JP2017017665A - Ad変換器、ad変換方法 - Google Patents

Ad変換器、ad変換方法 Download PDF

Info

Publication number
JP2017017665A
JP2017017665A JP2015159767A JP2015159767A JP2017017665A JP 2017017665 A JP2017017665 A JP 2017017665A JP 2015159767 A JP2015159767 A JP 2015159767A JP 2015159767 A JP2015159767 A JP 2015159767A JP 2017017665 A JP2017017665 A JP 2017017665A
Authority
JP
Japan
Prior art keywords
reference voltage
conversion
converter
successive approximation
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015159767A
Other languages
English (en)
Other versions
JP6650227B2 (ja
Inventor
豊己 高田
Toyomi Takada
豊己 高田
敦 丹後田
Atsushi Tangoden
敦 丹後田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to US15/137,233 priority Critical patent/US9692441B2/en
Publication of JP2017017665A publication Critical patent/JP2017017665A/ja
Priority to US15/603,858 priority patent/US9912347B2/en
Application granted granted Critical
Publication of JP6650227B2 publication Critical patent/JP6650227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

【課題】ノイズによるAD変換精度の悪化を軽減することが可能な逐次比較型ADCを提供する。【解決手段】AD変換機1は、アナログ信号をサンプリングしたサンプリング値と、逐次比較制御信号とに基づいて比較用電圧を生成するDA変換器10と、逐次比較処理に使用する基準電圧を生成する基準電圧生成回路20(DAC2)と、比較用電圧と基準電圧とを比較して、逐次比較結果を出力するコンパレータ30と、逐次比較結果に基づいて、逐次比較制御信号を生成する逐次比較処理部SAR40と、AD変換処理の期待値を記憶する記憶部70(REFレジスタ)とを備える。基準電圧生成回路は、記憶部に記憶された期待値に基づいて基準電圧を生成する。【選択図】図1

