JP2017005103A - 電子部品の製造方法及び半導体ウエハ - Google Patents

電子部品の製造方法及び半導体ウエハ Download PDF

Info

Publication number
JP2017005103A
JP2017005103A JP2015117503A JP2015117503A JP2017005103A JP 2017005103 A JP2017005103 A JP 2017005103A JP 2015117503 A JP2015117503 A JP 2015117503A JP 2015117503 A JP2015117503 A JP 2015117503A JP 2017005103 A JP2017005103 A JP 2017005103A
Authority
JP
Japan
Prior art keywords
chip
region
chip formation
substrate
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015117503A
Other languages
English (en)
Inventor
小栗 洋
Hiroshi Oguri
洋 小栗
明 坂本
Akira Sakamoto
坂本  明
圭介 名倉
Keisuke Nakura
圭介 名倉
智也 田口
Tomoya Taguchi
智也 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2015117503A priority Critical patent/JP2017005103A/ja
Publication of JP2017005103A publication Critical patent/JP2017005103A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】チップ形成領域の側面の平滑性を確保しつつ、各チップ形成領域の個片化を確実に行うことが可能な電子部品の製造方法を提供する。
【解決手段】基板51における第二方向D2で隣り合うチップ形成列53の間の領域に、チップ形成領域55の第二方向D2で対向する一対の側面55cを露出させると共に第二方向D2で隣り合うチップ非形成領域57同士を連続させるように、エッチングにより貫通孔60を形成する。伸張性を有するフィルムを基板51に装着し、基板51の内部に集光点を合わせてレーザ光を照射することにより各チップ形成領域55の第一方向D1で対向する一対の境界56aに位置する切断予定ラインに沿って切断の起点となる改質領域を基板51の内部に形成し、フィルムを伸張させることにより改質領域を起点として基板51を切断して、複数のチップ形成領域55を個片化する。
【選択図】図7

