JP2016225364A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2016225364A
JP2016225364A JP2015107672A JP2015107672A JP2016225364A JP 2016225364 A JP2016225364 A JP 2016225364A JP 2015107672 A JP2015107672 A JP 2015107672A JP 2015107672 A JP2015107672 A JP 2015107672A JP 2016225364 A JP2016225364 A JP 2016225364A
Authority
JP
Japan
Prior art keywords
electrode
voltage
conductive layer
electrodes
resistance state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015107672A
Other languages
English (en)
Other versions
JP6649700B2 (ja
JP2016225364A5 (ja
Inventor
椎本 恒則
Tsunenori Shiimoto
恒則 椎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2015107672A priority Critical patent/JP6649700B2/ja
Priority to US15/574,771 priority patent/US10340279B2/en
Priority to KR1020177033165A priority patent/KR20180012261A/ko
Priority to PCT/JP2016/002430 priority patent/WO2016189831A1/en
Publication of JP2016225364A publication Critical patent/JP2016225364A/ja
Publication of JP2016225364A5 publication Critical patent/JP2016225364A5/ja
Application granted granted Critical
Publication of JP6649700B2 publication Critical patent/JP6649700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/20Programmable ROM [PROM] devices comprising field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series

Abstract

【課題】面積を小さくすることができる半導体装置を得る。【解決手段】本開示の半導体装置は、第1の領域および第1の領域に電気的に接続するための第2の領域にわたって、交互に積層された複数の導電層および複数の絶縁層と、第2の領域において、複数の導電層および複数の絶縁層を貫通する複数の貫通電極と、各貫通電極と各導電層との間に形成されたアンチヒューズとを備える。【選択図】図3

Description

本開示は、交互に積層された複数の導電層および複数の絶縁層を備えた半導体装置、およびそのような半導体装置の製造方法に関する。
近年、回路の集積度を高めるため、3次元半導体装置が提案されている。例えば、特許文献1には、NAND型フラッシュメモリが開示されている。また、例えば、特許文献2には、抵抗変化素子を用いた記憶装置が開示されている。これらの3次元半導体装置では、複数の導電層および複数の絶縁層が交互に積層されている。
特開2013−004690号公報 特開2008−181978号公報
ところで、一般に、半導体装置では、面積を小さいことが望まれており、さらなる面積の縮小が期待されている。
本開示はかかる問題点に鑑みてなされたもので、その目的は、面積を小さくすることができる半導体装置および半導体装置の製造方法を提供することにある。
本開示の半導体装置は、複数の導電層および複数の絶縁層と、複数の貫通電極と、アンチヒューズとを備えている。複数の導電層および複数の絶縁層は、第1の領域および第1の領域に電気的に接続するための第2の領域にわたって、交互に積層されたものである。複数の貫通電極は、第2の領域において、複数の導電層および複数の絶縁層を貫通するものである。アンチヒューズは、各貫通電極と各導電層との間に形成されたものである。
本開示の半導体装置の製造方法は、交互に積層された複数の導電層および複数の絶縁層を貫通し、複数の導電層との間にアンチヒューズが形成された複数の貫通電極から、第1の貫通電極を選択し、複数の貫通電極のうちの第1の貫通電極以外の貫通電極に対して第1の電圧を印加するとともに、第1の貫通電極に対して第2の電圧を印加するものである。
本開示の半導体装置では、複数の導電層および複数の絶縁層が、第1の領域および第1の領域に電気的に接続するための第2の領域にわたって交互に積層されている。この第2の領域には、複数の導電層および複数の絶縁層を貫通するように、複数の貫通電極が形成されている。そして、各貫通電極と各導電層との間には、アンチヒューズが形成されている。
本開示の半導体装置の製造方法では、交互に積層された複数の導電層および複数の絶縁層を貫通し、複数の導電層との間にアンチヒューズが形成された複数の貫通電極から、第1の貫通電極が選択される。そして、複数の貫通電極のうちの第1の貫通電極以外の貫通電極に対して第1の電圧が印加されるとともに、第1の貫通電極に対して第2の電圧が印加される。
本開示の半導体装置によれば、第2の領域において複数の貫通電極を形成するとともに、各貫通電極と各導電層との間にアンチヒューズを形成したので、面積を小さくすることができる。
本開示の半導体装置の製造方法によれば、複数の貫通電極から第1の貫通電極を選択し、第1の貫通電極以外の貫通電極に対して第1の電圧を印加するとともに、第1の貫通電極に対して第2の電圧を印加したので、面積を小さくすることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果があってもよい。
本開示の一実施の形態に係る半導体装置が適用された記憶装置の一構成例を表すブロック図である。 図1に示したメモリセルアレイの一構成例を表す説明図である。 図2に示したコンタクト部の一構成例を表す断面図である。 図3に示したコンタクト部の製造工程における一工程を表す説明図である。 図3に示したコンタクト部の製造工程における他の工程を表す説明図である。 図3に示したコンタクト部の製造工程における他の工程を表す説明図である。 図3に示したコンタクト部の製造工程における他の工程を表す説明図である。 図3に示したコンタクト部への信号印加動作を表す説明図である。 図5に示した信号印加動作を表すタイミング波形図である。 図6に示した信号印加動作における一状態を表す説明図である。 図6に示した信号印加動作における他の状態を表す説明図である。 図3に示したコンタクト部への信号印加動作を表す説明図である。 図9に示した信号印加動作を表すタイミング波形図である。 図10に示した信号印加動作における一状態を表す説明図である。 図10に示した信号印加動作における他の状態を表す説明図である。 図3に示したコンタクト部への信号印加動作を表す説明図である。 図13に示した信号印加動作を表すタイミング波形図である。 図14に示した信号印加動作における一状態を表す説明図である。 図14に示した信号印加動作における他の状態を表す説明図である。 図3に示したコンタクト部への信号印加動作を表す説明図である。 図17に示した信号印加動作を表すタイミング波形図である。 図18に示した信号印加動作における一状態を表す説明図である。 図18に示した信号印加動作における他の状態を表す説明図である。 参考例に係るコンタクト部への信号印加動作を表す説明図である。 図21に示した信号印加動作における一状態を表す説明図である。 他の参考例に係るコンタクト部への信号印加動作を表す説明図である。 図23に示した信号印加動作における一状態を表す説明図である。 図23に示した信号印加動作における他の状態を表す説明図である。 図3に示したコンタクト部への信号印加動作を表す説明図である。 図26に示した信号印加動作における一状態を表す説明図である。 図26に示した信号印加動作における他の状態を表す説明図である。 変形例に係る信号印加動作を表す説明図である。 変形例に係るコンタクト部の一構成例を表す断面図である。 変形例に係る信号印加動作を表す説明図である。 図31に示した信号印加動作を表すタイミング波形図である。 図32に示した信号印加動作における一状態を表す説明図である。 図32に示した信号印加動作における他の状態を表す説明図である。 変形例に係る記憶装置の一構成例を表すブロック図である。
以下、本開示の実施の形態について、図面を参照して詳細に説明する。
[構成例]
図1は、一実施の形態に係る半導体装置が適用された記憶装置(記憶装置1)の一構成例を表すものである。記憶装置1は、NAND型フラッシュメモリである。なお、本開示の実施の形態に係る半導体装置の製造方法は、本実施の形態により具現化されるので、併せて説明する。記憶装置1は、メモリセルアレイ10と、ロウデコーダ13と、カラムデコーダ14と、センスアンプ・データ入出力部15と、制御部16とを備えている。
メモリセルアレイ10は、アレイ部11と、コンタクト部12とを有している。アレイ部11は、複数のメモリ素子19と、複数のワード線WLと、複数のソース線SLと、複数のビット線BLとを有している。複数のワード線WLは、コンタクト部12を介してロウデコーダ13に接続されている。複数のソース線SLおよび複数のビット線BLは、カラムデコーダ14に接続されている。コンタクト部12は、ロウデコーダ13がアレイ部11のワード線WLに接続するためのコンタクトとして機能するものである。
図2は、メモリセルアレイ10の一構成例を表すものである。図2に示したように、メモリセルアレイ10は、絶縁層LAと、導電層LBと、貫通電極ELとを有している。絶縁層LAおよび導電層LBは、交互に積層されている。この例では、5層の絶縁層LA(LA1〜L5)と4層の導電層LB(LB1〜LB4)が、LA1,LB1,LA2,LB2,LA3,LB3,LA4,LB4,LA5の順に、交互に積層されている。なお、この例では、導電層LBの層の数を4にしたが、これに限定されるものではなく、3以下にしてもよいし、5以上にしてもよい。導電層LBは、図1に示したワード線WLに対応するものである。