Description

本発明はAD変換器、AD変換方法に関し、例えば逐次比較型のAD変換器、AD変換方法に関する。
入力されるアナログ信号をデジタル信号に変換するAD(Analog/Digital)変換器(ADC)として、逐次比較型のADCが知られている。逐次比較型ADCは、入力されるアナログ信号をサンプリングし、サンプリング値に対して逐次比較処理を行うことにより、逐次比較結果のデジタル信号を出力する。
自動車の制御装置やセンサーなどにおいては、ADCを搭載した半導体装置が広く用いられている。このような半導体装置においては、小型化などの要求から、外部端子数の削減が求められている。外部端子数を削減するため、電源電圧・基準電圧などを供給する電源端子の共有が進められている。このような半導体装置では、リファレンスノイズによるAD変換精度の悪化が課題となっている。
従来から、逐次比較型ADCにおいてノイズの影響を低減するための方策が考えられている(例えば、特許文献1)。特許文献1の逐次比較型ADCは、DA(Digital/Analog)変換器(DAC)、コンパレータ、逐次比較(Successive Approximation Register:SAR)論理部、基準電圧生成回路を備えている。
DACは、入力されるアナログ信号をサンプリングする機能を有し、サンプリング処理中に充電される複数の容量素子を有する。コンパレータにより、DACの出力と基準電圧生成回路の出力とが逐次比較され、出力するデジタル信号が算出される。逐次比較論理部は、内部に逐次比較レジスタを有しており、コンパレータの比較結果に応じて値が書き換わる。
逐次比較処理中には、複数の容量素子は、逐次比較レジスタの値に応じてハイ側参照電圧又はロウ側参照電圧に接続され、次の逐次比較処理に用いられる比較用電圧が生成される。逐次比較側AD変換器から出力されるデジタル値(コード値)が大きい場合、ハイ側参照電圧に接続される容量素子が多くなる。一方、コード値が小さい場合、ロウ側参照電圧に接続される容量素子が多くなる。
一般的な基準電圧生成回路はロウ側参照電圧のみに接続される一つの容量素子のみを有している。このため、一般的な構成の基準電圧生成回路は、ロウ側参照電圧に関するノイズ感度特性のみを有している。このため、コード値が大きくなるにつれて、DACの出力に生じるノイズ量と基準電圧生成回路の出力に生じるノイズ量との差分が大きくなる。
これに対し、特許文献1では、基準電圧生成回路は、ハイ側参照電圧と接続される第1容量素子と、ロウ側参照電圧と接続される第2容量素子を有している。このため、特許文献1に記載の基準電圧生成回路は、ハイ側参照電圧とロウ側参照電圧の双方に関するノイズ感度特性を持ち合わせている。これにより、コード値が大きくなっても、DACの出力に生じるノイズ量と基準電圧生成回路の出力に生じるノイズ量との差分を小さくすることができる。
特開2014−11768号公報
特許文献1では、基準電圧生成回路にハイ側参照電圧、ロウ側参照電圧にそれぞれ接続される2つの容量素子が設けられている。このため、特許文献1の構成では、ノイズ量の差分の最大値を、一般的な構成のノイズ量の差分の最大値の1/2に軽減することができる。しかしながら、特許文献1の構成では、ノイズ量の差分を1/2よりもさらに軽減することができないという課題がある。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、AD変換器は、アナログ信号のサンプリング処理と逐次比較処理とを行って、AD変換処理を実行し、AD変換結果を出力する逐次比較型のAD変換器であって、AD変換処理の期待値に基づいて基準電圧を生成し、当該基準電圧を逐次比較処理を行うコンパレータに供給する。
なお、上記実施の形態の装置を方法やシステムに置き換えて表現したもの、該装置または該装置の一部の処理をコンピュータに実行せしめるプログラム、該装置を備えた半導体装置なども、本発明の態様としては有効である。
前記一実施の形態によれば、ノイズによるAD変換精度の悪化を軽減することが可能な逐次比較型AD変換器を提供することができる。
実施の形態1にかかるAD変換器の構成を示す図である。 図1のAD変換器の構成を詳細に示す図である。 実施の形態1にかかるAD変換器の動作を説明するタイミング図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器のノイズ伝搬の仕組みを説明する図である。 実施の形態1にかかるAD変換器の他の動作を説明するタイミング図である。 実施の形態2にかかるAD変換器を搭載した半導体装置の構成を示す図である。 図7のAD変換器の構成を詳細に示す図である。 実施の形態3にかかるAD変換器の構成を示す図である。 比較例のノイズ伝搬の仕組みを説明する図である。 比較例のノイズ伝搬の仕組みを説明する図である。 比較例のノイズ伝搬の仕組みを説明する図である。
以下、図面を参照して、実施の形態に係るAD変換器について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。以下の実施の形態に示す具体的な値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、それに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
実施の形態は、逐次変換型のAD変換器に関する。実施の形態に係るAD変換器は、AD変換処理の期待値を記憶する記憶部を備える。当該記憶部に記憶されたAD変換処理の期待値に基づいて、AD変換処理毎に基準電圧が切り替えられる。このように、AD変換処理毎に切り替えられた基準電圧を用いて逐次比較処理を行うことで、ノイズを抑制し、AD変換精度の向上を図るものである。
実施の形態1.
実施の形態1に係るAD変換器について、図1、2を参照して説明する。図1は、実施の形態1に係るAD変換器1の構成を示す図である。図2は、図1のAD変換器1の構成を詳細に示す図である。AD変換器1は、アナログ信号のサンプリング処理と逐次比較処理とを行って、AD変換処理を実行し、AD変換結果を出力する。
本実施の形態にかかるAD変換器の一例は、シングルエンド入力方式の電荷再配分型の逐次比較AD変換器である。実施の形態1では、DA変換器10、REF生成回路20として、それぞれ容量アレイ型DACが用いられる。実施の形態1では、AD変換処理の期待値として、前回のAD変換処理結果を利用する。実施の形態1では、前回のAD変換結果を利用することから、連続した複数回のAD変換を行うことが条件となる。
図1に示すように、AD変換器1は、DA変換器(DAC1)10、基準電圧生成回路(DAC2)(以下、REF生成回路とする)20、コンパレータ30、逐次比較処理部(以下、SARとする)40、演算回路60、REFレジスタ70、REF制御回路80を備える。ADC制御部(以下、ADC−CTLとする)50は、AD変換器1を含む半導体装置やマイコンにおいて、AD変換処理の開始等の制御を行う制御部である。
