JP2017028805A - 磁石温度推定システム、モータ、及び、磁石温度推定方法 - Google Patents

磁石温度推定システム、モータ、及び、磁石温度推定方法 Download PDF

Info

Publication number
JP2017028805A
JP2017028805A JP2015143357A JP2015143357A JP2017028805A JP 2017028805 A JP2017028805 A JP 2017028805A JP 2015143357 A JP2015143357 A JP 2015143357A JP 2015143357 A JP2015143357 A JP 2015143357A JP 2017028805 A JP2017028805 A JP 2017028805A
Authority
JP
Japan
Prior art keywords
magnet
temperature
permanent magnet
temperature estimation
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015143357A
Other languages
English (en)
Other versions
JP6544104B2 (ja
Inventor
谷本 勉
Tsutomu Tanimoto
勉 谷本
加藤 崇
Takashi Kato
崇 加藤
孝志 福重
Takashi Fukushige
孝志 福重
正光 佐竹
Masamitsu Satake
正光 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015143357A priority Critical patent/JP6544104B2/ja
Publication of JP2017028805A publication Critical patent/JP2017028805A/ja
Application granted granted Critical
Publication of JP6544104B2 publication Critical patent/JP6544104B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】永久磁石の磁束量の温度依存性によらず永久磁石の温度を推定することができる。【解決手段】磁石温度推定システムは、固定子コイルを備える固定子と、永久磁石を備える回転子とからなるモータ、及び、永久磁石の温度を推定する磁石温度推定装置を有し、回転子は、永久磁石の磁束の少なくとも一部と鎖交する磁石コイルと、磁石コイルと接続されるとともに、永久磁石と接触するように設けられ、自身の温度に応じて発振周波数が変化する水晶発振器と、を有し、磁石温度推定装置は、駆動周波数の交流電力を固定子コイルに印加する電力供給部と、駆動周波数とは周波数が異なる測定周波数の交流電力を駆動周波数の交流電力に重畳させる重畳部と、固定子コイルに流れる交流電力から水晶発振器の発振周波数成分を特定し、特定した発振周波数成分の周波数に応じて永久磁石の温度を推定する温度推定部と、を有する。【選択図】図3