貫通電極ELは、積層された絶縁層LAおよび絶縁層LBを貫通するように形成されている。貫通電極ELは、導電性材料を用いて構成されるものであり、例えば、タングステン、銅、アルミニウム、ポリシリコン、窒化チタンなどを用いることができる。
図3は、コンタクト部12の一構成例を表すものである。コンタクト部12は、アンチヒューズ膜AFを有している。アンチヒューズ膜AFは、複数の貫通電極EL(この例では4本のEL1〜LE4)のそれぞれを覆うように形成されている。アンチヒューズ膜AFは、ストレス電圧を印加することにより、抵抗状態が高抵抗状態から低抵抗状態に変化するものである。アンチヒューズ膜AFは、例えば、ストレス電圧を印加することにより絶縁破壊が生じる材料を用いてもよい。具体的には、例えば、アンチヒューズ膜AFは、酸化シリコン、窒化シリコン、酸化ハフニウム、酸化チタン、酸化タンタルなどにより構成された膜や、これらの複合膜であってもよい。また、このような膜と薄い導電膜との複合膜であってもよい。また、ストレス電圧を印加することにより状態変化が生じ、抵抗状態が変化する材料を用いてもよい。具体的には、例えば、金属酸化物、相変化材料、電界励起抵抗変化効果を有する材料、電解質材料を有する抵抗変化材料を用いてもよい。また、電圧値に応じて、高抵抗状態と低抵抗状態との間で相互に切り替わる素子を用いてもよい。また、高抵抗シリコン、高抵抗ポリシリコン、低抵抗アモルファスシリコンなどにより構成された膜であってもよいし、それらを一部に含んだ複合膜であってもよい。また、以上に記したものを任意に組み合わせたものであってもよい。
この例では、貫通電極EL1と導電層LB4の間のアンチヒューズ膜AF(部分W1)が低抵抗状態になっており、貫通電極EL2と導電層LB2の間のアンチヒューズ膜AF(部分W2)が低抵抗状態になっており、貫通電極EL3と導電層LB1の間のアンチヒューズ膜AF(部分W3)が低抵抗状態になっており、貫通電極EL4と導電層LB3の間のアンチヒューズ膜AF(部分W4)が低抵抗状態になっている。すなわち、各貫通電極ELは、導電層LB1〜LB4のうちの1つの導電層LBのみに対して電気的に接続されている。これにより、ロウデコーダ13は、これらの貫通電極EL1〜EL4を介して、導電層LB1〜LB4と接続するようになっている。
なお、この例では、アンチヒューズ膜AFは、貫通電極ELを覆うようにしたが、これに限定されるものではない。例えば、貫通電極ELと導電層LBとの間にのみアンチヒューズ膜AFを形成することにより、貫通電極ELを部分的に覆うようにしてもよい。また、貫通電極ELは、例えば、筒形状を有し、内部に空洞を有するものであってもよい。また、その内部に絶縁物が充填されていてもよい。
ロウデコーダ13(図1)は、制御部16から供給されたロウアドレス信号をデコードし、デコードされた信号をメモリセルアレイ10のアレイ部11に供給するものである。ロウデコーダ13は、メモリセルアレイ10のコンタクト部12の貫通電極ELを介して、アレイ部11のワード線WLに接続されている。また、ロウデコーダ13は、記憶装置1の製造工程において、後述するように、貫通電極ELに対して信号を供給することにより、貫通電極ELと導電層LBとを電気的に接続させる機能をも有している。
カラムデコーダ14は、制御部16から供給されたカラムアドレス信号をデコードし、デコードされた信号をメモリセルアレイ10のアレイ部11に供給するものである。また、カラムデコーダ14は、センスアンプ・データ入出力部15から供給されたデータをアレイ部11に書き込み、あるいはアレイ部11から読み出したデータをセンスアンプ・データ入出力部15に供給する機能をも有している。カラムデコーダ14は、アレイ部11におけるビット線BLおよびソース線SLに接続されている。
センスアンプ・データ入出力部15は、カラムデコーダ14から供給されたデータを増幅するものである。また、センスアンプ・データ入出力部15は、外部との間でデータのやり取りを行う機能をも有している。
制御部16は、ロウデコーダ13、カラムデコーダ14、およびセンスアンプ・データ入出力部15の動作を制御するものである。
[動作および作用]
続いて、本実施の形態の記憶装置1の動作および作用について説明する。
(全体動作概要)
まず、図1を参照して、記憶装置1の全体動作概要を説明する。ロウデコーダ13は、制御部16から供給されたロウアドレス信号をデコードし、デコードされた信号をメモリセルアレイ10のアレイ部11に供給する。また、ロウデコーダ13は、記憶装置1の製造工程において、貫通電極ELに対して信号を供給し、貫通電極ELと導電層LBとを電気的に接続させる。カラムデコーダ14は、制御部16から供給されたカラムアドレス信号をデコードし、デコードされた信号をメモリセルアレイ10のアレイ部11に供給する。また、カラムデコーダ14は、センスアンプ・データ入出力部15から供給されたデータをアレイ部11に書き込み、あるいはアレイ部11から読み出したデータをセンスアンプ・データ入出力部15に供給する。センスアンプ・データ入出力部15は、カラムデコーダ14から供給されたデータを増幅する。また、センスアンプ・データ入出力部15は、外部との間でデータのやり取りを行う。制御部16は、ロウデコーダ13、カラムデコーダ14、およびセンスアンプ・データ入出力部15の動作を制御する。
(コンタクト部12)
ロウデコーダ13は、コンタクト部12の貫通電極ELを介して、メモリセルアレイ10のワード線WLに信号を供給する。以下に、このコンタクト部12の製造方法について詳細に説明する。
図4A〜4Dは、コンタクト部12の製造方法の一例を表すものである。まず、図4Aに示したように、絶縁層LAと導電層LBとを交互に積層する。この例では、5層の絶縁層LA1〜LA5と、4層の導電層LB1〜LB4とを、LA1,LB1,LA2,LB2,LA3,LB3,LA4,LB4,LA5の順に交互に積層する。次に、図4Bに示したように、積層された絶縁層LA2〜LA5および導電層LB1〜LB4を貫通するように複数(この例では4つ)のホールHLを生成する。次に、図4Cに示したように、各ホールHLにおける絶縁層LAおよび導電層LBの側面に、アンチヒューズ膜AFを形成する。そして、次に、図4Dに示したように、アンチヒューズ膜AFが形成されたホールHLを導電性材料により充填することにより貫通電極ELを生成する。
なお、このコンタクト部12は、アレイ部11を製造する際に、同じ製造工程を用いて同時に形成されることが望ましい。具体的には、アレイ部11に形成されるメモリストリングの絶縁膜を形成する際に、コンタクト部12のアンチヒューズ膜AFを形成することができ、また、アレイ部11のメモリストリングのポリシリコン電極を形成する際に、コンタクト部12の貫通電極ELを形成することができる。
図4A〜図4Dのように記憶装置1を製造したとき、アンチヒューズ膜AFの抵抗状態は高抵抗状態である。よって、導電層LB1〜LB4のそれぞれは、電気的にフローティング状態である。
次に、ロウデコーダ13は、貫通電極ELに信号を供給することにより、コンタクト部12において、貫通電極ELと導電層LBとを電気的に接続する。以下、4層の導電層LB1〜LB4と、8つの貫通電極EL1〜EL8とを設け、4つの貫通電極EL1〜EL4を4層の導電層LB1〜LB4に接続する例を説明する。
(貫通電極EL1)
図5は、貫通電極EL1を、4層の導電層LB1〜LB4のうちのいずれか1つと接続する工程を表すものである。このとき、アンチヒューズ膜AFの抵抗状態は高抵抗状態であり、各貫通電極ELと各導電層LBとの間には、寄生キャパシタンス(容量値Cp)が存在する。これ以降の工程では、各貫通電極ELに電圧を印加することにより、これらの寄生キャパシタンスを介して、各導電層LBの電圧を設定する。これにより、アンチヒューズ膜AFにストレス電圧を印加し、その抵抗状態を高抵抗状態から低抵抗状態に変化させる。
この工程では、ロウデコーダ13は、貫通電極EL1以外の、貫通電極EL2〜EL8を接地する。また、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL1に対して書込電圧Vwを印加する。この書込電圧Vwは、この例では、アンチヒューズ膜AFに印加される電圧が11/16×Vw以上であれば、アンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化するような電圧である。
図6は、この工程における信号印加動作を表すものであり、(A)はプリチャージ信号SPの波形を示し、(B)は書込電圧Vwを印加する貫通電極(この例では貫通電極EL1)における電圧Voの波形を示す。この例では、ロウデコーダ13は、プリチャージ信号SPに基づいて、貫通電極EL1を書込電圧Vwに設定することによりプリチャージを行う。そして、その後に、貫通電極EL1と導電層LB4の間のアンチヒューズ膜AF(部分W1)が低抵抗状態になる。以下に、この動作について詳細に説明する。
まず、ロウデコーダ13は、タイミングt1において、プリチャージ信号SPを低レベルから高レベルに変化させる(図6(A))。これにより、スイッチSW1はオン状態になり、貫通電極EL1の電圧Voが書込電圧Vwになる(図6(B))。そして、ロウデコーダ13は、タイミングt1〜t2の期間において、貫通電極EL1に対してプリチャージを行う。
図7は、貫通電極EL1に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。電圧V1は導電層LB1における電圧を示し、電圧V2は導電層LB2における電圧を示し、電圧V3は導電層LB3における電圧を示し、電圧V4は導電層LB4における電圧を示す。容量素子C11は、貫通電極EL1と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL1と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL1と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL1と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL2〜EL8と導電層LB1との間の寄生キャパシタンス(容量値7Cp)に対応するものである。容量素子C22は、貫通電極EL2〜EL8と導電層LB2との間の寄生キャパシタンス(容量値7Cp)に対応するものである。容量素子C32は、貫通電極EL2〜EL8と導電層LB3との間の寄生キャパシタンス(容量値7Cp)に対応するものである。容量素子C42は、貫通電極EL2〜EL8と導電層LB4との間の寄生キャパシタンス(容量値7Cp)に対応するものである。
