JP2017010697A - 誘導加熱装置、及び発電システム - Google Patents

誘導加熱装置、及び発電システム Download PDF

Info

Publication number
JP2017010697A
JP2017010697A JP2015123353A JP2015123353A JP2017010697A JP 2017010697 A JP2017010697 A JP 2017010697A JP 2015123353 A JP2015123353 A JP 2015123353A JP 2015123353 A JP2015123353 A JP 2015123353A JP 2017010697 A JP2017010697 A JP 2017010697A
Authority
JP
Japan
Prior art keywords
heating unit
heating
magnetic flux
rotating body
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123353A
Other languages
English (en)
Other versions
JP6465457B2 (ja
Inventor
岡崎 徹
Toru Okazaki
徹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015123353A priority Critical patent/JP6465457B2/ja
Priority to US15/735,824 priority patent/US10764969B2/en
Priority to PCT/JP2016/059691 priority patent/WO2016203801A1/ja
Priority to CN201680034797.4A priority patent/CN107710868B/zh
Publication of JP2017010697A publication Critical patent/JP2017010697A/ja
Application granted granted Critical
Publication of JP6465457B2 publication Critical patent/JP6465457B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

【課題】加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱できる誘導加熱装置、及びそれを備える発電システムを提供する。
【解決手段】熱媒体を加熱する誘導加熱装置であって、回転軸を有する回転体と、前記回転体と間隔をあけて対向して配置される加熱部と、前記回転体に設けられ、前記加熱部に対して磁束を発生する磁束発生部と、前記加熱部に沿って設けられ、前記熱媒体が流通する流通路と、を備え、前記流通路は、前記加熱部に沿う方向の一方側に前記熱媒体を供給する入口部と、その他方側に前記熱媒体を排出する出口部と、を有し、前記磁束発生部と前記加熱部との間の間隔が、前記流通路の前記入口部側よりも前記出口部側の方が大きい誘導加熱装置。
【選択図】図1

