとに構成要素が分離されているため、システム的に有利である。光電変換層33は電解液槽1の外部に設けられてもよい。
光電変換層33は、照射された太陽光等の光のエネルギーにより電荷分離を行う機能を有する。電荷分離により発生した電子は還元電極層側に移動し、正孔は酸化電極層側に移動する。これにより、光電変換層33は、起電力を発生することができる。光電変換層33としては、例えばpn接合型またはpin接合型の光電変換層を用いることができる。光電変換層33は例えば電解液槽1に固定されていてもよい。なお、複数の光電変換層を積層することにより光電変換層33が形成されてもよい。
還元電極層31、酸化電極層32、および光電変換層33のサイズは、互いに異なってもよい。
流路51ないし流路56は、電解液を流通させる電解液流路としての機能を有する。これに限定されず、流路51ないし流路56により電解液と酸化還元反応による生成物を流通させてもよい。電解液槽1および流路51ないし流路56として、例えば光を透過する材料を用いてもよい。
流路51は、同じユニットグループの電解液槽1の一つの収容部11と電解液槽1の他の一つの収容部11とを直列に接続する。流路52は、上記電解液槽1の一つの収容部12と上記電解液槽1の他の一つの収容部12とを直列に接続する。電解液21に含まれるイオンその他の物質は、流路51、流路53、および流路55を介して同じユニットグループの光電気化学反応ユニット10の電解液槽1のそれぞれの間を移動することができる。電解液22に含まれるイオンその他の物質は、流路52、流路54、および流路56を介して同じユニットグループの光電気化学反応ユニット10の電解液槽1のそれぞれの間を移動することができる。
流路52の長さは、流路51の長さと異なってもよく、同じでもよい。流路51および流路52の少なくとも一つが光電気化学反応装置に設けられていればよい。
流路51および流路52の形状は、配管等の電解液を流すことができる空洞を有する形状であれば特に限定されない。循環ポンプを設け、流路51および流路52の少なくとも一つの流路の電解液が循環されてもよい。
流路53は、各ユニットグループの直列に接続された電解液槽1の収容部11に直列に接続されている。流路53を介して被還元物質を含む電解液が上記直列に接続された電解液槽1の収容部11に供給される。複数の光電気化学反応ユニット10の収容部11において、電解液21に含まれる被還元物質の量が還元反応により消費される被還元物質の量の2倍以上になるように、電解液供給部等により被還元物質を含む電解液が複数の光電気化学反応ユニット10に供給されることが好ましい。これにより、理想的な置換であれば完全置換が可能である。このとき、流路53は、電解液供給部と各ユニットグループの直列に接続された電解液槽1の収容部11とを接続する。さらに、電解液21に含まれる被還元物質の量が還元反応により消費される被還元物質の量の3倍以上になるように被還元物質を含む電解液が光電気化学反応ユニット10に供給されることがより好ましい。被還元物質を含む電解液の供給動作の実行は、例えば電解液供給部に設けられた制御回路により制御される。
流路54は、各ユニットグループの直列に接続された電解液槽1の収容部12に直列に接続されている。流路54を介して被酸化物質を含む電解液が上記直列に接続された電解液槽1の収容部12に供給される。複数の光電気化学反応ユニット10の収容部12において、電解液22に含まれる被酸化物質の量が酸化反応により消費される被酸化物質の量の2倍以上になるように、電解液供給部等により被酸化物質を含む電解液が複数の光電気化学反応ユニット10に供給されることが好ましい。これにより、理想的な置換であれば完全置換が可能である。このとき、流路54は、電解液供給部と各ユニットグループの直列に接続された電解液槽1の収容部12とを接続する。さらに、電解液22に含まれる被酸化物質の量が酸化反応により消費される被還元物質の量の3倍以上になるように被酸化物質を含む電解液が光電気化学反応ユニット10に供給されることがより好ましい。被酸化物質を含む電解液の供給動作の実行は、例えば電解液供給部に設けられた制御回路により制御される。
流路55は、各ユニットグループの直列に接続された電解液槽1の収容部11に直列に接続されている。上記直列に接続された電解液槽1の収容部11から流路55を介して電解液21の少なくとも一部が排出される。流路56は、上記直列に接続された電解液槽1の収容部12に直列に接続されている。上記直列に接続された電解液槽1の収容部12から流路56を介して電解液22の少なくとも一部が排出される。
次に、光電気化学反応装置の動作例について図2を参照して説明する。光電変換層33に光が入射すると、光電変換層33は、光励起電子および正孔を生成する。このとき、還元電極層31には光励起電子が集まり、酸化電極層32には正孔が集まる。これにより、光電変換層33に起電力が発生する。光としては、太陽光が好ましいが、発光ダイオードや有機EL等の光を光電変換層33に入射させてもよい。
電解液21および電解液22として水および二酸化炭素を含む電解液を用い、メタノールを生成する場合について説明する。酸化電極層32周辺では、下記式(1)のように水の酸化反応が起こり、電子を失い、酸素と水素イオンが生成される。生成された水素イオンの少なくとも一つは、イオン交換膜4を介して収容部11に移動する。
2HO → 4H+O+4e ・・・(1)
還元電極層31周辺では、下記式(2)のように二酸化炭素の還元反応が起こり、電子を受け取りつつ水素イオンが二酸化炭素と反応し、メタノールと水が生成される。メタノールは任意の割合で電解液21に溶解する。また、メタノールとは別に下記式(3)のように水素イオンが電子を受け取ることにより、水素が生成される。このとき、水素はメタノールと同時に生成されてもよい。
CO+6H+4e → CHOH+HO ・・・(2)
2H+2e → H ・・・(3)
光電変換層33は、酸化反応の標準酸化還元電位と還元反応の標準酸化還元電位との電位差以上の開放電圧を有する必要がある。例えば、式(1)における酸化反応の標準酸化還元電位は1.23[V]である。式(2)における還元反応の標準酸化還元電位は0.03[V]である。式(3)における酸化反応の標準酸化還元電位は0Vである。このとき、式(1)と式(2)との反応では開放電圧を1.26[V]以上にする必要がある。
光電変換層33の開放電圧は、酸化反応の標準酸化還元電位と還元反応の標準酸化還元電位との電位差よりも過電圧の値以上高くすることが好ましい。例えば、式(1)における酸化反応および式(2)における還元反応の過電圧がそれぞれ0.2[V]である。式(1)と式(2)との反応では、開放電圧を1.66[V]以上にすることが好ましい。同様に式(1)と式(3)との反応では、開放電圧を1.63以上にすることが好ましい。
水素イオンや二酸化炭素の還元反応は、水素イオンを消費する反応である。このため、水素イオンの量が少ない場合、還元反応の効率が悪くなる。よって、電解液21と電解液22との間で水素イオンの濃度を異ならせ、濃度差により水素イオンを移動させやすくしておくことが好ましい。陰イオン(例えば水酸化物イオン等)の濃度を電解液21と電解液22との間で異ならせてもよい。
以上のように、本実施形態の光電気化学反応装置は、複数のユニットグループに分けられた複数の光電気化学反応ユニットを具備する。同じグループの光電気化学反応ユニットは、互いに直列に接続されている。一つのユニットグループの直列に接続された2以上の光電気化学反応ユニットが他のユニットグループの直列に接続された2以上の光電気化学反応ユニットに並列に接続されている。
酸化還元反応により電解液21のpHは低下する。電解液22のpHは上昇する。pHの差が1大きくなるにつれて60mVの液間電位が生じる。よって、酸化還元反応が進行するほど電解液の電位が小さくなり、反応しにくくなる。
例えば、複数の光電気化学反応ユニット10の電解液槽1が直列に接続され、並列に接続されない場合、後段の電解液槽1の電解液21のpHは、前段の電解液槽1の電解液21よりも高い。後段の電解液槽1の電解液22のpHは、前段の電解液槽1の電解液21よりも低い。よって、後段の電解液槽1での還元反応の反応量は、前段の電解液槽1での還元反応よりも少ない。後段の電解液槽1での酸化反応の反応量は、前段の電解液槽1での酸化反応よりも少ない。
複数の光電気化学反応ユニット10の電解液槽1が直列に接続されず、並列に接続される場合、流路全体が長くなり、装置面積および製造コストが上昇する場合がある。また、電解液槽毎に供給される電解液の流量の差が生じる場合がある。例えば、電解液槽毎に流路の圧力損失が異なると、電解液の流量にばらつきが生じる。酸化還元反応により発生したガスと電解液とを同じ流路を介して供給する場合、流路内で気液二相流等の多相流が生じ、圧力損失が大きくなる。反応量が多い部分では、圧力損失が大きい。よって、供給される電解液量は少ない。反応量が少ない部分では、ガスの発生量が少なく、圧力損失が小さい。よって、供給される電解液量は多い。
従って、大量の電解液が必要な部分では供給される電解液量が少なく、少量の電解液が必要な部分では供給される電解液量が多い。酸化還元反応によって生じた気泡や、濃度の変化による電解液の粘度の変化、入射光量の変化による反応量の変化によっても電解液の供給量にばらつきが生じる。