Description

本発明は、磁石温度推定システム、モータ、及び、磁石温度推定方法に関する。
同期電動機の一つとして、回転子に永久磁石を備える永久磁石型のモータが知られている。このような永久磁石型のモータにおいては、固定子に設けられた固定子コイルは電力が印加されると回転磁界が発生し、回転磁界が永久磁石に作用することにより、回転子が固定子内にて回転する。
一般に、モータの回転速度が速くなるほど、回転子に設けられた永久磁石の温度が上昇する。また、永久磁石は、ある上限温度を超えると不可逆に消磁してしまい磁力を失ってしまうことが知られている。そのため、永久磁石の温度を測定し、永久磁石が上限温度に達しないようにモータの回転速度を制限する必要がある。
しかしながら、永久磁石の温度を測定するために温度センサを用いると、温度センサを回転子に組み込む必要があるため、モータの小型化が困難になる。そこで、温度センサを用いずに永久磁石の温度を推定する方法が検討されている。例えば、特許文献1には、モータに印加される電流と、固定子にて発生する誘起電圧とを用いて、永久磁石の温度を推定する方法が開示されている。
特開2007−6613号公報
特許文献1に開示された方法では、永久磁石の磁束量が温度に応じて変化することに着目して永久磁石の温度の推定が行われている。しかしながら、単位温度あたりの磁束量の変化が少ない永久磁石が用いられている場合には、永久磁石の温度の推定精度が悪くなるという課題がある。
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、永久磁石の磁束量の温度依存性によらず、永久磁石の温度を推定する、磁石温度推定システム、モータ、及び、磁石温度推定方法を提供することである。
本発明の磁石温度推定システムは、固定子コイルを備える固定子と、永久磁石を備える回転子とからなるモータ、及び、永久磁石の温度を推定する磁石温度推定装置を有する。回転子は、永久磁石の磁束の少なくとも一部と鎖交する磁石コイルと、磁石コイルと接続されるとともに、磁石コイルと接触して設けられ、自身の温度に応じて発振周波数が変化する水晶発振器と、を有する。磁石温度推定装置は、回転子を回転駆動させる駆動周波数の交流電力を固定子コイルに印加する電力供給部と、固定子コイルに流れる交流電力から水晶発振器の発振周波数成分を特定し、特定した発振周波数成分の周波数に応じて永久磁石の温度を推定する温度推定部と、を有する。
本発明によれば、モータの回転時には、固定子コイルの回転磁界の磁束量の変化に応じて磁石コイルに誘起電力が発生し、磁石コイルに電流が流れる。磁石コイルに電流が流れると、磁石コイルと接続された水晶発振器が発振周波数にて発振するため、磁石コイルに流れる電流には発振周波数成分が含まれることになる。そして、磁石コイルの電流における発振周波数成分に起因する電流の変化に応じて、固定子コイルに誘起電力が発生するため、固定子コイルの電流にも水晶発振器の発振周波数成分が含まれることになる。
磁石温度推定装置においては、温度推定部が、固定子コイルに流れる電力を測定し、測定した電力に含まれる駆動周波数とは異なる周波数成分を水晶発振器の発振周波数成分として特定し、特定した発振周波数成分の周波数に応じて、水晶発振器の温度を推定する。水晶発振器と永久磁石とは隣接しているため、永久磁石の温度を水晶発振器の温度とみなすことができる。したがって、温度推定部は、推定した水晶発振器の温度を永久磁石の温度として推定することができる。このように、水晶発振器を用いることにより、永久磁石の単位温度あたりの磁束の変化量によらず、永久磁石の温度を推定することができる。
図1は、第1実施形態による磁石温度推定システムの概略構成図である。 図2は、モータの断面図である。 図3は、永久磁石の近傍の構成の概略構成図である。 図4は、水晶発振器の発振周波数の温度特性を示す図である。 図5は、磁石温度推定装置のシステム構成図である。 図6は、第2実施形態の水晶発振器の発振周波数の温度特性を示す図である。 図7は、磁石温度推定装置のシステム構成図である。 図8は、一般的なモータをモデル化した等価回路を示す図である。 図9は、高調波インピーダンスの実部Rdと磁石温度Tmとの相関関係を示すグラフである。 図10Aは、第3実施形態のモータの断面図の一部である。 図10Bは、図10Aに示した永久磁石の近傍の構成の概略構成図である。
以下、図面を参照して、本発明の実施形態について説明する。
(第1実施形態)
本発明の第1実施形態による磁石温度推定システムについて説明する。
図1は、第1実施形態による磁石温度推定システムの概略構成図である。
磁石温度推定システム100は、モータ1と、磁石温度推定装置2とにより構成される。
モータ1は、3相で動作する永久磁石型の回転同期機(PMSM:Permanent Magnet Synchronous Motor)である。モータ1は、中空円柱状の固定子11と、固定子11の中空部に回転可能に設けられた回転子12とにより構成されている。
固定子11は、固定子コイルを備えており、所定の駆動周波数の交流電力が固定子コイルに供給されると所定のタイミングで回転磁界を発生する。
回転子12は、永久磁石を備えている。固定子11の固定子コイルにより発生する回転磁界が永久磁石に作用することにより、固定子コイルと永久磁石とが誘引または反発することで回転駆動力が発生する。このようにして、回転子12が固定子11内で回転する。
磁石温度推定装置2は、モータ1に駆動周波数の交流電力を供給するとともに、モータ1の回転子12が備える永久磁石の温度を推定する。
次に、図2を参照して、モータ1の詳細な構成について説明する。
図2は、モータ1の断面図である。
モータ1の固定子11には、固定子11の軸方向に貫通するスロット21が、固定子11の周方向に等間隔に複数形成されている。このように固定子11にスロット21を複数形成することにより、隣接するスロット21の間にティース22が構成される。そして、ティース22を巻き回すように、固定子コイル23が設けられている。
回転子12においては、軸方向に延在する空隙24が形成されており、空隙24に永久磁石25が挿入されている。永久磁石25は、略対向するように対をなしている。また、対をなした永久磁石25が、周方向に等間隔に設けられる。略対向する永久磁石25は、対向面が同じ極性となるように配置される。また、略対向する永久磁石25と、その隣にて略対向する永久磁石25とは、互いの対向面の極性が異なるように配置される。具体的には、図2に示すように、略対向する永久磁石25A及び永久磁石25Bの隣に略対向する永久磁石25C及び永久磁石25Dが設けられている場合には、永久磁石25A及び永久磁石25Bの対向面がN極であれば、永久磁石25C及び永久磁石25Dの対向面がS極となる。
固定子コイル23は、磁石温度推定装置2から交流電力が印加されると回転磁界を発生させる。固定子コイル23による回転磁界の方向は印加される交流電力の位相に応じて変化するため、固定子コイル23と回転子12の永久磁石25とが誘引と反発とを交互に繰り返すことで回転駆動力が発生し、固定子11内で回転子12が回転する。
次に、図3を参照して、永久磁石25の詳細な構成について説明する。
図3は、永久磁石25の近傍の構成の概略構成図である。図3における上下方向は、回転子12の軸方向、すなわち、図2における紙面に向かう方向を示している。