このとき、貫通電極EL1にチャージされた電荷Qoは、7/2×Cp×Vwである。また、導電層LB1〜LB4における電圧V1〜V4は、1/8×Vwである。すなわち、容量素子C12の両端間の電圧、容量素子C22の両端間の電圧、容量素子C32の両端間の電圧、および容量素子C42の両端間の電圧は、1/8×Vwである。この1/8×Vwは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。一方、容量素子C11の両端間の電圧、容量素子C21の両端間の電圧、容量素子C31の両端間の電圧、および容量素子C41の両端間の電圧は、7/8×Vwである。この7/8×Vwは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。すなわち、貫通電極EL1と、導電層LB1〜LB4との間のアンチヒューズ膜AFには、ストレス電圧が供給される。
次に、ロウデコーダ13は、図6に示したように、タイミングt2において、プリチャージ信号SPを高レベルから低レベルに変化させる(図6(A))。これにより、スイッチSW1はオフ状態になり、貫通電極EL1は、電気的にフローティング状態になる。このタイミングt2後のしばらくの間、図7に示した状態が維持される。すなわち、貫通電極EL1と、導電層LB1〜LB4との間のアンチヒューズ膜AFにおけるストレス電圧は、しばらくの間維持される。そして、その後、このストレス電圧により、貫通電極EL1と導電層LB1との間のアンチヒューズ膜AF、貫通電極EL1と導電層LB2との間のアンチヒューズ膜AF、貫通電極EL1と導電層LB3との間のアンチヒューズ膜AF、および貫通電極EL1と導電層LB4との間のアンチヒューズ膜AFのうちのいずれか1つの抵抗状態が、高抵抗状態から低抵抗状態に変化する。この例では、貫通電極EL1と導電層LB4との間のアンチヒューズ膜AF(図5に示した部分W1)の抵抗状態が高抵抗状態から低抵抗状態に変化する。このようにして、貫通電極EL1と導電層LB4とが電気的に接続される。
図8は、貫通電極EL1と導電層LB4とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。上述したように、貫通電極EL1と導電層LB4とが電気的に接続されたため、図7における容量素子C41を削除している。スイッチSW1はオフ状態を維持しているため、貫通電極EL1にチャージされた電荷Qoは、7/2×Cp×Vwのままであるが、電圧Voは、4/11×Vwへと低下する。導電層LB1〜LB3の電圧V1〜V3は、1/22×Vwであり、導電層LB4の電圧V4は4/11×Vwである。すなわち、容量素子C12の両端間の電圧、容量素子C22の両端間の電圧、および容量素子C32の両端間の電圧は、1/22×Vwであり、容量素子C42の両端間の電圧は、4/11×Vwである。また、容量素子C11の両端間の電圧、容量素子C21の両端間の電圧、および容量素子C31の両端間の電圧は、7/22×Vwである。これらの電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。
このようにして、図6(B)に示したように、貫通電極EL1の電圧Voは、貫通電極EL1と導電層LB4との間のアンチヒューズ膜AF(部分W1)の抵抗状態が高抵抗状態から低抵抗状態に変化したのに応じて、書込電圧Vwから4/11×Vwに低下する。
ところで、書込電圧Vwと、この書込電圧Vwを印加してからアンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化するまでの書込時間との間には、負の相関がある。例えば、書込電圧Vwを高くすると、書込時間が短くなる。このとき、貫通電極EL1へのプリチャージが完了した後に、アンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化するように、書込電圧Vwを設定する必要がある。すなわち、仮に、書込電圧Vwが高すぎると、書込時間が短くなりすぎてしまい、貫通電極EL1へのプリチャージが完了する前に、アンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化するおそれがある。この場合には、貫通電極EL1と、全ての導電層LB1〜LB4との間のアンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化してしまうおそれがある。よって、貫通電極EL1へのプリチャージが完了した後に、アンチヒューズ膜AFの抵抗状態が高抵抗状態から低抵抗状態に変化するように、書込電圧Vwを設定する。これにより、貫通電極EL1と、4つの導電層LB1〜LB4のうちのいずれか1つとの間のアンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる。
また、仮に書込電圧Vwが低すぎると、書込時間が長くなりすぎてしまい、貫通電極EL1へのプリチャージが完了した後、貫通電極EL1にチャージされた電荷がリークし、貫通電極EL1の電圧が低下し、アンチヒューズ膜AFの抵抗状態が変化しないおそれがある。よって、このようなリークの影響を受けにくい程度に、書込電圧Vwを設定する。これにより、アンチヒューズ膜AFの抵抗状態を、より確実に高抵抗状態から低抵抗状態に変化させることができる。
(貫通電極EL2)
図9は、貫通電極EL2を、導電層LB1〜LB3のうちのいずれか1つと接続する工程を表すものである。この工程では、ロウデコーダ13は、貫通電極EL1,EL2以外の、貫通電極EL3〜EL8を接地する。また、ロウデコーダ13は、スイッチング信号SSを用いてスイッチSW2を制御することにより、貫通電極EL1に対して書込電圧Vwの半分の電圧Vw/2を印加する。そして、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL2に対して書込電圧Vwを印加する。
図10は、この工程における信号印加動作を表すものであり、(A)はスイッチング信号SSの波形を示し、(B)はプリチャージ信号SPの波形を示し、(C)は書込電圧Vwを印加する貫通電極(この例では貫通電極EL2)における電圧Voの波形を示す。
まず、ロウデコーダ13は、タイミングt11において、スイッチング信号SSを低レベルから高レベルに変化させる(図10(A))。これにより、貫通電極EL1に電圧Vw/2が印加され、その結果、導電層LB4の電圧がVw/2になる。
次に、ロウデコーダ13は、タイミングt12において、プリチャージ信号SPを低レベルから高レベルに変化させる(図10(B))。これにより、スイッチSW1はオン状態になり、貫通電極EL2の電圧Voが書込電圧Vwになる(図10(C))。
図11は、貫通電極EL2に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL2と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL2と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL2と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL2と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL3〜EL8と導電層LB1との間の寄生キャパシタンス(容量値6Cp)に対応するものである。容量素子C22は、貫通電極EL3〜EL8と導電層LB2との間の寄生キャパシタンス(容量値6Cp)に対応するものである。容量素子C32は、貫通電極EL3〜EL8と導電層LB3との間の寄生キャパシタンス(容量値6Cp)に対応するものである。容量素子C42は、貫通電極EL3〜EL8と導電層LB4との間の寄生キャパシタンス(容量値6Cp)に対応するものである。容量素子C13は、貫通電極EL1と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C23は、貫通電極EL1と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C33は、貫通電極EL1と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。
このとき、貫通電極EL2にチャージされた電荷Qoは、47/16×Cp×Vwである。また、導電層LB1〜LB3における電圧V1〜V3は、3/16×Vwであり、導電層LB4における電圧V4は、1/2×Vwである。すなわち、容量素子C11,C21,C31以外の容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。一方、容量素子C11,C21,C31の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。すなわち、貫通電極EL2と、導電層LB1〜LB3との間のアンチヒューズ膜AFには、ストレス電圧が供給される。
次に、ロウデコーダ13は、図10に示したように、タイミングt13において、プリチャージ信号SPを高レベルから低レベルに変化させる(図10(B))。これにより、スイッチSW1はオフ状態になり、貫通電極EL2は、電気的にフローティング状態になる。このタイミングt13の後のしばらくの間、図11に示した状態が維持される。すなわち、貫通電極EL2と、導電層LB1〜LB3との間のアンチヒューズ膜AFにおけるストレス電圧は、しばらくの間維持される。そして、その後、このストレス電圧により、貫通電極EL2と導電層LB1との間のアンチヒューズ膜AF、貫通電極EL2と導電層LB2との間のアンチヒューズ膜AF、および貫通電極EL2と導電層LB3との間のアンチヒューズ膜AFのうちのいずれか1つの抵抗状態が、高抵抗状態から低抵抗状態に変化する。この例では、貫通電極EL2と導電層LB2との間のアンチヒューズ膜AF(図9に示した部分W2)の抵抗状態が高抵抗状態から低抵抗状態に変化する。このようにして、貫通電極EL2と導電層LB2とが電気的に接続される。
図12は、貫通電極EL2と導電層LB2とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。上述したように、貫通電極EL2と導電層LB2とが電気的に接続されたため、図11における容量素子C21を削除している。スイッチSW1はオフ状態を維持しているため、貫通電極EL2にチャージされた電荷Qoは、47/16×Cp×Vwのままであるが、電圧Voは、5/12×Vwへと低下する。このとき、各容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。
このようにして、図10(C)に示したように、貫通電極EL2の電圧Voは、貫通電極EL2と導電層LB2との間のアンチヒューズ膜AF(部分W1)の抵抗状態が高抵抗状態から低抵抗状態に変化したのに応じて、書込電圧Vwから5/12×Vwに低下する。