本実施形態の光電気化学反応装置では、複数の光電気化学反応ユニットを複数のユニットグループに分け、同じユニットグループの光電気化学反応ユニットの電解液槽を直列に接続し、異なるユニットグループの光電気化学反応ユニットの電解液槽を並列に接続する。これにより、反応のばらつきを抑制しつつ、流路を短くすることができるため、装置面積の増大が抑制され、製造コストを低減することができる。よって、光から化学物質への変換効率を高めることができる。pHのバランスを調整するために光電気化学反応ユニット10の収容部11と別の光電気化学反応ユニット10の収容部12との間を接続してもよい。また、光電気化学反応装置は、反応量の違いによって一つの光電気化学反応ユニット10の収容部11の接続先を他の一つの光電気化学反応ユニット10の収容部11または収容部12に切り替える構成を備えていてもよい。これにより、自由度を高め、反応量の低下や電解液の劣化に対応させやすくすることができる。
光電気化学反応装置における各構成要素の構造例についてさらに説明する。電解液に適用可能な水を含む電解液としては、例えば任意の電解質を含む水溶液を用いることができる。この溶液は水の酸化反応を促進する水溶液であることが好ましい。電解質を含む水溶液としては、例えばリン酸イオン(PO 2−)、ホウ酸イオン(BO 3−)、ナトリウムイオン(Na)、カリウムイオン(K)、カルシウムイオン(Ca2+)、リチウムイオン(Li)、セシウムイオン(Cs)、マグネシウムイオン(Mg2+)、塩化物イオン(Cl)、炭酸水素イオン(HCO )等を含む水溶液が挙げられる。
電解液に適用可能な二酸化炭素を含む電解液としては、例えばLiHCO、NaHCO、KHCO、CsHCO3、リン酸、ホウ酸等を含む水溶液が挙げられる。二酸化炭素を含む電解液は、メタノール、エタノール、アセトン等のアルコール類を含んでもよい。水を含む電解液は、二酸化炭素を含む電解液と同じであってもよい。しかしながら、二酸化炭素を含む電解液における二酸化炭素の吸収量は高いことが好ましい。よって、二酸化炭素を含む電解液として水を含む電解液と異なる溶液を用いてもよい。二酸化炭素を含む電解液は、二酸化炭素の還元電位を低下させ、イオン伝導性が高く、二酸化炭素を吸収する二酸化炭素吸収剤を含む電解液であることが好ましい。
上述した電解液としては、例えばイミダゾリウムイオンやピリジニウムイオン等の陽イオンと、BF やPF 等の陰イオンとの塩からなり、幅広い温度範囲で液体状態であるイオン液体もしくはその水溶液を用いることができる。さらに、他の電解液としては、エタノールアミン、イミダゾール、ピリジン等のアミン溶液もしくはその水溶液が挙げられる。アミンとしては、一級アミン、二級アミン、三級アミン等が挙げられる。これらの電解液が、イオン伝導性が高く、二酸化炭素を吸収する性質を有し、還元エネルギーを低下させる特性を有していてもよい。
一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン等が挙げられる。アミンの炭化水素は、アルコールやハロゲン等が置換していてもよい。アミンの炭化水素が置換されたものとしては、メタノールアミン、エタノールアミン、クロロメチルアミン等が挙げられる。また、不飽和結合が存在していてもかまわない。これら炭化水素は、二級アミン、三級アミンも同様である。
二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン等が挙げられる。置換した炭化水素は、異なってもよい。これは三級アミンでも同様である。例えば、炭化水素が異なるものとしては、メチルエチルアミン、メチルプロピルアミン等が挙げられる。
三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリメタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリブタノールアミン、トリプロパノールアミン、トリエキサノールアミン、メチルジエチルアミン、メチルジプロピルアミン等が挙げられる。
イオン液体の陽イオンとしては、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−プロピルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾールイオン、1−メチル−3−ペンチルイミダゾリウムイオン、1−ヘキシル−3−メチルイミダゾリウムイオン等が挙げられる。
なお、イミダゾリウムイオンの2位が置換されていてもよい。イミダゾリウムイオンの2位が置換された陽イオンとしては、1−エチル−2,3−ジメチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオン、1,2−ジメチル−3−ペンチルイミダゾリウムイオン、1−ヘキシル−2,3−ジメチルイミダゾリウムイオン等が挙げられる。
ピリジニウムイオンとしては、メチルピリジニウム、エチルピリジニウム、プロピルピリジニウム、ブチルピリジニウム、ペンチルピリジニウム、ヘキシルピリジニウム等が挙げられる。イミダゾリウムイオンおよびピリジニウムイオンは共に、アルキル基が置換されてもよく、不飽和結合が存在してもよい。
アニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、BF 、PF 、CFCOO、CFSO 、NO 、SCN、(CFSO、ビス(トリフルオロメトキシスルホニル)イミド、ビス(トリフルオロメトキシスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド等が挙げられる。イオン液体のカチオンとアニオンとを炭化水素で接続した双生イオンでもよい。なお、リン酸カリウム溶液等の緩衝溶液を収容部11、12に供給してもよい。
図3は、光電変換セルの構造例を示す断面模式図である。図3に示す光電変換セル3は、導電性基板30と、還元電極層31と、酸化電極層32と、光電変換層33と、光反射層34と、金属酸化物層35と、金属酸化物層36と、を備える。
導電性基板30は、還元電極層31に接するように設けられる。なお、導電性基板30を還元電極層の一部とみなしてもよい。導電性基板30としては、例えばCu、Al、Ti、Ni、Fe、およびAgの少なくとも1つまたは複数を含む基板が挙げられる。例えば、SUS等のステンレス鋼を含むステンレス基板を用いてもよい。これに限定されず、導電性樹脂を用いて導電性基板30を構成してもよい。また、SiまたはGe等の半導体基板を用いて導電性基板30を構成してもよい。さらに、樹脂フィルム等を導電性基板30として用いてもよい。例えば、イオン交換膜4に適用可能な膜を導電性基板30として用いてもよい。
導電性基板30は、支持体としての機能を有する。収容部11と収容部12とを分離するように導電性基板30を設けてもよい。導電性基板30を設けることにより光電変換セル3の機械的強度を向上させることができる。また、導電性基板30を還元電極層31の一部とみなしてもよい。さらに、必ずしも導電性基板30を設けなくてもよい。
還元電極層31は、還元触媒を含むことが好ましい。還元電極層31は、導電材料および還元触媒の両方を含んでいてもよい。還元触媒としては、水素イオンや二酸化炭素を還元するための活性化エネルギーを減少させる材料が挙げられる。言い換えると、水素イオンや二酸化炭素の還元反応により水素や炭素化合物を生成する際の過電圧を低下させる材料が挙げられる。例えば、金属材料または炭素材料を用いることができる。金属材料としては、例えば水素の場合、白金、ニッケル等の金属、または当該金属を含む合金を用いることができる。二酸化炭素の還元反応では金、アルミニウム、銅、銀、白金、パラジウム、もしくはニッケル等の金属、または当該金属を含む合金を用いることができる。炭素材料としては、例えばグラフェン、カーボンナノチューブ(Carbon Nanotube:CNT)、フラーレン、またはケッチェンブラック等を用いることができる。なお、これに限定されず、還元触媒として例えばRu錯体またはRe錯体等の金属錯体、イミダゾール骨格やピリジン骨格を有する有機分子を用いてもよい。また、複数の材料を混合してもよい。
酸化電極層32は、酸化触媒を含むことが好ましい。酸化電極層32は、導電材料および還元触媒の両方を含んでいてもよい。酸化触媒としては、水を酸化するための活性化エネルギーを減少させる材料が挙げられる。言い換えると、水の酸化反応により酸素と水素イオンを生成する際の過電圧を低下させる材料が挙げられる。例えば、イリジウム、白金、コバルト、またはマンガン等が挙げられる。また、酸化触媒としては、二元系金属酸化物、三元系金属酸化物、または四元系金属酸化物などを用いることができる。二元系金属酸化物としては、例えば酸化マンガン(Mn−O)、酸化イリジウム(Ir−O)、酸化ニッケル(Ni−O)、酸化コバルト(Co−O)、酸化鉄(Fe−O)、酸化スズ(Sn−O)、酸化インジウム(In−O)、または酸化ルテニウム(Ru−O)等が挙げられる。三元系金属酸化物としては、例えばNi−Co−O、La−Co−O、Ni−La−O、Sr−Fe−O等が挙げられる。四元系金属酸化物としては、例えばPb−Ru−Ir−O、La−Sr−Co−O等が挙げられる。なお、これに限定されず、酸化触媒としてRu錯体またはFe錯体等の金属錯体を用いることもできる。また、複数の材料を混合してもよい。