DA変換器10は、AD変換処理において、サンプリング期間と逐次比較期間とで異なる役割を果たす。サンプリング期間においては、DA変換器10はアナログ入力信号AINの電圧値をサンプリングする。逐次比較期間においては、DA変換器10はサンプリングしたアナログ入力信号AINのサンプリング値と後述する逐次比較制御信号とに基づいて、比較用電圧VCM1を生成する。
REF生成回路20は、逐次比較処理に使用する基準電圧VCM2を生成する。REF生成回路20での基準電圧の生成に関しては、後に詳述する。コンパレータ30は、入力された比較用電圧VCM1と基準電圧VCM2とを逐次比較して、逐次比較結果COUTをSAR処理部40に出力する。なお、コンパレータ30は、内部に2つの入力端子を有するプリアンプ(不図示)を含んでいてもよい。例えば、プリアンプの一方の入力端子に比較用電圧VCM1が入力され、他方の入力端子に基準電圧VCM2が入力される。
SAR処理部40は、SAR論理回路(不図示)と、SARレジスタ41を有する。SAR論理回路は、上記の逐次比較処理のシーケンス動作を制御する。SARレジスタ41は、AD変換結果ADOUTを記憶する。SAR処理部40は、コンパレータ30の逐次比較結果COUTからAD変換結果ADOUTを算出し、SARレジスタ41に供給する。SAR処理部40は、DA変換器10内の後述するスイッチSW1を制御するサンプリング信号を生成する。また、SAR処理部40は、逐次比較結果COUTに基づくSARレジスタ41の値を用いて、DA変換器10内の後述するスイッチSW2を制御する逐次比較制御信号を出力する。
SAR処理部40は、所定回数の逐次比較処理が終了すると、SARレジスタ41に記憶された逐次比較処理結果に基づき、デジタル信号であるAD変換結果ADOUTを出力する。なお、コンパレータ30、SAR処理部40、ADC−CTL50等の構成は、逐次比較型のAD変換器において一般的に用いられる構成であればよい。
次に、図2を参照して、DA変換器10、REF生成回路20の構成について詳細に説明する。図2に示すように、DA変換器10は、アナログ入力側の容量アレイであり、分解能に応じたビット数分の複数の第1単位容量を有している。DA変換器10を構成する各第1単位容量の一端は、スイッチSW1を介してアナログ入力信号AINに接続されている。スイッチSW1は、サンプリング期間中にオンとなり、逐次比較期間中にオフとなる。これにより、サンプリング期間中には、全ての第1単位容量がアナログ入力信号AINに接続され、DA変換器10が充電される。
また、DA変換器10を構成する各第1単位容量の一端はスイッチSW2を介して、ハイ側参照電圧AVRTC、又はロウ側参照電圧AVRBCに接続される。逐次比較期間において、各第1単位容量は、SAR処理部40から出力される逐次比較制御信号に応じてハイ側参照電圧AVRTC及びロウ側参照電圧AVRBCのいずれか一方と選択的に接続される。複数の第1単位容量の他端は、コンパレータ30の一方の入力端子に接続されている。
SAR処理部40から出力されるデジタル値(コード値)が大きくなるにつれて、ハイ側参照電圧AVRTCに接続される第1単位容量が多くなる。一方、コード値が小さくなるにつれて、ロウ側参照電圧AVRBCに接続される第1単位容量が多くなる。これにより、逐次比較処理に用いる比較用電圧VCM1が逐次変化する。比較用電圧VCM1は、コンパレータ30において基準電圧信号と比較され、出力するデジタル信号がMSB(Most Significant Bit)から順に決定される。
次に、REF生成回路20について説明する。REF生成回路20は、基準入力側容量アレイであり、DA変換器10を構成する複数の第1単位容量と同数の複数の第2単位容量を有している。DA変換器10を構成する複数の第1単位容量の合計容量値とREF生成回路20を構成する複数の第2単位容量の合計容量値とは等しい。
REF生成回路20の各第2単位容量の一端はスイッチSW3を介して、ハイ側参照電圧AVRTC、又はロウ側参照電圧AVRBCに接続される。逐次比較期間において、各第2単位容量は、REFレジスタ70に記憶された期待値に応じてハイ側参照電圧AVRTC及びロウ側参照電圧AVRBCのいずれか一方と選択的に接続される。複数の第2単位容量の他端は、コンパレータ30の他方の入力端子に接続されている。これにより、AD変換処理の期待値に基づいて生成された基準電圧が、コンパレータ30に入力される。
SAR処理部40から出力されるAD変換結果ADOUTは、演算回路60に入力される。演算回路60は、AD変換結果ADOUTに対して平均化処理などの演算処理を行う。なお、実施の形態1では、AD変換処理の期待値として、前回のAD変換処理結果を利用するため、演算回路60を設けず、そのままREFレジスタ70に出力してもよい。
REFレジスタ70は、AD変換処理の期待値を記憶する記憶部である。実施の形態1では、REFレジスタ70は、前回のAD変換結果(コード値)を期待値として記憶する。なお、実施の形態1のように、期待値として前回のAD変換結果ADOUTを、演算処理等を行わずにそのまま利用する場合は、REFレジスタ70とSARレジスタ41とを共有することも可能である。
REF制御回路80は、REFレジスタ70に記憶された期待値を参照し、REF生成回路20のスイッチSW3を制御するスイッチドライバである。実施の形態1では、前回のAD変換結果を用いるため、この前回のAD変換結果をそのままバッファリングして出力してもよい。
ここで、図3を参照して、実施の形態1に係るAD変換器1の動作について説明する。図3は、実施の形態1に係るAD変換器1の動作を説明するタイミング図である。AD変換器1は、連続して複数回のAD変換処理を行う。図3では、N回目、N+1回目のAD変換処理が示されている。
N回目のAD変換処理では、SARレジスタ41には、N−1回目のAD変換結果ADOUT(N−1)が記憶されており、REFレジスタ70には、N−1回目のAD変換結果ADOUT(N−1)のデジタル値であるコード値ECODE(N−1)が記憶されているものとする。
N回目のAD変換処理が開始されると、まずサンプリング処理が実行される。サンプリング期間では、スイッチSW1がオン、スイッチSW2がオフとなり、DA変換器10は、アナログ入力信号AINのサンプリング動作を開始する。
同時に、REF生成回路20では、スイッチSW3がREFレジスタ70に記憶されたコード値ECODE(N−1)に従い、ハイ側参照電圧AVRTC、ロウ側参照電圧AVRBCのいずれかを選択した状態となる。これにより、REF生成回路20は、コード値ECODE(N−1)に応じた基準電圧VCM2を出力する。