そして、ロウデコーダ13は、タイミングt14において、スイッチング信号SSを高レベルから低レベルに変化させる(図10(A))。これにより、貫通電極EL1が接地され、その結果、導電層LB4が接地される。
(貫通電極EL3)
図13は、貫通電極EL3を、導電層LB1,LB3のうちのどちらかと接続する工程を表すものである。この工程では、ロウデコーダ13は、貫通電極EL1〜EL3以外の、貫通電極EL4〜EL8を接地する。また、ロウデコーダ13は、スイッチング信号SSを用いてスイッチSW2を制御することにより、貫通電極EL1,EL2に対して書込電圧Vwの半分の電圧Vw/2を印加する。そして、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL3に対して書込電圧Vwを印加する。
図14は、この工程における信号印加動作を表すものであり、(A)はスイッチング信号SSの波形を示し、(B)はプリチャージ信号SPの波形を示し、(C)は書込電圧Vwを印加する貫通電極(この例では貫通電極EL3)における電圧Voの波形を示す。
まず、ロウデコーダ13は、タイミングt21において、スイッチング信号SSを低レベルから高レベルに変化させる(図14(A))。これにより、貫通電極EL1,EL2に電圧Vw/2が印加され、その結果、導電層LB2,LB4の電圧がVw/2になる。
次に、ロウデコーダ13は、タイミングt22において、プリチャージ信号SPを低レベルから高レベルに変化させる(図14(B))。これにより、スイッチSW1はオン状態になり、貫通電極EL3の電圧Voが書込電圧Vwになる(図14(C))。
図15は、貫通電極EL3に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL3と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL3と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL3と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL3と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL4〜EL8と導電層LB1との間の寄生キャパシタンス(容量値5Cp)に対応するものである。容量素子C22は、貫通電極EL4〜EL8と導電層LB2との間の寄生キャパシタンス(容量値5Cp)に対応するものである。容量素子C32は、貫通電極EL4〜EL8と導電層LB3との間の寄生キャパシタンス(容量値5Cp)に対応するものである。容量素子C42は、貫通電極EL4〜EL8と導電層LB4との間の寄生キャパシタンス(容量値5Cp)に対応するものである。容量素子C13は、貫通電極EL1,EL2と導電層LB1との間の寄生キャパシタンス(容量値2Cp)に対応するものである。容量素子C33は、貫通電極EL1,EL2と導電層LB3との間の寄生キャパシタンス(容量値2Cp)に対応するものである。
このとき、貫通電極EL3にチャージされた電荷Qoは、5/2×Cp×Vwである。また、導電層LB1,LB3における電圧V1,V3は、1/4×Vwであり、導電層LB2,LB4における電圧V2,V4は、1/2×Vwである。すなわち、容量素子C11,C31以外の容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。一方、容量素子C11,C31の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。すなわち、貫通電極EL3と、導電層LB1,LB3との間のアンチヒューズ膜AFには、ストレス電圧が供給される。
次に、ロウデコーダ13は、図14に示したように、タイミングt23において、プリチャージ信号SPを高レベルから低レベルに変化させる(図14(B))。これにより、スイッチSW1はオフ状態になり、貫通電極EL3は、電気的にフローティング状態になる。このタイミングt23の後のしばらくの間、図15に示した状態が維持される。すなわち、貫通電極EL3と、導電層LB1,LB3との間のアンチヒューズ膜AFにおけるストレス電圧は、しばらくの間維持される。そして、その後、このストレス電圧により、貫通電極EL3と導電層LB1との間のアンチヒューズ膜AF、および貫通電極EL3と導電層LB3との間のアンチヒューズ膜AFのうちのどちらかの抵抗状態が、高抵抗状態から低抵抗状態に変化する。この例では、貫通電極EL3と導電層LB1との間のアンチヒューズ膜AF(図13に示した部分W3)の抵抗状態が高抵抗状態から低抵抗状態に変化する。このようにして、貫通電極EL3と導電層LB1とが電気的に接続される。
図16は、貫通電極EL3と導電層LB1とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。上述したように、貫通電極EL3と導電層LB1とが電気的に接続されたため、図15における容量素子C11を削除している。スイッチSW1はオフ状態を維持しているため、貫通電極EL3にチャージされた電荷Qoは、5/2×Cp×Vwのままであるが、電圧Voは、37/79×Vwへと低下する。このとき、各容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。
このようにして、図14(C)に示したように、貫通電極EL3の電圧Voは、貫通電極EL3と導電層LB1との間のアンチヒューズ膜AF(部分W3)の抵抗状態が高抵抗状態から低抵抗状態に変化したのに応じて、書込電圧Vwから37/79×Vwに低下する。
そして、ロウデコーダ13は、タイミングt24において、スイッチング信号SSを高レベルから低レベルに変化させる(図14(A))。これにより、貫通電極EL1,EL2が接地され、その結果、導電層LB2,LB4が接地される。
(貫通電極EL4)
図17は、貫通電極EL4を、導電層LB3と接続する工程を表すものである。この工程では、ロウデコーダ13は、貫通電極EL1〜EL4以外の、貫通電極EL5〜EL8を接地する。また、ロウデコーダ13は、スイッチング信号SSを用いてスイッチSW2を制御することにより、貫通電極EL1〜EL3に対して書込電圧Vwの半分の電圧Vw/2を印加する。そして、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL4に対して書込電圧Vwを印加する。
図18は、この工程における信号印加動作を表すものであり、(A)はスイッチング信号SSの波形を示し、(B)はプリチャージ信号SPの波形を示し、(C)は書込電圧Vwを印加する貫通電極(この例では貫通電極EL4)における電圧Voの波形を示す。
まず、ロウデコーダ13は、タイミングt31において、スイッチング信号SSを低レベルから高レベルに変化させる(図18(A))。これにより、貫通電極EL1〜EL3に電圧Vw/2が印加され、その結果、導電層LB1,LB2,LB4の電圧がVw/2になる。
次に、ロウデコーダ13は、タイミングt32において、プリチャージ信号SPを低レベルから高レベルに変化させる(図18(B))。これにより、スイッチSW1はオン状態になり、貫通電極EL4の電圧Voが書込電圧Vwになる(図18(C))。
図19は、貫通電極EL4に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL4と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL4と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL4と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL4と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL5〜EL8と導電層LB1との間の寄生キャパシタンス(容量値4Cp)に対応するものである。容量素子C22は、貫通電極EL5〜EL8と導電層LB2との間の寄生キャパシタンス(容量値4Cp)に対応するものである。容量素子C32は、貫通電極EL5〜EL8と導電層LB3との間の寄生キャパシタンス(容量値4Cp)に対応するものである。容量素子C42は、貫通電極EL5〜EL8と導電層LB4との間の寄生キャパシタンス(容量値4Cp)に対応するものである。容量素子C33は、貫通電極EL1〜EL3と導電層LB3との間の寄生キャパシタンス(容量値3Cp)に対応するものである。
このとき、貫通電極EL4にチャージされた電荷Qoは、35/16×Cp×Vwである。また、導電層LB3における電圧V3は、5/16×Vwであり、導電層LB1,LB2,LB4における電圧V1,V2,V4は、1/2×Vwである。すなわち、容量素子C31以外の容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。一方、容量素子C31の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。すなわち、貫通電極EL4と、導電層LB3との間のアンチヒューズ膜AFには、ストレス電圧が供給される。
次に、ロウデコーダ13は、図18に示したように、タイミングt33において、プリチャージ信号SPを高レベルから低レベルに変化させる(図14(B))。これにより、スイッチSW1はオフ状態になり、貫通電極EL4は、電気的にフローティング状態になる。このタイミングt33の後のしばらくの間、図19に示した状態が維持される。すなわち、貫通電極EL4と、導電層LB3との間のアンチヒューズ膜AFにおけるストレス電圧は、しばらくの間維持される。そして、その後、このストレス電圧により、貫通電極EL4と導電層LB3との間のアンチヒューズ膜AF(図17に示した部分W4)の抵抗状態が、高抵抗状態から低抵抗状態に変化する。このようにして、貫通電極EL4と導電層LB3とが電気的に接続される。
図20は、貫通電極EL4と導電層LB3とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。上述したように、貫通電極EL4と導電層LB3とが電気的に接続されたため、図19における容量素子C31を削除している。スイッチSW1はオフ状態を維持しているため、貫通電極EL4にチャージされた電荷Qoは、35/16×Cp×Vwのままであるが、電圧Voは、83/160×Vwへと低下する。このとき、各容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。
このようにして、図18(C)に示したように、貫通電極EL4の電圧Voは、貫通電極EL4と導電層LB3との間のアンチヒューズ膜AF(部分W4)の抵抗状態が高抵抗状態から低抵抗状態に変化したのに応じて、書込電圧Vwから83/160×Vwに低下する。