還元電極層31および酸化電極層32の少なくとも一方は、多孔質構造を有していてもよい。多孔質構造を有する電極層に適用可能な材料としては、上記材料に加え、例えばケッチェンブラックやバルカンXC−72等のカーボンブラック、活性炭、金属微粉末等が挙げられる。多孔質構造を有することにより、酸化還元反応に寄与する活性面の面積を大きくすることができるため、変換効率を高めることができる。
比較的低い光の照射エネルギーを用いて低電流密度の電極反応を行う場合、触媒材料の選択肢が広い。よって、例えばユビキタス金属等を用いて反応を行うことが容易であり、反応の選択性を得ることも比較的容易である。一方、電解液槽1に光電変換層33を設けず、配線等により光電変換層33と還元電極層31および酸化電極層32の少なくとも一方とを電気的に接続する場合、電解液槽を小型化する等の理由により一般的に電極面積は小さくなり、高電流密度で反応を行う場合がある。この場合、触媒として貴金属を用いることが好ましい。
光電変換層33は、光電変換層33xと、光電変換層33yと、光電変換層33zとを有する積層構造を備える。光電変換層の積層数は、図3に限定されない。
光電変換層33xは、例えばn型のアモルファスシリコンを含むn型半導体層331nと、真性(intrinsic)のアモルファスシリコンゲルマニウムを含むi型半導体層331iと、p型の微結晶シリコンを含むp型半導体層331pと、を有する。i型半導体層331iは、例えば400nmを含む短波長領域の光を吸収する層である。よって、光電変換層33xでは、短波長領域の光エネルギーによって、電荷分離が生じる。
光電変換層33yは、例えばn型のアモルファスシリコンを含むn型半導体層332nと、真性のアモルファスシリコンゲルマニウムを含むi型半導体層332iと、p型の微結晶シリコンを含むp型半導体層332pと、を有する。i型半導体層332iは、例えば600nmを含む中間波長領域の光を吸収する層である。よって、光電変換層33yでは、中間波長領域の光エネルギーによって、電荷分離が生じる。
光電変換層33zは、例えばn型のアモルファスシリコンを含むn型半導体層333nと、真性のアモルファスシリコンを含むi型半導体層333iと、p型の微結晶シリコンを含むp型半導体層333pと、を有する。i型半導体層333iは、例えば700nmを含む長波長領域の光を吸収する層である。よって、光電変換層33zでは、長波長領域の光エネルギーによって、電荷分離が生じる。
p型半導体層またはn型半導体層は、例えば半導体材料にドナーまたはアクセプタとなる元素を添加することにより形成することができる。なお、光電変換層では、半導体層としてシリコン、ゲルマニウム等を含む半導体層を用いているが、これに限定されず、例えば化合物半導体層等を用いることができる。化合物半導体層としては、例えばGaAs、GaInP、AlGaInP、CdTe、CuInGaSe等を含む半導体層を用いることができる。また、光電変換が可能であればTiOやWOのような材料を含む層を用いてもよい。さらに、各半導体層は、単結晶、多結晶、またはアモルファスであってもよい。また、光電変換層に酸化亜鉛層を設けてもよい。
光反射層34は、導電性基板30と光電変換層33との間に設けられる。光反射層34としては、例えば金属層または半導体層の積層からなる分布型ブラッグ反射層が挙げられる。光反射層34を設けることにより、光電変換層33で吸収できなかった光を反射させて光電変換層33xないし光電変換層33zのいずれかに入射することができるため、光から化学物質への変換効率を高めることができる。光反射層34としては、例えばAg、Au、Al、Cu等の金属、それら金属の少なくとも1つを含む合金等の層を用いることができる。
金属酸化物層35は、光反射層34と光電変換層33との間に設けられる。金属酸化物層35は、例えば光学的距離を調整して光反射性を高める機能を有する。金属酸化物層35としては、n型半導体層331nとオーミック接触が可能な材料を用いることが好ましい。金属酸化物層35としては、例えばインジウム錫酸化物(Indium Tin Oxide:ITO)、酸化亜鉛(ZnO)、フッ素を含む酸化錫(Fluorine−doped Tin Oxide:FTO)、アルミニウムを含む酸化亜鉛(Aluminum−doped Zinc Oxide:AZO)、アンチモンを含む酸化錫(Antimony−doped Tin Oxide:ATO)等の透光性金属酸化物の層を用いることができる。
金属酸化物層36は、酸化電極層32と光電変換層33との間に設けられる。金属酸化物層36を光電変換層33の表面に設けてもよい。金属酸化物層36は、酸化反応による光電変換セル3の破壊を抑制する保護層としての機能を有する。金属酸化物層36を設けることにより、光電変換層33の腐食を抑制し、光電変換セル3の寿命を長くすることができる。なお、必ずしも金属酸化物層36を設けなくてもよい。
金属酸化物層36としては、例えばTiO、ZrO、Al、SiO、またはHfO等の誘電体薄膜を用いることができる。金属酸化物層36の厚さは、10nm以下、さらには5nm以下であることが好ましい。トンネル効果により導電性を得るためである。金属酸化物層36として、例えばインジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、フッ素を含む酸化錫(FTO)、アルミニウムを含む酸化亜鉛(AZO)、アンチモンを含む酸化錫(ATO)等の透光性を有する金属酸化物の層を用いてもよい。
金属酸化物層36は、例えば金属と透明導電性酸化物とを積層させた構造、金属とその他導電性材料とを複合させた構造、または透明導電性酸化物とその他導電性材料とを複合させた構造を有してもよい。上記構造にすることにより、部品点数が減り、軽量かつ製造が容易になりコストも低くすることができる。金属酸化物層36は、保護層、導電層、および触媒層としての機能を有していてもよい。
図3に示す光電変換セル3では、n型半導体層331nのi型半導体層331iとの接触面の反対面が光電変換層33の第1の面となり、p型半導体層333pのi型半導体層333iとの接触面の反対面が第2の面となる。以上のように、図3に示す光電変換セル3は、光電変換層33xないし光電変換層33zを積層することで、太陽光の幅広い波長の光を吸収することができ、太陽光エネルギーをより効率良く利用することができる。このとき、各光電変換層が直列に接続されているため高い電圧を得ることができる。
図3では、光電変換層33上に電極層が積層されているため、電荷分離した電子と正孔とをそのまま酸化還元反応に利用することができる。また、配線等により光電変換層33と電極層を電気的に接続する必要がない。よって、高効率で酸化還元反応を行うことができる。
並列接続で複数の光電変換層を電気的に接続してもよい。2接合型、単層型の光電変換層を用いてもよい。2層または4層以上の光電変換層の積層を有していてもよい。複数の光電変換層の積層に代えて、単層の光電変換層を用いてもよい。
本実施形態の光電気化学反応装置は、還元電極層と、酸化電極層と、光電変換層とを一体化し、部品数が低減され、簡略化されたシステムである。よって、例えば製造、設置、およびメンテナンスの少なくとも一つが容易になる。さらに、光電変換層と還元電極層および酸化電極層とを接続する配線等が不要となるため、光透過率を高め、受光面積を大きくすることができる。
光電変換層33が電解液に接触するために腐食し、腐食生成物が電解液に溶解することで電解液の劣化が生じる場合がある。腐食を防ぐためには、保護層を設けることが挙げられる。しかし、保護層成分が電解液に溶解する場合がある。そこで、流路や電解液槽内に金属イオンフィルタなどのフィルタを設けることで電解液の劣化が抑制される。
本実施形態の光電気化学反応装置は、余剰電力対策に適した技術であり、太陽光エネルギーを活用することが求められている。太陽光の照度が強い場合、余剰電力が無いときには可能な限りエネルギーを得ておき、余剰電力があるときには消費のために電解液循環等にエネルギーを利用する。これによりエネルギーミックスが効率よく行われ、全体としてのエネルギー利用率を増加させるができる。電解液に緩衝溶液を用いる場合、反応量が小さいと反応によるpHの変化も小さい。そこで、反応させていないときに電解液を循環させて、電解液成分を均一に保ち、反応時の電解液供給を制限または停止させることでトータルの効率の低下やコストを抑えることができる。例えば、夜間の風力やコストが低い余剰電力を用いて電解液を循環させ、昼間に電解液循環を停止もしくは最低限の供給量で反応させて、酸化還元反応を行うことが好ましい。
本実施形態の光電気化学反応装置は、図1に示す構成に限定されない。図4は、光電気化学反応装置の他の例を示す模式図である。図4に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、複数の流路51の少なくとも一つが複数の電解液槽1の一つの収容部11と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部12とを接続し、複数の流路52の少なくとも一つが複数の電解液槽1の一つの収容部12と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部11とを接続するように設けられている構成が異なる。図4において、流路52は、流路51と交差している。これにより、流路51および流路52の設置面積を小さくすることができる。なお、複数の流路52の少なくとも一つが複数の電解液槽1の一つの収容部12と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部11とを接続するように設けられてもよい。