永久磁石25は、回転子12の軸方向に積層された複数の磁石部材31により構成されている。例えば、モータ1が高効率の運転が求められる電動自動車などに用いられる場合には、永久磁石25は、複数の磁石部材31により構成されることが多い。磁石温度推定装置2から印加される交流電流に応じて固定子コイル23が回転磁界を発生させると、回転子12の永久磁石25の表面において渦電流が発生してしまい、モータ1において印加される交流電流の全てが回転に用いられないことになり、回転効率が低下してしまう。そこで、永久磁石25を複数の磁石部材31により構成することにより、永久磁石25を1つの永久磁石により構成する場合と比較すると、表面積を小さくすることができる。このようにすることで、渦電流の経路が短くなり、渦電流によるモータ1の回転効率の低下を抑制することができる。
また、永久磁石25においては、磁石部材31の磁束の少なくとも一部と鎖交するように磁石コイル32が巻き回されている。また、磁石部材31と隣接するように水晶発振器33が設けられており、水晶発振器33は磁石コイル32に接続されている。なお、磁石部材31と水晶発振器33とは、熱伝導性が高い接着部材34を用いて互いに接合されている。なお、接着部材34は、例えば、アルミナや、窒化アルミニウム、窒化ホウ素などの熱伝導性に優れた材料がフィラーとして含有された接着剤である。
水晶発振器33は、電流が流れると所定の周波数で発振する性質を有する電子部材である。水晶発振器33の発振周波数fqは水晶発振器33の温度に応じて変化するが、その温度特性は、水晶発振器33が備える水晶のカット方法に応じて異なる。本実施形態で用いられる水晶発振器33の発振周波数の温度特性について、図4を用いて説明する。
図4は、第1実施形態の水晶発振器33の発振周波数fqの温度特性を示す図である。横軸に温度が示されており、縦軸に発振周波数fqが示されている。図4を参照すると、本実施形態では、温度が上昇すると発振周波数fqが単調に増加するような温度特性を有する水晶発振器33が用いられていることが示されている。
次に、図5を用いて、磁石温度推定装置2について説明する。
図5は、磁石温度推定装置2のシステム構成図である。なお、各構成の入出力の線に付された2本斜線および3本斜線は、それぞれ、各構成にて入出力される値が2次元、3次元のベクトルであることを示している。
図5に示すように、磁石温度推定装置2は、電力供給部51と、磁石温度推定部52とを有する。
電力供給部51は、不図示のモータコントローラなどからリミッタ525を経て入力される基本波電流指令値idsf**、iqsf**に応じて、3相電圧vu、vv、vwをモータ1に出力する。これにより、モータ1を回転駆動することができる。
磁石温度推定部52は、電力供給部51の座標変換部516から出力された検出電流ids、iqsに含まれる水晶発振器33の発振周波数fqの信号を特定し、特定した信号の発振周波数fqを用いて永久磁石25の磁石温度Tmを推定する。そして、磁石温度推定部52は、推定した磁石温度Tmに応じて、リミッタ525を用いて電力供給部51に入力される基本波電流指令値idsf**、iqsf**を制限し、モータ1の回転速度を制限する。
なお、基本波電流指令値idsf*、iqsf*の周波数は、モータ1を回転させる回転速度に応じて変化する。また、基本波電流指令値idsf*、iqsf*は、回転座標軸(dq軸)を用いて表されている。
以下では、電力供給部51、及び、磁石温度推定部52の詳細な構成について説明する。
電力供給部51は、減算器511、電流制御部512、座標変換部513、電力変換部514、電流検出部515、座標変換部516、及び、バンドストップフィルター517を備える。
また、電力供給部51においては、磁石温度推定部52のリミッタ525を経た基本波電流指令値idsf**、iqsf**が、減算器511に入力される。そして、電力変換部514が、3相電圧vu、vv、vwをモータ1に出力する。
減算器511は、基本波電流指令値idsf**、iqsf**から、それぞれ基本波検出電流値idsf、iqsfを減算し、これらの減算結果を電流制御部512に出力する。なお、基本波検出電流値idsf、iqsfは、モータ1に印加される電流の検出値の基本波成分である。
電流制御部512は、減算器511の減算結果がそれぞれゼロに近づくように、すなわち、基本波電流指令値idsf**、iqsf**と、基本波電流検出値idsf、iqsfとの偏差がなくなるように比例積分制御を行い、電圧指令値vd*、vq*を座標変換部513に出力する。
座標変換部513は、電流制御部512から出力された電圧指令値vd*、vq*に対して、回転座標(dq軸)から3相座標(uvw相)への変換を行い、3相電圧指令値vu*、vv*、vw*を算出する。そして、座標変換部513は、算出した3相電圧指令値vu*、vv*、vw*を、電力変換部514に出力する。
電力変換部514は、例えばコンバータとインバータで構成される電力変換回路を備えている。また、電力変換部514には、不図示のバッテリーから直流電力が供給されている。電力変換部514は、3相電圧指令値vu*、vv*、vw*によりインバータが制御されることで、バッテリーからの直流電力を交流である3相電圧vu、vv、vwに変換して、モータ1に出力する。なお、インバータとしては、電圧型インバータまたは電流型インバータを用いることができる。
電流検出部515は、例えばホール素子などを用いて構成され、3相電圧vu、vv、vwがモータ1に印加される際に、磁石温度推定装置2からモータ1へと流れる3相電流iu、iv、iwを検出する。電流検出部515は、検出した3相電流iu、iv、iwを座標変換部516に出力する。
座標変換部516は、電流検出部515により検出された3相電流iu、iv、iwに対して、3相座標から回転座標への座標変換を行い、検出電流ids、iqsを求める。そして、座標変換部516は、求めた検出電流ids、iqsを、バンドストップフィルター517、および、磁石温度推定部52のバンドパスフィルター521に出力する。
バンドストップフィルター517は、水晶発振器33の発振周波数を含む高調波の周波数帯の信号をカットする。これにより、バンドストップフィルター517は、検出電流ids、iqsの高調波成分をカットして求めた基本波検出電流値idsf、iqsfを減算器511に出力する。
磁石温度推定部52は、バンドパスフィルター521、PLL部522、温度推定部523、磁石保護部524、及び、リミッタ525を備える。リミッタ525には、基本波電流指令値idsf*、iqsf*が入力される。また、上述のように、バンドパスフィルター521には、座標変換部516からの検出電流ids、iqsが入力される。
バンドパスフィルター521は、水晶発振器33の発振周波数を含む高調波の信号のみを通過させる。これにより、バンドパスフィルター521は、座標変換部516から出力される検出電流ids、iqsの高調波成分である高調波検出電流値idsc、iqscをPLL部522に出力する。
PLL部522は、PLL(phase locked loop)回路を備え、入力信号に含まれる基本波とは異なる周波数の信号を特定することができる。PLL部522は、高調波検出電流値idsq、iqsqに含まれる基本波とは異なる周波数成分の信号を特定し、特定した周波数成分の信号の周波数を、水晶発振器33の発振周波数fqとして温度推定部523に出力する。
温度推定部523は、図4のような水晶発振器33の発振周波数fqの温度特性を示すテーブルを予め記憶しておき、PLL部522から出力される発振周波数fqと、記憶しているテーブルとを用いて、水晶発振器33の温度を推定する。水晶発振器33は、永久磁石25に隣接して設けられているため、水晶発振器33と永久磁石25とは同じ温度とみなすことができる。したがって、温度推定部523は、推定した水晶発振器33の温度を永久磁石25の温度Tmとして推定し、外部のモニタなどに出力するとともに、磁石保護部524にも出力する。
