JP2016207709A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2016207709A
JP2016207709A JP2015083919A JP2015083919A JP2016207709A JP 2016207709 A JP2016207709 A JP 2016207709A JP 2015083919 A JP2015083919 A JP 2015083919A JP 2015083919 A JP2015083919 A JP 2015083919A JP 2016207709 A JP2016207709 A JP 2016207709A
Authority
JP
Japan
Prior art keywords
pillar
semiconductor
pillars
dummy
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015083919A
Other languages
English (en)
Inventor
和人 梶原
Kazuto Kajiwara
和人 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to JP2015083919A priority Critical patent/JP2016207709A/ja
Publication of JP2016207709A publication Critical patent/JP2016207709A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】並列トランジスタに関して、ゲート電極の断線や特性のばらつきを回避する。【解決手段】本発明による半導体装置の製造方法は、活性領域内に配置される複数の半導体ピラー用パターンM1、そのうちの半導体ピラー用パターンM1Aとx方向に間隔W1を空けて対向する給電ピラー用パターンMS1、並びに、給電ピラー用パターンMS1を挟んでy方向に対向するように配置されるダミーピラー用パターンMD1,MD2を含むマスクパターンを単一のリソグラフィにより形成する工程と、このマスクパターンをマスクとして活性領域及び素子分離領域をエッチングすることにより、複数の半導体ピラー、給電ピラー、並びに、第1及び第2のダミーピラーを形成する工程とを備え、ダミーピラー用パターンMD1,MD2のそれぞれは、給電ピラー用パターンMS1とy方向に間隔W2を空けて対向し、間隔W2は、間隔W1より広い。【選択図】図2

Description

本発明は半導体装置及びその製造方法に関し、特に、規則的に配置した複数の縦型トランジスタによって構成される並列トランジスタを有する半導体装置及びその製造方法に関する。
近年、DRAM(Dynamic Random Access Memory)などの半導体装置においては、微細化の要求に対応するため、チャネルが半導体基板の表面と平行に設けられる2次元プレーナ型トランジスタに代えて、チャネルが半導体基板の表面と垂直に設けられる3次元縦型トランジスタ(以下、単に「縦型トランジスタ」と称する)が提案されている。
縦型トランジスタは、例えば、半導体基板の表面から突き出すように立設された半導体ピラーと、半導体ピラーの側面を覆うゲート絶縁膜と、ゲート絶縁膜を介して半導体ピラーの側面を覆うゲート電極と、半導体ピラーの上部に配置され、縦型トランジスタのソース/ドレインの一方となる上部拡散層と、半導体ピラーの下部の周囲に配置され、縦型トランジスタのソース/ドレインの他方となる下部拡散層とによって構成される。
ゲート電極及び上部拡散層はそれぞれ、縦方向に延在するコンタクトプラグにより、縦型トランジスタの上方に配置された配線等と接続される。したがって、もし仮にゲート電極が半導体ピラーの側面にのみ形成されているとすると、極めて近接する位置に2つのコンテクトプラグを配置することになり、実質的に形成困難となるため、通常、半導体ピラーと隣接する位置に給電ピラーを配置してその側面にまでゲート電極を延在させ、ゲート電極と接続するコンタクトプラグについては、この延在させた部分でゲート電極と接続するようにしている。
このような縦型トランジスタに関して、大電流の供給が必要となる回路を縦型トランジスタによって実現するための技術として、複数の縦型トランジスタを並列に配置し、これら複数の縦型トランジスタを全体として1つのトランジスタとして機能させる技術が知られている。以下、こうして実現される大電流対応のトランジスタを「並列トランジスタ」と称する。並列トランジスタを構成する複数の縦型トランジスタは、隣接する縦型トランジスタのゲート電極が互いに接触し、全体として1つのゲート電極が構成されることとなる程度に近接して配置される。上述した給電ピラーは並列トランジスタにおいても必要であり、並列トランジスタの給電ピラーは、いずれか1つの縦型トランジスタと隣接する位置に配置される。