Description

本発明は、誘導加熱を利用して熱媒体を加熱する誘導加熱装置、及びそれを備える発電システムに関する。特に、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱できる誘導加熱装置に関する。
水を加熱する装置として、誘導加熱(渦電流)を利用した加熱装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の渦電流加熱装置は、外周に永久磁石が配置された回転可能なロータと、このロータの外側に固定して設けられ、内部に水を流通させる流通路が形成された導電材料の加熱部とを備える。そして、ロータが回転することにより、ロータ外周の永久磁石による磁力線(磁束)が加熱部を貫通して移動することで、加熱部に渦電流が発生して、加熱部が発熱する。その結果、加熱部で発生した熱が内部の流通路を流通する水に伝達され、水が加熱される。
上記の技術は風力などのエネルギーを利用して給湯を行うことを主目的としたものである。最近では、誘導加熱装置により加熱した熱媒体の熱を電気エネルギーに変換する発電システムが提案されている(例えば、特許文献2,3参照)。特許文献2,3には、回転体と、回転体の外周に設けられて回転体の径方向に磁束を発生する磁束発生部と、回転体の外側に回転体と間隔をあけて配置される筒状の加熱部と、加熱部に設けられ、熱媒体が流通する流通路(配管)とを備える誘導加熱装置が開示されている。特許文献2,3では、加熱部の軸方向に沿って複数の流通路を形成し、流通路の一端側から熱媒体を供給し、他端側から排出する構成とすることが例示されている。
特開2005−174801号公報 特開2011−159595号公報 特開2012−256507号公報
誘導加熱装置において、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱することが望まれる。
例えば、回転体の外周に磁束発生部が設けられ、回転体の外側に加熱部が配置された従来の誘導加熱装置において、加熱部の軸方向の一方側から他方側へ熱媒体が流通するように流通路を構成することが挙げられる。また、従来の誘導加熱装置では、一般に、磁束発生部と加熱部との間の間隔が軸方向に実質的に一定であり、誘導加熱によって加熱部が軸方向に均一に発熱するように構成されている。即ち、加熱部の軸方向における単位長さあたりの発熱量が実質的に等しくなっている。熱媒体は、加熱部から熱を順次受け取りながら流通路を流れることにより、徐々に加熱される。よって、熱媒体の温度は、流通路の入口部側(入口部又はその近傍)よりも出口部側の方が高く、出口部側(出口部又はその近傍)では加熱部の温度に近付く又は等しくなる。
ここで、加熱部と熱媒体との間の熱伝達率h(W/m・K)は、次式で定義される。
h=Q/[A(Tw−Ta)]=J/(Tw−Ta)
Q:熱移動量(W)
J:熱流束密度(W/m
A:伝熱面積(m
Tw:加熱部表面の温度(K)
Ta:熱媒体の温度(K)
但し、Tw>Taとする。
上記式から、加熱部と熱媒体との間の熱移動量Qは、加熱部と熱媒体との温度差(Tw−Ta)を大きくしたり、伝熱面積Aを大きくするほど増大することが分かる。そのため、流通路の入口部側では、熱媒体の温度が低く、加熱部と流通路に流れる熱媒体との温度差が大きいことから、熱移動量が大きくなる。一方、出口部側では、熱媒体の温度が高く、加熱部と熱媒体との温度差が小さいので、熱移動量が小さくなる。つまり、流通路の入口部側では、熱移動量が大きく、加熱部から熱媒体へ十分に伝熱されるが、流通路の出口部側では、熱移動量が小さくなるため、加熱部から熱媒体へ十分に伝熱されない場合がある。よって、誘導加熱によって加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱できないことが考えられる。また、出口部側の加熱部で発生した熱を熱媒体によって十分に抜熱できず、最悪の場合、出口部側の加熱部が過熱により溶解するなど損傷することも考えられる。
そこで、加熱部に設けられた流通路の径を大きくするなど、全体的に伝熱面積を大きくすることで、加熱部と熱媒体との間の熱移動量を増やすことが考えられるが、その場合、装置の大型化やコストアップを招く。
本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱できる誘導加熱装置を提供することにある。また、本発明の別の目的は、上記誘導加熱装置を備える発電システムを提供することにある。
本発明の一態様に係る誘導加熱装置は、熱媒体を加熱する誘導加熱装置であって、回転軸を有する回転体と、前記回転体と間隔をあけて対向して配置される加熱部と、前記回転体に設けられ、前記加熱部に対して磁束を発生する磁束発生部と、前記加熱部に沿って設けられ、前記熱媒体が流通する流通路と、を備える。前記流通路は、前記加熱部に沿う方向の一方側に前記熱媒体を供給する入口部と、その他方側に前記熱媒体を排出する出口部と、を有する。そして、前記磁束発生部と前記加熱部との間の間隔が、前記流通路の前記入口部側よりも前記出口部側の方が大きい。
本発明の一態様に係る発電システムは、上記本発明の一態様に係る誘導加熱装置と、前記誘導加熱装置により加熱した前記熱媒体の熱を電気エネルギーに変換する発電部と、を備える。
上記誘導加熱装置は、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱できる。上記発電システムは、誘導加熱装置における熱媒体への熱交換効率を改善でき、発電効率の向上を図ることが可能である。
実施形態1に係る誘導加熱装置の構成を示す概略縦断面図である。 実施形態1に係る誘導加熱装置の構成を示す概略正面図である。 実施形態1に係る誘導加熱装置において加熱部に断熱材を配置した一例を示す概略縦断面図である。 実施形態1に係る誘導加熱装置における流通路の変形例を示す概略縦断面図である。 変形例1−1に係る誘導加熱装置の構成を示す概略縦断面図である。 実施形態1に係る誘導加熱装置における回転体及び加熱部の変形例を示す概略縦断面図である。 実施形態2に係る誘導加熱装置の構成を示す概略縦断面図である。 実施形態2に係る誘導加熱装置における磁束発生部の構成を示す概略平面図である。 実施形態2に係る誘導加熱装置における流通路の構成を示す概略平面図である。 実施形態2に係る誘導加熱装置において加熱部に断熱材を配置した一例を示す概略縦断面図である。 変形例2−1に係る誘導加熱装置の構成を示す概略図である。 変形例2−1に係る誘導加熱装置における流通路の変形例を示す概略平面図である。 本発明の実施形態に係る発電システムの全体構成の一例を示す概略図である。 付記1に係る誘導加熱装置の構成例を示す概略縦断面図である。
[本発明の実施形態の説明]
最初に、本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る誘導加熱装置は、熱媒体を加熱する誘導加熱装置であって、回転軸を有する回転体と、前記回転体と間隔をあけて対向して配置される加熱部と、前記回転体に設けられ、前記加熱部に対して磁束を発生する磁束発生部と、前記加熱部に沿って設けられ、前記熱媒体が流通する流通路と、を備える。前記流通路は、前記加熱部に沿う方向の一方側に前記熱媒体を供給する入口部と、その他方側に前記熱媒体を排出する出口部と、を有する。そして、前記磁束発生部と前記加熱部との間の間隔が、前記流通路の前記入口部側よりも前記出口部側の方が大きい。
上記誘導加熱装置によれば、流通路の入口部側よりも出口部側の方が磁束発生部と加熱部との間の間隔が大きくなるように構成されている。誘導加熱(渦電流)による発熱量は磁場強度の2乗に比例し、磁場強度は距離によって減衰することから、磁束発生部との間の間隔が大きい部分では加熱部の発熱量が小さくなる。そのため、流通路の出口部側において、加熱部の発熱量が小さくなることから、加熱部と熱媒体との温度差を大きくでき、伝熱効率を高めることができる。したがって、出口部側の加熱部で発生した熱を熱媒体へ十分に伝熱させることができ、出口部側の加熱部からの熱ロスを低減して、熱媒体の加熱効率(熱交換効率)を向上できる。よって、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱することができ、熱媒体への熱交換効率の向上により、誘導加熱装置の小型軽量化を図ることが可能である。また、誘導加熱装置の大型化やコストアップを招くことなく、出口部側の加熱部で発生した熱を熱媒体によって十分に抜熱でき、過熱による加熱部の損傷を抑制できる。
(2)上記誘導加熱装置の一形態として、上記流通路は、上記入口部側よりも上記出口部側の方が、上記加熱部との接触面積が大きくなるように形成されていることが挙げられる。
上記形態によれば、流通路の入口部側よりも出口部側の方が加熱部との接触面積が大きくなるように流通路が構成されている。つまり、加熱部において、熱媒体の流通方向における単位長さあたりの流通路との接触面積が、入口部側よりも出口部側の方が大きい。これにより、流通路の出口部側において、加熱部との接触面積が増え、加熱部から熱媒体への熱の移動量を増やすことができる。したがって、出口部側の加熱部で発生した熱を熱媒体へ十分に伝熱させることができ、熱媒体への熱交換効率をより向上できる。よって、加熱部で発生した熱を、流通路を流通する熱媒体に更に効率よく伝熱することができる。また、誘導加熱装置の大型化やコストアップを招くことなく、出口部側の加熱部で発生した熱を熱媒体によってより十分に抜熱でき、過熱による加熱部の損傷をより抑制できる。
(3)上記誘導加熱装置の一形態として、上記加熱部は、上記回転体の外周側に設けられる筒状の部材であり、上記磁束発生部は、上記回転体の径方向に上記磁束を発生する。そして、上記流通路は、上記加熱部の軸方向に螺旋状に設けられると共に、上記加熱部の軸方向の一方側に上記入口部が、その他方側に上記出口部が設けられていることが挙げられる。
上記形態は、回転体(磁束発生部)と加熱部とが径方向に間隔をあけて対向して配置された、所謂ラジアルギャップ型の構造である。上記形態によれば、流通路を螺旋状とすることで、1つの流通路で、加熱部全体からの発熱を熱媒体に伝熱できる。
(4)上記(3)に記載の誘導加熱装置の一形態として、上記流通路は、上記入口部側よりも上記出口部側の方が隣り合う上記流通路間の間隔が小さくなるように形成されていることが挙げられる。
上記形態によれば、流通路が加熱部の軸方向に螺旋状に設けられ、その流通路の入口部側よりも出口部側の方が流通路間の間隔が小さくなるように形成されていることから、流通路の入口部側よりも出口部側の方が加熱部との接触面積が大きくなる。そのため、流通路の出口部側において、加熱部との接触面積が増え、加熱部から熱媒体への熱の移動量を増やすことができる。
(5)上記誘導加熱装置の一形態として、上記回転軸が風車に接続されていることが挙げられる。
回転体(回転軸)を回転させる動力には、電動機やエンジンなどの内燃機関を用いることも可能であるが、風力、水力、波力などの再生可能エネルギーを利用することが好ましい。再生可能エネルギーを利用すれば、COの発生を抑制できる。回転軸を風車に接続することで、回転体の動力に風力を利用することができる。
(6)本発明の一態様に係る発電システムは、上記(1)〜(5)のいずれか1つに記載の誘導加熱装置と、上記誘導加熱装置により加熱した上記熱媒体の熱を電気エネルギーに変換する発電部と、を備える。
上記発電システムによれば、本発明の一態様に係る上記誘導加熱装置を備えることから、誘導加熱装置において、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱することができる。そのため、誘導加熱装置における熱媒体への熱交換効率を改善でき、発電効率の向上を図ることが可能である。
上記発電システムは、上記誘導加熱装置により加熱した熱媒体の熱を利用して発電するものである。例えば誘導加熱装置の回転軸に風車を接続し、回転体の動力に風力を利用すれば、風のエネルギーを回転エネルギー→熱エネルギーに変換して、電気エネルギーとして取り出すことができる。一例としては、熱媒体の水を加熱して高温高圧蒸気を生成し、その蒸気を利用して蒸気タービンにより発電機を回転させて発電することが挙げられる。また、熱を電気エネルギーに変換する構成としたことで、蓄熱器を用いて熱としてエネルギーを蓄えることにより、安定した発電システムを実現できる。