これにより、高いpHを有する電解液と低いpHを有する電解液とを混合し、複数の電解液槽において第1の電解液同士のpHの差および第2の電解液同士のpHの差を低減することができる。よって、例えば光から化学物質への変換効率を高めることができる。このように、酸化反応が生じる電解液槽と還元反応が生じる電解液槽とを流路によって接続し、電解液槽間の電解液の移動を可能にすることでpHや電解液成分の変化などの影響が抑制される。よって、装置全体の変換効率を高めることができる。
図4に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、収容部11と収容部12とを接続する流路57を具備する構成が異なる。図4において、流路57は、流路51と流路52とを直列に接続する。このとき、流路53を介して供給された電解液は、流路51、流路57、流路52、および流路54の間を移動する。よって、電解液を循環させることができる。なお、流路57は、電解液槽1毎に設けられていてもよい。
天候等によって光電変換層毎に入射する光の量が異なる場合がある。このとき、直列に接続された電解液槽1の間で反応量の差が生じる。よって、pHの差により触媒からの金属イオンの溶出や電解液槽や流路等の部材の劣化、効率の低下を招くことがある。
直列に接続された電解液槽1の間で電解液を循環させる場合、光電変換層33に入射する光の量が多いと電解液21のpHは低下し、電解液22のpHは上昇する。一つの電解液槽の電解液を他の一つの電解液槽に供給すると、全体としての効率が低下する場合がある。
これに対し、流路57を設けることにより、電解液21と電解液22とを循環させる。よって、反応量の差を小さくすることができる。腐食や環境性の観点から電解液21および電解液22のpHは、例えば3以上11以下の範囲に調整されることが好ましい。また、電解液21および電解液22のpHは、7ではないことが好ましい。
図4に示す光電気化学反応装置は、流路57に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、当該データに応じて当該電解液の状態を調節する調節器と、を具備してもよい。
光電気化学反応装置は、複数の電解液槽1の少なくとも一つの収容部11に収容される電解液21に二酸化炭素を供給する二酸化炭素供給部をさらに具備してもよい。
図5に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、電解液23を収容する収容部を有する混合槽62をさらに具備する構成が少なくとも異なる。
混合槽62は、流路51と流路52とを接続する。電解液23は、電解液21および電解液22の少なくとも一つの電解液成分を含む。混合槽62は、例えば収容部となる空洞を有する立体形状を有する。
混合槽62に電極を設けてもよい。電極を設けることにより、例えば電解液濃度、pH、温度、電解液の劣化を検知することができる。よって、例えば電解液交換時期、触媒層交換時期等を予測することができる。また、電極を用いて触媒層からの金属イオンの溶出物や光電変換層からの金属イオンの溶出物を捕捉することができる。
図5に示す光電気化学反応装置は、電解液23のpH、温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、当該データに応じて当該電解液の状態を調節する調節器と、を具備してもよい。例えば電解液23のpHが基準値の範囲外のときに収容部11および収容部12の少なくとも一つに流路を介して電解液が補充されてもよい。
図6は、光電気化学反応装置の他の例の一部を示す模式図である。図6に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して流路に流れる電解液の状態を示すデータを取得するセンサ71a、71bと、当該データに応じて当該電解液の状態を調節する調節器72a、72bとを具備する構成が少なくとも異なる。
センサ71aは、例えば流路51または流路52を介して直列に接続された電解液槽1に流れる電解液、すなわち流路56に流れる電解液の温度を示す温度データを取得する機能を有する。センサ71aは、例えばユニットグループ毎に設けられる。
調節器72aは、温度データに応じて流路56に流れる電解液の温度を調節する機能を有する。調節器72aとしては、例えばヒータが挙げられる。例えば、制御回路により温度データに応じてヒータの設定温度、または動作時間等を設定する制御信号を生成する。ヒータは、制御信号に応じた設定温度または動作時間で電解液を加熱して電解液の温度を調節する。調節器72aがセンサ71aを有してもよい。
センサ71aは流路55に流れる電解液の温度を調節してもよい。このとき、調節器72aは、温度データに応じて流路55に流れる電解液の温度を調節する機能を有する。
センサ71bは、流路56に流れる電解液の流量を示す流量データを取得する機能を有する。センサ71bは、例えばユニットグループ毎に設けられる。
調節器72bは、流量データに応じて流路56に流れる電解液の流量を調節する機能を有する。調節器72bとしては、例えば流量調節器が挙げられる。例えば、制御回路により流量データに応じて流量調節器の制御信号を生成する。流量調節器は、制御信号に応じて電解液の流量を調節する。調節器72bがセンサ71bを有してもよい。
センサ71bは流路55に流れる電解液の流量を調節してもよい。このとき、調節器72bは、流量データに応じて流路55に流れる電解液の流量を調節する機能を有する。
光電気化学反応装置は、流路55または流路56に流れる電解液に加えられる圧力を示す圧力データを取得する圧力センサと、圧力データに応じて流路55または流路56に流れる電解液に加えられる圧力を調節する調節器と、を具備してもよい。
図6に示す光電気化学反応装置では、ユニットグループ毎にセンサおよび調節器を具備する。よって、光電気化学反応ユニット毎にセンサおよび調節器を設ける場合と比較してセンサおよび調節器の数を減らすことができる。よって、製造コストを低減することができる。なお、図6に示すセンサおよび調節器は、他の光電気化学反応装置に用いられるセンサおよび調節器に用いられてもよい。
図7は、光電気化学反応装置の他の構成例を示す模式図である。図7に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、複数のユニットグループの少なくとも一つのユニットグループが2以上の光電気化学反応ユニット10を有する第1のサブグループと1または2以上の光電気化学反応ユニット10を有する第2のサブグループとを含む複数のサブグループに分けられている構成が異なる。図7では、一例としてユニットグループG3の光電気化学反応ユニット10が4つの光電気化学反応ユニット10を有するサブグループG3−1と2つの光電気化学反応ユニット10を有するサブグループG3−2とを含む複数のサブグループに分けられている構成を示している。
サブグループG3−1の光電気化学反応ユニット10の電解液槽1のそれぞれは、流路51または流路52を介して互いに直列に接続されている。サブグループG3−2の光電気化学反応ユニット10の電解液槽1のそれぞれは、流路51または流路52を介して互いに直列に接続されている。サブグループG3−2の光電気化学反応ユニット10の互いに直列に接続された電解液槽1は、流路51または流路52を介してサブグループG3−1の2以上の光電気化学反応ユニット10の電解液槽1に並列に接続されている。
図8は、光電気化学反応ユニットの他の構成例を示す模式図である。図8に示す光電気化学反応ユニット10は、図1に示す光電気化学反応ユニット10と比較して、流路58および流路59を具備する構成が異なる。流路58は、被還元物質の還元反応による生成物を収集する生成物流路としての機能を有する。流路59は、被酸化物質の酸化反応による生成物を収集する生成物流路としての機能を有する。還元反応および酸化反応の生成物は、例えば気体である。よって、流路58および流路59が流路51および流路52よりも重力方向において上になるように設置されることが好ましい。また、収容部11は、電解液21を含む液相領域と還元反応の生成物を含む気相領域とを有し、収容部12は、電解液22を含む液相領域と酸化反応の生成物を含む気相領域とを有していてもよい。
流路58は、一つのユニットグループの光電気化学反応ユニット10の一つの電解液槽1の収容部11および収容部12の一方と他の一つのユニットグループの光電気化学反応ユニット10の一つの電解液槽1の収容部11および収容部12の一方とを接続する。流路59は、上記一つのユニットグループの光電気化学反応ユニット10の一つの電解液槽1の収容部11および収容部12の他方と上記他の一つのユニットグループの光電気化学反応ユニット10の一つの電解液槽1の収容部11および収容部12の他方とを接続する。すなわち、一つの流路58を介して直列に接続された光電気化学反応ユニットのグループは、他の一つの流路58を介して接続された光電気化学反応ユニットのグループと異なる。