サンプリング期間が終了すると、逐次比較処理が開始される。逐次比較期間では、スイッチSW1がオフとなる。また、スイッチSW2は、SAR処理部40からの逐次比較制御信号に従って、ハイ側参照電圧AVRTC、ロウ側参照電圧AVRBCのいずれかを選択した状態となる。このとき、REF生成回路20では、スイッチSW3の選択状態は変化せず、サンプリング期間と同じ基準電圧VCM2を出力する。すなわち、1回のAD変換処理のサンプリング期間、逐次比較期間を通して、基準電圧VCM2は等しい。
その後、コンパレータ30が比較用電圧VCM1と基準電圧VCM2とを逐次比較し、その逐次比較結果COUTをSAR処理部40に出力する。所定の回数の逐次比較処理が完了すると、SARレジスタ41が更新され、N回目のAD変換結果ADOUT(N)が得られる。また、REFレジスタ70には、新しい期待値として、コード値ECODE(N)が設定される。
同様に、N+1回目のAD変換処理では、スイッチSW3がREFレジスタ70に記憶されたコード値ECODE(N)に従い、ハイ側参照電圧AVRTC、ロウ側参照電圧AVRBCのいずれかを選択した状態となる。これにより、REF生成回路20は、コード値ECODE(N)に応じた基準電圧VCM2を出力する。上記シーケンスを繰り返し、連続した複数回のAD変換処理を実行し、AD変換結果ADOUTが得られる。このように、REFレジスタ70に記憶される期待値は、AD変換処理毎に更新される。従って、REF生成回路20は、AD変換処理毎に基準電圧を更新する。
ここで、図1、図2に示したAD変換器1の逐次比較処理中のノイズ伝搬について説明する。説明の明確化のため、ノイズはハイ側参照電圧AVRTC及びロウ側参照電圧AVRBCに発生するノイズのみとする。理解を容易にするために、まず、特許文献1に記載のAD変換器におけるノイズの伝搬について説明し、その後、実施の形態1に係るAD変換器1のノイズの伝搬について説明する。
図10A〜10Cは、特許文献1に記載の比較例のノイズ伝搬の仕組みを説明する図である。図10Aは、比較用電圧VCM1のノイズ例を示している。図10Aの横軸は逐次比較処理における比較コードを示し、縦軸は比較用電圧VCM1のノイズ量を示している。
図10Aにおいて、長鎖線はハイ側参照電圧AVRTCに生じるノイズ量、短鎖線はロウ側参照電圧AVRBCに生じるノイズ量を示しており、実線はハイ側参照電圧AVRTCとロウ側参照電圧AVRBCのそれぞれに生じるノイズ量の合計である。
逐次比較期間中、DA変換器10を構成する各第1単位容量はハイ側参照電圧AVRTC、ロウ側参照電圧AVRBCのいずれかと接続される。このため、比較用電圧VCM1に現れるノイズは、ハイ側参照電圧AVRTCから伝搬するノイズとロウ側参照電圧AVRBCから伝搬するノイズの両方を含む。
図10Aに示すように、比較コードが大きくなるにつれて、ハイ側参照電圧AVRTCと接続されるスイッチSW2が多くなるため、ハイ側参照電圧AVRTCに起因するノイズ量が多くなる。一方、比較コードが小さくなるにつれて、ロウ側参照電圧AVRBCと接続されるスイッチSW2が多くなるため、ロウ側参照電圧AVRBCに起因するノイズ量が多くなる。
通常、ハイ側参照電圧AVRTCに含まれるノイズとロウ側参照電圧AVRBCに含まれるノイズは異なる。従って、図10Aに示すように、比較用電圧VCM1に現れるノイズは、比較コードが中間値の場合に最小となり、比較コードが小さくなる又は大きくなるにつれてノイズ量が増加する。
図10Bは、基準電圧VCM2のノイズ例を示している。図10Bの横軸は比較コードを示し、縦軸は基準電圧VCM2のノイズ量を示している。特許文献1に示された例では、基準電圧生成回路のハイ側参照電圧、ロウ側参照電圧にそれぞれ接続される第1容量素子の容量値と第2容量素子の容量値との比は5:5に設定されている。特許文献1に記載の基準電圧生成回路は、ハイ側参照電圧とロウ側参照電圧の双方に関するノイズ感度特性を持ち合わせている。
すなわち、基準電圧VCM2に現れるノイズは、第1容量素子を介してハイ側参照電圧AVRTCから伝搬されるノイズと、第2容量素子を介してロウ側参照電圧AVRBCから伝搬されるノイズの両方を含む。基準電圧VCM2に現れるノイズ量は、ハイ側参照電圧AVRTCから伝搬されるノイズを5/10と、ロウ側参照電圧AVRBCから伝搬されるノイズを5/10ずつ含む。しかしながら、逐次比較期間中、基準電圧生成回路内のスイッチの接続状態は変化しない。このため、基準電圧VCM2に現れるノイズ量は、比較コードの値によらず一定である。
図10Cは、図10Aに示した比較用電圧VCM1のノイズと図10Bに示した基準電圧VCM2のノイズとの差分を示している。図10Cの横軸は比較コードを示し、縦軸は比較用電圧VCM1と基準電圧VCM2のノイズの差分を示している。
基準電圧VCM2に現れるノイズは、ハイ側参照電圧AVRTCから伝搬されるノイズと、ロウ側参照電圧AVRBCから伝搬されるノイズを半分ずつ持ち合わせている。このため、コード値が中間値のときに、比較用電圧VCM1と基準電圧VCM2のノイズがキャンセルされ、比較用電圧VCM1と基準電圧VCM2のノイズ差が最小となる。
一方、比較コードが中間値から外れるほど、比較用電圧VCM1と基準電圧VCM2のノイズ差が大きくなり、比較コードがフルスケール(ゼロスケール)のとき、ハイ側参照電圧AVRTC(ロウ側参照電圧AVRBC)から伝搬するノイズがそのまま残ることとなる。すなわち、特許文献1は、基準電圧を中間値に定めているため、比較コードが中間値から外れていくと、ノイズの差分が現れる。つまり、特許文献1では、リファレンスノイズを全てのアナログ入力範囲で1/2以下に低減できるが、このノイズの低減量は第1容量素子と第2容量素子の容量値の比で決定されるため、ノイズの影響を1/2よりも低く抑えることはできない。
このような比較用電圧VCM1と基準電圧VCM2のノイズの差は、コンパレータの誤判定につながる。特に、比較コードがアナログ入力信号AINに近づくほど、比較用電圧VCM1と基準電圧VCM2の電圧差が小さくなるため、ノイズの影響でコンパレータが誤判定しやすくなる。特許文献1の場合、アナログ入力信号AINが中間値付近のとき、AD変換精度が向上する一方、中間値から外れるほどAD変換精度が低下することがわかる。
これに対し、実施の形態1に係るAD変換器1における逐次比較処理中のノイズ伝搬について、図4A〜4C、5A〜5Cを参照して説明する。上述したように、実施の形態1では、期待値として、前回のAD変換結果ADOUTが演算なしでそのまま利用される。すなわち、基準電圧は、前回のAD変換結果ADOUTに応じた電圧となる。
図4A〜4Cは、REFレジスタ70に中間値よりも高いコード値が期待値として設定されている場合のノイズ例を示している。図4Aは、実施の形態1の比較用電圧VCM1のノイズ例を示している。なお、図4Aについては、図10Aと同様である。