Description

本発明は、電子部品の製造方法及び半導体ウエハに関する。
シリコンウエハを分割しようとする予定分割線のうち、第1の予定分割線と交差してT字形状を成す第2の予定分割線に沿って、第1の予定分割線との交差地点から所定の長さ及び深さでエッチング加工を行う工程と、エッチング加工を行なっていない予定分割線の部分に対してシリコンウエハを分割するためのレーザ加工を行う工程と、含んでいるシリコンウエハの加工方法が知られている(たとえば、特許文献1参照)。
特開2006−173428号公報
複数のチップ形成領域を有している基板から各チップ形成領域を個片化する際に以下のような問題点を有するおそれがある。
個片化されたチップ形成領域の側面には、平滑性が要求されることがある。たとえば、チップ形成領域の側面が実装面として利用される場合には、当該側面に平滑性が要求される。チップ形成領域の側面がダイシングにより形成された面である場合、当該面は荒れた状態となるため、平滑性を確保することは難しい。
伸張性を有するフィルムを基板に装着し、基板の内部に集光点を合わせてレーザ光を照射することにより各チップ形成領域の境界に位置する切断予定ラインに沿って切断の起点となる改質領域を基板の内部に形成し、フィルムを伸張させることにより改質領域を起点として基板を切断して、各チップ形成領域を個片化するステルスダイシング技術が存在する。フィルムが伸張されることにより、チップ形成領域の間に境界に形成された改質領域に引張り方向での切断応力が作用する。改質領域に切断応力が作用すると、改質領域を起点として基板が切断される。したがって、切断応力が改質領域に適切に作用しない場合には、基板が切断されず、各チップ形成領域を個片化することができない。
本発明は、チップ形成領域の側面の平滑性を確保しつつ、各チップ形成領域の個片化を確実に行うことが可能な電子部品の製造方法及び半導体ウエハを提供することを目的とする。
本発明に係る電子部品の製造方法は、第一方向で隣り合うように位置するそれぞれ複数のチップ形成領域とチップ非形成領域とを有していると共に、第一方向に直交する第二方向で互いに離間している複数のチップ形成列を備える基板を準備する工程と、基板における第二方向で隣り合うチップ形成列の間の領域に、チップ形成領域の第二方向で対向する一対の側面を露出させると共に第二方向で隣り合うチップ非形成領域同士を連続させるように、エッチングにより貫通孔を形成する工程と、伸張性を有するフィルムを基板に装着し、基板の内部に集光点を合わせてレーザ光を照射することにより各チップ形成領域の第一方向で対向する一対の境界に位置する切断予定ラインに沿って切断の起点となる改質領域を基板の内部に形成し、フィルムを伸張させることにより改質領域を起点として基板を切断して、複数のチップ形成領域を個片化する工程と、を含んでいる。
本発明に係る電子部品の製造方法では、基板における第二方向で隣り合うチップ形成列の間の領域に、エッチングにより貫通孔が形成される。この貫通孔は、チップ形成領域の第二方向で対向する一対の側面を露出させるように形成される。すなわち、チップ形成領域の一対の側面は、エッチングにより形成された面であり、ダイシングにより形成された面に比して、極めて平滑である。
貫通孔は、第二方向で隣り合うチップ非形成領域同士を連続させるようにも形成されるため、フィルムを伸張させることにより改質領域を起点として基板を切断する際に、第二方向で隣り合うチップ非形成領域同士は連続している。すなわち、チップ非形成領域同士は、第二方向に一体化されている。チップ形成領域とチップ非形成領域とは第一方向で隣り合うように位置している。これらによって、各チップ形成領域の一対の境界に形成された改質領域に切断応力が適切に作用するので、各チップ形成領域を確実に個片化することができる。
各チップ形成列では、チップ形成領域とチップ非形成領域とが第一方向に交互に位置していてもよい。この場合、各チップ形成領域の一対の境界に形成された改質領域に切断応力がより一層適切に作用するため、各チップ形成領域をより確実に個片化することができる。
各チップ形成領域には、フォトダイオードが形成されていてもよい。レーザ光を照射することにより基板が切断されるので、ブレードダイシングによって切断する方法と比較して、粉塵の発生が極めて少ない。このため、フォトダイオードの受光感度が、粉塵によって低下するのを防ぐことができる。
基板は、互いに対向する第一及び第二主面を有し、フォトダイオードは、第一主面側に形成されており、基板を切断して個片化する工程では、第二主面側からレーザ光を照射してもよい。この場合、フォトダイオードに影響を与えることなく、レーザ光を照射することができる。
基板に貫通孔を形成する工程では、チップ形成領域の側面に連続する側面がチップ非形成領域に形成されるように、貫通孔を形成してもよい。この場合、各チップ形成領域における第一方向で対向する一対の境界が貫通孔に露出するので、各チップ形成領域の一対の境界での切断を適切に行うことができる。
基板に貫通孔を形成する工程の後に、チップ形成領域の側面とチップ非形成領域の側面とに導電性金属材料層を形成する工程を更に含んでいてもよい。この場合、チップ形成領域の側面が実装面である電子部品であって、当該実装に供される導電性金属材料層を備えている電子部品を得ることができる。
基板を切断して個片化する工程では、チップ形成領域の側面よりも内側でレーザ光の照射を中止してもよい。この場合、チップ形成領域の側面でレーザアブレーションが生じるのを防ぐことができる。
基板が、半導体ウエハであってもよい。
本発明に係る半導体ウエハは、第一方向で隣り合うように位置するそれぞれ複数のチップ形成領域とチップ非形成領域とを有していると共に、第一方向に直交する第二方向で互いに離間している複数のチップ形成列を備えており、第二方向で隣り合うチップ形成列の間の領域に、チップ形成領域の第二方向で対向する一対の側面を露出させると共に第二方向で隣り合うチップ非形成領域同士を連続させるように、貫通孔がエッチングにより形成されている。
本発明に係る半導体ウエハでは、第二方向で隣り合うチップ形成列の間の領域に、エッチングにより貫通孔が形成されている。この貫通孔により、チップ形成領域の第二方向で対向する一対の側面が露出している。チップ形成領域の一対の側面は、エッチングにより形成された面であり、ダイシングにより形成された面に比して、極めて平滑である。
第二方向で隣り合うチップ非形成領域同士が連続している。すなわち、チップ非形成領域同士は、第二方向に一体化されている。チップ形成領域とチップ非形成領域とは第一方向で隣り合うように位置している。これらによって、ステルスダイシング技術を用いて各チップ形成領域の一対の境界で半導体ウエハを切断する際に、上記境界に形成された改質領域に切断応力が適切に作用するので、各チップ形成領域を確実に個片化することができる。
各チップ形成列では、チップ形成領域とチップ非形成領域とが第一方向に交互に位置していてもよい。この場合、ステルスダイシング技術を用いて半導体ウエハが切断される際に、各チップ形成領域の一対の境界に形成された改質領域に切断応力がより一層適切に作用するため、各チップ形成領域をより確実に個片化することができる。