特許文献1,2には、並列トランジスタの例が開示されている。また、特許文献3には、複数の縦型トランジスタを周期的に配置する場合において、ストレス起因の特性ばらつきが生じることを回避するため、端部に位置するものを装置の動作に寄与しないダミートランジスタとして取り扱うことが開示されている。
特開2013−102136号公報 特開2013−153133号公報 特開2005−019741号公報
ところで、並列トランジスタを構成する半導体ピラー及び給電ピラーの形成は、次のようにして行われる。すなわち、まず初めに、半導体基板の表面に、ハードマスク膜及びホトレジスト膜を順次成膜する。次に、半導体ピラー及び給電ピラーのパターンを有する露光マスクを用いるリソグラフィによって、ホトレジスト膜及びハードマスク膜に順次、半導体ピラー及び給電ピラーのパターンを転写する。最後に、ハードマスク膜をマスクとするドライエッチングによって半導体基板をパターニングすることにより、半導体ピラー及び給電ピラーが形成される。
しかしながら、特許文献2に記載されるような、マトリクス状に並んだ半導体ピラー群によって構成される四角形の一辺の中ほどに隣接して給電ピラーが配置される構造の並列トランジスタでは、上記の工程によって実際に半導体ピラー及び給電ピラーを形成すると、給電ピラーの隣に位置する半導体ピラーに断面積の縮小という不具合が発生する。これは、リソグラフィの際、給電ピラーの存在によって透過光の周期性が損なわれ、ホトレジスト膜に形成されるパターンが小さくなってしまうためであると考えられる。このように特定の半導体ピラーの断面積が小さくなってしまうことは、ゲート電極の断線や、並列トランジスタの特性にばらつきが発生する原因となるので、改善が必要とされている。
本発明による半導体装置の製造方法は、半導体基板の表面に素子分離領域を埋め込むことによって活性領域を区画する工程と、互いに直交する第1及び第2の方向に沿ってマトリクス状に整列し、かつ、それぞれ前記活性領域内に配置される複数の半導体ピラー用パターン、前記複数の半導体ピラー用パターンのうち前記第1の方向の一端に位置する第1の半導体ピラー用パターンと前記第1の方向に第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記活性領域に跨る位置に配置される給電ピラー用パターン、並びに、前記給電ピラー用パターンを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第1及び第2のダミーピラー用パターンを含むマスクパターンを単一のリソグラフィにより形成する工程と、前記マスクパターンをマスクとして前記活性領域及び前記素子分離領域をエッチングすることにより、複数の半導体ピラー、給電ピラー、並びに、第1及び第2のダミーピラーを形成する工程とを備え、前記第1及び第2のダミーピラー用パターンのそれぞれは、前記給電ピラー用パターンと前記第2の方向に第2の間隔を空けて対向し、前記第2の間隔は、前記第1の間隔より広いことを特徴とする。
本発明による半導体装置は、互いに直交する第1及び第2の方向に沿ってマトリクス状に整列し、かつ、半導体基板の表面に埋め込まれた素子分離領域によって区画される第1の活性領域内に配置される複数の第1の半導体ピラーと、前記複数の第1の半導体ピラーのうち前記第1の方向の一端に位置する第1Aの半導体ピラーと前記第1の方向に第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第1の活性領域に跨る位置に配置される第1の給電ピラーと、前記第1の給電ピラーを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第1及び第2のダミーピラーとを備え、前記第1及び第2のダミーピラーのそれぞれは、前記給電ピラーと前記第2の方向に第2の間隔を空けて対向し、前記第2の間隔は、前記第1の間隔より広いことを特徴とする。
本発明によれば、露光マスクに、給電ピラー用パターンに対応する第1及び第2のダミーピラー用パターンを設けることが可能になる。したがって、給電ピラー用パターンと対向する第1の半導体ピラー用パターンに関しても透過光の周期性を確保することができるので、ゲート電極の断線や、並列トランジスタの特性のばらつきを回避することが可能になる。