そして、ロウデコーダ13は、タイミングt34において、スイッチング信号SSを高レベルから低レベルに変化させる(図18(A))。これにより、貫通電極EL〜EL3が接地され、その結果、導電層LB1,LB2,LB4が接地される。
以上のようにして、貫通電極EL1は導電層LB4に電気的に接続され、貫通電極EL2は導電層LB2に電気的に接続され、貫通電極EL3は導電層LB1に電気的に接続され、貫通電極EL4は導電層LB3に電気的に接続される。
なお、貫通電極ELと、その貫通電極ELに接続される導電層LBとの組み合わせは、素子ばらつき等に左右されてしまうため、一意的に決定することはできない。しかしながら、各貫通電極ELはいずれかの導電層LBに接続されるので、論理アドレスと物理アドレスとの対応関係が重複することはないので、装置の利用者の不利益にはならない。
このように、記憶装置1では、コンタクト部12において、積層された絶縁層LAおよび導電層LBを貫通するように貫通電極ELを形成するとともに、その貫通電極ELを覆うようにアンチヒューズ膜AFを形成したので、面積を小さくすることができる。すなわち、例えば、特許文献1,2に記載の技術では、コンタクト部において、複数の導電層を階段状に形成したので、コンタクト部の面積が大きくなってしまい、その結果、記憶装置自体の面積も大きくなってしまう。一方、記憶装置1では、コンタクト部12においても、アレイ部11と同様に絶縁層LAおよび導電層LBを積層し、貫通電極ELを介して導電層LBに接続するようにしたので、コンタクト部の面積を削減することができ、その結果、記憶装置自体の面積を削減することができる。
また、記憶装置1では、積層された絶縁層LAおよび導電層LBを貫通するように貫通電極ELを形成し、その後にアンチヒューズ膜AFにストレス電圧を印加することにより、貫通電極ELと導電層LBとを電気的に接続するようにしたので、製造工程の数を減らすことができる。すなわち、例えば、特許文献1,2の技術では、複数の導電層を階段状に形成した後に、これらの導電層へのコンタクトを、互いに異なる工程で形成する。すなわち、コンタクトを形成する際、導電層の層数と同じ数の工程が必要になってしまう。一方、記憶装置1では、アンチヒューズ膜AFにストレス電圧を印加することにより、貫通電極ELと導電層LBとを電気的に接続するようにした。これにより、記憶装置1では、製造工程の数を抑えることができ、その結果、製造コストを削減することができる。
(貫通電極ELの数について)
上述した例では、4層の導電層LB1〜LB4と8つの貫通電極EL1〜EL8とを設けている。貫通電極ELの数が少ない場合には、貫通電極ELと導電層LBとが正常に接続されないおそれがある。以下に、4層の導電層LB1〜LB4と5つの貫通電極EL1〜EL5を設けた例(参考例R1)と、4層の導電層LB1〜LB4と6つの貫通電極EL1〜EL6を設けた例(参考例R2)を用いて説明する。
図21は、4層の導電層LB1〜LB4と5つの貫通電極EL1〜EL5を設けた参考例R1において、貫通電極EL4を、導電層LB3と接続する工程を表すものである。すなわち、すでに、貫通電極EL1は導電層LB4に接続されており、貫通電極EL2は導電層LB2に電気的に接続されており、貫通電極EL3は導電層LB1に電気的に接続されている。この工程では、ロウデコーダ13は、貫通電極EL5を接地する。
図22は、貫通電極EL4に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL4と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL4と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL4と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL4と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL5と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C22は、貫通電極EL5と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C32は、貫通電極EL5と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C42は、貫通電極EL5と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C33は、貫通電極EL1〜EL3と導電層LB3との間の寄生キャパシタンス(容量値3Cp)に対応するものである。
このとき、貫通電極EL4にチャージされた電荷Qoは、2×Cp×Vwである。また、導電層LB1〜LB4における電圧V1〜V4は、1/2×Vwである。すなわち、これらの容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。すなわち、この工程では、貫通電極EL4を導電層LB3に接続することはできない。
図23は、4層の導電層LB1〜LB4と6つの貫通電極EL1〜EL6を設けた参考例R2において、貫通電極EL4を、導電層LB3と接続する工程を表すものである。この工程では、ロウデコーダ13は、貫通電極EL5,EL6を接地する。
図24は、貫通電極EL4に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL4と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL4と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL4と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C41は、貫通電極EL4と導電層LB4との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL5,EL6と導電層LB1との間の寄生キャパシタンス(容量値2Cp)に対応するものである。容量素子C22は、貫通電極EL5,EL6と導電層LB2との間の寄生キャパシタンス(容量値2Cp)に対応するものである。容量素子C32は、貫通電極EL5,EL6と導電層LB3との間の寄生キャパシタンス(容量値2Cp)に対応するものである。容量素子C42は、貫通電極EL5,EL6と導電層LB4との間の寄生キャパシタンス(容量値2Cp)に対応するものである。容量素子C33は、貫通電極EL1〜EL3と導電層LB3との間の寄生キャパシタンス(容量値3Cp)に対応するものである。
このとき、貫通電極EL4にチャージされた電荷Qoは、25/12×Cp×Vwである。また、導電層LB3における電圧V3は、5/12×Vwであり、導電層LB1,LB2,LB4における電圧V1,V2,V4は、1/2×Vwである。すなわち、容量素子C31以外の容量素子の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させるには不十分な電圧である。一方、容量素子C31の両端間の電圧は、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。これにより、貫通電極EL4と導電層LB3との間のアンチヒューズ膜AFの抵抗状態は高抵抗状態から低抵抗状態に変化し、貫通電極EL4と導電層LB3とが電気的に接続される。
図25は、貫通電極EL4と導電層LB3とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。上述したように、貫通電極EL4と導電層LB3とが電気的に接続されたため、図24における容量素子C31を削除している。スイッチSW1はオフ状態を維持しているため、貫通電極EL4にチャージされた電荷Qoは、25/12×Cp×Vwのままであるが、電圧Voは、61/96×Vwへと低下する。このとき、容量素子C32の両端間の電圧は、61/96×Vwである。この61/96×Vwは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である。すなわち、貫通電極EL4と、導電層LB5,LB6との間のアンチヒューズ膜AFには、ストレス電圧が供給され、その結果、いわゆる誤書込が生じるおそれがある。
このように、貫通電極ELの数が少ない場合には、貫通電極ELと導電層LBとが正常に接続されないおそれがある。そこで、より一般的なケースとして、N層の導電層LB1〜LB(N)とM本の貫通電極EL1〜EL(M)を設けた場合を想定し、貫通電極ELと導電層LBとを正常に接続するための、導電層LBの層数Nと貫通電極ELの本数Mとの関係を検討する。
図26は、N本目の貫通電極EL(N)を、導電層LB3と接続する工程を表すものである。すなわち、このとき、すでに、貫通電極EL1〜EL(N−1)は導電層LB3以外の導電層に接続されている。この工程では、ロウデコーダ13は、貫通電極EL(N+1)〜EL(M)を接地する。また、ロウデコーダ13は、スイッチング信号SSを用いてスイッチSW2を制御することにより、貫通電極EL1〜EL(N−1)に対して書込電圧Vwの半分の電圧Vw/2を印加する。そして、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL(N)に対して書込電圧Vwを印加する。
図27は、貫通電極EL(N)に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。容量素子C11は、貫通電極EL(N)と導電層LB1との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C21は、貫通電極EL(N)と導電層LB2との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C31は、貫通電極EL(N)と導電層LB3との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C(N)1は、貫通電極EL(N)と導電層LB(N)との間の寄生キャパシタンス(容量値Cp)に対応するものである。容量素子C12は、貫通電極EL(N+1)〜EL(M)と導電層LB1との間の寄生キャパシタンス(容量値(M−N)×Cp)に対応するものである。容量素子C22は、貫通電極EL(N+1)〜EL(M)と導電層LB2との間の寄生キャパシタンス(容量値(M−N)×Cp)に対応するものである。容量素子C32は、貫通電極EL(N+1)〜EL(M)と導電層LB3との間の寄生キャパシタンス(容量値(M−N)×Cp)に対応するものである。容量素子C(N)2は、貫通電極EL(N+1)〜EL(M)と導電層LB(N)との間の寄生キャパシタンス(容量値(M−N)×Cp)に対応するものである。容量素子C33は、貫通電極EL1〜EL(N−1)と導電層LB3との間の寄生キャパシタンス(容量値(N−1)×Cp)に対応するものである。