また、水晶発振器33に力が加わると、水晶発振器33の発振周波数fqが変化することが知られている。そのため、モータ1が回転すると、水晶発振器33に遠心力が加わり、発振周波数fqが変化することになる。そこで、例えば、温度推定部523は、予め、モータ1の回転速度と発振周波数fqの変化量との関係を示す式やテーブルなどを記憶しておく。そして、温度推定部523は、特定した発振周波数fqを当該式やテーブルなどを用いて補正する。温度推定部523が補正後の発振周波数fqを用いて永久磁石25の温度を推定することにより、永久磁石25の温度の推定精度を向上させることができる。
磁石保護部524は、温度推定部523により推定された永久磁石25の磁石温度Tmに応じて、モータ1への供給電力の上限指令値である最大電流指令値idsf_max*、iqsf_max*を出力する。また、磁石保護部524は、永久磁石25が不可逆消磁してしまう温度よりも低い温度を、モータ1の回転を停止する停止温度Tstopとして記憶している。
磁石保護部524は、磁石温度Tmと停止温度Tstopとを比較し、比較結果に応じて最大電流指令値idsf_max*、iqsf_max*を出力する。磁石温度Tmが停止温度Tstop以下である場合には(Tm≦Tstop)、磁石保護部524は、モータ1を停止する必要はないと判断し、設計上の最大の電流指令値を最大電流指令値idsf_max*、iqsf_max*として出力する。一方、磁石温度Tmが停止温度Tstopより大きい場合には(Tm>Tstop)、磁石保護部524は、モータ1を停止する必要があると判断し、最大電流指令値idsf_max*、iqsf_max*としてゼロを出力する。
リミッタ525には、モータコントローラなどから基本波電流指令値idsf*、iqsf*が入力されるとともに、磁石保護部524から最大電流指令値idsf_max*、iqsf_max*が入力される。リミッタ525は、基本波電流指令値idsf*、iqsf*と、最大電流指令値idsf_max*、iqsf_max*とのうちの小さい方の指令値を、基本波電流指令値idsf**、iqsf**として出力する。このようにすることで、例えば、磁石保護部524が最大電流指令値としてゼロをリミッタ525に出力した場合には、リミッタ525から出力される基本波電流指令値がゼロになるため、モータ1を停止することができる。
なお、本実施形態では、温度が上昇すると発振周波数fqが単調に増加する水晶発振器33を用いたが、これに限らない。温度が上昇すると発振周波数fqが単調に減少する水晶発振器33を用いても、温度推定部523は、永久磁石25の温度を推定することができる。
第1実施形態の磁石温度推定システムによって、以下の効果を得ることができる。
第1実施形態の磁石温度推定システム100によれば、モータ1が回転している場合には、固定子コイル23の回転磁界が磁石コイル32を交番することにより、磁石コイル32において誘起電力が発生して電流が流れる。磁石コイル32に電流が流れると、磁石コイル32と接続された水晶発振器33に電流が印加され、水晶発振器33は発振して発振周波数fqの信号を出力する。
水晶発振器33から出力される発振周波数fqの信号は、磁石コイル32に流れる電流に重畳されることになるため、磁石コイル32が発生させる磁束は、発振周波数fqの信号に応じて変化することになる。したがって、固定子コイル23には磁石コイル32の磁束の変化に応じた誘起電力が発生することになり、固定子コイル23に流れる電流は、水晶発振器33の発振周波数fqの信号を含むことになる。
このような固定子コイル23に流れる電流に含まれる発振周波数fqの信号は、磁石温度推定部52のPLL部522により特定することができる。そして、温度推定部523は、PLL部522により特定された水晶発振器33の発振周波数fqと、予め記憶している発振周波数fqの温度特性を示すテーブルとを用いて、水晶発振器33の温度を推定する。水晶発振器33は永久磁石25と隣接しているため、永久磁石25を水晶発振器33とみなすことができるので、温度推定部523は、水晶発振器33の推定温度を永久磁石25の温度として推定することができる。このようにして、永久磁石25の磁束量の温度依存性によらずに、永久磁石25の温度を推定することができる。
また、第1実施形態の磁石温度推定システム100によれば、水晶発振器33は、温度が上昇すると、発振周波数fqが単調に増加する。すなわち、水晶発振器33の温度と、水晶発振器33の発振周波数fqとは、1対1の対応となることになる。そのため、温度推定部523は、PLL部522により特定される水晶発振器33の発振周波数fqを用いて、永久磁石25の温度を一意に推定することができる。
また、第1実施形態の磁石温度推定システム100によれば、磁石保護部524は、永久磁石25が不可逆消磁してしまう温度Teよりも低い温度を、モータ1の回転を停止させるか否かの判定に用いる停止温度Tstopとして記憶しておく。
磁石保護部524は、温度推定部523による永久磁石25の推定温度Tmと停止温度Tstopとを比較し、永久磁石25が停止温度Tstopに達したと判断すると、リミッタ525を用いてモータ1の回転を停止させる。このようにすることにより、永久磁石25が不可逆消磁してしまう温度Teに達することを防ぎ、永久磁石25を保護することができる。
また、第1実施形態の磁石温度推定システム100によれば、温度推定部523は、予め、モータ1の回転速度と、モータ1がその回転速度で回転した場合の遠心力に起因して変化する水晶発振器33の発振周波数fqとの関係を、式やテーブルなどで記憶しておく。温度推定部523は、求めた水晶発振器33の発振周波数fqを、このような記憶している関係を用いて補正することにより、永久磁石25の温度をより正確に推定することができる。
また、第1実施形態の磁石温度推定システム100によれば、良好な熱伝導性を有する接着部材34によって、永久磁石25と水晶発振器33とは接合されているため、永久磁石25と水晶発振器33との間の温度差を小さくすることができる。したがって、温度推定部531は、水晶発振器33の発振周波数fqを用いて、永久磁石25の温度をより正確に推定することができる。
(第2実施形態)
第1実施形態においては、温度が上昇すると、発振周波数fqが単調に増加、又は、減少する水晶発振器33を用いる例について説明したが、これに限らない。第2実施形態においては、発振周波数fqが所定の温度で最大となる水晶発振器33を用いる例について説明する。
本実施形態においては、第1実施形態と比較すると、水晶発振器33の発振周波数fqの温度特性が異なる点と、磁石温度推定装置2において、さらに、測定周波数とは異なる測定周波数の電力をモータ1への印加電力に重畳し、測定周波数の電力にて求めたインピーダンスを用いて永久磁石25の温度を推定する点とが異なる。
図6は、第2実施形態の水晶発振器33の発振周波数fqの温度特性を示す図である。横軸に温度が示されており、縦軸に発振周波数fqが示されている。図6によれば、発振周波数fqが所定の温度Tmaxにて最大となることが示されている。また、この発振周波数が最大となる温度Tmaxは、永久磁石25が不可逆消磁してしまう温度Teよりも低いものとする。
図7は、第2実施形態の磁石温度推定装置2のシステム構成図である。