図4Bは、実施の形態1の基準電圧VCM2のノイズ例を示している。図4Bの横軸は比較コードを示し、縦軸は基準電圧VCM2のノイズ量を示している。図4Bにおいて、期待値として設定されたコード値を二点鎖線で示している。REF生成回路20では、REFレジスタ70に記憶された期待値に応じて、スイッチSW3の接続先が制御される。このため、REFレジスタ70に設定された期待値に応じて、基準電圧VCM2が変化する。
REF生成回路20は、ハイ側参照電圧とロウ側参照電圧の双方に関するノイズ感度特性を持ち合わせている。基準電圧VCM2に現れるノイズ量は、スイッチSW3の接続先に応じた比率で、ハイ側参照電圧AVRTCから伝搬されるノイズと、ロウ側参照電圧AVRBCから伝搬されるノイズとを含む。なお、逐次比較期間中、基準電圧生成回路内のスイッチの接続状態は変化しないため、基準電圧VCM2に現れるノイズ量は、比較コードの値によらず一定である。
図4Cは、図4Aに示した比較用電圧VCM1のノイズと図4Bに示した基準電圧VCM2のノイズとの差分を示している。図4Cの横軸は比較コードを示し、縦軸は比較用電圧VCM1と基準電圧VCM2のノイズの差分を示している。
実施の形態1では、REFレジスタ70に記憶された期待値、すなわち、前回のAD変換結果ADOUTを表す比較コードにおいて比較用電圧VCM1と基準電圧VCM2のノイズがキャンセルされ、比較用電圧VCM1と基準電圧VCM2のノイズ差が最小となる。
図5A〜5Cは、REFレジスタ70にロウレベルに近いコード値が期待値として設定されている場合のノイズ例を示している。すなわち、図5A〜5Cに示す例では、前回のAD変換結果ADOUTがロウレベルに近い。図5Aは、実施の形態1の比較用電圧VCM1のノイズ例を示している。なお、図5Aについては、図10Aと同様である。
図5Bは、実施の形態1の基準電圧VCM2のノイズ例を示している。図5Bの横軸は比較コードを示し、縦軸は基準電圧VCM2のノイズ量を示している。図5Bにおいて、期待値として設定されたコード値を二点鎖線で示している。REFレジスタ70に設定された期待値が、ロウレベルに近いコード値であるため、REF生成回路20では、ロウ側参照電圧AVRBCに接続されるスイッチSW3が多くなる。このため、図5Bに示すノイズ量が、図4Bに示すノイズ量よりも多くなる。
図5Cは、図5Aに示した比較用電圧VCM1のノイズと図5Bに示した基準電圧VCM2のノイズとの差分を示している。図5Cに示すように、図4Cと比較すると、比較用電圧VCM1と基準電圧VCM2のノイズ差が最小となる比較コードがロウ側にシフトしていることがわかる。
上述したように、比較コードがアナログ入力電圧AINに近づくほど、比較用電圧VCM1と基準電圧VCM2の電圧差が小さくなり、ノイズの影響でコンパレータが誤判定しやすいことがわかっている。このため、比較コードがアナログ入力電圧AINに近づいた場合に、ノイズの影響が小さくなることが望まれる。
実施の形態1では、前回のAD変換結果を表す比較コードにおいてノイズ最小となる。このため、前回のアナログ入力電圧AIN(N)と今回のアナログ入力電圧AIN(N+1)の差が小さいほどコンパレータが誤判定しにくくなり、AD変換精度が向上する。ノイズ耐性向上により、より低電圧で精度の向上したAD変換器1を提供できる。また、電源入力、基準入力ピンを共有化した場合にも、AD変換精度を向上することが可能となる。
従って、実施の形態1は、連続したAD変換処理の実行、及び、アナログ入力電圧の変化量(AIN(N)とAIN(N+1)の差)が小さいことが条件となる。実施の形態1にかかるAD変換器1は、DC信号を複数回AD変換し、平均化処理を行うアプリケーションへの適用が望ましい。例えば、信頼性や精度が要求される車載製品やセンサーに適している。
なお、AD変換器1が扱うアナログ入力信号AINは、DC信号に限定されず、比較的低速なAC信号であってもよい。図4C、5Cを参照すると、実施の形態1のように、前回のAD変換結果ADOUTを期待値として用いる場合、前回と今回の信号レベルの差が大きいとノイズ量が増加し、AD変換精度の向上が期待できない。従って、前回と今回の信号レベルの差がフルスケールの半分以下であることが望ましい。
このため、実施の形態1は、前回のアナログ入力信号AIN(N)と今回のアナログ入力信号AIN(N+1)の差がフルスケールの半分以下となる、ナイキスト周波数の半分(すなわち、サンプリング周波数の1/4)のAC信号に適用可能である。
なお、ここでは図示していないが、REF制御回路80は、AD変換処理毎に基準電圧を変化させる機能の有効・無効を切り替える機能を備えていてもよい。上述の通り、実施の形態1では、サンプリング周波数の1/4までのAC信号に対してはノイズ削減の効果が得られるが、この限界以上のアナログ入力信号を扱う場合にはノイズ削減の効果が得られない。従って、この限界以上のアナログ入力信号を扱う場合に、AD変換処理毎に基準電圧を変化させる機能を無効とすることができる。すなわち、基準電圧生成回路は、アナログ入力信号AINに応じて、REFレジスタ70に記憶された期待値に基づく基準電圧の生成を停止することができる。
なお、AD変換処理毎に基準電圧を変化させる機能を無効化する場合、REFレジスタ70の設定値を初期値のまま固定することも可能である。初期値は、例えば、フルスケールの1/2とすることができる。これにより、DC信号からナイキスト周波数までのAC信号に適用でき、かつ、特許文献1と同様なAD変換精度を得ることができる。
上述の説明では、REFレジスタ70に設定される期待値は、前回のAD変換結果ADOUTとしたが、これに限定されるものではない。例えば、期待値は、m(1より大きい整数)回前のAD変換結果ADOUTであってもよい。
また、REFレジスタ70に設定される期待値は、AD変換結果ADOUTを用いて演算回路60において演算された値でもよい。例えば、期待値として、複数回のAD変換結果ADOUTを平均した値を用いることができる。複数のAD変換結果ADOUTの平均値は、アナログ入力信号AINに重畳するノイズの高周波成分が減衰し、純粋な信号成分に近い値となるため、期待値に適している。
図6に、複数のAD変換結果ADOUTの平均値を期待値としてREFレジスタ70に設定する場合の動作タイミング図を示す。図6に示すように、N回目のAD変換処理において、SARレジスタ41がAD変換結果ADOUT(N−1)に更新された後、REFレジスタ70の期待値が更新される。REFレジスタ70の期待値としては、AD変換結果ADOUT(N−1)及びそれ以前の複数回のAD変換結果ADOUTを用いて、演算回路60にて演算処理された値が用いられる。演算に時間がかかる場合は、REFレジスタ70の更新を遅らせてもよい。
実施の形態2.