また、第2の間隔を第1の間隔より広くしたので、第1及び第2のダミーピラーの側面に形成されるゲート電極が複数の半導体ピラー及び給電ピラーの側面に形成されるゲート電極と接触し、その結果としてゲート電極の寄生容量が増加してしまうことを防止できる。
本発明の第1の実施の形態による露光マスク30の平面図である。 本発明の第1の実施の形態によるハードマスク膜4の平面図である。 (a)は、本発明の第1の実施の形態による半導体装置1の製造工程における半導体装置1の上面図であり、(b)は、(a)のA−A線に対応する半導体装置1の断面図である。 (a)は、本発明の第1の実施の形態による半導体装置1の製造工程(図3に続く工程)における半導体装置1の上面図であり、(b)は、(a)のA−A線に対応する半導体装置1の断面図である。 本発明の第1の実施の形態による半導体装置1の製造工程(図4に続く工程)における半導体装置1の断面図である。 本発明の第1の実施の形態による半導体装置1の製造工程(図5に続く工程)における半導体装置1の断面図である。 本発明の第1の実施の形態による半導体装置1の製造工程(図6に続く工程)における半導体装置1の断面図である。 (a)は、本発明の第1の実施の形態による半導体装置1の平面構成を示す図であり、(b)は、(a)のA−A線に対応する半導体装置1の断面図である。 (a)は、本発明の第2の実施の形態による露光マスク30の平面図であり、(b)は、本発明の第2の実施の形態による半導体装置1の平面構成を示す図であり、(c)は、(b)のA−A線に対応する半導体装置1の断面図である。 (a)は、本発明の第3の実施の形態による露光マスク30の平面図であり、(b)は、本発明の第3の実施の形態による半導体装置1の平面構成を示す図であり、(c)は、(b)のA−A線に対応する半導体装置1の断面図である。 本発明の背景技術による露光マスク30aの平面図である。 本発明の背景技術によるハードマスク膜4aの平面図である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
まず、本発明の第1の実施の形態による半導体装置1及びその製造方法について、図1〜図8を参照しながら説明する。以下では、まず初めに本実施の形態による半導体装置1の製造方法で用いる露光マスク30及びハードマスク膜4について図1及び図2を参照しながら説明し、その後、本実施の形態による半導体装置1の製造方法の全体及び完成形としての半導体装置1の構成について、図3〜図8を参照しながら説明する。
ハードマスク膜4は、非晶質カーボン膜、シリコン窒化膜などからなる積層ハードマスク膜をパターニングすることによって形成されるもので、図2に示すように、ピラー形成領域PA1,PA2(第1及び第2のピラー形成領域)により構成されるピラー形成領域PAと、ピラー形成領域PAを囲むように配置される周辺マスクパターンCとを有して構成される。
ピラー形成領域PA1は、後述する素子分離領域3(図3参照)の一部に対応する矩形領域であり、x方向(第1の方向)に対向する第1及び第2の辺e1,e2と、x方向と直交するy方向(第2の方向)に対向する第3及び第4の辺e3,e4とによって構成される。第1及び第2の辺e1,e2の長さは互いに同じであり、第3及び第4の辺e3,e4の長さも互いに同じである。また、ピラー形成領域PA2は、後述する活性領域k(図3参照)に対応する矩形領域であり、x方向に対向する第5及び第6の辺e5、E6と、y方向に対向する第7及び第8の辺e7,e8とによって構成される。第5及び第6の辺e5,e6の長さは互いに同じであり、第7及び第8の辺e7,e8の長さも互いに同じである。第5及び第6の辺e5,e6は、第1及び第2の辺e1,e2よりも長く形成される。第2の辺e2は第5の辺e5の一部を構成しており、したがって、ピラー形成領域PA1,PA2は、第2及び第5の辺e2,e5で一体化している。
ピラー形成領域PA2の内部には、x,y方向に沿ってマトリクス状に整列するように、それぞれ略円形である複数の半導体ピラー用パターンM1が配置される。図1には12個の半導体ピラー用パターンM1が配置される例を示しており、それぞれを区別するため、符号M1の後ろにA〜Lのサフィックスを付している。このような表記法は、後述する他の構成についても同様である。半導体ピラー用パターンM1の個数は12個でなければならないわけではなく、12個より少なくてもよいし、12個より多くてもよい。各半導体ピラー用パターンM1は、x,y方向の幅及び配置間隔がいずれもW1(第1の間隔)となるように形成・配置される。