図9は、図8に示す光電気化学反応ユニットを図1に示す光電気化学反応装置に適用した光電気化学反応装置の例を示す模式図である。図9に示す光電気化学反応装置は、2行2列以上に配列された複数の光電気化学反応ユニット10を具備する。第1行の光電気化学反応ユニット10の電解液槽1のそれぞれは、流路51を介して互いに直列に接続されている。第2行の光電気化学反応ユニット10の電解液槽1のそれぞれは、流路51を介して互いに直列に接続されている。第2行の光電気化学反応ユニット10の互いに直列に接続された電解液槽1は、流路51、流路53、および流路55を介して第1行の光電気化学反応ユニット10の互いに直列に接続された電解液槽1に並列に接続されている。なお、流路52、流路53、および流路56や流路59を設ける場合も同様である。
図9に示す光電気化学反応装置は、流路51を介して互いに直列に接続された電解液槽1に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサ81と、流路58を介して互いに直列に接続された電解液槽1に流れる酸化還元反応による生成物の生成量を示すデータを取得するセンサ82と、を具備する。センサ81は、例えば流路55に流れる電解液のデータを取得する。センサ82は、例えば流路58を介して直列に接続された電解液槽1に直列に接続された流路60に流れる還元反応による生成物の生成量のデータを取得する。センサ81としては、例えばセンサ71aに適用可能なセンサが挙げられる。センサ82としては、例えばガスセンサ等が挙げられる。なお、流路51と同様に流路52を介して直列に接続された電解液槽1に流れる電解液の状態を示すデータを取得するセンサが設けられてもよい。また、流路59を介して直列に接続された電解液槽1に流れる酸化反応による生成物の生成量を示すデータを取得するセンサが設けられてもよい。これらのセンサの説明は、センサ81およびセンサ82の説明を適宜援用することができる。
図9に示す光電気化学反応装置では、光電気化学反応ユニット10毎の状態を監視することができる。例えば、センサ81で取得したデータをセンサ81に電気的に接続された制御回路83に送り、ユニットグループ毎の光電気化学反応ユニット10の反応量の積算値を見積もる。また、センサ82で取得したデータをセンサ82に電気的に接続された制御回路83に送り、流路58を介して直列に接続された電解液槽1の酸化還元反応による生成物量の積算値を見積もる。上記2つの積算値を用いて制御回路83によりCT技術等に用いられる逆行列解析を行い、各光電気化学反応ユニット10での反応量を見積もることができる。よって、例えば反応量および生成量が基準値よりも低い光電気化学反応ユニット10を動作不良と判定することができる。さらに、見積もった値を制御回路83に電気的に接続された電解液供給部85の制御回路に送り、電解液供給動作の実行を制御してもよい。これにより、電解液中の被還元物質および被酸化物質の量を調整することができる。
電解液流路と生成物流路とを別々に設ける場合、各生成物流路内の圧力の差が小さいため、各電解液槽に収容された電解液の液面の面積のばらつきが小さい。しかしながら、山の斜面や段々畑等の休耕地等の高低差を有する場所に光電気化学反応装置を設置する場合、各電解槽に収容された電解液の液面の面積差が大きい。よって、電解液と電極層との接触面積が電解液槽毎にばらつき、酸化還元反応の性能にもばらつきが生じやすい。電解液と電極の接する面積が少ない場合、入射する光のエネルギーが同一であっても反応密度が増加し、触媒性能による反応が減少する場合や反応の選択性が低下する場合がある。
光電変換層が電解液に浸漬された構成の光電気化学反応ユニットを赤道直下以外の環境下に設置する場合において、太陽光を豊富に受けるために受光面を重力方向に対して傾斜させて設置する場合がある。このとき、液面は重力方向に対して直交するため、受光面と太陽との間に気液の界面が存在する。気相から液相に向けて光が入射すると入射角が小さくても気液の界面において反射し、光電変換層に達するまでに光のエネルギー量が減少しやすくなる。液面の面積が小さい程この反応の低下は小さくなる。
太陽エネルギーで温められることにより電解液槽の温度は上昇する。特に有色材料を用いた光電変換層の温度は光を吸収するために電解液槽の温度が上昇しやすい。一方、生成物流路の温度は、電解液槽の温度よりも低くなりやすい。このため、蒸発した電解液成分が生成部流路で冷却されて液化する。このとき、生成物流路中で気液二相流になりやすく、生成物流路に液滴が発生することによって圧力損失が大きくなる。よって、各電解液槽からの発生ガスを均等に収集することが困難となる。また、電解液槽にかかる圧力が異なるために反応に差が生じやすくなる。これらの現象により各電解槽での反応量を発生ガスや太陽光の強さなどで見積もることが困難になり全体のシステムとしての効率の向上が困難になる。さらには故障した光電気化学反応ユニットの位置を特定することも困難になる。
本実施形態の光電気化学反応装置では、複数の光電気化学反応ユニットを複数のユニットグループに分け、同じユニットグループの光電気化学反応ユニットを直列に接続し、異なるユニットグループの光電気化学反応ユニットを並列に接続する。これにより、光電気化学反応ユニット毎のpHのばらつき等による酸化還元反応のばらつきを抑制しつつ、流路を短くすることができるため、装置面積の増大が抑制され、製造コストを低減することができる。よって、光から化学物質への変換効率を高めることができる。
図10は、光電気化学反応装置の設置例を示す模式図である。ユニットグループG1ないしユニットグループG3の光電気化学反応ユニット10のそれぞれは、面100に設けられている。図10に示すユニットグループG2の光電気化学反応ユニット10のそれぞれは、ユニットグループG1の光電気化学反応ユニット10のそれぞれの位置よりも高い位置に設けられている。また、図10に示すユニットグループG2の光電気化学反応ユニット10のそれぞれは、ユニットグループG1の光電気化学反応ユニット10のそれぞれの位置よりも高い位置に設けられている。同じユニットグループの光電気化学反応ユニットのそれぞれの高低差は0cm以上30cm以下であることが好ましい。高低差を小さくすることにより、電解液槽毎の電解液の流量や流路の圧力のばらつきが小さく光電気化学反応ユニット毎の反応状態を監視することができる。
還元触媒層および酸化触媒層の少なくとも一つの触媒層を有する場合、触媒層と電解液との接触面積が小さいと単位面積あたりの反応量の増加により性能が低下する。これに対し、高低差を小さくすることにより、触媒層と電解液との接触面積のばらつきが抑制され、上記性能の低下を抑制することができる。複数の光電気化学反応ユニットを垂直に設置する場合、触媒面積が1平方メートルであり、高低差が30cmであると反応面積が30%減少する。高低差はない方が好ましいが、設置箇所の地理的条件や、各光電気化学反応ユニット10の形状の相違等の理由から、高低差を完全になくすことは困難である。
上記高低差は、光電気化学反応ユニット10の高低差でなく触媒層の高低差であってもよい。中緯度地方に設置する場合、斜めに光が入射する場合がある。このとき、各光電気化学反応ユニット10を斜めに設置することにより効率良く反応させることができる。各光電気化学反応ユニット10を斜めに設置する場合、高低差による反応面積の減少がより顕著になるため、より高低差を小さくすることが求められる。
上記理由から高低差は30cm以下、可能であれば10cm以下であることが好ましい。各ユニットグループの光電気化学反応ユニット10のそれぞれの数は図10に示す数に限定されない。同じユニットグループの光電気化学反応ユニットの高低差を小さくすることにより、酸化還元反応の性能のばらつきを抑制することができる。
(実施例1)
本実施例では、光電気化学反応ユニットを具備する光電気化学反応装置を作製した。
構造体を準備した。構造体は、厚さ500nmの三接合型光電変換層と、三接合型の光電変換層の第1の面上に設けられた厚さ300nmのZnO層と、ZnO層上に設けられた厚さ200nmのAg層と、Ag層上に設けられた厚さ1.5mmのSUS基板と、三接合型光電変換層の第2の面上に設けられた厚さ100nmのITO層と、を有する。
三接合型光電変換層は、短波長領域の光を吸収する第1の光電変換層と、中波長領域の光を吸収する第2の光電変換層と、長波長領域の光を吸収する第3の光電変換層と、を有する。第1の光電変換層は、p型微結晶シリコン層と、i型アモルファスシリコン層と、n型アモルファスシリコン層と、を有する。第2の光電変換層は、p型微結晶シリコン層と、i型アモルファスシリコンゲルマニウム層と、n型アモルファスシリコン層と、を有する。第3の光電変換層は、p型微結晶シリコンゲルマニウム層と、i型アモルファスシリコン層と、n型アモルファスシリコン層と、を有する。
ソーラーシミュレータ(AM1.5、1000W/m)を用いて上記構造体に光を照射したときの開放電圧を測定した。開放電圧は2.1Vであった。