第2実施形態の磁石温度推定装置2は、図5に示した第1実施形態の磁石温度推定装置2と比較すると、重畳部70が追加されている点と、電力供給部51において加算器711が追加されている点と、磁石温度推定部52において第2推定部721が追加されている点と、が異なる。
重畳部70には、永久磁石25の温度を推定するために、基本波の駆動周波数よりも周波数が高い高調波である測定周波数の高調波電流指令値idsc*、iqsc*が入力される。そして、重畳部70は、入力に応じた高調波電圧指令値vdsc*、vqsc*を電力供給部51の加算器711に出力することで、電力供給部51がモータ1に供給する交流電力に高調波成分の電力を重畳することができる。
高調波電流指令値idsc*、iqsc*は、上述のように、永久磁石25の温度の推定に用いる高調波の電力をモータ1に供給するための指令値である。高調波電流指令値idsc*、iqsc*の周波数は、モータ1の回転中には変更されず一定であるものとする。また、本実施形態では、高調波成分の指令値によってモータ1に回転トルクを発生させないように、q軸成分の高調波電流指令値iqsc*をゼロとし、d軸成分の高調波電流指令値idsc*だけが変更されて磁石温度推定装置2に入力されるものとする。また、高調波電流指令値の振幅は、モータ1への影響を小さくするために、基本波電流指令値の振幅よりも小さいものとする。
ここで、重畳部70の詳細な構成について説明する。
重畳部70は、減算器701、及び、共振制御部702を備える。
減算器701には、高調波電流指令値idsc*、iqsc*が入力されるとともに、磁石温度推定部52のバンドパスフィルター521からの高調波検出電流値idsc、iqscがフィードバック入力される。減算器701は、高調波電流指令値idsc*、iqsc*から高調波検出電流値idsc、iqscを減算し、その減算結果を共振制御部702に出力する。
共振制御部702は、減算器701からの出力がゼロに近づくように、高調波電圧指令値vdsc*、vqsc*を生成する。そして、共振制御部702は、高調波電圧指令値vdsc*、vqsc*を、電力供給部51の加算器711、及び、磁石温度推定部52の温度推定部523に出力する。
なお、共振制御部702は、高調波電圧指令値の振幅や、高調波電圧指令値の出力間隔を任意に設定することができる。なお、q軸成分の高調波電圧指令値vqsc*は、モータ1の回転トルクの制御に用いられる。そのため、モータ1の回転トルクに影響を与えないように、共振制御部702は、q軸成分の高調波電圧指令値vqsc*としてゼロを出力し、d軸成分の高調波電圧指令値vdsc*のみを変化させて出力する。
本実施形態では、共振制御部702は、パルセイティング・ベクトル・インジェクション(Pulsating vector injection)方式によって高調波電圧指令値vdsc*を出力するものとする。具体的には、共振制御部702は、高調波電圧指令値vdsc*に正負の符号を交互に付して出力する。このようにすることにより、モータ1への指令値として電力供給部51の加算器711から出力される第2電圧指令値vds*、vqs*においては、d軸方向に高調波電圧指令値vdsc*の進みと遅れとが交互に生じることになる。
次に、電力供給部51の詳細な構成について説明する。
電力供給部51においては、第1実施形態と比較すると、電流制御部512と座標変換部513との間に、加算器711がさらに設けられている。
加算器711は、電流制御部512から出力された電圧指令値vd*、vq*に、重畳部70の共振制御部702から出力された高調波電圧指令値vdsc*、vqsc*を加算(重畳)する。そして、加算器711は、高調波成分が重畳された第2電圧指令値vds*、vqs*を座標変換部513へ出力する。
次に、磁石温度推定部52の詳細な構成について説明する。
磁石温度推定部52においては、第2推定部721が設けられており、第2推定部721にて推定された永久磁石25の温度である第2推定温度Tm2が温度推定部523に入力される。
第2推定部721には、高調波電流指令値idsc*、iqsc*が入力されるとともに、重畳部70の共振制御部702から高調波電圧指令値vdsc*、vqsc*が入力される。なお、上述のように、q軸成分の高調波電流指令値iqsc*、及び、高調波電圧指令値vqsc*はゼロである。第2推定部721は、このようなd軸成分の高調波電圧指令値vdsc*と高調波電流指令値idsc*の入力からインピーダンスを算出し、算出したインピーダンスに応じて永久磁石25の温度を推定する。
詳細には、第2推定部721は、重畳部70により重畳される高調波の周波数に応じた不図示のバンドパスフィルターを有しており、パルセイティング・ベクトル・インジェクション方式で印加された高調波電圧指令値vdsc*の正または負のいずれかの値を抽出する。第2推定部721は、入力された高調波電流指令値idsc*と、バンドパスフィルターを経た高調波電圧指令値vdsc*とを用いて、高調波成分のインピーダンスZhを算出することができる。
ここで、高調波成分のインピーダンスZhの実部Rdは、固定子11の永久磁石25の温度と相関関係があることが知られている。なお、この相関関係については、後に、図8、及び、図9を用いて説明する。
そのため、第2推定部721は、高調波インピーダンスの実部Rdと永久磁石25の温度との相関関係を示すテーブルを予め記憶しておき、算出した高調波インピーダンスの実部Rdと予め記憶している相関関係を示すテーブルとを用いて、永久磁石25の温度を推定することができる。そして、第2推定部721は、推定した永久磁石25の温度を、第2推定温度Tm2として、温度推定部523に出力する。
温度推定部523は、第2推定部721から出力される第2推定温度Tm2を、PLL部522から出力される共振周波数fqを用いて補正する。本実施形態では、図7に示したように、温度Tmaxにて共振周波数fqが最大となるような水晶発振器33が用いられている。ここで、モータ1の回転速度が増加している間においては、モータ1の温度が上昇している。そのため、温度推定部523は、共振周波数fqの変化率を求め、共振周波数fqの変化率が増加から減少へと変わるタイミングにおいて、永久磁石25が温度Tmaxに達したと判定することができる。このようにして、第2推定温度Tm2に測定誤差が生じていたとしても、温度推定部523は、永久磁石25が温度Tmaxに達したか否かを確実に判定することができる。
ここで、図8を用いて、温度推定部523により測定される高調波インピーダンスの実部Rdと、永久磁石25の温度との相関関係について説明する。
図8は、磁石温度推定装置2にて磁石温度が推定される一般的なモータをモデル化した等価回路を示す図である。図8(a)においては、モータの構成が示されており、図8(a)に図8(a)のモータと等価な磁束回路が示されている。
なお、この図においては、図5に示した電力変換部514から出力される3相電圧vu、vv、vwの高調波成分が高調波電圧Vhとして固定子コイル23に印加される。また、固定子コイル23に印加される電流の高調波成分が高調波電流Ihとして示されている。この高調波電流Ihは、図5の電流検出部515にて検出される3相電流iu、iv、iwの高調波成分である。
図8を参照すれば、固定子コイル23に磁石温度推定装置2(図8では不図示)から高調波電圧Vhが印加されると、固定子コイル23と永久磁石25との間で高調波成分を有する回転磁界が発生する。一方、永久磁石25の表面においては、固定子コイル23により発生する回転磁界の高調波成分に応じて渦電流が発生する。そのため、永久磁石25は、インダクタンス成分を有することになる。このようにして、モータ1が回転しているときには、固定子11と回転子12とにより磁束回路が構成されることになる。