[本発明の実施形態の詳細]
本発明の実施形態に係る誘導加熱装置、及び発電システムの具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一又は相当部分を示す。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
〈誘導加熱装置〉
[実施形態1]
図1,図2を参照して、実施形態1に係る誘導加熱装置101について説明する。誘導加熱装置101は、回転体11と、加熱部13と、磁束発生部15と、流通路17とを備える。誘導加熱装置101は、磁束発生部15と加熱部13とが回転体11の径方向に間隔をあけて対向して配置された、所謂ラジアルギャップ型の構造である。以下、誘導加熱装置101の構成を詳しく説明する。
(回転体)
回転体11は、回転軸21を有し、回転軸21の一端側に連結された筒状又は柱状の部材である。この例では、円柱状の回転体11の中心軸に貫通孔が形成されており、その貫通孔に回転軸21が挿通され、回転軸21に回転体11が固定されている。回転軸21は、回転体11の両端側に設けられた軸受22により回転可能に支持されている(図1を参照)。回転体11の外周には、径方向に突出する複数の凸部111が形成されている(図2を参照)。この例では、6つの凸部111を有し、各凸部111が周方向に等間隔に形成されている。また、回転体11の外周には、後述する磁束発生部15(この例ではコイル15c)が設けられている。ここでは、回転体11が反時計方向に回転するものとする(図2中の矢印は回転方向を示す)。回転体11の動力には、例えば回転軸21に風車(図示せず)を接続し、風力を利用することが挙げられる。
回転体11の形成材料としては、磁性材料、非磁性材料を問わず、機械的強度を有し、磁束発生部15を支持可能な材料であればよく、構造強度と長期耐久性(耐候性及び耐食性)に優れる材料が好ましい。例えば、構造用材料に使用される鉄、鋼、ステンレス鋼、アルミニウム合金、マグネシウム合金などの金属や、GFRP(ガラス繊維強化プラスチック)やCFRP(炭素繊維強化プラスチック)などの複合材料が挙げられる。
この例では、回転体11(凸部111を含む)が磁性材料で形成されている。磁束発生部15(コイル15c)に常電導コイルを用いる場合は、回転体11を磁性材料で形成することが好ましい。一方、超電導コイルを用いる場合は、回転体11は磁性材料、非磁性材料のいずれで形成してもよい。超電導コイルを用いる場合、回転体11の磁束飽和のために発生磁場が限定されてしまう虞があることから、回転体11を非磁性材料で形成することが好ましい場合もある。
(加熱部)
加熱部13は、回転体11と間隔をあけて対向して配置され、回転体11の外周側に設けられた筒状の部材である。加熱部13は、回転体11に対して径方向に間隔をあけて対向して配置され、回転しないようにケーシング(図示せず)に固定されている。加熱部13には、磁束発生部15による磁束が通過し、後述するように渦電流が生じ、誘導加熱によって加熱部13が発熱する。加熱部13は、導電材料からなり、例えば、鉄やアルミニウム、銅などの金属又はそれらの合金で形成されている。
(磁束発生部)
磁束発生部15は、回転体11に設けられ、加熱部13に対して磁束を発生する。この例では、加熱部13に対向するように回転体11の外周に磁束発生部15が設けられており、回転体11の径方向(加熱部13の方向)に磁束を発生する。具体的には、磁束発生部15としてコイル15cを用いており、回転体11の各凸部111にコイル15c(計6個)が巻回され取り付けられている。凸部111が磁性材料で形成されている場合、コイル15cと凸部111とで磁束発生部15が構成される。また、回転体11における各凸部111の外径が軸方向の一方側よりも他方側が一段小さくなっており、後述するように、磁束発生部15を構成する凸部111の先端面と加熱部13との間の間隔が軸方向で異なり、流通路17の入口部171側よりも出口部172側の方が間隔が大きくなっている(図1を参照)。各コイル15cには、直流電源(図示せず)が接続され、各コイル15cに通電する電流の向きを制御して、発生させる磁場(磁束)の方向を決定しており、隣り合うコイル15cの極性が互いに異なっている(図2を参照)。コイル15cには、例えばスリップリングを介して外部の電源と接続し、電流を供給することが挙げられる。
磁束発生部15としては、コイル(電磁石)の他、永久磁石を用いることも可能である。コイルとしては、銅線などの常電導コイルや超電導線材を用いた超電導コイルが挙げられる。コイルの場合、コイルに通電する電流を大きくすることで、強い磁場を発生させることができ、通電電流を制御することで磁場の強さを調整することも可能である。誘導加熱(渦電流)による発熱量は磁場強度の2乗に比例することから、コイルは永久磁石に比較して発熱量の向上を図り易い。また、コイルであれば、永久磁石に比べて、温度上昇による磁気特性の低下や、経時的な磁気特性の劣化が起こり難い。したがって、磁束発生部15にコイルを用いた場合、通電電流を大きくして十分な磁場強度を維持し易く、熱媒体を発電に適した所定の温度(例えば、100℃〜600℃、好ましくは200℃〜350℃)まで加熱するのに十分な性能(熱エネルギー)を得易い。なお、コイルには直流電流を流し、直流磁場を発生させることが挙げられる。さらに、コイルに直流電流を流し、直流磁場を発生させる場合、超電導コイルであれば、電気抵抗がゼロであり、大電流を流してもコイルに発熱(損失)が実質的に生じない。そのため、常電導コイルに比較して、大電流を流すことによるコイルの発熱(損失)を抑制することができ、電力損失なしで極めて強い磁場を維持することができる。この例では、各コイル15cは、超電導コイルであり、周囲を冷却用ジャケット(図示せず)で覆い、冷却することによって超電導状態に保持されている。勿論、コイル15cには常電導コイルを用いてもよく、コイル15cに代えて永久磁石を用いてもよい。
(流通路)
加熱部13には、熱媒体が流通する流通路17が設けられている(図1を参照)。流通路17は、加熱部13に沿って設けられ、加熱部13に沿う方向の一方側に熱媒体を供給する入口部171と、その他方側に熱媒体を排出する出口部172とを有し、加熱部13に沿う方向の一方側から他方側へ熱媒体が流通する。この例では、加熱部13の軸方向の一方側に入口部171が、その軸方向の他方側に出口部172が設けられており、加熱部13の軸方向の一方側から他方側(図1では左側から右側)へ熱媒体が流通する(図1中の白抜き矢印は熱媒体の供給・排出方向を示す)。
流通路17は、加熱部13の軸方向に螺旋状に設けられている。この例では、流通路17は配管17pによって構成されており、配管17pを加熱部13の外周に螺旋状に巻き付けて配置している。加熱部13と流通路17(配管17p)とは熱的に接続されている。また、流通路17(配管17p)は、隣り合う流通路17(配管17p)間の間隔が等しくなるように形成されている。具体的には、流通路17(配管17p)は、加熱部13の軸方向(熱媒体の流通方向)に略等しいピッチで螺旋状に設けられており、入口部171側から出口部172側に亘って螺旋のピッチが実質的に一定である。したがって、流通路17の入口部171側から出口部172側に亘って加熱部13との接触面積が略等しくなっており、加熱部13において、軸方向(熱媒体の流通方向)における単位長さあたりの流通路17との接触面積が入口部171側から出口部172側に亘って略等しい。配管17pは、例えば、鉄やアルミニウム、銅などの金属又はそれらの合金で形成されている。熱媒体としては、例えば、水、水蒸気、油、液体金属(Na、Pbなど)、溶融塩などの液体並びに気体が挙げられる。
次に、誘導加熱装置101における熱媒体が加熱されるメカニズムについて説明する。
誘導加熱装置101では、磁束発生部15(コイル15c)から回転体11の径方向に磁束が発生し、加熱部13に磁束が通過する。磁束発生部15が対向して、磁束発生部15の磁束が鎖交する加熱部13の領域では、多くの磁束が通過し、磁場が強くなる。一方、磁束発生部15と対向せず、磁束発生部15の磁束が鎖交しない加熱部13の領域では、通過する磁束が減少し、磁場が弱くなる。そして、回転体11と共に磁束発生部15が回転することにより、加熱部13に対して磁束発生部15が相対的に移動することで、加熱部13の全周にわたって通過する磁束が変化し、加熱部13に印加される磁場が周期的に変化する。その結果、加熱部13に渦電流が発生することで、加熱部13が発熱し、その熱が流通路17(配管17p)に流れる熱媒体に伝熱され、熱媒体が加熱される。この例では、各凸部111の外径が流通路17の出口部172側で一段小さくなっており、磁束発生部15を構成する凸部111と加熱部13との間の間隔が流通路17の入口側171よりも出口部172側の方が大きくなっている。そのため、加熱部13の磁束発生部15との間の間隔が大きい部分、即ち出口部172側における発熱量が小さい。つまり、加熱部13において、熱媒体の流通方向における単位長さあたりの発熱量が、入口部171側よりも出口部172側の方が小さい。
また、誘導加熱装置101では、隣り合う磁束発生部15(コイル15c)の極性が互いに異なることから、N極の磁束発生部15に対向する場合とS極の磁束発生部15に対向する場合とでは、磁束(磁場)の方向が異なる。N極の磁束発生部15が対向するときは、磁束(磁場)の方向が、加熱部13の内周側から外周側方向(径方向の+方向)となる。一方、S極の磁束発生部15に対向するときは、磁束(磁場)の方向が、加熱部13の外周側から内周側方向(径方向の−方向)となる。つまり、回転体11と共に磁束発生部15が回転することにより、磁束(磁場)の方向が周期的に逆転しながら変化する。
ここで、誘導加熱装置101において、各磁束発生部15(コイル15c)の極性が全て同じ(例えばN極)場合であっても、上述したように、磁束発生部15に対向する加熱部13の一部分では、磁場が強くなり、隣り合う磁束発生部15の間に対向する加熱部13の別部分では、磁場が弱くなる。そのため、回転体11と共に磁束発生部15が回転することにより、磁場の強さが周期的に変化することから、加熱部13に渦電流が発生し、加熱部13が誘導加熱される。但し、この場合は磁場の方向が逆転しない。隣り合う磁束発生部15の極性が互いに異なる場合、磁場の方向が逆転することから、加熱部13に印加される磁場の振幅(変化)が大きくなるため、より大きな渦電流を発生させることができ、発熱量を増やすことができる。
また、磁束発生部15(コイル15c)の数は、適宜設定することができる。ここで、磁束発生部15の数をある程度増やすことで、磁場の周期を短くすることができる。誘導加熱による発熱量は磁場の周波数に比例することから、磁場の周期を短くすることで、発熱量の向上が期待できる。磁束発生部15の数は、例えば4個以上が好ましく、6個以上、更に8個以上がより好ましい。
{作用効果}
実施形態1の誘導加熱装置101は、流通路17の入口部171側よりも出口部172側の方が磁束発生部15と加熱部13との間の間隔が大きくなるように流通路17が構成されている。これにより、磁束発生部15と加熱部13との間の間隔が大きい流通路17の出口部172側において、加熱部13の発熱量を抑えることができる。そのため、磁束発生部15を構成する凸部111の先端面と加熱部13との間隔が軸方向に一様な場合に比べて、流通路17の出口部172側で加熱部13と熱媒体との温度差を大きくできる。したがって、加熱部13から熱媒体への熱の移動量が小さくなる流通路17の出口部172側において、加熱部13で発生した熱を熱媒体へ十分に伝熱させることができる。よって、加熱部13で発生した熱を、流通路17を流通する熱媒体に効率よく伝熱することができ、出口部172側の加熱部13からの熱ロスが小さく、加熱効率(熱交換効率)を改善できる。加えて、装置の大型化やコストアップを招くことなく、出口部172側の加熱部13で発生した熱を熱媒体によって十分に抜熱でき、過熱による加熱部13の損傷を抑制できる。
また、筒状の加熱部13に対して流通路17を螺旋状に設けたことで、1つの流通路17で加熱部13全体からの発熱を熱媒体に伝熱できる。
[変形例]