各チップ形成領域には、フォトダイオードが形成されていてもよい。ステルスダイシング技術を用いて半導体ウエハが切断される場合、粉塵の発生が極めて少ない。このため、フォトダイオードの受光感度が、粉塵によって低下するのを防ぐことができる。
貫通孔が、チップ形成領域の側面に連続する側面がチップ非形成領域に形成されるように形成されていてもよい。この場合、各チップ形成領域における第一方向で対向する一対の境界が貫通孔に露出しているので、各チップ形成領域の一対の境界での切断を適切に行うことができる。
チップ形成領域の側面とチップ非形成領域の側面とに、導電性金属材料層が形成されていてもよい。この場合、チップ形成領域の側面が実装面である電子部品であって、当該実装に供される導電性金属材料層を備えている電子部品を得ることができる。
本発明によれば、チップ形成領域の側面の平滑性を確保しつつ、各チップ形成領域の個片化を確実に行うことが可能な電子部品の製造方法及び半導体ウエハを提供することができる。
本発明の実施形態に係る電子部品を示す平面図である。 図1に示されたII−II線に沿った断面構成を説明するための図である。 図1に示されたIII−III線に沿った断面構成を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態に係る電子部品の製造過程を説明するための図である。 本実施形態の変形例に係る電子部品の製造過程を説明するための図である。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
まず、図1〜図3を参照して、本実施形態に係る電子部品1の構成を説明する。図1は、本実施形態に係る電子部品の平面図である。図2は、図1に示されたII−II線に沿った断面構成を説明するための図である。図3は、図1に示されたIII−III線に沿った断面構成を説明するための図である。
電子部品1は、チップ状の部品であって、基材10、積層体20、及びハンダ層30を備えている。電子部品1は、たとえば、他の電子部品3が実装されるサブマウント基板として機能する。他の電子部品3には、たとえば、レーザーダイオードなどが挙げられる。実装には、電気的且つ物理的に接続することだけでなく、物理的にのみ接続することも含まれる。
基材10は、半導体基板11を含んでいる。半導体基板11は、互いに対向する一対の主面11a,11bと、互いに対向する一対の側面11cと、互いに対向する一対の側面11dと、を有している。半導体基板11は、第一導電型(たとえば、N型)のシリコン基板である。半導体基板11は、図1に示されるように、平面視で矩形状を呈している。本実施形態では、半導体基板11は、一対の側面11dが対向している方向が長辺方向とされた長方形状を呈している。
各側面11cは、一対の主面11a,11b間を連結するように一対の主面11a,11bの対向方向に延びている。各側面11dも、一対の主面11a,11b間を連結するように一対の主面11a,11bの対向方向に延びている。
半導体基板11は、主面11a側に位置する第二導電型(たとえば、P型)の第一半導体領域13を有している。第一半導体領域13は、第二導電型の不純物(ボロンなど)が添加された領域であり、半導体基板11よりも不純物濃度が高い。第一半導体領域13は、たとえば、イオン注入法又は拡散法により、第二導電型の不純物を主面11a側から半導体基板11に添加することにより形成される。第一導電型がP型であると共に、第二導電型がN型であってもよい。
基材10では、半導体基板11と第一半導体領域13とでPN接合が形成されている。すなわち、基材10は、主面11aが光入射面である表面入射型のフォトダイオードである。第一半導体領域13は、半導体基板11とで光感応領域を構成している。他の電子部品3としてレーザーダイオードが電子部品1に実装される場合、上記フォトダイオードは、レーザーダイオードの出力をモニタする。
基材10は、半導体基板11の主面11a上に配置されているパッシベーション膜15を含んでいる。パッシベーション膜15には、第一半導体領域13に対応する位置に開口15aが形成されている。第一半導体領域13(光感応領域)には、パッシベーション膜15に形成された開口15aを通って、光が入射する。パッシベーション膜15は、たとえばSiNからなる。パッシベーション膜15は、たとえばCVD(Chemical Vapor Deposition)法により形成される。本実施形態では、上記フォトダイオードに接続されるカソード電極(パッド)及びアノード電極(パッド)の図示を省略している。
積層体20は、基材10(パッシベーション膜15上)上に配置されている。詳細には、積層体20は、パッシベーション膜15における、開口15aが形成されていない領域上に配置されている。積層体20は、複数の導電性金属材料層(本実施形態では、三層の導電性金属材料層21,22,23)からなる。各導電性金属材料層21,22,23は、導電性金属材料からなる層である。三層の導電性金属材料層21,22,23は、基材10側から、導電性金属材料層21、導電性金属材料層22、導電性金属材料層23の順に積層されている。各導電性金属材料層21,22,23は、たとえば真空蒸着法又はスパッタリング法により形成される。
導電性金属材料層21は、基材10(パッシベーション膜15)との接触層を構成しており、基材10(パッシベーション膜15)との密着性を高める。導電性金属材料層21は、たとえばTiからなる。導電性金属材料層21の厚みは、たとえば0.1〜0.2μmである。導電性金属材料層21は、Ti以外に、Crなどからなっていてもよい。
導電性金属材料層22は、中間のバリア層を構成しており、他の導電性金属材料層21,23から金属材料(金属原子)が拡散するのを防ぐ。導電性金属材料層22は、たとえばPtからなる。導電性金属材料層22の厚みは、たとえば0.2〜0.3μmである。
導電性金属材料層23は、積層体20の最外層を構成する、すなわち表面層を構成している。導電性金属材料層23は、たとえばAuからなる。導電性金属材料層23の厚みは、たとえば0.1〜0.5μmである。
導電性金属材料層23は、ハンダ層30が配置されるハンダ層配置領域23aと、ハンダ層30が配置されないハンダ層非配置領域23bと、を含んでいる。ハンダ層配置領域23aとハンダ層非配置領域23bとは、導電性金属材料層22上において、空間的に離間している。すなわち、ハンダ層配置領域23aとハンダ層非配置領域23bとが空間的に離間している領域では、導電性金属材料層22が露出している。
本実施形態では、ハンダ層配置領域23aは、ハンダ層非配置領域23bに囲まれるように、ハンダ層非配置領域23bの内側に位置すると共に、その全周においてハンダ層非配置領域23bと空間的に離間している。ハンダ層配置領域23aとハンダ層非配置領域23bとは、導電性金属材料層23に形成されたスリット23cにより空間的に離間している。
ハンダ層30は、Au−Sn合金ハンダからなり、積層体20(導電性金属材料層23のハンダ層配置領域23a)上に配置されている。ハンダ層30は、導電性金属材料層23(ハンダ層配置領域23a)に接している。ハンダ層30は、たとえばフォトレジスト(ネガ型のフォトレジスト)を用いたリフトオフ法により形成される。ハンダ層30の厚みは、たとえば2.0〜5.0μmである。