ここで、固定子コイル23は、抵抗成分がRcであり、インダクタンス成分がLcであるものとする。
また、永久磁石25は、抵抗成分がRmであり、インダクタンス成分がLmであるものとする。永久磁石25の抵抗成分Rmは、磁石部材31、及び、磁石コイル32の抵抗値を合成した値となる。また、永久磁石25の抵抗成分Rmは、磁石温度Tmに応じて変化するためRm(Tm)と示すことができる。永久磁石25のインダクタンス成分Lmは、磁石部材31、及び、磁石コイル32のインダクタンス成分を合成した値となる。また、永久磁石25のインダクタンス成分Lmは、磁石温度Tm、および、高調波電流値Ihに応じて変化するため、Lm(Tm,Ih)と示すことができる。
ここで、高調波電圧Vhと高調波電流値Ihとから、Zh=Vh/Ihの関係を用いて高調波インピーダンスZhを演算する。そのような場合には、高調波インピーダンスZhの実部Rdは、式(1)で表される。
Figure 2017028805
ただし、Mは相互インダクタンス、ωは高調波電圧Vhの角周波数である。なお、相互インダクタンスMは、磁石温度Tm、および、高調波電流値Ihに応じて変化するため、M(Tm,Ih)と示される。式(1)によれば、高調波インピーダンスの実部Rdは、永久磁石25の温度である磁石温度Tmと、図9に示すような相関関係がある。
図9は、図8に示したようなモータにおける、高調波インピーダンスの実部Rdと磁石温度Tmとの相関関係を示すグラフである。横軸は、磁石温度Tmを示し、縦軸は、高調波インピーダンスの実部Rdを示している。この図においては、磁石温度Tmが増加すると高調波インピーダンスの実部Rdが増加するような相関関係が示されている。そのため、第2推定部721は、求めた高調波インピーダンスの実部Rdと、図9に示したような相関関係とを用いることにより、磁石温度Tmを推定することができる。
第2実施形態の磁石温度推定システムによって、以下の効果を得ることができる。
第2実施形態の磁石温度推定システム100によれば、共振周波数fqが所定の温度Tmaxで最大となる水晶発振器33が用いられている。モータ1の回転速度が増加して温度が上昇している間において、温度推定部523は、共振周波数fqの変化率が増加から減少へと変わること検出することにより、永久磁石25が温度Tmaxに達したと判定することができる。
ここで、水晶発振器33にて発振周波数fqが最大となる温度Tmaxは、永久磁石25の不可逆消磁温度Teよりも低い。また、この温度Tmaxは、磁石保護部524において、モータ1の停止制御を行う停止温度Tstopとして記憶されている。そのため、温度推定部523が、永久磁石25が温度Tmaxに達したことを検出すると、磁石保護部524は、リミッタ525を用いてモータ1を停止させる。
そのため、モータ1の回転速度が増加している間において、温度推定部523は、発振周波数fqの変化率が増加から減少へと変わるタイミングを検出することにより、永久磁石25が、水晶発振器33の発振周波数fqが最大となる温度Tmax、すなわち、停止温度Tstopに達したと確実に判定することができる。したがって、永久磁石25が不可逆消磁温度Teに達する前にモータ1を確実に停止することができるため、永久磁石25を保護することができる。
また、第2実施形態の磁石温度推定システム100によれば、磁石温度推定装置2において、重畳部70は、電力供給部51から出力されてモータ1へ供給される基本波の電力に、高調波の電力を重畳させる。そして、温度推定部523は、高調波電圧Vhを高調波電流Ihにて除することにより、高調波成分のインピーダンスを求める。
ここで、高調波インピーダンスの実部Rdは、永久磁石25の磁石温度Tmと、図9に示したような相関関係がある。そのため、第2推定部721は、求めた高調波インピーダンスの実部Rdと、予め記憶している図9のような相関関係とを用いて、永久磁石25の第2推定温度Tm2を推定することができる。このようにして、温度推定部523は、第2推定部721により推定された第2推定温度Tm2を用いることで、永久磁石25の温度を推定することができる。
(第3実施形態)
第3実施形態においては、永久磁石25の構成の他の例について説明する。
図10Aは、本実施形態のモータ1の断面図の一部である。
また、図10Bによれば、樹脂1001の内部の構成が、点線にて示されている。
モータ1の回転時においては、永久磁石25の表面のうちの固定子11に最も近い径方向端面が、最も温度が高くなる面であるものとする。本実施形態では、この永久磁石25の径方向端面に、水晶発振器33が設けられている。なお、このような永久磁石25の表面のうちの最も温度が高くなる場所は、設計において求めることができる。
また、図10Aに示されたモータ1の断面図を、図2に示した第1実子形態のモータ1の断面図と比較すると、空隙24に設けられた永久磁石25が熱伝導性の高い樹脂1001にて封入されている。樹脂1001は、例えば、シリコン系の樹脂や、マイクロ銀ペーストなどがある。また、樹脂1001は、例えば、アルミナや、窒化アルミニウム、窒化ホウ素などの熱伝導性に優れた材料がフィラーとして含有されたエポキシ樹脂などであってもよい。なお、永久磁石25と水晶発振器33とを熱伝導性が高い接着部材34により接合した後に、樹脂1001にて封入されているものとする。接着部材34を用いずに樹脂1001のみで永久磁石25と水晶発振器33とを固定してもよい。
第3実施形態の磁石温度推定システムによって、以下の効果を得ることができる。
第3実施形態の磁石温度推定システム100によれば、永久磁石25が、熱伝導性が高い樹脂1001によりモールドされている。そのため、永久磁石25において、永久磁石25と水晶発振器33との温度差をさらに低減することができる。したがって、温度推定部531により推定される水晶発振器33の温度は、永久磁石25の磁石温度Tmとより一致することになるため、磁石温度Tmの推定精度を向上させることができる。
また、第3実施形態の磁石温度推定システム100によれば、永久磁石25の表面のうちの最も高温になる場所に水晶発振器33が設けられている。そのため、永久磁石25の表面において温度が均一でなく偏りがある場合であっても、永久磁石25の表面において、水晶発振器33の温度を上回る箇所はないことになる。そのため、温度推定部523が推定した磁石温度Tmに応じて磁石保護部532がモータ1の回転を制限することによって、永久磁石25の一部が不可逆消磁温度Teに達してしまうことが回避され、永久磁石25を確実に保護することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。
100 磁石温度推定システム
1 モータ
11 固定子
12 回転子
2 磁石温度推定装置
21 スロット
22 ティース
23 固定子コイル
24 空隙
25、25A、25B、25C、25D 永久磁石
31 磁石部材
32 コイル
33 水晶発振器
34 接着部材
51 電力供給部
511 減算器
512 電流制御部
513 座標変換部
514 電力変換部
515 電流検出部
516 座標変換部
517 バンドストップフィルター
52 磁石温度推定部
521 バンドパスフィルター
522 PLL部
523 温度推定部
524 磁石保護部
525 リミッタ
70 重畳部
701 減算器
702 共振制御部
711 加算器
721 第2推定部
1001 樹脂