このとき、貫通電極EL(N)には、図27に示した電荷Qoがチャージされる。また、導電層LB3における電圧V3は、(N+1)/(2M)×Vwであり、その他の導電層における電圧V(n)(n≠3)は1/2×Vwである。また、書込電圧Vwを印加している貫通電極EL(N)における電圧Voと電圧V3との差電圧Vo−V3は(2M−N−1)/(2M)×Vwである。以下、この差電圧を電圧Vaとする。貫通電極EL(N)を導電層LB3と接続するためには、この電圧Vaが、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である必要がある。
図28は、貫通電極EL(N)と導電層LB3とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。電圧Voは、((3N−1)×M−N−1)/(2M×(M+N−2))×Vwへと低下する。以下、この電圧Voを電圧Vbとする。誤書込を避けるためには、この電圧Vbは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させない電圧である必要がある。
このように、電圧Vaは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧であり、電圧Vbは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させない電圧ある。よって、電圧Vaは電圧Vbよりも大きい(Va>Vb)。この条件を満たすためには、導電層LBの層数Nと、貫通電極ELの本数Mとは、以下の式で表される関係を満たす必要がある。
Figure 2016225364
すなわち、貫通電極ELの本数Mは、おおよそ、“1.37×N+1”により得られる本数以上必要である。導電層LBの層数Nが4である場合(N=4)、貫通電極ELの本数Mは7以上(M≧7)となる。層数Nが十分に大きい場合には、右辺の第2項は無視できるため、貫通電極ELの本数Mは、おおよそ“1.37×N”により得られる本数以上必要である。
このように、記憶装置1では、式(1)を満たすように、貫通電極ELの本数Mおよび導電層LBの層数Nを設定することにより、貫通電極ELと導電層LBとを正常に接続することができる。
[効果]
以上のように本実施の形態では、積層された絶縁層および導電層を貫通するように貫通電極を形成するとともに、その貫通電極を覆うようにアンチヒューズ層を形成したので、面積を小さくすることができる。
本実施の形態では、アンチヒューズ膜にストレス電圧を印加することにより、貫通電極と導電層とを電気的に接続するようにしたので、製造工程の数を抑えることができ、その結果、製造コストを削減することができる。
[変形例1]
上記実施の形態では、8本の貫通電極ELのうちの4本を、導電層LBに接続したが、これに限定されるものではなく、例えば、残りの4本をさらに導電層LBに接続してもよい。以下に、その詳細を説明する。
図29は、貫通電極EL5を、貫通電極EL1が接続されている導電層(この例では導電層LB4)に接続する工程を表すものである。この工程では、ロウデコーダ13は、貫通電極EL1を接地する。これにより、導電層LB4は、この貫通電極EL1を介して接地される。そして、ロウデコーダ13は、スイッチング信号SS2を用いてスイッチSW3を制御することにより、貫通電極EL5に対して電圧Vw2を印加する。この電圧Vw2を十分に高く設定することにより、貫通電極EL5と導電層LB4との間のアンチヒューズ膜AF(部分W5)の抵抗状態を高抵抗状態から低抵抗状態にすることができる。その際、さらに、貫通電極EL1と導電層LB4との間のアンチヒューズ膜AF(部分W1)における抵抗値をより低くすることができる。
同様に、貫通電極EL6を、貫通電極EL2が接続されている導電層(この例では導電層LB2)に接続するためには、貫通電極EL2を接地するとともに、貫通電極EL6に対して電圧Vw2を印加する。また、貫通電極EL7を、貫通電極EL3が接続されている導電層(この例では導電層LB1)に接続するためには、貫通電極EL3を接地するとともに、貫通電極EL7に対して電圧Vw2を印加する。また、貫通電極EL8を、貫通電極EL4が接続されている導電層(この例では導電層LB3)に接続するためには、貫通電極EL4を接地するとともに、貫通電極EL8に対して電圧Vw2を印加する。
図30は、このような工程を行った後のコンタクト部12の一例を表すものである。この例では、貫通電極EL1,EL5は導電層LB4に電気的に接続され、貫通電極EL2,EL6は導電層LB2に電気的に接続され、貫通電極EL3,EL7は導電層LB1に電気的に接続され、導電層EL4,EL8は導電層LB3に電気的に接続されている。
この構成により、ロウデコーダ13は、記憶装置1の動作時において、2つの貫通電極EL1,EL5を介して導電層LB4に信号を供給し、2つの貫通電極EL2,EL6を介して導電層LB2に信号を供給し、2つの貫通電極EL3,EL7を介して導電層LB1に信号を供給し、2つの貫通電極EL4,EL8を介して導電層LB3に信号を供給することができる。すなわち、ロウデコーダ13は、アレイ部11とより低いインピーダンスで接続されるため、アレイ部11を駆動しやすくすることができる。
[変形例2]
上記実施の形態では、図9,10等に示したように、スイッチング信号SSおよびプリチャージ信号SPを用いて貫通電極ELに電圧を印加したが、これに限定されるものではない。以下に、本変形例について詳細に説明する。
図31は、N本目の貫通電極EL(N)を、導電層LB3と接続する工程を表すものである。すなわち、このとき、すでに、貫通電極EL1〜EL(N−1)は導電層LB1,LB2,LB4〜LB(N)に接続されている。この工程では、ロウデコーダ13は、貫貫通電極EL(N+1)〜EL(M)を接地する。また、ロウデコーダ13は、スイッチング信号SS3を用いてスイッチSW4をオンさせることにより、貫通電極EL1〜EL(N−1)に対して書込電圧Vwの半分の電圧Vw/2を印加する。そして、ロウデコーダ13は、プリチャージ信号SPを用いてスイッチSW1をオンさせることにより、貫通電極EL(N)に対して書込電圧Vwを印加する。
図32は、この工程における信号印加動作を表すものであり、(A)はスイッチング信号SS3の波形を示し、(B)はプリチャージ信号SPの波形を示し、(C)は書込電圧Vwを印加する貫通電極(この例では貫通電極EL(N))における電圧Voの波形を示す。
まず、ロウデコーダ13は、タイミングt41において、スイッチング信号SS3を低レベルから高レベルに変化させる(図32(A))。これにより、スイッチSW4はオン状態になり、貫通電極EL1〜EL(N−1)に電圧Vw/2が印加される。これと同時に、ロウデコーダ13は、プリチャージ信号SPを低レベルから高レベルに変化させる(図32(B))。これにより、スイッチSW1がオン状態になり、貫通電極EL(N)の電圧Voが書込電圧Vwになる(図32(C))。そして、ロウデコーダ13は、このタイミングt41〜t42の期間においてプリチャージを行う。
図33は、貫通電極EL(N)に対してプリチャージを行っているときの、コンタクト部12の等価回路を表すものである。各容量素子は、上記実施の形態の場合(図27)と同様である。貫通電極EL1〜EL(N−1)には、図33に示した電荷Qcがチャージされる。各ノードの電圧は、上記実施の形態の場合(図27)と同様である。貫通電極EL(N)を導電層LB3と接続するためには、電圧Va(=Vo−V3)が、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させることができる電圧である必要がある。
図34は、貫通電極EL(N)と導電層LB3とが電気的に接続された後の、コンタクト部12の等価回路を表すものである。この例では、スイッチSW4がオフ状態になるため、上記実施の形態の場合(図28)とは異なり、貫通電極EL1〜EL(N−1)にチャージされた電荷Qcは維持される。そして、電圧Voは、図34に示した式で表される電圧へと低下する。以下、この電圧Voを電圧Vbとする。誤書込を避けるためには、この電圧Voは、アンチヒューズ膜AFの抵抗状態を高抵抗状態から低抵抗状態に変化させない電圧である必要がある。
電圧Vaを電圧Vbよりも大きく(Va>Vb)するためには、導電層LBの層数Nと、貫通電極ELの本数Mとは、以下の式で表される関係を満たす必要がある。
Figure 2016225364
すなわち、貫通電極ELの本数Mは、おおよそ、“1.37×N+0.58”により得られる本数以上必要である。すなわち、上記実施の形態の場合(式(1))に比べ、本数Mの条件をやや緩和することができる。
[変形例3]
上記実施の形態では、本技術をNAND型フラッシュメモリに適用したが、これに限定されるものではなく、これに代えて、例えば、抵抗変化素子を用いた記憶装置に適用してもよい。以下に、本変形例について詳細に説明する。
図35は、本変形例に係る記憶装置2の一構成例を表すものである。記憶装置2は、メモリセルアレイ20と、ロウデコーダ23と、カラムデコーダ24と、センスアンプ・データ入出力部25と、制御部26とを備えている。
メモリセルアレイ20は、アレイ部21と、コンタクト部22とを有している。アレイ部21は、複数のメモリ素子29と、複数のソース線SLと、複数のワード線WLと、複数のビット線BLとを有している。メモリ素子29は、抵抗変化素子である。複数のソース線SLは、コンタクト部22を介してロウデコーダ23に接続されている。複数のワード線WLおよび複数のビット線BLは、カラムデコーダ24に接続されている。コンタクト部22は、ロウデコーダ23がアレイ部21のソース線SLに接続するためのコンタクトとして機能するものである。
ロウデコーダ23は、制御部26から供給されたロウアドレス信号をデコードし、デコードされた信号をメモリセルアレイ20のアレイ部21に供給するものである。ロウデコーダ23は、メモリセルアレイ20のコンタクト部22の貫通電極ELを介して、アレイ部21のソース線SLに接続されている。また、ロウデコーダ23は、記憶装置2の製造工程において、貫通電極ELに対して信号を供給することにより、貫通電極ELと導電層LBとを電気的に接続させる機能をも有している。