本実施形態では、各側面11cに、積層体40が配置されている。積層体20は、複数の導電性金属材料層(本実施形態では、三層の導電性金属材料層41,42,43)からなる。各導電性金属材料層41,42,43は、導電性金属材料からなる層である。三層の導電性金属材料層41,42,43は、半導体基板11(側面11c)側から、導電性金属材料層41、導電性金属材料層42、導電性金属材料層43の順に積層されている。各導電性金属材料層41,42,43は、たとえば真空蒸着法又はスパッタリング法により形成される。一方の側面11cは、電子部品1が実装される機器(部品又は基板など)に対向する実装面として規定される。
導電性金属材料層41は、半導体基板11との接触層を構成しており、半導体基板11との密着性を高める。導電性金属材料層41は、たとえばTiからなる。導電性金属材料層41の厚みは、たとえば0.1〜0.2μmである。導電性金属材料層41は、Ti以外に、Crなどからなっていてもよい。
導電性金属材料層42は、中間のバリア層を構成しており、他の導電性金属材料層41,43から金属材料(金属原子)が拡散するのを防ぐ。導電性金属材料層42は、たとえばPtからなる。導電性金属材料層42の厚みは、たとえば0.2〜0.3μmである。
導電性金属材料層43は、積層体40の最外層を構成する、すなわち表面層を構成している。導電性金属材料層43は、たとえばAuからなる。導電性金属材料層43の厚みは、たとえば0.1〜0.8μmである。
次に、図4〜図18を参照して、電子部品1の製造過程について説明する。図4〜図18は、本実施形態に係る電子部品の製造過程を説明するための図である。
まず、半導体基板51を準備する(図4〜図6参照)。図5は、図4に示されたV−V線に沿って半導体基板51を切断した切断面での断面構成に相当する。図6は、図4に示されたVI−VI線に沿って半導体基板51を切断した切断面での断面構成に相当する。
本過程で準備される半導体基板51は、互いに対向する主面51aと主面51bとを有している。半導体基板51は、第一導電型(たとえば、N型)のシリコン基板である。本実施形態では、図4に示されるように、半導体基板51として、半導体ウエハが用いられている。主面51aと主面51bとが対向している方向は、半導体基板51(半導体ウエハ)の厚み方向である。図4では、第一半導体領域13、パッシベーション膜15、積層体20、及びハンダ層30の図示を省略している。
半導体基板51は、複数のチップ形成列53を備えている。各チップ形成列53は、複数のチップ形成領域55と複数のチップ非形成領域57とを有している。チップ形成領域55とチップ非形成領域57とは、第一方向D1で隣り合うように位置している。本実施形態では、各チップ形成列53では、チップ形成領域55とチップ非形成領域57とが第一方向D1に交互に位置している。チップ形成列53は、第一方向D1に沿って延びている。
チップ形成領域55は、上述した半導体基板11に対応する。チップ形成領域55は、平面視で矩形状を呈している。すなわち、チップ形成領域55は、平面視においては、第一方向D1で対向している一対の境界56aと、第二方向D2で対向している一対の境界56bと、とにより区画されている。本実施形態では、チップ形成領域55は、第一方向D1が長辺方向とされた長方形状を呈している。境界56aは、チップ形成領域55とチップ非形成領域57との間に位置しており、チップ形成領域55とチップ非形成領域57との境界でもある。
複数のチップ形成列53は、第二方向D2で互いに離間している。すなわち、第二方向D2で隣り合っているチップ形成列53の間の領域58には、チップ形成領域55が位置していない。チップ形成列53の間の領域58は、チップ非形成領域に相当する。
第二方向D2で隣り合っているチップ形成列53同士では、第一方向D1でのチップ形成領域55の位置が同じである。すなわち、チップ形成領域55は、第二方向D2で互いに離間するように位置している。第二方向D2で隣り合っているチップ形成列53同士では、第一方向D1でのチップ非形成領域57の位置も同じである。すなわち、チップ非形成領域57は、第二方向D2で互いに離間するように位置している。
各チップ形成領域55には、第一半導体領域13、パッシベーション膜15、積層体20、及びハンダ層30が形成されている。すなわち、第一半導体領域13、積層体20、及びハンダ層30は、主面51aに直交する方向から見て、一対の境界56aと一対の境界56bとで囲まれる領域内に位置している。
半導体基板51は、主面51b側から薄化されてもよい。薄化により、半導体基板51の厚みが、所望の値に調整される。半導体基板51の厚みが所望の値である場合には、半導体基板51(半導体ウエハ)は薄化されなくてもよい。半導体基板51の薄化は、ドライエッチング又は機械研磨などにより行われる。機械研磨には、切削、研削、又はドライポリッシュなどが含まれる。
次に、半導体基板51に複数の貫通孔60を形成する(図7〜図9参照)。図8は、図7に示されたVIII−VIII線に沿って半導体基板51を切断した切断面での断面構成に相当する。図9は、図7に示されたIX−IX線に沿って半導体基板51を切断した切断面での断面構成に相当する。図7でも、第一半導体領域13、パッシベーション膜15、積層体20、及びハンダ層30の図示を省略している。
各貫通孔60は、エッチングにより、半導体基板51(半導体ウエハ)の厚み方向に延びるように形成されている。エッチングには、ドライエッチング(たとえば、反応性イオンエッチング(RIE)又はプラズマエッチングなど)、特に、ディープドライエッチングを用いることができる。
本過程では、各貫通孔60は、チップ形成列53の間の領域58に形成される。具体的には、貫通孔60は、チップ形成領域55の一対の境界56bの位置でチップ形成領域55の側面55cを露出させるように、領域58に形成される。すなわち、貫通孔60の形成により、チップ形成領域55に一対の側面55cが形成され、各側面55cが露出する。側面55cは、エッチングにより形成されるため、ダイシングにより形成された面に比して、その表面は極めて平滑である。
貫通孔60は、第二方向D2で隣り合うチップ非形成領域57同士を連続させるようにも、領域58に形成される。領域58における、第二方向D2で隣り合うチップ非形成領域57に挟まれる領域には、貫通孔60が形成されない領域58aが含まれる。すなわち、第二方向D2で隣り合うチップ非形成領域57は、領域58aを介して一体化されている。
本実施形態では、貫通孔60は、側面55cに連続する側面57cがチップ非形成領域57に形成されるように、領域58に形成される。すなわち、貫通孔60の第一方向D1での長さは、チップ形成領域55の第一方向D1での長さよりも大きい。貫通孔60の第二方向D2での長さは、第二方向D2でのチップ形成列53の間隔と同じである。貫通孔60の開口は、矩形状を呈している。本実施形態では、貫通孔60の開口は、第一方向D1が長辺方向である長方形状を呈している。
貫通孔60は、第二方向D2に見て、チップ形成列53を挟むように離間している。すなわち、貫通孔60は、第二方向D2で断続的に形成されている。貫通孔60は、第一方向D1に見て、領域58aを挟むように離間している。すなわち、貫通孔60は、第一方向D1でも断続的に形成されている。