Claims (11)

  1. 固定子コイルを備える固定子と、永久磁石を備える回転子とからなるモータ、及び、前記永久磁石の温度を推定する磁石温度推定装置を有する、磁石温度推定システムであって、
    前記回転子は、
    前記永久磁石の磁束の少なくとも一部と鎖交する磁石コイルと、
    前記磁石コイルと接続されるとともに、前記磁石コイルと接触して設けられ、自身の温度に応じて発振周波数が変化する水晶発振器と、を有し、
    前記磁石温度推定装置は、
    前記回転子を回転駆動させる駆動周波数の交流電力を前記固定子コイルに印加する電力供給部と、
    前記固定子コイルを流れる交流電力から前記水晶発振器の発振周波数成分を特定し、前記特定した発振周波数成分の周波数に応じて前記永久磁石の温度を推定する温度推定部と、を有する、
    ことを特徴とする磁石温度推定システム。
  2. 請求項1に記載の磁石温度推定システムであって、
    前記水晶発振器の発振周波数の特性は、水晶の温度が上昇する場合には単調に増加又は減少する、
    ことを特徴とする磁石温度推定システム。
  3. 請求項1に記載の磁石温度推定システムであって、
    前記水晶発振器の発振周波数の特性は、所定の温度で最大となる、
    ことを特徴とする磁石温度推定システム。
  4. 請求項1から3のいずれか1項に記載の磁石温度推定システムであって、
    前記磁石温度推定装置は、前記温度推定部により推定される前記永久磁石の温度に応じて、前記電力供給部により前記固定子コイルに印加される交流電力を制限する磁石保護部を、さらに有する、
    ことを特徴とする磁石温度推定システム。
  5. 請求項1から4のいずれか1項に記載の磁石温度推定システムであって、
    前記磁石温度推定装置は、前記駆動周波数とは周波数が異なる測定周波数の交流電力を前記駆動周波数の交流電力に重畳させる重畳部を、さらに有し、
    前記温度推定部は、前記測定周波数の交流電力に基づいてインピーダンスを測定し、前記測定したインピーダンス、及び、前記特定した前記水晶発振器の発振周波数成分の周波数に応じて、前記永久磁石の温度を推定する、
    ことを特徴とする磁石温度推定システム。
  6. 請求項1から5のいずれか1項に記載の磁石温度推定システムであって、
    前記温度推定部は、前記モータの回転速度に応じて前記特定した発振周波数成分を補正し、前記補正した発振周波数成分の周波数に応じて前記永久磁石の温度を推定する、
    ことを特徴とする磁石温度推定システム。
  7. 請求項1から6のいずれか1項に記載の磁石温度推定システムであって、
    前記水晶発振器と前記永久磁石とは、熱伝導部材により接合される、
    ことを特徴とする磁石温度推定システム。
  8. 請求項1から7のいずれか1項に記載の磁石温度推定システムであって、
    前記固定子には、前記永久磁石を配置するための空隙が形成され、
    前記永久磁石は、前記空隙において熱伝導樹脂によりモールドされる、
    ことを特徴とする磁石温度推定システム。
  9. 請求項1から8のいずれか1項に記載の磁石温度推定システムであって、
    前記水晶発振器は、前記永久磁石の表面のうち前記モータの回転時に温度が最も高くなる場所に設けられる、
    ことを特徴とする磁石温度推定システム。
  10. 固定子コイルを備える固定子と、永久磁石を備える回転子とを有し、磁石温度推定装置によって、前記回転子を回転駆動させる駆動周波数とは異なる周波数を特定し、前記特定した周波数に応じて前記永久磁石の温度が推定されるモータであって、
    前記回転子は、
    前記永久磁石の磁束の少なくとも一部と鎖交する磁石コイルと、
    前記磁石コイルと接続されるとともに、前記磁石コイルと接触して設けられ、自身の温度に応じて発振周波数が変化する水晶発振器と、を有する、
    ことを特徴とするモータ。
  11. 固定子コイルを備える固定子と、永久磁石を備える回転子とにより構成され、前記回転子は、前記永久磁石の磁束の少なくとも一部と鎖交する磁石コイルと、前記磁石コイルと接続されるとともに、前記磁石コイルと接触して設けられ、自身の温度に応じて発振周波数が変化する水晶発振器と、を有するモータにおいて、前記永久磁石の温度を推定する磁石温度推定方法であって、
    前記回転子を回転駆動させる駆動周波数の交流電力を前記固定子コイルに印加する電力供給ステップと、
    前記固定子コイルを流れる交流電力から前記水晶発振器の発振周波数成分を特定する発振周波数特定ステップと、
    前記特定した発振周波数成分の周波数に応じて前記永久磁石の温度を推定する温度推定ステップと、を有する、
    ことを特徴とする磁石温度推定方法。
JP2015143357A 2015-07-17 2015-07-17 磁石温度推定システム、モータ、及び、磁石温度推定方法 Active JP6544104B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143357A JP6544104B2 (ja) 2015-07-17 2015-07-17 磁石温度推定システム、モータ、及び、磁石温度推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143357A JP6544104B2 (ja) 2015-07-17 2015-07-17 磁石温度推定システム、モータ、及び、磁石温度推定方法