実施形態1の誘導加熱装置101では、回転体11に設けられた各凸部111に軸方向に段差を設けることで、流通路17の出口部172側で凸部111の先端面と加熱部13との間の間隔を大きくする形態を説明した。磁束発生部15と加熱部13との間の間隔を大きくするその他の手段としては、例えば、回転体11(磁束発生部15)に対向する加熱部13の対向面(ここでは内周面)に段差を設けることが挙げられる。具体的には、各凸部111の外径を軸方向に実質的に一定にすると共に、出口部172側の加熱部13の内径が入口部171側のそれよりも大きくなるように、加熱部13の内周面に軸方向に段差を設ける。これにより、出口部172側において、磁束発生部15と加熱部13との間の間隔を大きくすることができる。段差ではなく傾斜を設けてもよく、磁束発生部15と加熱部13との間の間隔は、流通路17の入口部171側から出口部172側に向かって段差を設けて段階的に大きくする他、傾斜を設けて連続的に大きくすることも可能である。
(断熱材)
実施形態1の誘導加熱装置101において、図3に例示するように、加熱部13や配管17pの周囲に断熱材19を配置してもよい。断熱材は、例えば、加熱部13の内周面及び端面や、配管17pの外側に設けることが挙げられる。断熱材には、例えば、ロックウール、グラスウール、発砲プラスチック、レンガ、セラミックスなどを用いることができる。加熱部13や配管17pの周囲に断熱材を設けることで、加熱部13や配管17pからの熱ロスを抑制でき、熱媒体への熱交換効率を向上できる。また、図3に示すように、回転体11(磁束発生部15)に対向する加熱部13の対向面(ここでは内周面)に断熱材19を配置することで、回転体11(磁束発生部15)に対する加熱部13からの熱の影響を低減できる。回転体11(磁束発生部15)の加熱部13に対向する対向面(ここでは外周面)に断熱材を配置してもよく、これによっても加熱部13からの熱の影響を低減できる。
特に、実施形態1の誘導加熱装置101では、流通路17の出口部172側において凸部111と加熱部13との間の間隔が大きくなっているため、その間隔が大きい部分に断熱材19(図3を参照)を配置したり、配置する断熱材19の厚さを厚くすることが容易である。流通路17の出口部172側では、熱媒体の温度が高く、加熱部13の温度も高くなる傾向があるため、熱ロスが生じ易いが、流通路17の出口部172側に断熱材19を配置したり、断熱材19を厚くすることによって、熱ロスを効果的に抑制できる。
実施形態1の誘導加熱装置101では、流通路17を配管17pによって構成し、加熱部13の外部に流通路17を設ける形態を説明したが、流通路17は加熱部13に形成することも可能である。例えば、図4に示すように、加熱部13の外周面に、軸方向に螺旋状の溝17gを形成し、この溝17gを流通路17に利用することが挙げられる。そして、溝17gを形成した加熱部13の外周面を覆うようにシート状や筒状のカバー材13cを被せることで、溝17gの内周面とカバー材13cの内周面とにより囲まれた空間によって流通路17を形成できる。
実施形態1の誘導加熱装置101では、流通路17を加熱部13の軸方向に螺旋状に設ける形態を説明したが、流通路17は加熱部13の軸方向に沿って直線状に設けることも可能である。この場合、加熱部13の周方向に間隔をあけて複数の流通路17を設けることが挙げられる。
[変形例1−1]
上述した実施形態1では、図1や図4に示すように、流通路17の螺旋のピッチが一定であり、流通路17が入口部171側から出口部172側に亘って加熱部13との接触面積が等しくなるように形成されている形態を説明した。変形例1−1では、図5を参照して、流通路17が加熱部13の軸方向に螺旋状に設けられると共に、入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなるように形成されている形態を説明する。図5の上図は、図1と同様に、流通路17を配管17pによって構成した場合、下図は、図4と同様に、流通路17を加熱部13に形成した溝17gによって構成した場合を示している。
図5に例示する変形例1−1に係る誘導加熱装置101では、流通路17(配管17p又は溝17g)は、入口部171側よりも出口部172側の方が隣り合う流通路17間の間隔が小さくなるように形成されている。具体的には、流通路17の入口部171側から出口部172側に向かうほど、流通路17の螺旋のピッチが小さくなっており、加熱部13に対して流通路17が密に設けられている。したがって、流通路17の入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなっており、加熱部13において、軸方向における単位長さあたりの流通路17との接触面積が入口部171側よりも出口部172側の方が大きい。
変形例1−1の誘導加熱装置101は、流通路17の入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなるように流通路17が構成されている。これにより、流通路17の出口部172側において、加熱部13から流通路17に流れる熱媒体への熱の移動量を増やすことができる。したがって、流通路17の出口部172側において、加熱部13で発生した熱を熱媒体へ十分に伝熱させることができ、熱交換効率をより向上できる。よって、加熱部13で発生した熱を、流通路17を流通する熱媒体に更に効率よく伝熱することができる。
実施形態1の誘導加熱装置101では、回転体11が円柱状で、かつ、加熱部13が円筒状である形態を説明したが、回転体11及び加熱部13の形状はこれに限定されない。例えば、図6に示すように、回転体11の外周面が円錐面を有し、これに対向する加熱部13の内周面も円錐面を有する形態が挙げられる。具体的には、回転体11は、軸方向の一方側から他方側(図6では左側から右側)に向かって外径が小さくなる円錐台状であり、円錐状の外周面を有している。また、回転体11における各凸部111の外径も軸方向の一方側から他方側に向かって小さくなっている。一方、加熱部13は、軸方向の一方側から他方側に向かって内径が小さくなる円錐台筒状であり、回転体11の外周面に対応した円錐状の内周面を有している。回転体11の外周面と加熱部13の内周面とは略同じ傾斜角度を有し、図1に示す誘導加熱装置101と同様、磁束発生部15(凸部111)と加熱部13との間の間隔が流通路17の入口側171よりも出口部172側の方が大きくなっている。加熱部13は、回転体11に対して軸方向の長さが長くなるように形成されている。
更に、図6に例示する誘導加熱装置101は、回転体11と加熱部13の少なくとも一方を軸方向に移動させる軸方向移動機構12を備える。この例では、軸方向移動機構12は、回転体11を加熱部13に対して相対的に軸方向に移動させる。軸方向移動機構12の駆動源としては、電動モータや電動アクチュエータを用いたり、油圧シリンダ等を用いることが可能である。その他、磁束発生部15(凸部111)と加熱部13とを一定の間隔に保持する間隔保持部材(例、ベアリング)14が回転体11と加熱部13との間に周方向に亘って介在されている。
誘導加熱によって加熱部13が発熱して高温になると、加熱部13が径方向外側に熱膨張することがある。そのため、熱膨張によって加熱部13の内径が拡大し、磁束発生部15(凸部111)と加熱部13との間隔が拡がることがある。誘導加熱による発熱量は磁場強度に比例し、磁場強度は距離によって減衰することから、熱膨張によって加熱部13の内径が拡大すると、磁束発生部15との間隔が大きくなり、加熱部13全体の発熱量が小さくなる。
図6の上図は、加熱部13が熱膨張していない状態を示し、下図は、加熱部13が熱膨張した状態を示す。図6の下図において、移動前の回転体11及び熱膨張前の加熱部13をそれぞれ二点鎖線で示している。図6に例示する誘導加熱装置101は、加熱部13が熱膨張していない状態では、上図に示すように、回転体11が加熱部13に対して軸方向の中央側に位置しており、磁束発生部15と加熱部13とが所定の間隔となるように構成されている。そして、加熱部13が熱膨張して内径が拡大した場合は、図6の下図に示すように、磁束発生部15と加熱部13との間隔が小さくなる方向に、回転体11を加熱部13に対して相対的に軸方向に移動させる。具体的には、軸方向移動機構12により回転体11を加熱部13に対して軸方向の他方側(図6の右側)に移動させる。これにより、加熱部13が熱膨張しても、磁束発生部15と加熱部13とが所定の間隔となるように調整できる。したがって、加熱部13の熱膨張前と後とで、磁束発生部15と加熱部13との間隔を一定にすることができ、熱膨張による加熱部13全体の発熱量の低下を抑制できる。加熱部13の熱膨張の程度が小さくなった場合、例えば、回転体11の回転数が低下するなどして加熱部13の発熱量が低下した場合などは、軸方向移動機構12により回転体11を加熱部13に対して軸方向の一方側(図6の左側)に移動させる。これにより、間隔保持部材14に過度の圧縮応力が作用することを抑制できる。
その他、図6に例示する誘導加熱装置101によれば、軸方向移動機構12によって回転体11が加熱部13に対して相対的に軸方向に移動可能であり、磁束発生部15と加熱部13との間隔を任意に調整することが可能である。そのため、加熱部13の熱膨張前と後とで、磁束発生部15と加熱部13との間隔を一定にする以外に、磁束発生部15と加熱部13との間隔を積極的に変更して、加熱部13全体の発熱量を調整することも可能である。例えば、図6の上図に示す状態から、磁束発生部15と加熱部13との間隔が大きくなる方向、即ち、回転体11を加熱部13に対して軸方向の一方側(図6の左側)に移動させることで、加熱部13全体の発熱量を小さくできる。一方、磁束発生部15と加熱部13との間隔が小さくなる方向、即ち、回転体11を加熱部13に対して軸方向の他方側(図6の右側)に移動させることで、加熱部13全体の発熱量を大きくできる。したがって、図6に例示する誘導加熱装置101によれば、回転体11を加熱部13に対して相対的に軸方向に移動させることで、磁束発生部15と加熱部13との間隔を任意に調整することが可能であり、加熱部13全体の発熱量を調整することも可能である。磁束発生部15と加熱部13との間隔を積極的に変更する場合、間隔保持部材14によって回転体11の軸方向の他方側への移動量が規制されることがあるため、この場合は、間隔保持部材14を省略してもよい。
[実施形態2]
上述した実施形態1では、磁束発生部15と加熱部13とが回転体11の径方向に間隔をあけて対向して配置された、所謂ラジアルギャップ型の構造である形態を説明した。実施形態2では、磁束発生部15と加熱部13とが回転体11の軸方向に間隔をあけて対向して配置された、所謂アキシャルギャップ型の構造である形態を説明する。以下、図7〜図9を参照して、実施形態2に係る誘導加熱装置102について、実施形態1との相違点を中心に説明する。
(回転体及び加熱部)
回転体11と加熱部13は板状(ここでは円板状)であり、互いの面が対向するように間隔をあけて配置されている(図7を参照)。回転体11は、軸受22により回転可能に支持された回転軸21の一端側に連結されている。加熱部13は、回転体11に対して軸方向に間隔をあけて対向して配置され、回転しないようにケーシング(図示せず)に固定されている。
(磁束発生部)
回転体11の加熱部13に対向する対向面に、回転体11の軸方向(加熱部13の方向)に磁束を発生する磁束発生部15が設けられている。この例では、磁束発生部15が永久磁石15mであり、図8に示すように、回転体11の対向面に複数の扇形状の磁石15mが円形状に並べて配置され、隣り合う磁石15mの極性が互いに異なっている。また、各磁石15mは、径方向の内側が外側よりも一段凹んでおり、後述するように、各磁束発生部15と加熱部13との間の間隔が径方向で異なり、流通路17の入口側171よりも出口部172側の方が間隔が大きくなっている(図7を参照)。図8では、磁束発生部15(磁石15m)の数が6個の場合を例示しているが、磁束発生部15(磁石15m)の数はこれに限定されず、適宜設定することができる。磁束発生部15の数は、例えば4個以上が好ましく、6個以上、更に8個以上がより好ましい。磁束発生部15には、コイルを用いることも可能である。
(流通路)