実施の形態2に係るAD変換器について図7、8を参照して説明する。図7は、実施の形態2にかかるAD変換器2を搭載した半導体装置100の構成例を示す図である。図8は、図7のAD変換器2の構成を詳細に示す図である。実施の形態2において、実施の形態1と異なる点は、AD変換器2が複数のチャンネルにそれぞれ対応した複数のREFレジスタ70を有している点である。
図7に示すように、AD変換器2を搭載した半導体装置100は、マルチプレクサ90、ロジックコア部110を備える。当該半導体装置は、例えば、センサー等に用いられる。マルチプレクサ90は、複数のアナログ入力端子AIN0〜AINxを有している。マルチプレクサ90は、アナログ入力端子AIN0〜AINxから入力されるアナログ入力信号から選択した一つのアナログ入力信号を、アナログ入力信号AINとしてAD変換器2に供給する。AD変換器2は、アナログ入力信号AINのサンプリング処理と逐次比較処理とを行って、AD変換処理を実行し、AD変換結果を出力する。
ロジックコア部110は、ADC−CTL50、CPU(Central Processing Unit)、RAM(Random Access Memory)、Flash(フラッシュ不揮発性メモリ)等を備える。ADC−CTL50は、AD変換器2におけるAD変換処理の開始やマルチプレクサ90の選択等の制御を行う。なお、半導体装置100は、必要に応じて、DAC、PLL(phase locked loop)、PGA(Programmable Gain Amplifier)等を備えることができる。
なお、ここでは図示していないが、AD変換器2から出力されるデジタル信号は、バスを介してCPUに供給される。CPUは、供給されたデジタル信号を用いて、図示しない周辺機器の制御や他の演算処理等を行う。CPUによる演算処理結果等は、RAM(Random Access Memory)又はFlashに記憶される。
ここで、図8を参照して、AD変換器2の構成について説明する。図8に示すように、AD変換器2は、実施の形態1に示したAD変換器1と略同様の構成を有している。AD変換器2では、複数のREFレジスタ70が設けられている。複数のREFレジスタ70はそれぞれ、マルチプレクサ90のアナログ入力端子AIN0〜AINxに対応して設けられている。例えば、REFレジスタ0はアナログ入力端子AIN0に対応し、REFレジスタ1はアナログ入力端子AIN1に対応する、というように、REFレジスタ70はマルチプレクサ90のアナログ入力端子と1対1の関係で設けられている。
REF生成回路20は、複数のチャンネルの一つのAD変換処理を行うときに、当該チャンネルに対応するREFレジスタ70の一つを参照して基準電圧を生成する。例えば、アナログ入力端子AIN0から入力されたアナログ信号のAD変換を行う場合、REFレジスタ0に記憶された期待値を参照して、REF生成回路20を制御し、基準電圧を生成する。
REFレジスタ70に記憶された期待値としては、実施の形態1と同様に、前回のアナログ入力端子AIN0から入力されたアナログ信号のAD変換結果を用いることができる。すなわち、REFレジスタ0〜REFレジスタxにはチャンネル毎に、AD変換結果が記憶される。これにより、それぞれのチャンネルのノイズを小さくすることができ、AD変換精度を向上させることが可能となる。
なお、REFレジスタ70の数はチャンネル数以下であってもよい。例えば、高精度なAD変換処理が要求されるチャンネルに対してはREFレジスタ70を設け、比較的精度が要求されないチャンネルに対しては、REFレジスタ70を設けない。これにより、不必要な面積の拡大を抑制することができる。
なお、AD変換器2においても、演算処理を行わずに、AD変換結果ADOUTをそのまま期待値としてREFレジスタ70に設定する場合には、演算回路60を設けなくてもよい。
実施の形態3.
実施の形態3に係るAD変換器について図9を参照して説明する。図9は、実施の形態3にかかるAD変換器3の構成を示す図である。実施の形態3において、実施の形態2と異なる点は、複数のチャンネルにそれぞれ対応した複数のREFレジスタ70に外部よりAD変換結果の期待値を入力することが可能な点である。
図9に示すように、AD変換器3では、ソフトウェアに各チャンネルのAD変換結果の期待値を記憶するREFレジスタ70と演算回路60の機能を持たせている。なお、図9では理解を容易にするために、演算回路60、REFレジスタ70と図示している。各REFレジスタ70には、マルチプレクサ90のアナログ入力端子AIN0〜AINxから入力されるアナログ信号に対応したAD変換結果の期待値がそれぞれ外部より設定される。
例えば、断線検出などの監視装置やセンサーシステム等においては、AD変換結果の期待値が存在する、又は、期待値を予想するアルゴリズムが存在することが考えられる。このような場合に、AD変換器3では、想定される期待値がソフトウェア経由で各REFレジスタ70に入力される。これにより、外部より入力された期待値付近のAD変換精度を向上させることが可能である。
期待値を予測する演算が複雑な場合、ソフトウェアで予め演算処理した期待値を利用して基準電圧を生成することで、期待値付近のAD変換精度を向上できる。例えば、ソフトウェア処理でバンドパスフィルタを実現し、特定の周波数帯のアナログ入力信号のAD変換精度を向上できる。また、実施の形態3では、通常、ソフトウェアが保有するレジスタと演算機能を利用することで、AD変換器のハードウェア内のREFレジスタ、演算回路を削減でき、AD変換器を小型化することが可能となる。
また、複数のAD変換器3のAD変換結果が存在する場合、ある1台のAD変換器の期待値として他のAD変換器のAD変換結果、又は、他のAD変換器のAD変換結果から予測した値を利用してもよい。
実施の形態1、3に係る逐次比較型のAD変換器もまた、図7に示したようなセンサーシステム等に用いられる半導体装置に適用可能である。
なお、上述の実施の形態では、DA変換器10、REF生成回路20が容量DACである例について説明したが、抵抗DACでもよいし、容量DACと抵抗DACの組合せでもよいし、いかなる構成でも構わない。また、実施の形態では、シングルエンド入力方式の例について説明したが、差動入力方式であっても構わない。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
1 AD変換器
2 AD変換器
3 AD変換器
10 DA変換器
20 REF生成回路
30 コンパレータ
40 SAR処理部
41 SARレジスタ
50 ADC−CTL
60 演算回路
70 REFレジスタ
80 REF制御回路
90 マルチプレクサ
100 半導体装置
110 ロジックコア部
AIN アナログ入力信号
ADOUT AD変換結果
AVRTC ハイ側参照電圧
AVRBC ロウ側参照電圧
COUT 逐次比較結果
ECODE コード値
VCM1 比較用電圧
VCM2 基準電圧
SW1 スイッチ
SW2 スイッチ
SW3 スイッチ