各チップ形成列53では、チップ形成領域55とチップ非形成領域57との間には、貫通孔60は形成されていない。すなわち、各チップ形成列53では、貫通孔60が形成された後も、チップ形成領域55とチップ非形成領域57とが第一方向D1で隣り合うように、チップ形成領域55とチップ非形成領域57とが連続している。
次に、半導体基板51に積層体70を形成する(図10〜図12参照)。図11は、図10に示されたXI−XI線に沿って半導体基板51を切断した切断面での断面構成に相当する。図12は、図10に示されたXII−XII線に沿って半導体基板51を切断した切断面での断面構成に相当する。
積層体70は、各貫通孔60を画成する内側面を覆うように、半導体基板51に形成される。これにより、露出したチップ形成領域55の側面55c上に積層体70が形成され、側面55cが積層体70で覆われる。積層体70は、側面55cだけでなく、チップ非形成領域57の側面57cと、領域58aの露出面とを覆うようにも形成される。
本過程で形成される積層体70は、上述した積層体40に対応する。このため、積層体70は、複数の導電性金属材料層(本実施形態では、三層の導電性金属材料層)からなる。すなわち、積層体70は、半導体基板51との接触層を構成する導電性金属材料層と、バリア層を構成する導電性金属材料層と、最外層を構成する導電性金属材料層と、を含んでいる。各導電性金属材料層は、たとえば、半導体基板51の主面51b側から真空蒸着法又はスパッタリング法により形成される。
積層体70(導電性金属材料層)が半導体基板51の主面51b側から真空蒸着法又はスパッタリング法により形成される場合、半導体基板51の主面51b上にも積層体70が形成される。半導体基板51の主面51b上に形成された積層体70は、除去される。半導体基板51の主面51b上に形成された積層体70は、たとえば、化学機械研磨(CMP)により除去することができる。
以上の過程を経て得られた半導体基板51(半導体ウエハ)は、図10〜図12に示されるように、第一方向D1で隣り合うように位置するそれぞれ複数のチップ形成領域55とチップ非形成領域57とを有している複数のチップ形成列53を備えている。複数のチップ形成列53は、第二方向D2で互いに離間している。半導体基板51(半導体ウエハ)には、複数の貫通孔60が形成されている。各チップ形成領域55には、半導体基板51と第一半導体領域13とでPN接合が形成されている。すなわち、各チップ形成領域55は、フォトダイオードが形成されている。フォトダイオードは、半導体基板51の主面51a側に形成されている。チップ形成領域55の側面55cとチップ非形成領域57の側面57cとには、積層体70(導電性金属材料層)が形成されている。
次に、半導体基板51を複数のチップ形成領域55毎に個片化する(図13及び図14参照)。図13は、図10に示されたXI−XI線に相当する線に沿って半導体基板51を切断した切断面での断面構成に相当する。図14は、図10に示されたXII−XII線に相当する線に沿って半導体基板51を切断した切断面での断面構成に相当する。本過程では、半導体基板51(半導体ウエハ)は、伸張性を有するフィルムFに装着される。
本実施形態では、ステルスダイシング技術を用いることにより、半導体基板51を個片化する。ステルスダイシング技術は、半導体基板(半導体ウエハ)の内部にレーザ光を照射して所望の位置に改質領域を形成し、この改質領域を起点として半導体基板を切断するダイシング技術である(たとえば、特開2009−135342号公報を参照)。ステルスダイシング技術に用いられるレーザ加工装置は、いわゆるSDE(ステルスダイシングエンジン:登録商標)と称される。このSDEは、たとえば、レーザ光をパルス発振するレーザ光源と、レーザ光の光軸(光路)の向きを変えるように配置されたダイクロイックミラーと、レーザ光を集光するための集光用レンズ(集光光学系)と、を備えている。
本過程では、レーザ光Lを主面51b側から照射し、半導体基板51の内部に集光点Pを合わせた状態(図15参照)で、レーザ光Lを、チップ形成領域55の境界56aに位置する切断予定ラインに沿って相対的に移動させる。
レーザ光Lの照射により、切断予定ラインに沿って、切断の起点となる改質領域MRが半導体基板51の内部に形成される(図16の(a)及び(b)参照)。切断予定ラインは、第二方向D2に延びている。図15及び図16では、半導体基板51(半導体ウエハ)を概略的に図示し、第一半導体領域13、パッシベーション膜15、積層体20,70、及びハンダ層30などの図示を省略している。
集光点Pとは、レーザ光Lが集光する箇所である。改質領域MRは、連続的に形成される場合もあるし、断続的に形成される場合もある。改質領域MRは列状でも点状でもよく、改質領域MRは少なくとも半導体基板51の内部に形成されていればよい。改質領域MRを起点に亀裂が形成される場合があり、亀裂及び改質領域MRは、半導体基板51の外表面(表面、裏面、若しくは外周面)に露出していてもよい。
レーザ光Lが、半導体基板51を透過すると共に半導体基板51の内部の集光点近傍にて特に吸収されることにより、半導体基板51に改質領域MRが形成される(すなわち、内部吸収型レーザ加工)。したがって、半導体基板51の主面51bではレーザ光Lが殆ど吸収されないので、半導体基板51の主面51bが溶融することはない。
本実施形態において形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域である。改質領域としては、たとえば、溶融処理領域、クラック領域、絶縁破壊領域、又は屈折率変化領域などがあり、これらが混在した領域もある。改質領域としては、半導体基板51において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
レーザ光Lの照射は、チップ形成領域55の側面55c(チップ非形成領域57の側面57c)よりも内側で中止される。すなわち、チップ形成領域55の側面55c(チップ非形成領域57の側面57c)には、レーザ光Lは照射されない。これにより、図17に示されるように、改質領域MRは、貫通孔60に達することはない。
改質領域MRが切断予定ラインに沿って半導体基板51の内部に形成された後に、フィルムFが伸張される。これにより、チップ形成領域55の境界56aに形成された改質領域MRに引張り方向での切断応力が作用する。改質領域MRに切断応力が作用すると、改質領域MRを起点として半導体基板51が切断予定ライン(境界56a)に沿って切断される。これにより、半導体基板51が複数のチップ形成領域55毎に個片化される。
半導体基板51が複数のチップ形成領域55毎に個片化されると、個片化された各チップ形成領域55をフィルムFから外す。これにより、上述した構成を備える電子部品1が得られる。
チップ形成領域55の側面55cは、電子部品1が備える半導体基板11の側面11cを構成する。ステルスダイシング技術により形成されるチップ形成領域55の側面は、半導体基板11の側面11dを構成する。半導体基板51の主面51aは、半導体基板11の主面11aを構成し、半導体基板51の主面51bは、半導体基板11の主面11bを構成する。