カラムデコーダ24は、制御部26から供給されたカラムアドレス信号をデコードし、デコードされた信号をメモリセルアレイ20のアレイ部21に供給するものである。また、カラムデコーダ24は、センスアンプ・データ入出力部25から供給されたデータをアレイ部21に書き込み、あるいはアレイ部21から読み出したデータをセンスアンプ・データ入出力部25に供給する機能をも有している。カラムデコーダ24は、アレイ部21におけるワード線WLおよびビット線BLに接続されている。
センスアンプ・データ入出力部25は、カラムデコーダ24から供給されたデータを増幅するものである。また、センスアンプ・データ入出力部25は、外部との間でデータのやり取りを行う機能をも有している。
制御部26は、ロウデコーダ23、カラムデコーダ24、およびセンスアンプ・データ入出力部25の動作を制御するものである。
以上、実施の形態および変形例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
例えば、上記の実施の形態では、本技術を記憶装置に適用したが、これに限定されるものではなく、交互に積層された複数の導電層および複数の絶縁層を備えた様々な半導体装置に適用することができる。
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
なお、本技術は以下のような構成とすることができる。
(1)第1の領域および前記第1の領域に電気的に接続するための第2の領域にわたって、交互に積層された複数の導電層および複数の絶縁層と、
前記第2の領域において、前記複数の導電層および前記複数の絶縁層を貫通する複数の貫通電極と、
各貫通電極と各導電層との間に形成されたアンチヒューズと
を備えた半導体装置。
(2)各貫通電極は、前記複数の導電層のうちの単一の導電層に、その貫通電極とその導電層との間に形成されたアンチヒューズを介して電気的に接続された
前記(1)に記載の半導体装置。
(3)各貫通電極は、前記複数の導電層のうちの単一の導電層とそれぞれ対応づけられ、
対応づけられた貫通電極および導電層の間に形成されたアンチヒューズの抵抗状態は低抵抗状態であり、
対応づけられていない貫通電極および導電層の間に形成されたアンチヒューズの抵抗状態は高抵抗状態である
前記(1)または(2)に記載の半導体装置。
(4)前記複数の貫通電極のうちの第1の貫通電極は、前記複数の導電層のうちの第1の導電層に、前記第1の貫通電極と前記第1の導電層との間に形成されたアンチヒューズを介して電気的に接続され、
前記複数の貫通電極のうちの第2の貫通電極は、前記第1の導電層に、前記第2の貫通電極と前記第1の導電層との間に形成されたアンチヒューズを介して電気的に接続されている
前記(1)から(3)のいずれかに記載の半導体装置。
(5)前記複数の貫通電極の数は、前記複数の導電層の数より多い
前記(1)から(4)のいずれかに記載の半導体装置。
(6)前記複数の貫通電極の数は、前記複数の導電層の数の1.37倍以上である
前記(5)に記載の半導体装置。
(7)前記第1の領域に形成されたメモリアレイを備えた
前記(1)から(6)のいずれかに記載の半導体装置。
(8)交互に積層された複数の導電層および複数の絶縁層を貫通し、前記複数の導電層との間にアンチヒューズが形成された複数の貫通電極から、第1の貫通電極を選択し、
前記複数の貫通電極のうちの前記第1の貫通電極以外の貫通電極に対して第1の電圧を印加するとともに、前記第1の貫通電極に対して第2の電圧を印加する
半導体装置の製造方法。
(9)前記第1の貫通電極に対して、前記第2の電圧を印加した後、前記第1の貫通電極を電気的にフローティングにする
前記(8)に記載の半導体装置の製造方法。
(10)前記複数の貫通電極のうちの前記第1の貫通電極以外の貫通電極から、第2の貫通電極を選択し、
前記複数の貫通電極のうちの前記第1の貫通電極および前記第2の貫通電極以外の貫通電極に対して前記第1の電圧を印加するとともに、前記第2の貫通電極に対して前記第2の電圧を印加し、前記第1の貫通電極に対して前記第1の電圧と前記第2の電圧の間の第3の電圧を印加する
前記(8)または(9)に記載の半導体装置の製造方法。
(11)前記第2の貫通電極に対して、前記第2の電圧を印加した後、前記第2の貫通電極を電気的にフローティングにする
前記(10)に記載の半導体装置の製造方法。
(12)前記第2の貫通電極を電気的にフローティングにする際、前記第1の貫通電極に対して前記第3の電圧を印加し続ける
前記(11)に記載の半導体装置の製造方法。
(13)前記第2の貫通電極を電気的にフローティングにする際、前記第1の貫通電極をも電気的にフローティングにする。
前記(11)に記載の半導体装置の製造方法。
(14)前記第1の電圧は接地電圧であり、
前記第3の電圧は前記第1の電圧の半分の電圧である
前記(10)から(13)のいずれかに記載の半導体装置の製造方法。
(15)前記複数の貫通電極のうちまだ選択されていない貫通電極から第3の貫通電極を選択し、
前記第1の貫通電極に前記第1の電圧を印加するとともに、前記第3の貫通電極に第4の電圧を印加する
前記(8)から(14)のいずれかに記載の半導体装置の製造方法。
1,2…記憶装置、10,20…メモリセルアレイ、11,21…アレイ部、12,22…コンタクト部、13,23…ロウデコーダ、14,24…カラムデコーダ、15,25…センスアンプ・データ入出力部、16,26…制御部、19,29…メモリ素子、AF…アンチヒューズ膜、BL…ビット線、Cp…容量値、C11〜C13,C21〜C23,C31〜C33,C41〜C43,…,C(N)1,C(N)2…容量素子、EL,EL1〜EL8,…,EL(N),EL(N+1),EL(N+2),EL(N+3),…,EL(M)…貫通電極、HL…ホール、LA,LA1〜LA5,…,LA(N+1)…絶縁層、LB,LB1〜LB4,LB(N)…導電層、Qo,Qc…電荷、SL…ソース線、SP…プリチャージ信号、SS,SS2,SS3…スイッチング信号、SW1,SW2,SW3,SW4…スイッチ、Vw…書込電圧、Vo,V1〜V4,…,V(N),V(n)…電圧、WL…ワード線。

Claims (15)

  1. 第1の領域および前記第1の領域に電気的に接続するための第2の領域にわたって、交互に積層された複数の導電層および複数の絶縁層と、
    前記第2の領域において、前記複数の導電層および前記複数の絶縁層を貫通する複数の貫通電極と、
    各貫通電極と各導電層との間に形成されたアンチヒューズと
    を備えた半導体装置。
  2. 各貫通電極は、前記複数の導電層のうちの単一の導電層に、その貫通電極とその導電層との間に形成されたアンチヒューズを介して電気的に接続された
    請求項1に記載の半導体装置。
  3. 各貫通電極は、前記複数の導電層のうちの単一の導電層とそれぞれ対応づけられ、
    対応づけられた貫通電極および導電層の間に形成されたアンチヒューズの抵抗状態は低抵抗状態であり、
    対応づけられていない貫通電極および導電層の間に形成されたアンチヒューズの抵抗状態は高抵抗状態である
    請求項1に記載の半導体装置。
  4. 前記複数の貫通電極のうちの第1の貫通電極は、前記複数の導電層のうちの第1の導電層に、前記第1の貫通電極と前記第1の導電層との間に形成されたアンチヒューズを介して電気的に接続され、
    前記複数の貫通電極のうちの第2の貫通電極は、前記第1の導電層に、前記第2の貫通電極と前記第1の導電層との間に形成されたアンチヒューズを介して電気的に接続されている
    請求項1に記載の半導体装置。
  5. 前記複数の貫通電極の数は、前記複数の導電層の数より多い
    請求項1に記載の半導体装置。
  6. 前記複数の貫通電極の数は、前記複数の導電層の数の1.37倍以上である
    請求項5に記載の半導体装置。
  7. 前記第1の領域に形成されたメモリアレイを備えた
    請求項1に記載の半導体装置。
  8. 交互に積層された複数の導電層および複数の絶縁層を貫通し、前記複数の導電層との間にアンチヒューズが形成された複数の貫通電極から、第1の貫通電極を選択し、
    前記複数の貫通電極のうちの前記第1の貫通電極以外の貫通電極に対して第1の電圧を印加するとともに、前記第1の貫通電極に対して第2の電圧を印加する
    半導体装置の製造方法。
  9. 前記第1の貫通電極に対して、前記第2の電圧を印加した後、前記第1の貫通電極を電気的にフローティングにする
    請求項8に記載の半導体装置の製造方法。
  10. 前記複数の貫通電極のうちの前記第1の貫通電極以外の貫通電極から、第2の貫通電極を選択し、
    前記複数の貫通電極のうちの前記第1の貫通電極および前記第2の貫通電極以外の貫通電極に対して前記第1の電圧を印加するとともに、前記第2の貫通電極に対して前記第2の電圧を印加し、前記第1の貫通電極に対して前記第1の電圧と前記第2の電圧の間の第3の電圧を印加する
    請求項8に記載の半導体装置の製造方法。
  11. 前記第2の貫通電極に対して、前記第2の電圧を印加した後、前記第2の貫通電極を電気的にフローティングにする
    請求項10に記載の半導体装置の製造方法。
  12. 前記第2の貫通電極を電気的にフローティングにする際、前記第1の貫通電極に対して前記第3の電圧を印加し続ける
    請求項11に記載の半導体装置の製造方法。
  13. 前記第2の貫通電極を電気的にフローティングにする際、前記第1の貫通電極をも電気的にフローティングにする。
    請求項11に記載の半導体装置の製造方法。
  14. 前記第1の電圧は接地電圧であり、
    前記第3の電圧は前記第1の電圧の半分の電圧である
    請求項10に記載の半導体装置の製造方法。
  15. 前記複数の貫通電極のうちまだ選択されていない貫通電極から第3の貫通電極を選択し、
    前記第1の貫通電極に前記第1の電圧を印加するとともに、前記第3の貫通電極に第4の電圧を印加する
    請求項8に記載の半導体装置の製造方法。
JP2015107672A 2015-05-27 2015-05-27 半導体装置およびその製造方法 Active JP6649700B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015107672A JP6649700B2 (ja) 2015-05-27 2015-05-27 半導体装置およびその製造方法
US15/574,771 US10340279B2 (en) 2015-05-27 2016-05-18 Semiconductor device and method of manufacturing the same
KR1020177033165A KR20180012261A (ko) 2015-05-27 2016-05-18 반도체 디바이스 및 그 제조 방법