Claims (13)

  1. アナログ信号のサンプリング処理と逐次比較処理とを行って、AD変換処理を実行し、AD変換結果を出力する逐次比較型のAD変換器であって、
    前記アナログ信号をサンプリングしたサンプリング値と、逐次比較制御信号とに基づいて比較用電圧を生成するDA変換器と、
    前記逐次比較処理に使用する基準電圧を生成する基準電圧生成回路と、
    前記比較用電圧と前記基準電圧とを比較して、逐次比較結果を出力するコンパレータと、
    前記逐次比較結果に基づいて、前記逐次比較制御信号を生成する逐次比較処理部と、
    前記AD変換処理の期待値を記憶する記憶部と、を備え、
    前記基準電圧生成回路は、前記記憶部に記憶された前記期待値に基づいて前記基準電圧を生成する、
    AD変換器。
  2. 前記AD変換器は、連続して複数回の前記AD変換処理を行い、
    N(Nは2以上の整数)回目の前記AD変換処理を行うときに、前記記憶部は、前記期待値として、N−1回目の前記AD変換処理の前記AD変換結果を記憶し、
    前記基準電圧生成回路は、前記N−1回目の前記AD変換結果を前記基準電圧として用いる、
    請求項1に記載のAD変換器。
  3. 前記AD変換器は、連続して複数回の前記AD変換処理を行い、
    N(Nは2以上の整数)回目の前記AD変換処理を行うときに、前記記憶部は、前記期待値として、N−1回目よりも前の前記AD変換処理の前記AD変換結果を記憶し、
    前記基準電圧生成回路は、前記N−1回目よりも前の前記AD変換結果を前記基準電圧として用いる、
    請求項1に記載のAD変換器。
  4. 前記AD変換器は、連続して複数回の前記AD変換処理を行い、
    N(Nは2以上の整数)回目の前記AD変換処理を行うときに、前記記憶部は、前記期待値として、N−1回目以前の前記AD変換処理の複数の前記AD変換結果を記憶し、
    前記基準電圧生成回路は、前記N−1回目以前の複数の前記AD変換結果に基づく演算処理結果を前記基準電圧として用いる、
    請求項1に記載のAD変換器。
  5. 前記記憶部に記憶される期待値は、前記AD変換処理毎に更新される、
    請求項1に記載のAD変換器。
  6. 前記基準電圧生成回路は、前記AD変換処理毎に前記基準電圧を更新する、
    請求項1に記載のAD変換器。
  7. 複数のチャンネルにそれぞれ対応した複数の前記記憶部を備え、
    前記基準電圧生成回路は、前記複数のチャンネルの一つのAD変換処理を行うときに、当該チャンネルに対応する複数の前記記憶部の一つを参照して前記基準電圧を生成する、
    請求項1に記載のAD変換器。
  8. 複数の前記記憶部は、各チャンネルのAD変換結果をそれぞれ記憶し、
    前記基準電圧生成回路は、次のAD変換処理を行うときに、前記記憶部に記憶された前記AD変換処理結果を前記基準電圧として用いる、
    請求項7に記載のAD変換器。
  9. 前記アナログ信号は、DC信号又はサンプリング周波数の1/4以下のAC信号である、請求項1に記載のAD変換器。
  10. 前記基準電圧生成回路は、アナログ入力信号AINに応じて、前記記憶部に記憶された前記期待値に基づく前記基準電圧の生成を停止する、
    請求項1に記載のAD変換器。
  11. 前記DA変換器は、複数の第1単位容量を有し、
    前記DA変換器を構成する複数の前記第1単位容量の各々の一端を前記逐次比較制御信号に基づいてハイ側参照電圧またはロウ側参照電圧と接続して前記比較用電圧を生成し、
    前記基準電圧生成回路は、前記DA変換器を構成する複数の前記第1単位容量と同数の複数の第2単位容量を有し、
    前記基準電圧生成回路を構成する複数の前記第2単位容量の各々の一端を前記期待値に基づいてハイ側参照電圧またはロウ側参照電圧と接続して前記基準電圧を生成し、
    複数の前記DA変換器を構成する第1単位容量の容量値と、複数の前記基準電圧生成回路を構成する第2単位容量の容量値とが等しい、
    請求項1に記載のAD変換器。
  12. アナログ信号のサンプリング処理と逐次比較処理とを行って、AD変換処理を実行し、AD変換結果を出力する逐次比較型のAD変換方法であって、
    前記アナログ信号をサンプリングしたサンプリング値と、逐次比較制御信号とに基づいて比較用電圧を生成し、
    前記AD変換処理の期待値に基づいて前記逐次比較処理に使用する基準電圧を生成し、
    前記比較用電圧と前記基準電圧とを比較して、逐次比較結果を出力し、
    前記逐次比較結果に基づいて、前記逐次比較制御信号を生成する、
    AD変換方法。
  13. 連続して複数回の前記AD変換処理を行い、
    N(Nは2以上の整数)回目の前記AD変換処理を行うときに、前記期待値として、N−1回目の前記AD変換処理の前記AD変換結果を記憶し、
    前記N−1回目の前記AD変換結果を前記基準電圧として用いる、
    請求項12に記載のAD変換方法。
JP2015159767A 2015-06-30 2015-08-13 Ad変換器、ad変換方法 Active JP6650227B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/137,233 US9692441B2 (en) 2015-06-30 2016-04-25 AD converter and AD conversion method
US15/603,858 US9912347B2 (en) 2015-06-30 2017-05-24 Ad converter and ad conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130765 2015-06-30
JP2015130765 2015-06-30