加熱部13の回転体11に対向する対向面とは反対側の反対面に、熱媒体が流通する流通路17が設けられている。この例では、流通路17は、図9に示すように、加熱部13の径方向に渦巻状に設けられている。そして、加熱部13の径方向の一方側(ここでは外側)に入口部171が、その径方向の他方側(ここでは内側)に出口部172が設けられており、加熱部13の径方向の外側から内側へ熱媒体が流通する(図7中の白抜き矢印は熱媒体の供給・排出方向を示す)。また、流通路17は、配管17pによって構成されており、配管17pを加熱部13の反対面に渦巻状に配置している。流通路17(配管17p)は、隣り合う流通路17(配管17p)間の間隔が等しくなるように形成されている。具体的には、流通路17(配管17p)は、加熱部13の径方向(熱媒体の流通方向)に略等しいピッチで渦巻状に設けられており、入口部171側から出口部172側に亘って渦巻のピッチ(流通路17を構成する渦巻の隣り合う曲線の間隔)が実質的に一定である。したがって、流通路17の入口部171側から出口部172側に亘って加熱部13との接触面積が略等しくなっており、加熱部13において、径方向(熱媒体の流通方向)における単位長さあたりの流通路17との接触面積が入口部171側から出口部172側に亘って略等しい。
誘導加熱装置102における熱媒体が加熱されるメカニズムについて説明する。誘導加熱装置102の場合、磁束発生部15(磁石15m)から回転体11の軸方向に磁束が発生し、加熱部13に磁束が通過する。具体的には、加熱部13におけるN極の磁束発生部15に対向する部分では、磁束(磁場)が加熱部13の対向面側から反対面側の方向に通過し、S極の磁束発生部15に対向する部分では、磁束(磁場)が加熱部13の反対面側から対向面側の方向に通過する。そして、回転体11と共に磁束発生部15が回転することにより、加熱部13に対して磁束発生部15が相対的に移動することで、加熱部13における磁束発生部15に対向する部分において通過する磁束が変化し、印加される磁場が周期的に変化する。その結果、加熱部13に渦電流が発生することで、加熱部13が発熱し、その熱が流通路17(配管17p)に流れる熱媒体に伝熱され、熱媒体が加熱される。この例では、各磁束発生部15を構成する各磁石15mが流通路17の出口部172側で一段凹んでおり、各磁束発生部15と加熱部13との間の間隔が流通路17の入口側171よりも出口部172側の方が大きくなっている。
{作用効果}
実施形態2の誘導加熱装置102は、実施形態1の誘導加熱装置101と同様に、流通路17の入口部171側よりも出口部172側の方が磁束発生部15と加熱部13との間の間隔が大きくなるように流通路17が構成されている。そのため、流通路17の出口部172側において、加熱部13の発熱量を抑えることができ、磁束発生部15と加熱部13との間の間隔が径方向に一様な場合に比べて、流通路17の出口部172側で加熱部13と熱媒体との温度差を大きくできる。したがって、流通路17の出口部172側において、加熱部13で発生した熱を熱媒体へ十分に伝熱させることができる。よって、実施形態1と同じように、加熱部13で発生した熱を、流通路17を流通する熱媒体に効率よく伝熱することができ、熱交換効率を改善できる。
また、板状の加熱部13に対して流通路17を渦巻状に設けたことで、1つの流通路17で加熱部13全体からの発熱を熱媒体に伝熱できる。
[変形例]
実施形態2の誘導加熱装置102では、回転体11に設けられた各磁束発生部15(磁石15m)に径方向に段差を設けることで、流通路17の出口部172側で磁束発生部15と加熱部13との間の間隔を大きくする形態を説明した。磁束発生部15と加熱部13との間の間隔を大きくするその他の手段としては、例えば、回転体11に対向する加熱部13の対向面に段差を設けることが挙げられる。具体的には、各磁石15mの厚さを径方向に実質的に一定にすると共に、回転体11(磁束発生部15)と加熱部13との対向距離が入口部171側よりも出口部172側が大きくなるように、加熱部13の対向面に径方向に段差を設ける。これにより、出口部172側において、磁束発生部15と加熱部13との間の間隔を大きくすることができる。段差ではなく傾斜を設けてもよく、磁束発生部15と加熱部13との間の間隔は、流通路17の入口部171側から出口部172側に向かって段差を設けて段階的に大きくする他、傾斜を設けて連続的に大きくすることも可能である。
(断熱材)
実施形態2の誘導加熱装置102においても、図10に例示するように、実施形態1と同様、加熱部13や配管17pの周囲に断熱材19を配置してもよい。断熱材は、例えば、加熱部13の対向面及び周面や、配管17pの外側に断熱材を設けることが挙げられる。図10では、加熱部13の対向面のうち、磁束発生部15との間の間隔が大きい部分、即ち流通路17の出口部172側に断熱材19を配置する場合を示す。また、回転体11(磁束発生部15)の加熱部13に対向する対向面に断熱材を配置してもよい。
実施形態2の誘導加熱装置102では、流通路17を配管17pによって構成し、加熱部13の外部に流通路17を設ける形態を説明したが、実施形態1と同様、流通路17は加熱部13に形成することも可能である。例えば、加熱部13の対向面又は反対面に径方向に渦巻状の溝を形成し、この溝を流通路に利用することが挙げられる。そして、溝を形成した加熱部の面を覆うように、流通路の入口部及び出口部に対応する位置に開口が形成された板状のカバー材を被せることで、溝の内周面とカバー材の表面とにより囲まれた空間によって流通路を形成できる。
[変形例2−1]
上述した実施形態2では、図7及び図9に示すように、流通路17の渦巻のピッチが一定であり、流通路17が入口部171側から出口部172側に亘って加熱部13との接触面積が等しくなるように形成されている形態を説明した。変形例2−1では、図11を参照して、流通路17が加熱部13の径方向に螺旋状に設けられると共に、入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなるように形成されている形態を説明する。図11の上図は、図7と同様に、誘導加熱装置の概略縦断面図であり、下図は、図9と同様に、流通路の概略平面図である。
図11に例示する変形例2−1に係る誘導加熱装置102では、流通路17(配管17p)は、入口部171側よりも出口部172側の方が隣り合う流通路17(配管17p)間の間隔が小さくなるように形成されている。具体的には、流通路17の入口部171側から出口部172側に向かうほど、流通路17の渦巻のピッチが小さくなっており、加熱部13に対して流通路17が密に設けられている。したがって、流通路17の入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなっており、加熱部13において、径方向における単位長さあたりの流通路17との接触面積が入口部171側よりも出口部172側の方が大きい。
変形例2−1の誘導加熱装置102は、図5に例示する変形例1−1の誘導加熱装置101と同様に、流通路17の入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなるように流通路17が構成されている。したがって、流通路17の出口部172側において、加熱部13から流通路17に流れる熱媒体への熱の移動量を増やすことができ、流通路17の出口部172側において、加熱部13で発生した熱を熱媒体へ十分に伝熱させることができる。よって、変形例1−1と同じように、加熱部13で発生した熱を、流通路17を流通する熱媒体に更に効率よく伝熱することができ、熱交換効率をより向上できる。
変形例2−1の誘導加熱装置102では、加熱部13に対して渦巻状の流通路17を1つ設ける形態を説明したが、複数の流通路を設けることも可能である。例えば、図12に示すように、加熱部13の径方向に放射状に複数の流通路17を設けることが挙げられる。各流通路17は、加熱部13の径方向の外側から内側に向かって直線状に設けられ、加熱部13の径方向の外側に入口部171が、その径方向の内側に出口部172が設けられている。この例では、各流通路17は、配管17pによって構成されており、各配管17pを加熱部13の反対面に配置している。この場合であっても、流通路17(配管17p)の入口部171側よりも出口部172側の方が隣り合う流通路17(配管17p)間の間隔が小さくなるため、流通路17の入口部171側よりも出口部172側の方が加熱部13との接触面積が大きくなる。図12では、流通路17(配管17p)の数が8個の場合を例示しているが、流通路17(配管17p)の数はこれに限定されず、適宜設定することができる。流通路17の数は、加熱部13との接触面積を確保する観点から、例えば4個以上、8個以上、更に12個以上とすることが挙げられる。また、図12では、加熱部13を平面視した場合に、流通路17(配管17p)が加熱部13の径方向に直線状に設けられているが、流通路17(配管17p)は波線状に設けることも可能である。
〈発電システム〉
図13を参照して、本発明の実施形態に係る発電システムの一例を説明する。図13に示す発電システムPは、誘導加熱装置10と、風車20と、蓄熱器50と、発電部60とを備える。塔91の上部に設置されたナセル92に風車20が取り付けられ、ナセル92内に誘導加熱装置10が格納されている。また、塔91の下部(土台)に建てられた建屋93に蓄熱器50及び発電部60が設置されている。以下、発電システムPの構成を詳しく説明する。
誘導加熱装置10は、本発明の実施形態に係る誘導加熱装置であり、例えば、上述した実施形態1や変形例1−1、実施形態2や変形例2−1に係る誘導加熱装置101,102を利用することができる。また、回転軸21の他端側が後述する風車20に直結され、回転体を回転させる動力に風力を利用している。なお、ここでは、熱媒体が水である場合を例に説明する。
風車20は、水平方向に延びる回転軸21を中心に、3枚の翼201を回転軸21に放射状に取り付けた構造である。出力が5MWを超える風力発電システムの場合、直径が120m以上、回転数が10〜20rpm程度である。
誘導加熱装置10の流通路(配管)には、誘導加熱装置10に水を供給する給水管73と、誘導加熱装置10により加熱した水を蓄熱器50に送る輸送管51とが接続されている。そして、誘導加熱装置10は、回転体に設けられた磁場発生部から磁束が発生し、回転体の回転により、回転体と間隔をあけて配置された加熱部を通過する磁束が変化することで、加熱部に渦電流が発生し、加熱部が発熱して流通路内の水を加熱する。誘導加熱装置10は、熱媒体である水を例えば100℃〜600℃といった高温に加熱する。また、誘導加熱装置10は、加熱部(流通路)が回転しない構造であるので、流通路と輸送管51及び給水管73との接続に回転継手を用いる必要がなく、例えば溶接などを用いて、簡易な構成で、堅牢な接続を実現できる。
この発電システムPは、誘導加熱装置10により水を発電に適した温度(例えば200℃〜350℃)まで加熱し、高温高圧水を発生させる。高温高圧水は、誘導加熱装置10と蓄熱器50とを連結する輸送管51を通って蓄熱器50に送られる。蓄熱器50は、輸送管51を通って送られてきた高温高圧水の熱を蓄え、また、熱交換器を用いて発電に必要な蒸気を発電部60に供給する。なお、誘導加熱装置10により蒸気を発生させてもよい。
蓄熱器50としては、例えば、蒸気アキュムレーターや、溶融塩や油などを用いた顕熱型、或いは、融点の高い溶融塩の相変化を利用した潜熱型の蓄熱器を利用することができる。潜熱型の蓄熱方式は蓄熱材の相変化温度で蓄熱を行うため、一般に、顕熱型の蓄熱方式に比べて蓄熱温度域が狭帯域であり、蓄熱密度が高い。
発電部60は、蒸気タービン61と発電機62とを組み合わせた構造であり、蓄熱器50から供給された蒸気によって蒸気タービン61が回転し、発電機62を駆動して発電する。
蓄熱器50に送られた高温高圧水又は蒸気は、復水器71で冷却され水に戻される。その後、ポンプ72に送られ、高圧水にして給水管73を通って誘導加熱装置10に送られることで循環する。