積層体70は、レーザ光Lの照射により切断されることはない。半導体基板51が切断予定ラインに沿って切断される際に、積層体70は、積層体70に対して引張り方向に作用する応力によって切断される。詳細には、積層体70は、境界56aに対応する位置で破断される。これにより、積層体70から、積層体40が得られる。
本実施形態では、半導体基板51における第二方向D2で隣り合うチップ形成列53の間の領域58に、エッチングにより貫通孔60が形成される。貫通孔60は、チップ形成領域55の一対の側面55cを露出させるように形成される。すなわち、チップ形成領域55の一対の側面55cは、エッチングにより形成された面であり、ダイシングにより形成された面に比して、極めて平滑である。
貫通孔60は、第二方向D2で隣り合うチップ非形成領域57同士を連続させるようにも形成される。このため、フィルムFを伸張させることにより改質領域MRを起点として半導体基板51を切断する際に、第二方向D2で隣り合うチップ非形成領域57同士は連続している。すなわち、チップ非形成領域57同士は、第二方向D2に一体化されている。チップ形成領域55とチップ非形成領域57とは第一方向で隣り合うように位置している。これらによって、ステルスダイシング技術を用いて各チップ形成領域55の一対の境界56aで半導体基板51(半導体ウエハ)が切断される際に、各チップ形成領域55の一対の境界56aに形成された改質領域MRに切断応力が適切に作用する。この結果、各チップ形成領域55を確実に個片化することができる(図18参照)。
各チップ形成列53では、チップ形成領域55とチップ非形成領域57とが第一方向D1に交互に位置している。一対の境界56aは、チップ形成領域55とチップ非形成領域57との間に位置している。すなわち、チップ形成領域55の第一方向D1での両側に、チップ非形成領域57が位置している。これにより、ステルスダイシング技術を用いて半導体基板51が切断される際に、各チップ形成領域55の一対の境界56aに形成された改質領域MRに切断応力がより一層適切に作用する。したがって、本実施形態では、各チップ形成領域55をより確実に個片化することができる。
各チップ形成領域55には、フォトダイオードが形成されている。本実施形態では、ステルスダイシング技術により半導体基板51が切断されるので、ブレードダイシングによって切断する方法と比較して、粉塵の発生が極めて少ない。このため、フォトダイオードの受光感度が、粉塵によって低下するのを防ぐことができる。また、ステルスダイシング技術によれば、ブレードダイシングによって切断する方法と比較して、半導体基板51にチッピングなどの欠陥が生じ難い。したがって、フォトダイオードの受光面積を大きく設定することも可能となり、フォトダイオードの受光感度を十分に確保することができる。
フォトダイオードは、半導体基板51の主面51a側に形成されており、半導体基板51を切断して個片化する過程では、レーザ光Lが主面51b側から照射される。これにより、フォトダイオードに影響を与えることなく、レーザ光Lを照射することができる。
貫通孔60は、チップ形成領域55に側面55cが形成されると共にチップ非形成領域57に側面57cが形成されるように、半導体基板51の領域58に形成される。この場合、各チップ形成領域55における一対の境界56aが貫通孔60に露出するので、各チップ形成領域55の一対の境界56aでの切断をより適切に行うことができる。
チップ形成領域55の側面55cとチップ非形成領域57の側面57cとに、積層体70(導電性金属材料層)が形成される。この場合、チップ形成領域55の側面55cが実装面であり、実装に供される積層体40(導電性金属材料層41,42,43)を備えている電子部品1を得ることができる。
レーザ光Lの照射は、チップ形成領域55の側面55c(チップ非形成領域57の側面57c)よりも内側で中止される。これにより、チップ形成領域55の側面55cでレーザアブレーションが生じるのを防ぐことができる。
以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
上述した実施形態では、チップ非形成領域57が、チップ形成領域55の第一方向D1での両側に位置している。チップ形成領域55とチップ非形成領域57との位置関係は、上述した位置関係に限られない。たとえば、図19に示されるように、チップ非形成領域57が、チップ形成領域55の第一方向D1での一方側のみに位置していてもよい。
図19に示された変形例では、一対のチップ非形成領域57の間に、一対のチップ形成領域55が位置している。一方の境界56aが、チップ形成領域55とチップ非形成領域57との間に位置し、他方の境界56aが、チップ形成領域55とチップ形成領域55との間に位置する。この場合でも、チップ形成領域55とチップ非形成領域57とは、第一方向D1で隣り合うように位置している。
一対の境界56aのうち少なくとも一方の境界56aが、チップ形成領域55とチップ非形成領域57との間に位置していることが好ましい。これにより、各チップ形成領域55の一対の境界56aに形成された改質領域MRに切断応力を適切に作用させることができる。上述した実施形態のように、一対の境界56aの両方ともがチップ形成領域55とチップ非形成領域57との間に位置していることにより、改質領域MRに切断応力をより一層適切に作用させることができる。
チップ形成領域55にフォトダイオード(第一半導体領域13)が形成されている必要はない。すなわち、電子部品1がフォトダイオードを備えていない場合、フォトダイオードがチップ形成領域55に形成されることはない。チップ形成領域55には、フォトダイオードの代わりに、シリコンサブマウントなどの素子が形成されていてもよい。また、チップ形成領域55には、フォトダイオードなどの素子が形成される代わりに、他の電子部品などが配置されていてもよい。
チップ形成領域55に積層体20及びハンダ層30が形成されている必要はない。すなわち、電子部品1が積層体20及びハンダ層30を備えていない場合、積層体20及びハンダ層30がチップ形成領域55に形成されることはない。チップ形成領域55には、積層体20及びハンダ層30の代わりに、パッド電極などが形成されていてもよい。
半導体基板51に積層体70(導電性金属材料層)が形成されている必要はない。すなわち、チップ形成領域55の側面55cが露出していてもよい。
電子部品1の基材10は、半導体基板11を含んでいる必要はない。基材10は、半導体基板11の代わりに、たとえばセラミック基板又はガラス基板などを含んでいてもよい。すなわち、半導体基板51(半導体ウエハ)の代わりに、セラミック基板又はガラス基板などが用いられてもよい。たとえば、ガラス基板が、複数のチップ形成領域55と複数のチップ非形成領域57とを有する複数のチップ形成列53を備えていてもよい。
1…電子部品、13…第一半導体領域、51…半導体基板、51a,51b…半導体基板の主面、53…チップ形成列、55…チップ形成領域、55c…チップ形成領域の側面、56a,56b…チップ形成領域の境界、57…チップ非形成領域、57c…チップ非形成領域の側面、60…貫通孔、70…積層体、D1…第一方向、D2…第二方向、F…フィルム、L…レーザ光、MR…改質領域。