Publications (2)

Publication Number Publication Date
JP2017028805A true JP2017028805A (ja) 2017-02-02
JP6544104B2 JP6544104B2 (ja) 2019-07-17

Family

ID=57950080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143357A Active JP6544104B2 (ja) 2015-07-17 2015-07-17 磁石温度推定システム、モータ、及び、磁石温度推定方法

Country Status (1)

Country Link
JP (1) JP6544104B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037067A (ja) * 2017-08-15 2019-03-07 日立オートモティブシステムズ株式会社 モータ制御装置
EP3503377A1 (en) * 2017-12-20 2019-06-26 Aisin Seiki Kabushiki Kaisha Overheating detection device
CN111357189A (zh) * 2017-11-24 2020-06-30 三菱电机株式会社 旋转电机装置及旋转电机装置的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072787A (ja) * 2006-09-12 2008-03-27 Mitsuba Corp サーボモータの制御装置及びサーボモータの制御方法
JP2008125242A (ja) * 2006-11-13 2008-05-29 Meidensha Corp 永久磁石式同期電動機
JP2010063208A (ja) * 2008-09-01 2010-03-18 Hitachi Ltd 同期電動機の駆動システム、及びこれに用いる制御装置
WO2013038528A1 (ja) * 2011-09-14 2013-03-21 トヨタ自動車株式会社 回転電機
US20150198491A1 (en) * 2014-01-13 2015-07-16 Nissan Motor Co., Ltd. Torque estimating system for synchronous electric motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072787A (ja) * 2006-09-12 2008-03-27 Mitsuba Corp サーボモータの制御装置及びサーボモータの制御方法
JP2008125242A (ja) * 2006-11-13 2008-05-29 Meidensha Corp 永久磁石式同期電動機
JP2010063208A (ja) * 2008-09-01 2010-03-18 Hitachi Ltd 同期電動機の駆動システム、及びこれに用いる制御装置
WO2013038528A1 (ja) * 2011-09-14 2013-03-21 トヨタ自動車株式会社 回転電機
US20150198491A1 (en) * 2014-01-13 2015-07-16 Nissan Motor Co., Ltd. Torque estimating system for synchronous electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037067A (ja) * 2017-08-15 2019-03-07 日立オートモティブシステムズ株式会社 モータ制御装置
CN111357189A (zh) * 2017-11-24 2020-06-30 三菱电机株式会社 旋转电机装置及旋转电机装置的控制方法
CN111357189B (zh) * 2017-11-24 2023-06-27 三菱电机株式会社 旋转电机装置及旋转电机装置的控制方法
EP3503377A1 (en) * 2017-12-20 2019-06-26 Aisin Seiki Kabushiki Kaisha Overheating detection device

Also Published As

Publication number Publication date
JP6544104B2 (ja) 2019-07-17

Similar Documents

Publication Publication Date Title
US9874461B2 (en) Apparatus for estimating rotational position of predetermined magnetic pole of rotary electric machine
JP5321792B2 (ja) 永久磁石形同期電動機の制御装置
JP6428519B2 (ja) 磁石温度推定システム、モータ、及び、磁石温度推定方法
JP6544104B2 (ja) 磁石温度推定システム、モータ、及び、磁石温度推定方法
JP2018057077A (ja) 電動機制御装置およびドライブシステム
JP2009171680A (ja) 永久磁石形同期電動機の制御装置
JP6769268B2 (ja) 磁石温度推定システム、及び、モータ
JP5618854B2 (ja) 同期電動機駆動システム
JP6128330B2 (ja) 永久磁石形同期電動機の制御装置
JP6428520B2 (ja) 磁石温度推定システム、モータ、及び、磁石温度推定方法
JP2009273283A (ja) 永久磁石形同期電動機の制御装置
Graus et al. Modelling and optimization of a short-circuited rotor winding of a PMSM for saliency tracking
JP2017147870A (ja) モータ振動評価試験方法およびモータ振動評価試験装置
Graus et al. Comparison of the resistance-and inductance-based saliency of a PMSM due to a short-circuited rotor winding
JP6544105B2 (ja) 磁石温度推定システム、モータ、及び、磁石温度推定方法
JP6766398B2 (ja) 磁石温度推定方法、及び、磁石温度推定装置
CN113169694A (zh) 旋转电机的控制装置和电动车辆的控制装置
JP2020014266A (ja) 電動機の制御装置
Andreescu et al. Enhancement sensorless control system for PMSM drives using square-wave signal injection
Liu et al. Research on initial rotor position estimation for SPMSM
JP5104213B2 (ja) 永久磁石形同期電動機の制御装置
JP7147296B2 (ja) モータ制御装置
JPWO2014147757A1 (ja) モータ駆動システム、モータ制御装置およびモータ
Kang et al. Initial rotor position estimation of single-phase permanent magnet synchronous motor with asymmetric air-gap
Wang et al. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151