この発電システムPによれば、本発明の実施形態に係る誘導加熱装置10を備えることから、誘導加熱装置10において、加熱部で発生した熱を、流通路を流通する熱媒体に効率よく伝熱することができる。よって、誘導加熱装置10における熱媒体への熱交換効率を改善でき、発電効率の向上を図ることができる。その他、誘導加熱装置10により加熱した熱媒体の熱を蓄熱器50に蓄熱して発電することで、高価な蓄電池を用いなくても、需要に応じた安定的な発電を実現できる。また、風車20と誘導加熱装置10の回転軸21とを直結することにより、増速機(ギアボックス)のトラブルを回避することが可能である。さらに、熱媒体の熱を輸送管51により例えば塔91の下部(土台)に設置された発電部60に供給することで、ナセル92に発電部60を格納する必要がなく、塔91の上部に設置されるナセル92を小型・軽量化することができる。
上記した発電システムPでは、熱媒体に水を用いた場合を例に説明したが、水よりも熱伝導率の高い液体金属を熱媒体に用いてもよい。このような液体金属としては、例えば液体金属ナトリウムが挙げられる。液体金属を熱媒体に用いる場合は、例えば、加熱部から熱を受け取る一次熱媒体に液体金属を用い、輸送管を通って送られてきた液体金属の熱で熱交換器を介して二次熱媒体(水)を加熱し、蒸気を発生させることが考えられる。
また、常圧で100℃超の沸点を有する例えば油、液体金属、溶融塩などを熱媒体に用いた場合は、水に比較して、所定の温度まで加熱したときに、流通路内の熱媒体の気化による内圧上昇を抑制し易い。
以上説明した本発明の実施形態に関連して、更に以下の付記を開示する。
[付記1]
熱媒体を加熱する誘導加熱装置であって、
回転軸を有する回転体と、
前記回転体の外周側に設けられ、前記回転体に対して径方向に間隔をあけて対向して配置される筒状の加熱部と、
前記回転体の外周に設けられ、前記回転体の径方向に磁束を発生する磁束発生部と、
前記加熱部に沿って設けられ、前記熱媒体が流通する流通路と、
前記回転体を前記加熱部に対して相対的に軸方向に移動させる軸方向移動機構と、を備え、
前記回転体は、円錐状の外周面を有すると共に、前記加熱部は、前記回転体の外周面に対応した円錐状の内周面を有する誘導加熱装置。
付記1に係る誘導加熱装置は、回転体を加熱部に対して相対的に軸方向に移動させることで、磁束発生部と加熱部との間隔を調整することが可能である。誘導加熱による発熱量は磁場強度に比例し、磁場強度は距離に依存することから、磁束発生部と加熱部との間隔を変更することで、加熱部全体の発熱量を調整することが可能である。
また、誘導加熱によって加熱部が発熱して高温になった場合、加熱部が径方向外側に熱膨張することがある。そのため、熱膨張によって加熱部の内径が拡大し、磁束発生部と加熱部との間隔が拡がることがある。熱膨張によって加熱部の内径が拡大すると、磁束発生部との間隔が大きくなり、加熱部全体の発熱量が小さくなる。付記1に係る誘導加熱装置によれば、加熱部が熱膨張しても、回転体を加熱部に対して相対的に軸方向に移動させることで、磁束発生部と加熱部とが所定の間隔となるように調整できる。したがって、熱膨張による加熱部全体の発熱量の低下を抑制できる。
[付記2]
付記1に記載の誘導加熱装置と、
前記誘導加熱装置により加熱した前記熱媒体の熱を電気エネルギーに変換する発電部と、を備える発電システム。
付記2に係る発電システムによれば、付記1に係る上記誘導加熱装置を備えることから、誘導加熱装置において、回転体を加熱部に対して相対的に軸方向に移動させることによって、磁束発生部と加熱部との間隔を調整することが可能である。そのため、磁束発生部と加熱部との間隔を変更することで、加熱部全体の発熱量を調整することが可能である。例えば、加熱部が熱膨張して内径が拡大した場合であっても、磁束発生部と加熱部とが所定の間隔となるように調整することで、熱膨張による加熱部全体の発熱量の低下を抑制できる。
付記2に係る発電システムは、上記誘導加熱装置により加熱した熱媒体の熱を利用して発電するものである。例えば誘導加熱装置の回転軸に風車を接続し、回転体の動力に風力を利用すれば、風のエネルギーを回転エネルギー→熱エネルギーに変換して、電気エネルギーとして取り出すことができる。一例としては、熱媒体の水を加熱して高温高圧蒸気を生成し、その蒸気を利用して蒸気タービンにより発電機を回転させて発電することが挙げられる。また、熱を電気エネルギーに変換する構成としたことで、蓄熱器を用いて熱としてエネルギーを蓄えることにより、安定した発電システムを実現できる。
付記1に係る誘導加熱装置の具体例を、以下に図14を参照しつつ説明する。誘導加熱装置110は、回転体11と、加熱部13と、磁束発生部15と、流通路17とを備える。誘導加熱装置110は、磁束発生部15と加熱部13とが回転体11の径方向に間隔をあけて対向して配置された、所謂ラジアルギャップ型の構造である。誘導加熱装置110の基本的な構成は、図1,図2を参照して説明した上述の実施形態1に係る誘導加熱装置101の構成と同様である。以下では、実施形態1で説明した構成と同様の構成については同一符号を付して詳細な説明を省略し、実施形態1との相違点を中心に説明する。
(回転体)
回転体11は、円錐状の外周面を有する。この例では、回転体11は、軸方向の一方側から他方側(図14では左側から右側)に向かって外径が小さくなる円錐台状であり、外周面が円錐面を有している。また、回転体11における各凸部111の外径も軸方向の一方側から他方側に向かって小さくなっている。
(加熱部)
加熱部13は、回転体11の外周面に対応した円錐状の内周面を有する。具体的には、軸方向の一方側から他方側に向かって内径が小さくなる円錐台筒状であり、内周面が回転体11の外周面に対応した円錐面を有している。回転体11の外周面と加熱部13の内周面とは略同じ傾斜角度を有し、回転体11(凸部111)と加熱部13とが所定の間隔となるように構成されている。この例では、加熱部13は、回転体11に対して軸方向の長さが長くなるように形成されている。
(磁束発生部)
磁束発生部15は、回転体11の外周に設けられており、回転体11の径方向(加熱部13の方向)に磁束を発生する。つまり、磁束発生部15は、加熱部13に対して磁束を発生する。この例では、磁束発生部15としてコイル15cを用いており、回転体11の外周に形成された各凸部111にコイル15cが巻回され取り付けられている。凸部111は磁性材料で形成されており、コイル15cと凸部111とで磁束発生部15が構成される。磁束発生部15を構成する凸部111の先端面と加熱部13との間の間隔が軸方向に一定又は略一定である。
(流通路)
流通路17は、加熱部13の軸方向に設けられている。流通路17は、加熱部13の軸方向の一方側に熱媒体を供給する入口部171と、その軸方向の他方側に熱媒体を排出する出口部172とを有し、加熱部13の軸方向の一方側から他方側へ熱媒体が流通する(図14中の白抜き矢印は熱媒体の供給・排出方向を示す)。この例では、流通路17は加熱部13の軸方向に螺旋状に設けられており、配管17pによって構成されている。また、流通路17(配管17p)は、隣り合う流通路17(配管17p)間の間隔が等しくなるように形成されている。具体的には、流通路17(配管17p)は、加熱部13の軸方向(熱媒体の流通方向)に略等しいピッチで螺旋状に設けられており、入口部171側から出口部172側に亘って螺旋のピッチが実質的に一定である。
流通路17は、加熱部13に螺旋状に設ける他、例えば、加熱部13の軸方向に沿って直線状に設けることも可能である。この場合、加熱部13の周方向に間隔をあけて複数の流通路17を設けることが挙げられる。
(軸方向移動機構)
更に、誘導加熱装置110は、回転体11と加熱部13の少なくとも一方を軸方向に移動させる軸方向移動機構12を備え、軸方向移動機構12は、回転体11を加熱部13に対して相対的に軸方向に移動させる。軸方向移動機構12の駆動源としては、電動モータや電動アクチュエータを用いたり、油圧シリンダ等を用いることが可能である。
その他、磁束発生部15(凸部111)と加熱部13とを一定の間隔に保持する間隔保持部材(例、ベアリング)14が回転体11と加熱部13との間に周方向に亘って介在されている。
図14に例示する誘導加熱装置110の作用効果について、図面を参照しつつ説明する。図14の上図は、加熱部13が熱膨張していない状態を示し、下図は、加熱部13が熱膨張した状態を示す。図14の下図において、移動前の回転体11及び熱膨張前の加熱部13をそれぞれ二点鎖線で示している。
誘導加熱装置110において、誘導加熱によって加熱部13が発熱して高温になると、加熱部13が径方向外側に熱膨張することがある。そのため、熱膨張によって加熱部13の内径が拡大し、磁束発生部15(凸部111)と加熱部13との間隔が拡がることがある。誘導加熱による発熱量は磁場強度に比例し、磁場強度は距離によって減衰することから、熱膨張によって加熱部13の内径が拡大すると、磁束発生部15との間隔が大きくなり、加熱部13全体の発熱量が小さくなる。
誘導加熱装置110は、加熱部13が熱膨張していない状態では、図14の上図に示すように、回転体11が加熱部13に対して軸方向の中央側に位置しており、磁束発生部15と加熱部13とが所定の間隔となるように構成されている。そして、加熱部13が熱膨張して内径が拡大した場合は、図14の下図に示すように、磁束発生部15と加熱部13との間隔が小さくなる方向に、回転体11を加熱部13に対して相対的に軸方向に移動させる。具体的には、軸方向移動機構12により回転体11を加熱部13に対して軸方向の他方側(図14の右側)に移動させる。これにより、加熱部13が熱膨張しても、磁束発生部15と加熱部13とが所定の間隔となるように調整できる。したがって、加熱部13の熱膨張前と後とで、磁束発生部15と加熱部13との間隔を一定にすることができ、熱膨張による加熱部13全体の発熱量の低下を抑制できる。加熱部13の熱膨張の程度が小さくなった場合、例えば、回転体11の回転数が低下するなどして加熱部13の発熱量が低下した場合などは、軸方向移動機構12により回転体11を加熱部13に対して軸方向の一方側(図14の左側)に移動させる。これにより、間隔保持部材14に過度の圧縮応力が作用することを抑制できる。
また、誘導加熱装置110によれば、軸方向移動機構12によって回転体11が加熱部13に対して相対的に軸方向に移動可能であり、磁束発生部15と加熱部13との間隔を任意に調整することが可能である。そのため、加熱部13の熱膨張前と後とで、磁束発生部15と加熱部13との間隔を一定にする以外に、磁束発生部15と加熱部13との間隔を積極的に変更して、加熱部13全体の発熱量を調整することも可能である。例えば、図14の上図に示す状態から、磁束発生部15と加熱部13との間隔が大きくなる方向、即ち、回転体11を加熱部13に対して軸方向の一方側(図14の左側)に移動させることで、加熱部13全体の発熱量を小さくできる。一方、磁束発生部15と加熱部13との間隔が小さくなる方向、即ち、回転体11を加熱部13に対して軸方向の他方側(図14の右側)に移動させることで、加熱部13全体の発熱量を大きくできる。したがって、誘導加熱装置110によれば、回転体11を加熱部13に対して相対的に軸方向に移動させることで、磁束発生部15と加熱部13との間隔を任意に調整することが可能であり、加熱部13全体の発熱量を調整することも可能である。磁束発生部15と加熱部13との間隔を積極的に変更する場合、間隔保持部材14によって回転体11の軸方向の他方側への移動量が規制されることがあるため、この場合は、間隔保持部材14を省略してもよい。
付記2に係る発電システムの構成は、付記1に係る誘導加熱装置を備える点が図13を参照して説明した上述の発電システムPと異なり、その他の構成は、図13の発電システムPと同様の構成を採用できるので、ここでは詳細な説明を省略する。
本発明の誘導加熱装置は、再生可能エネルギー(例、風力)を利用した発電システムに利用する他、例えば給湯システムや暖房システムに利用することも可能である。また、本発明の発電システムは、再生可能エネルギーを利用した発電の分野に好適に利用可能である。
10、101〜102、110 誘導加熱装置 P 発電システム
11 回転体 111 凸部
12 軸方向移動機構
13 加熱部 13c カバー材
14 間隔保持部材
15 磁束発生部
15c コイル 15m 永久磁石
17 流通路
17p 配管 17g 溝
171 入口部 172 出口部
19 断熱材
21 回転軸 22 軸受
20 風車 201 翼
50 蓄熱器 51 輸送管
60 発電部 61 蒸気タービン 62 発電機
71 復水器 72 ポンプ 73 給水管
91 塔 92 ナセル 93 建屋