Claims (13)

  1. 第一方向で隣り合うように位置するそれぞれ複数のチップ形成領域とチップ非形成領域とを有していると共に、前記第一方向に直交する第二方向で互いに離間している複数のチップ形成列を備える基板を準備する工程と、
    前記基板における前記第二方向で隣り合う前記チップ形成列の間の領域に、前記チップ形成領域の前記第二方向で対向する一対の側面を露出させると共に前記第二方向で隣り合う前記チップ非形成領域同士を連続させるように、エッチングにより貫通孔を形成する工程と、
    伸張性を有するフィルムを前記基板に装着し、前記基板の内部に集光点を合わせてレーザ光を照射することにより各前記チップ形成領域の前記第一方向で対向する一対の境界に位置する切断予定ラインに沿って切断の起点となる改質領域を前記基板の内部に形成し、前記フィルムを伸張させることにより前記改質領域を起点として前記基板を切断して、前記複数のチップ形成領域を個片化する工程と、を含んでいる、電子部品の製造方法。
  2. 各前記チップ形成列では、前記チップ形成領域と前記チップ非形成領域とが前記第一方向に交互に位置している、請求項1に記載の電子部品の製造方法。
  3. 各前記チップ形成領域には、フォトダイオードが形成されている、請求項1又は2に記載の電子部品の製造方法。
  4. 前記基板は、互いに対向する第一及び第二主面を有し、
    前記フォトダイオードは、前記第一主面側に形成されており、
    前記基板を切断して個片化する前記工程では、前記第二主面側からレーザ光を照射する、請求項3に記載の電子部品の製造方法。
  5. 前記基板に前記貫通孔を形成する前記工程では、前記チップ形成領域の前記側面に連続する側面が前記チップ非形成領域に形成されるように、前記貫通孔を形成する、請求項1〜4のいずれか一項に記載の電子部品の製造方法。
  6. 前記基板に貫通孔を形成する前記工程の後に、前記チップ形成領域の前記側面と前記チップ非形成領域の前記側面とに導電性金属材料層を形成する工程を更に含んでいる、請求項5に記載の電子部品の製造方法。
  7. 前記基板を切断して個片化する前記工程では、前記チップ形成領域の前記側面よりも内側でレーザ光の照射を中止する、請求項1〜6のいずれか一項に記載の電子部品の製造方法。
  8. 前記基板が、半導体ウエハである、請求項1〜7のいずれか一項に記載の電子部品の製造方法。
  9. 第一方向で隣り合うように位置するそれぞれ複数のチップ形成領域とチップ非形成領域とを有していると共に、前記第一方向に直交する第二方向で互いに離間している複数のチップ形成列を備えており、
    前記第二方向で隣り合う前記チップ形成列の間の領域に、前記チップ形成領域の前記第二方向で対向する一対の側面を露出させると共に前記第二方向で隣り合う前記チップ非形成領域同士を連続させるように、貫通孔がエッチングにより形成されている、半導体ウエハ。
  10. 各前記チップ形成列では、前記チップ形成領域と前記チップ非形成領域とが前記第一方向に交互に位置している、請求項9に記載の半導体ウエハ。
  11. 各前記チップ形成領域には、フォトダイオードが形成されている、請求項9又は10に記載の半導体ウエハ。
  12. 前記貫通孔が、前記チップ形成領域の前記側面に連続する側面が前記チップ非形成領域に形成されるように形成されている、請求項9〜11のいずれか一項に記載の半導体ウエハ。
  13. 前記チップ形成領域の前記側面と前記チップ非形成領域の前記側面とに、導電性金属材料層が形成されている、請求項12に記載の半導体ウエハ。
JP2015117503A 2015-06-10 2015-06-10 電子部品の製造方法及び半導体ウエハ Pending JP2017005103A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015117503A JP2017005103A (ja) 2015-06-10 2015-06-10 電子部品の製造方法及び半導体ウエハ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117503A JP2017005103A (ja) 2015-06-10 2015-06-10 電子部品の製造方法及び半導体ウエハ