硝酸ニッケルを用いた電着法により上記三接合型光電変換層の構造体上のITO層上に酸化触媒として厚さ200nmのNi(OH)層を形成した。スパッタリングによりSUS基板上に還元触媒として厚さ500nmのPt層を形成した。
上記構造体を正方形状に切り出して、エッジ部分を熱硬化性エポキシ樹脂で封止した。構造体の周囲をイオン交換膜(ナフィオン(登録商標))で囲むことにより一枚のシート状にした。このイオン交換膜と複数枚のセルを組み合わせて10cm角のユニットを作製し、それを縦横10個並べて100cm四方の光電気化学反応ユニットを作製した。例えば、複数の穴を有する1枚のイオン交換膜の複数の穴に光電変換セルを埋め込んでシート状としてもよい。1つの穴を有するイオン交換膜の穴に光電変換セルを埋め込んだ構造体を複数並べてシート状としてもよい。穴を有する光電変換セルの穴にイオン交換膜を埋め込んでもよい。
このシート状の光電気化学反応ユニットを縦100cm×横100cmの中空部を有する厚さ3cmの一対の枠で挟み込み、一対の枠の間にシリコーン樹脂層を形成した。一対の枠の一方の中空部を覆うように無反射の太陽電池用ガラスからなる窓を作製した。一対の枠の他方の中空部を覆うようにアクリル樹脂板を形成した。これにより光電気化学反応ユニットを封止した封止体を作製した。光電気化学反応ユニットのNi(OH)層側とPt層側にそれぞれ流路を設けた。電解液としてはCOガスを飽和させた0.5Mリン酸水素カリウム水溶液を用いた。電解液槽の一部に発生ガスを捕集するためのガス回収流路を設けた。以上により光電気化学反応モジュールを作製した。混合槽として内容積30cm×3cm×3cmのアクリル製の容器をモジュールのPt層側に接続した。
このモジュールを2つ並べ、それぞれのモジュールの流路と混合槽とを塩化ビニル樹脂によって接続し、混合槽内に羽根車式電解液ポンプ、pHセンサ、温度センサを設け、混合槽外へシリコーン樹脂によりシールされた導線によって信号線を取り出した。窓を介してソーラーシミュレータ(AM1.5、1000W/m)を用いて上記構造体に光を照射し、反応させた。電極反応の電流密度は2.5mA/cmであった。反応時間は6時間であった。反応前の酸化電極側の電解液および還元電極側の電解液のpHは7であった。これに対し、反応後の酸化電極側の電解液のpHは8であり、還元電極側の電解液のpHは5であった。
(比較例1)
導線を介して電源に接続された厚さ1.5mmのSUS基板とSUS基板上の厚さ100nmの白金膜とを有する複合基板(4cm角)と、白金箔(4cm角)と、を準備した。電源は、太陽電池の模擬装置である。5cm角、厚さ1cmのアクリル製の枠の酸化電極側および還元電極側のそれぞれに流路とガス流路とを形成した。枠に複合基板と白金箔とを内包し、複合基板と白金箔との間にイオン交換膜(Nafion117、6cm角)を設け、複合基板の外側と白金箔の外側の両方にシリコンゴムシートとアクリル板(縦7cm×横7cm×厚さ3mm)で挟んだモジュールを作製した。モジュール内にpH7のリン酸カリウム緩衝溶液を供給した。複合基板を還元電極とし、白金箔を酸化電極とした。酸化電極側の電解液および還元電極側の電解液として0.5M炭酸水素カリウム水溶液を用いた。
上記モジュールにおいて、10mA/cmの電流密度で電流を流して1.5時間反応させた。反応前の酸化電極側の電解液および還元電極側の電解液のpHは7であった。これに対し、反応後の酸化電極側の電解液のpHは11.12であった。還元電極側の電解液のpHは3.85であった。
(実施例2)
比較例1のモジュールからなる第1のモジュールと比較例1のモジュールからなる第2のモジュールとを並べ、第1のモジュールの酸化電極側の流路と第2のモジュールの還元電極側の流路とを第1のシリコンチューブで接続した。第1のモジュールの還元電極側の流路と第2のモジュールの酸化電極側の流路とを第2のシリコンゴムチューブで接続した。それぞれの流路にチューブポンプを接続し、0.3cc/分で電解液を循環させた。10mA/cmの電流密度で電流を流して1.5時間反応させた。第1のモジュールにおいて、酸化電極側電解液のpHは7.00であり、還元電極側の電解液のpHは6.79であった。第2のモジュールにおいて、酸化電極側の電解液のpHは6.99であり、還元電極側の電解液のpHは6.55であった。
このことから、実施例1および実施例2では、比較例1と比較して還元電極側の電解液のpHと酸化電極側の電解液のpHとの差が小さいことがわかる。このように、第1のモジュールおよび第2のモジュールの一方の酸化電極側の電解液と、第1のモジュールおよび第2のモジュールの他方の還元電極側の電解液とを接続する流路を設けることで酸化電極側の電解液および還元電極側の電解液のpHの変化が抑えられる。よって、装置全体の出力低下を防ぐことができる。
(実施例3)
20の光電気化学反応モジュールの電解液槽を直列に接続して光電気化学反応装置を作製した。20の光電気化学反応モジュールのそれぞれにおいて、セルサイズが100cm×100cmであり、化学物質の変換効率が10%であり、酸化側の電解液の体積および還元側の電解液の体積のそれぞれが30Lである構成は、実施例1の光電気化学反応モジュールと異なる。
上記光電気化学反応装置において、晴天率100%で1時間反応を行った。光電気化学反応モジュールの電解液置換率が0.001%、0.01%、および0.1%の場合の酸化側電解液および還元側電解液のpHの変化を評価した。評価結果を図11に示す。電解液置換率は、供給する電解液の量を変えることで変化させることができる。酸化側電解液のpHの初期値は9であった。還元側電解液のpHの初期値は7であった。
電解液置換率が0.01%の場合、20の光電気化学反応モジュールを直列に接続した段階で酸化側電解液のpHが還元側電解液のpHと等しくなった。よって、両電極間の液間電位が120mVから0Vになるため、その分効率が低下した。電解液置換率が0.05%の場合、4つの光電気化学反応モジュールを直列に接続した段階で酸化側電解液のpHが還元側電解液のpHと等しくなった。このことから、光電気化学反応モジュールの接続数が20を超える場合、性能の低下が顕著になることがわかる。図11から電解液置換率が高くなるにつれて光電気化学反応モジュールの数を増やしても酸化側電解液と還元側電解液とのpHの差が小さくなりにくいことがわかる。
電解液置換率を上げることは、電解液の流量を増加させる必要があるため、エネルギー分のロスが大きい。電解液置換率を向上させるためには少なくとも反応化学量論の2倍の電解液を流通させること、すなわち各光電気化学反応ユニットにおいて、電解液中の被還元物質および被酸化物質の量を酸化還元反応により消費される量の2倍以上にすることが好ましい。
上記実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…電解液槽、3…光電変換セル、4…イオン交換膜、10…光電気化学反応ユニット、11…収容部、12…収容部、21…電解液、22…電解液、23…電解液、30…導電性基板、31…還元電極層、32…酸化電極層、33…光電変換層、33x…光電変換層、33y…光電変換層、33z…光電変換層、34…光反射層、35…金属酸化物層、36…金属酸化物層、51 流路、52…流路、53…流路、54…流路、55…流路、56…流路、57…流路、58…流路、59…流路、60…流路、62…混合槽、71a…センサ、71b…センサ、72a…調節器、72b…調節器、73…センサ、74…モニタ回路、100…面、331…面、331i…i型半導体層、331n…n型半導体層、331p…p型半導体層、332…面、332i…i型半導体層、332n…n型半導体層、332p…p型半導体層、333i…i型半導体層、333n…n型半導体層、333p…p型半導体層。

Claims (12)

  1. 複数の第1の光電気化学反応ユニットを備える第1のユニットグループと複数の第2の光電気化学反応ユニットを備える第2のユニットグループとを含み、前記第1および第2の光電気化学反応ユニットのそれぞれが、被還元物質を含む第1の電解液を収容する第1の収容部と被酸化物質を含む第2の電解液を収容する第2の収容部とを有する電解液槽と、前記第1の電解液に浸漬された還元電極層と、前記第2の電解液に浸漬された酸化電極層と、前記還元電極層に電気的に接続された第1の面と前記酸化電極層に電気的に接続された第2の面とを有する光電変換層と、を備える複数のユニットグループを有し、
    前記複数の第1の光電気化学反応ユニットの前記電解液槽のそれぞれは、互いに直列に接続され、
    前記複数の第2の光電気化学反応ユニットの前記電解液槽のそれぞれは、互いに直列に接続され、
    前記複数の第2の光電気化学反応ユニットにおける互いに直列に接続された前記電解液槽は、前記複数の第1の光電気化学反応ユニットにおける互いに直列に接続された前記電解液槽に並列に接続されている、光電気化学反応装置。
  2. 前記第1のユニットグループは、2以上20以下の前記第1の光電気化学反応ユニットを備え、
    前記第2のユニットグループは、2以上20以下の前記第2の光電気化学反応ユニットを備える、光電気化学反応装置。
  3. 前記還元電極層は、前記第1の面に接し、
    前記酸化電極層は、前記第2の面に接する、請求項1に記載の光電気化学反応装置。
  4. 前記被還元物質は、二酸化炭素を含み、