Publications (2)

Publication Number Publication Date
JP2017017665A true JP2017017665A (ja) 2017-01-19
JP6650227B2 JP6650227B2 (ja) 2020-02-19

Family

ID=57829401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159767A Active JP6650227B2 (ja) 2015-06-30 2015-08-13 Ad変換器、ad変換方法

Country Status (1)

Country Link
JP (1) JP6650227B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011668A (zh) * 2017-12-28 2019-07-12 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体
JP2019121850A (ja) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159320A (ja) * 1989-11-16 1991-07-09 Mitsubishi Electric Corp アナログ―ディジタル変換器
JPH11506883A (ja) * 1995-06-05 1999-06-15 アナログ・デバイセズ・インコーポレイテッド 分離された主及び修正出力を有するdac
US6809674B1 (en) * 2003-10-15 2004-10-26 Lattice Semiconductor Corporation Analog-to-digital converters
JP2006310931A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 逐次比較型a/dコンバータ
WO2010128541A1 (ja) * 2009-05-07 2010-11-11 パナソニック株式会社 逐次比較型a/d変換装置
JP2012104938A (ja) * 2010-11-08 2012-05-31 Seiko Epson Corp A/d変換回路、電子機器及びa/d変換方法
JP2013031055A (ja) * 2011-07-29 2013-02-07 Fujitsu Semiconductor Ltd Adc

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159320A (ja) * 1989-11-16 1991-07-09 Mitsubishi Electric Corp アナログ―ディジタル変換器
JPH11506883A (ja) * 1995-06-05 1999-06-15 アナログ・デバイセズ・インコーポレイテッド 分離された主及び修正出力を有するdac
US6809674B1 (en) * 2003-10-15 2004-10-26 Lattice Semiconductor Corporation Analog-to-digital converters
JP2006310931A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 逐次比較型a/dコンバータ
WO2010128541A1 (ja) * 2009-05-07 2010-11-11 パナソニック株式会社 逐次比較型a/d変換装置
JP2012104938A (ja) * 2010-11-08 2012-05-31 Seiko Epson Corp A/d変換回路、電子機器及びa/d変換方法
JP2013031055A (ja) * 2011-07-29 2013-02-07 Fujitsu Semiconductor Ltd Adc

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011668A (zh) * 2017-12-28 2019-07-12 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体
JP2019121850A (ja) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体
JP2019121851A (ja) * 2017-12-28 2019-07-22 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体
JP7077617B2 (ja) 2017-12-28 2022-05-31 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体
TWI779147B (zh) * 2017-12-28 2022-10-01 日商精工愛普生股份有限公司 電路裝置、振動器、電子機器及移動體
JP7200476B2 (ja) 2017-12-28 2023-01-10 セイコーエプソン株式会社 回路装置、振動デバイス、電子機器及び移動体
CN110011668B (zh) * 2017-12-28 2023-08-04 精工爱普生株式会社 电路装置、振动器件、电子设备和移动体

Also Published As

Publication number Publication date
JP6650227B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
US9559716B1 (en) AD converter, AD convert apparatus, and AD convert method
KR101716931B1 (ko) Adc 교정
EP3059867B1 (en) Circuit and method for dac mismatch error detection and correction in an adc
US9059730B2 (en) Pipelined successive approximation analog-to-digital converter
KR102636356B1 (ko) 감소된 커패시터 어레이 dac를 이용한 sar adc에서의 오프셋 보정을 위한 방법 및 장치
US8188902B2 (en) Ternary search SAR ADC
US10128861B2 (en) Analog to digital conversion circuit
US20190097648A1 (en) Sar-type analog-digital converter using residue integration
US6229472B1 (en) A/D converter
US9509327B2 (en) A/D converter and A/D converter calibrating method
US7821436B2 (en) System and method for reducing power dissipation in an analog to digital converter
JP6650227B2 (ja) Ad変換器、ad変換方法
US9912347B2 (en) Ad converter and ad conversion method
US11206038B2 (en) Successive approximation register analog-to-digital converter
KR20090054272A (ko) 1/2 승수 기준 전압을 누적하는 아날로그 디지털 변환기
US9806728B1 (en) Amplifier circuit
US8836549B2 (en) Use of logic circuit embedded into comparator for foreground offset cancellation
US20230147156A1 (en) Semiconductor device, analog-to-digital converter and analog-to-digital converting method
US20230344442A1 (en) A/d converter and sensor system including the same
US20230370083A1 (en) A/d converter
US10511318B2 (en) Digital background calibration circuit
JP5458075B2 (ja) パイプライン型a/dコンバータ
JP2020107985A (ja) アナログデジタル変換回路及びその信号変換方法
JP2014103438A (ja) Adコンバータ
JP2010283484A (ja) 逐次比較型ad変換回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150