Publications (1)

Publication Number Publication Date
JP2017005103A true JP2017005103A (ja) 2017-01-05

Family

ID=57752291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117503A Pending JP2017005103A (ja) 2015-06-10 2015-06-10 電子部品の製造方法及び半導体ウエハ

Country Status (1)

Country Link
JP (1) JP2017005103A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059732A (ja) * 2015-09-18 2017-03-23 シチズンファインデバイス株式会社 サブマウントの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170083A (ja) * 1982-03-31 1983-10-06 Fujitsu Ltd 半導体発光装置の製造方法
JP2005001001A (ja) * 2002-03-12 2005-01-06 Hamamatsu Photonics Kk レーザ加工方法
WO2011055462A1 (ja) * 2009-11-05 2011-05-12 ウェーブスクエア,インコーポレイテッド Iii族窒化物半導体縦型構造ledチップならびにその製造方法
JP2011146653A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子を作製する方法
JP2013207192A (ja) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd 半導体素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170083A (ja) * 1982-03-31 1983-10-06 Fujitsu Ltd 半導体発光装置の製造方法
JP2005001001A (ja) * 2002-03-12 2005-01-06 Hamamatsu Photonics Kk レーザ加工方法
WO2011055462A1 (ja) * 2009-11-05 2011-05-12 ウェーブスクエア,インコーポレイテッド Iii族窒化物半導体縦型構造ledチップならびにその製造方法
JP2011146653A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子を作製する方法
JP2013207192A (ja) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd 半導体素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059732A (ja) * 2015-09-18 2017-03-23 シチズンファインデバイス株式会社 サブマウントの製造方法

Similar Documents

Publication Publication Date Title
JP6084401B2 (ja) 側面入射型のフォトダイオードの製造方法
JP3795040B2 (ja) 半導体装置の製造方法
JP2004221286A (ja) 半導体装置及びその製造方法
JP2002373895A (ja) 半導体装置及びその製造方法
JP6096442B2 (ja) 半導体装置および半導体装置の製造方法
JP2010177569A (ja) 光学デバイス及びその製造方法
CN111295608B (zh) 光组件
WO2014181665A1 (ja) 半導体エネルギー線検出素子及び半導体エネルギー線検出素子の製造方法
TW201322322A (zh) 晶片之製造方法
US7635869B2 (en) Support with recessed electrically conductive chip attachment material for flip-chip bonding a light emitting chip
JP2017005103A (ja) 電子部品の製造方法及び半導体ウエハ
KR20200030600A (ko) 적층형 소자의 제조 방법
US10817700B2 (en) Optical fingerprint recognition chip package and packaging method
JP6397460B2 (ja) 半導体ウエハ
KR101411734B1 (ko) 관통 전극을 갖는 반도체 디바이스의 제조 방법 및 이에 따른 반도체 디바이스
JPWO2011087068A1 (ja) アバランシェフォトダイオード及びその製造方法
JP2009064914A (ja) 半導体装置及び半導体装置の製造方法
JP6625386B2 (ja) 半導体装置および半導体装置の製造方法
JP5223215B2 (ja) ウェハー構造体及びその製造方法
JP6925902B2 (ja) 積層型素子の製造方法
JP2016058610A (ja) 半導体装置およびその製造方法
JP2009206187A (ja) 発光装置およびその製造方法
JP2007080933A (ja) 半導体光学装置およびその製造方法
US20180122699A1 (en) Manufacturing method of electronic component
CN106356383B (zh) 半导体结构、半导体器件、芯片结构及其形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507