    前記被酸化物質は、水を含む、請求項1に記載の光電気化学反応装置。
  5. 前記第1および第2の光電気化学反応ユニットのそれぞれは、前記第1の収容部と前記第2の収容部との間に設けられたイオン交換膜をさらに備える、請求項1に記載の光電気化学反応装置。
  6. 前記複数の第1の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第1の流路と、
    前記複数の第2の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第2の流路と、
    前記第1の流路を介して互いに直列に接続された前記電解液槽に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第1のデータを取得する第1のセンサと、
    前記第2の流路を介して互いに直列に接続された前記電解液槽に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第2のデータを取得する第2のセンサと、をさらに具備する、請求項1に記載の光電気化学反応装置。
  7. 前記第2のユニットグループは、2以上の前記第2の光電気化学反応ユニットを有する第1のサブグループと1または2以上の前記第2の光電気化学反応ユニットを有する第2のサブグループとを有し、
    前記第1のサブグループおよび前記第2のサブグループの少なくとも一つにおける前記2以上の前記第2の光電気化学反応ユニットの前記電解液槽は、互いに直列に接続され、
    前記第2のサブグループの前記第2の光電気化学反応ユニットにおける一つの電解液槽または互いに直列に接続された前記電解液槽は、前記第1のサブグループの2以上の前記第2の光電気化学反応ユニットにおける互いに直列に接続された前記電解液槽に並列に接続されている、請求項1に記載の光電気化学反応装置。
  8. 前記複数の第1の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第1の電解液流路と、
    前記複数の第2の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第2の電解液流路と、
    前記複数の第1の光電気化学反応ユニットの一つの前記電解液槽と前記複数の第2の光電気化学反応ユニットの一つの前記電解液槽とを直列に接続する第1の生成物流路と、
    前記複数の第1の光電気化学反応ユニットの他の一つの前記電解液槽と前記複数の第2の光電気化学反応ユニットの他の一つの前記電解液槽とを直列に接続する第2の生成物流路とを有し、
    前記第1の生成物流路を介して直列に接続された光電気化学反応ユニットのグループは、前記第2の生成物流路を介して接続された光電気化学反応ユニットのグループと異なる、請求項1に記載の光電気化学反応装置。
  9. 前記複数の第1の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第1の電解液流路と、
    前記複数の第2の光電気化学反応ユニットの前記電解液槽のそれぞれを互いに直列に接続する第2の電解液流路と、
    前記複数の第1の光電気化学反応ユニットの一つの前記電解液槽と前記複数の第2の光電気化学反応ユニットの一つの前記電解液槽とを直列に接続する第1の生成物流路と、
    前記複数の第1の光電気化学反応ユニットの他の一つの前記電解液槽と前記複数の第2の光電気化学反応ユニットの他の一つの前記電解液槽とを直列に接続する第2の生成物流路と、
    前記第1の電解液流路を介して互いに直列に接続された前記電解液槽に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第1のデータを取得する第1のセンサと、
    前記第2の電解液流路を介して互いに直列に接続された前記電解液槽に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第2のデータを取得する前記第2のセンサと、
    前記第1の生成物流路を介して互いに直列に接続された前記電解液槽に流れる前記被酸化物質の酸化反応による生成物または前記被還元物質の還元反応による生成物の生成量を示す第3のデータを取得する前記第3のセンサと、
    前記第2の生成物流路を介して互いに直列に接続された前記電解液槽に流れる前記被酸化物質の酸化反応による生成物または前記被還元物質の還元反応による生成物の生成量を示す第4のデータを取得する第4のセンサと、をさらに具備する、請求項1に記載の光電気化学反応装置。
  10. 前記複数の第2の光電気化学反応ユニットのそれぞれは、前記複数の第1の光電気化学反応ユニットのそれぞれの位置よりも高い位置に設けられ、
    前記複数の第1の光電気化学反応ユニットのそれぞれの高低差は0cm以上30cm以下であり、
    前記複数の第2の光電気化学反応ユニットのそれぞれの高低差は0cm以上30cm以下である、請求項8に記載の光電気化学反応装置。
  11. 前記第1および第2の光電気化学反応ユニットのそれぞれは、還元触媒層および酸化触媒層の少なくとも一つの触媒層をさらに具備し、
    前記複数の第2の光電気化学反応ユニットのそれぞれは、前記複数の第1の光電気化学反応ユニットのそれぞれの位置よりも高い位置に設けられ、
    前記複数の第1の光電気化学反応ユニットの前記触媒層のそれぞれの高低差は0cm以上30cm以下であり、
    前記複数の第2の光電気化学反応ユニットの前記触媒層のそれぞれの高低差は0cm以上30cm以下である、請求項8に記載の光電気化学反応装置。
  12. 前記第1の電解液に含まれる前記被還元物質の量は、前記光電気化学反応ユニットの還元反応により消費される前記被還元物質の量の2倍以上であり、
    前記第2の電解液に含まれる前記被酸化物質の量は、前記光電気化学反応ユニットの酸化反応により消費される前記被酸化物質の量の2倍以上である、請求項1に記載の光電気化学反応装置。
JP2015174527A 2015-09-04 2015-09-04 光電気化学反応装置 Active JP6768273B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015174527A JP6768273B2 (ja) 2015-09-04 2015-09-04 光電気化学反応装置
US15/251,825 US10590550B2 (en) 2015-09-04 2016-08-30 Electrochemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174527A JP6768273B2 (ja) 2015-09-04 2015-09-04 光電気化学反応装置

Publications (2)

Publication Number Publication Date
JP2017048442A true JP2017048442A (ja) 2017-03-09
JP6768273B2 JP6768273B2 (ja) 2020-10-14

Family

ID=58190472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174527A Active JP6768273B2 (ja) 2015-09-04 2015-09-04 光電気化学反応装置

Country Status (2)

Country Link
US (1) US10590550B2 (ja)
JP (1) JP6768273B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216987A1 (ko) * 2017-05-26 2018-11-29 서울대학교 산학협력단 실시간 최적화 태양 에너지-이산화탄소 환원 시스템
EP3795719A1 (en) 2019-09-17 2021-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
CN112672981A (zh) * 2018-02-22 2021-04-16 懿华水处理技术有限责任公司 用于产生高产物强度溶液的电氯化系统配置
JP2021512223A (ja) * 2018-01-22 2021-05-13 オプス−12 インコーポレイテッド 二酸化炭素リアクタ制御のためのシステムおよび方法
KR20220052227A (ko) * 2020-10-20 2022-04-27 주식회사 맥사이언스 태양전지-광전기화학 구조의 다채널 인공광합성 모듈 장치 및 그의 제어방법
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823000B2 (ja) * 2018-03-20 2021-01-27 株式会社東芝 二酸化炭素電解装置
EP4071274B1 (en) * 2021-04-07 2023-09-27 Toyota Jidosha Kabushiki Kaisha Photoelectrochemical device for the capture, concentration and collection of atmospheric carbon dioxide