PCT/JP2016/002430 WO2016189831A1 (en) 2015-05-27 2016-05-18 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107672A JP6649700B2 (ja) 2015-05-27 2015-05-27 半導体装置およびその製造方法

Publications (3)

Publication Number Publication Date
JP2016225364A true JP2016225364A (ja) 2016-12-28
JP2016225364A5 JP2016225364A5 (ja) 2018-07-05
JP6649700B2 JP6649700B2 (ja) 2020-02-19

Family

ID=56113025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107672A Active JP6649700B2 (ja) 2015-05-27 2015-05-27 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US10340279B2 (ja)
JP (1) JP6649700B2 (ja)
KR (1) KR20180012261A (ja)
WO (1) WO2016189831A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790443B2 (en) 2017-09-15 2020-09-29 Toshiba Memory Corporation Memory device
US11527473B2 (en) 2019-11-12 2022-12-13 Samsung Electronics Co., Ltd. Semiconductor memory device including capacitor
US11563016B2 (en) 2019-11-12 2023-01-24 Samsung Electronics Co., Ltd. Semiconductor memory device including capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230118956A1 (en) * 2021-10-18 2023-04-20 Samsung Electronics Co., Ltd. Non-volatile memory device and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225918A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2012186302A (ja) * 2011-03-04 2012-09-27 Micronics Internatl Co Ltd 積層した接続レベルを有する集積回路装置用マスク数の低減法
US20130095654A1 (en) * 2011-10-14 2013-04-18 Yong-Hyun Kwon Methods of manufacturing a vertical type semiconductor device
JP2013187335A (ja) * 2012-03-07 2013-09-19 Toshiba Corp 半導体装置及びその製造方法
US8970040B1 (en) * 2013-09-26 2015-03-03 Macronix International Co., Ltd. Contact structure and forming method
JP2015076556A (ja) * 2013-10-10 2015-04-20 ソニー株式会社 メモリ装置、書込方法、読出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420242B2 (en) * 2005-08-31 2008-09-02 Macronix International Co., Ltd. Stacked bit line dual word line nonvolatile memory
JP5091491B2 (ja) 2007-01-23 2012-12-05 株式会社東芝 不揮発性半導体記憶装置
US8383512B2 (en) * 2011-01-19 2013-02-26 Macronix International Co., Ltd. Method for making multilayer connection structure
JP5550604B2 (ja) 2011-06-15 2014-07-16 株式会社東芝 三次元半導体装置及びその製造方法
US9099538B2 (en) * 2013-09-17 2015-08-04 Macronix International Co., Ltd. Conductor with a plurality of vertical extensions for a 3D device
US9455265B2 (en) * 2013-11-27 2016-09-27 Macronix International Co., Ltd. Semiconductor 3D stacked structure and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225918A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2012186302A (ja) * 2011-03-04 2012-09-27 Micronics Internatl Co Ltd 積層した接続レベルを有する集積回路装置用マスク数の低減法
US20130095654A1 (en) * 2011-10-14 2013-04-18 Yong-Hyun Kwon Methods of manufacturing a vertical type semiconductor device
JP2013187335A (ja) * 2012-03-07 2013-09-19 Toshiba Corp 半導体装置及びその製造方法
US8970040B1 (en) * 2013-09-26 2015-03-03 Macronix International Co., Ltd. Contact structure and forming method
JP2015076556A (ja) * 2013-10-10 2015-04-20 ソニー株式会社 メモリ装置、書込方法、読出方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790443B2 (en) 2017-09-15 2020-09-29 Toshiba Memory Corporation Memory device
US11527473B2 (en) 2019-11-12 2022-12-13 Samsung Electronics Co., Ltd. Semiconductor memory device including capacitor
US11563016B2 (en) 2019-11-12 2023-01-24 Samsung Electronics Co., Ltd. Semiconductor memory device including capacitor

Also Published As

Publication number Publication date
JP6649700B2 (ja) 2020-02-19
WO2016189831A1 (en) 2016-12-01
US10340279B2 (en) 2019-07-02
KR20180012261A (ko) 2018-02-05
US20180102371A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US10395736B2 (en) Resistive random access memory device
JP6802350B2 (ja) 複数の選択ゲートと異なるバイアス条件を有するメモリ素子
US9142549B2 (en) Semiconductor memory device
JP6649700B2 (ja) 半導体装置およびその製造方法
US10783964B2 (en) 1T-1R architecture for resistive random access memory
US20020027822A1 (en) One-time programmable memory cell in cmos technology
CN110993003B (zh) 可变电阻式存储器
US20120147686A1 (en) Semiconductor device having hierarchical bit line structure and control method thereof
CN107393582B (zh) 多位铁电性存储器装置及其形成方法
TW201810275A (zh) 操作具有抹除去偏壓之記憶體之裝置與方法
JP2011118998A (ja) 半導体装置
US8199590B1 (en) Multiple time programmable non-volatile memory element
US10916303B2 (en) Resistive memory apparatus and method of operating a resistive memory apparatus
CN113517012B (zh) 半导体装置保护电路和相关联的方法、装置和系统
JP2016225364A5 (ja)
US7683456B2 (en) Semiconductor devices, capacitor antifuses, dynamic random access memories, and cell plate bias connection methods
JP2005513691A (ja) 半記憶密度rom内蔵dram
JP2012064271A (ja) 多値抵抗変化メモリ
JP2019160930A (ja) コンフィグレーションメモリ回路
CN204667887U (zh) 存储器件
JP2003332532A (ja) 半導体装置
JP2020522835A (ja) 長いデバイス寿命のためのデュアルパワーレール・カスコードドライバ及びその構成方法
TWI815308B (zh) 記憶裝置
JP2022052081A (ja) 半導体記憶装置
JP2000133789A (ja) メモリ回路構造

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150