Claims (6)

  1. 熱媒体を加熱する誘導加熱装置であって、
    回転軸を有する回転体と、
    前記回転体と間隔をあけて対向して配置される加熱部と、
    前記回転体に設けられ、前記加熱部に対して磁束を発生する磁束発生部と、
    前記加熱部に沿って設けられ、前記熱媒体が流通する流通路と、を備え、
    前記流通路は、前記加熱部に沿う方向の一方側に前記熱媒体を供給する入口部と、その他方側に前記熱媒体を排出する出口部と、を有し、
    前記磁束発生部と前記加熱部との間の間隔が、前記流通路の前記入口部側よりも前記出口部側の方が大きい誘導加熱装置。
  2. 前記流通路は、前記入口部側よりも前記出口部側の方が、前記加熱部との接触面積が大きくなるように形成されている請求項1に記載の誘導加熱装置。
  3. 前記加熱部は、前記回転体の外周側に設けられる筒状の部材であり、
    前記磁束発生部は、前記回転体の径方向に前記磁束を発生し、
    前記流通路は、前記加熱部の軸方向に螺旋状に設けられると共に、前記加熱部の軸方向の一方側に前記入口部が、その他方側に前記出口部が設けられている請求項1又は請求項2に記載の誘導加熱装置。
  4. 前記流通路は、前記入口部側よりも前記出口部側の方が隣り合う前記流通路間の間隔が小さくなるように形成されている請求項3に記載の誘導加熱装置。
  5. 前記回転軸が風車に接続されている請求項1〜請求項4のいずれか1項に記載の誘導加熱装置。
  6. 請求項1〜請求項5のいずれか1項に記載の誘導加熱装置と、
    前記誘導加熱装置により加熱した前記熱媒体の熱を電気エネルギーに変換する発電部と、を備える発電システム。
JP2015123353A 2015-06-18 2015-06-18 誘導加熱装置、及び発電システム Active JP6465457B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015123353A JP6465457B2 (ja) 2015-06-18 2015-06-18 誘導加熱装置、及び発電システム
US15/735,824 US10764969B2 (en) 2015-06-18 2016-03-25 Induction heating device and power generation system
PCT/JP2016/059691 WO2016203801A1 (ja) 2015-06-18 2016-03-25 誘導加熱装置、及び発電システム
CN201680034797.4A CN107710868B (zh) 2015-06-18 2016-03-25 感应加热装置和发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123353A JP6465457B2 (ja) 2015-06-18 2015-06-18 誘導加熱装置、及び発電システム