EP4350038A1 (en) * 2022-10-06 2024-04-10 Toyota Jidosha Kabushiki Kaisha Photoelectrochemical device for the capture and conversion of atmospheric carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262386A (ja) * 2000-03-14 2001-09-26 Honda Motor Co Ltd 水電解装置
JP2006265697A (ja) * 2005-03-25 2006-10-05 Sharp Corp 水分解用半導体光電極
JP2008265697A (ja) * 2007-04-25 2008-11-06 Toyota Motor Corp 倒立車輪型移動体、及びその制御方法
JP2014101551A (ja) * 2012-11-20 2014-06-05 Toshiba Corp 光化学反応装置
JP2015059231A (ja) * 2013-09-17 2015-03-30 株式会社東芝 化学反応装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197167A (ja) 2002-12-18 2004-07-15 Honda Motor Co Ltd 水素製造装置
KR20110084225A (ko) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 물의 전기분해를 위한 촉매 물질, 광양극 및 광전기화학 전지 및 다른 전기화학 기술
WO2011132375A1 (ja) * 2010-04-23 2011-10-27 パナソニック株式会社 二酸化炭素を還元する方法
US9445602B2 (en) * 2010-11-16 2016-09-20 Strategic Resource Optimization, Inc. Electrolytic system and method for generating biocides having an electron deficient carrier fluid and chlorine dioxide
JP5785736B2 (ja) 2011-02-25 2015-09-30 シャープ株式会社 水素製造装置および水素製造方法
JP5895562B2 (ja) 2012-01-31 2016-03-30 株式会社エクォス・リサーチ 水素製造装置
CN103582608B (zh) 2012-04-11 2016-08-31 松下知识产权经营株式会社 氢生成设备及使用该氢生成设备的能量系统
JP5069383B1 (ja) * 2012-04-27 2012-11-07 日科ミクロン株式会社 オゾン水生成装置
JP6142281B2 (ja) 2012-11-14 2017-06-07 パナソニックIpマネジメント株式会社 水素生成デバイスおよび水素生成ユニットならびにそれらを用いたエネルギーシステム
EP2925677B1 (en) * 2012-12-03 2018-03-21 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
US9774052B2 (en) * 2013-02-21 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
JP6184312B2 (ja) 2013-12-13 2017-08-23 富士フイルム株式会社 人工光合成アレイ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262386A (ja) * 2000-03-14 2001-09-26 Honda Motor Co Ltd 水電解装置
JP2006265697A (ja) * 2005-03-25 2006-10-05 Sharp Corp 水分解用半導体光電極
JP2008265697A (ja) * 2007-04-25 2008-11-06 Toyota Motor Corp 倒立車輪型移動体、及びその制御方法
JP2014101551A (ja) * 2012-11-20 2014-06-05 Toshiba Corp 光化学反応装置
JP2015059231A (ja) * 2013-09-17 2015-03-30 株式会社東芝 化学反応装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216987A1 (ko) * 2017-05-26 2018-11-29 서울대학교 산학협력단 실시간 최적화 태양 에너지-이산화탄소 환원 시스템
JP2021512223A (ja) * 2018-01-22 2021-05-13 オプス−12 インコーポレイテッド 二酸化炭素リアクタ制御のためのシステムおよび方法
JP7364313B2 (ja) 2018-01-22 2023-10-18 トゥエルブ ベネフィット コーポレーション 二酸化炭素リアクタ制御のための方法
CN112672981A (zh) * 2018-02-22 2021-04-16 懿华水处理技术有限责任公司 用于产生高产物强度溶液的电氯化系统配置
CN112672981B (zh) * 2018-02-22 2024-01-12 懿华水处理技术有限责任公司 用于产生高产物强度溶液的电氯化系统配置
EP3795719A1 (en) 2019-09-17 2021-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
US11795557B2 (en) 2019-09-17 2023-10-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
KR20220052227A (ko) * 2020-10-20 2022-04-27 주식회사 맥사이언스 태양전지-광전기화학 구조의 다채널 인공광합성 모듈 장치 및 그의 제어방법
KR102523597B1 (ko) * 2020-10-20 2023-04-20 주식회사 맥사이언스 태양전지-광전기화학 구조의 다채널 인공광합성 모듈 장치의 제어방법
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production

Also Published As

Publication number Publication date
JP6768273B2 (ja) 2020-10-14
US10590550B2 (en) 2020-03-17
US20170067171A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6768273B2 (ja) 光電気化学反応装置
US10472724B2 (en) Chemical reaction device
JP6622232B2 (ja) 電気化学反応装置
US10544513B2 (en) Electrochemical reaction device
US10612146B2 (en) Electrochemical reaction device
JP6744242B2 (ja) 化学反応システム
JP6230451B2 (ja) 光化学反応装置および化学反応装置
US10483047B2 (en) Electrochemical reaction device
US10443136B2 (en) Electrochemical reaction device
US20190010617A1 (en) Photoelectrode, method of manufacturing the same, and photoelectrochemical reaction device including the same
US20170247804A1 (en) Electrochemical reaction device and electrochemical reaction method
JP6640686B2 (ja) 電気化学反応装置
JP2017155337A (ja) 電気化学反応装置
JP6805307B2 (ja) 化学反応装置の動作方法
JP6453974B2 (ja) 化学反応システム
JP2017218679A (ja) 化学反応装置およびその動作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200616

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R151 Written notification of patent or utility model registration

Ref document number: 6768273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151