Publications (2)

Publication Number Publication Date
JP2017010697A true JP2017010697A (ja) 2017-01-12
JP6465457B2 JP6465457B2 (ja) 2019-02-06

Family

ID=57545486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123353A Active JP6465457B2 (ja) 2015-06-18 2015-06-18 誘導加熱装置、及び発電システム

Country Status (4)

Country Link
US (1) US10764969B2 (ja)
JP (1) JP6465457B2 (ja)
CN (1) CN107710868B (ja)
WO (1) WO2016203801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247893A (zh) * 2022-07-27 2022-10-28 中国科学院电工研究所 一种电磁感应加热-储热-取热一体化装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251387B (zh) * 2015-02-24 2020-06-16 日本制铁株式会社 涡流式发热装置
JP7228126B2 (ja) * 2017-01-24 2023-02-24 住友電気工業株式会社 エネルギー貯蔵システムおよび変動電力安定利用システム
CN109396807A (zh) * 2018-12-14 2019-03-01 山西天海泵业有限公司 一种电机平衡环高效热装装置及热装方法
WO2021009555A1 (en) * 2019-07-13 2021-01-21 Dsouza Joel Nelson A portable device for heating fluids through magnetic induction
GB202020393D0 (en) * 2020-12-22 2021-02-03 Nicoventures Trading Ltd Inductor coil
CN113028640B (zh) * 2021-03-11 2022-09-16 武汉理工大学 一种热电风机系统及控制方法
CN113346647A (zh) * 2021-05-17 2021-09-03 武汉理工大学 一种新型磁涡流制热器
US11937358B1 (en) * 2022-11-14 2024-03-19 Toyota Jidosha Kabushiki Kaisha Engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127558A (ja) * 1981-10-16 1983-07-29 ル・マテリアル・マグネテイク 回転運動エネルギを熱に変換する装置
JP2000105036A (ja) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd 氷蓄熱式熱交換器のエバポレータ
JP2000123962A (ja) * 1998-10-19 2000-04-28 Usui Internatl Ind Co Ltd マグネット式ヒーター
JP2011159595A (ja) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd 発電システム
JP2011210656A (ja) * 2010-03-30 2011-10-20 Tok Engineering Kk 永久磁石式の加熱及び発電用のハイブリッド装置
JP2012104223A (ja) * 2009-04-04 2012-05-31 Crew Kenkyusho Co Ltd 永久磁石式渦電流加熱装置
JP2012256507A (ja) * 2011-06-08 2012-12-27 Sumitomo Electric Ind Ltd 誘導加熱装置、及びそれを備える発電システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24698E (en) * 1959-09-15 Heating means for billet containers of
US2265470A (en) * 1940-07-20 1941-12-09 Lawrence F Black Induction heater
GB761760A (en) * 1953-04-08 1956-11-21 Radio Heaters Ltd Improvements relating to high frequency induction heating
US2792482A (en) * 1953-11-30 1957-05-14 John A Logan Heating means for billet containers of metal extrusion presses
US3197602A (en) * 1961-10-26 1965-07-27 Ohio Crankshaft Co Induction heating core
JP3955888B2 (ja) 2003-12-12 2007-08-08 トック・エンジニアリング株式会社 永久磁石式渦電流加熱装置
CN1749669A (zh) * 2005-09-29 2006-03-22 哈尔滨工业大学 自流式电磁涡流的水加热器
FR2891720B1 (fr) 2005-10-06 2007-12-14 Seb Sa Dispositif de chauffage de liquide pour appareil electromenager.
JP5024736B2 (ja) * 2009-10-15 2012-09-12 住友電気工業株式会社 発電システム
TWI467122B (zh) * 2011-09-14 2015-01-01 Wan Chun Hsu 離心式永久磁石加熱裝置
JP6038525B2 (ja) * 2012-07-26 2016-12-07 住友電気工業株式会社 風力熱発電システム
JP6257960B2 (ja) * 2013-08-27 2018-01-10 住友電気工業株式会社 風力発電システム
JP6560588B2 (ja) * 2015-10-08 2019-08-14 住友電気工業株式会社 誘導加熱装置、及び発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127558A (ja) * 1981-10-16 1983-07-29 ル・マテリアル・マグネテイク 回転運動エネルギを熱に変換する装置
JP2000105036A (ja) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd 氷蓄熱式熱交換器のエバポレータ
JP2000123962A (ja) * 1998-10-19 2000-04-28 Usui Internatl Ind Co Ltd マグネット式ヒーター
JP2012104223A (ja) * 2009-04-04 2012-05-31 Crew Kenkyusho Co Ltd 永久磁石式渦電流加熱装置
JP2011159595A (ja) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd 発電システム
JP2011210656A (ja) * 2010-03-30 2011-10-20 Tok Engineering Kk 永久磁石式の加熱及び発電用のハイブリッド装置
JP2012256507A (ja) * 2011-06-08 2012-12-27 Sumitomo Electric Ind Ltd 誘導加熱装置、及びそれを備える発電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247893A (zh) * 2022-07-27 2022-10-28 中国科学院电工研究所 一种电磁感应加热-储热-取热一体化装置

Also Published As

Publication number Publication date
US20190239294A1 (en) 2019-08-01
WO2016203801A1 (ja) 2016-12-22
CN107710868B (zh) 2021-03-30
US10764969B2 (en) 2020-09-01
CN107710868A (zh) 2018-02-16
JP6465457B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6465457B2 (ja) 誘導加熱装置、及び発電システム
JP5739737B2 (ja) 誘導加熱装置、及びそれを備える発電システム
JP6560588B2 (ja) 誘導加熱装置、及び発電システム
JP5413814B2 (ja) 発電システム
JP5545436B2 (ja) 発電システム
JP5637452B2 (ja) 誘導加熱装置、及びそれを備える発電システム
JP5344380B2 (ja) 発電システム
JP2017010698A (ja) 誘導加熱装置、及び発電システム
JP2011129433A (ja) 誘導加熱装置およびそれを備える発電システム
WO2011093192A1 (ja) 発電システム
JP5435357B2 (ja) 発電システム
JP5293626B2 (ja) 誘導加熱装置およびそれを備える発電システム
JP2017010696A (ja) 誘導加熱装置、及び発電システム
JP5778969B2 (ja) 発電システム
JP2011216421A (ja) 誘導加熱装置およびそれを備える発電システム
JP2021040411A (ja) 発熱機、及びエネルギー貯蔵システム
TW201828771A (zh) 能量貯藏系統及變動電力安定利用系統
JP2012043728A (ja) 発熱機および風力熱発電システム
JP2018006001A (ja) 誘導加熱装置、及び発電システム
JP2011220181A (ja) 熱媒体加熱装置およびその装置を具える発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6465457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181230

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250