マトリクス状に配置される複数の半導体ピラー用パターンM1のx方向の一端には、半導体ピラー用パターンM1A〜M1Cが配置される。これら半導体ピラー用パターンM1A〜M1Cは、半導体ピラー用パターンM1B(第2の半導体ピラー用パターン)が半導体ピラー用パターンM1A(第1の半導体ピラー用パターン)のy方向の一方側にW1の間隔を空けて隣接し、半導体ピラー用パターンM1C(第3の半導体ピラー用パターン)が半導体ピラー用パターンM1Aのy方向の他方側にW1の間隔を空けて隣接するように配置される。
x方向において、半導体ピラー用パターンM1Aの第6の辺e6側には、半導体ピラー用パターンM1G,M1J,M1Dがこの順で配置される。これら半導体ピラー用パターンM1A,M1G,M1J,M1Dは、半導体ピラー用パターン群G1(第1の半導体ピラー用パターン群)を構成する。したがって、半導体ピラー用パターンM1Aは、半導体ピラー用パターン群G1のx方向の一端に位置している。また、同様に、半導体ピラー用パターンM1Bのx方向に整列して、半導体ピラー用パターンM1H,M1K,M1Eがこの順で配置される。これら半導体ピラー用パターンM1B,M1H,M1K,M1Eは、半導体ピラー用パターン群G2(第2の半導体ピラー用パターン群)を構成する。したがって、半導体ピラー用パターンM1Bは、半導体ピラー用パターン群G2のx方向の一端に位置している。さらに、半導体ピラー用パターンM1Cに隣接して、半導体ピラー用パターンM1I,M1L,M1Fがこの順で配置される。これら半導体ピラー用パターンM1C,M1I,M1L,M1Fは、半導体ピラー用パターン群G3(第3の半導体ピラー用パターン群)を構成する。したがって、半導体ピラー用パターンM1Cは、半導体ピラー用パターン群G3のx方向の一端に位置している。
上記構成から、マトリクス状に配置される複数の半導体ピラー用パターンM1のx方向の他端には、図2にも示すように、半導体ピラー用パターンM1D〜M1Fが配置されることになる。ハードマスク膜4は、半導体ピラー用パターンM1D〜M1Fのそれぞれと第6の辺e6との間の距離がW2(第2の間隔)となるように形成される。W2はW1より大きい値(W2>W1)であり、W1の1.5倍以下(W2≦1.5W1)とすることが好ましい。
ピラー形成領域PAの内部にはさらに、給電ピラー用パターンMS1と、2つのダミーピラー用パターンMD1,MD2(第1及び第2のダミーピラー用パターン)とが配置される。
給電ピラー用パターンMS1は、半導体ピラー用パターンM1Aとx方向にW1の間隔を空けて対向し、かつ、ピラー形成領域PA1,PA2の境界線(第2及び第5の辺e2,e5)を跨ぐ位置に配置される角丸長方形のパターンである。給電ピラー用パターンMS1は、x,y方向の幅がそれぞれW3,W1となるように形成される。なお、W3はW1の2倍の値(W3=2W1)とすることが好ましい。給電ピラー用パターンMS1のy方向の中心軸と、半導体ピラー用パターン群G1のy方向の中心軸とは、図2に示したx方向に延在する1本の直線A1上に位置している。
給電ピラー用パターンMS1は、y方向の一端を構成する端部S11、y方向の他端を構成する端部S12、x方向の一端を構成する端部S13、x方向の他端を構成する端部S14を有して構成される。端部S14には、x方向に隣接する半導体ピラー用パターンM1Aが対向している。端部S13は第1の辺e1とx方向に対向しており、ハードマスク膜4は、端部S13と第1の辺e1との間の距離がW2となるように形成される。
ダミーピラー用パターンMD1,MD2は、給電ピラー用パターンMS1を挟んでy方向に対向するように、ピラー形成領域PA1内に配置される略円形のパターンである。ダミーピラー用パターンMD1,MD2は、平面的な形状及びサイズが半導体ピラー用パターンM1と同一となるように形成される。
ハードマスク膜4は、ダミーピラー用パターンMD1,MD2のそれぞれと給電ピラー用パターンMS1との間のy方向の距離がW2となり、かつ、ダミーピラー用パターンMD1がy方向にW2の間隔を空けて第3の辺e3と隣接し、ダミーピラー用パターンMD2がy方向にW2の間隔を空けて第4の辺e4と隣接するように形成される。また、ハードマスク膜4は、ダミーピラー用パターンMD1のx方向の他端側の端点(複数の半導体ピラー用パターンM1側の端点)と、半導体ピラー用パターンM1Bのx方向の一端側の端点(ダミーピラー用パターンMD1側の端点)との間のx方向の距離、及び、ダミーピラー用パターンMD2のx方向の他端側の端点(複数の半導体ピラー用パターンM1側の端点)と、半導体ピラー用パターンM1Cのx方向の一端側の端点(ダミーピラー用パターンMD2側の端点)との間のx方向の距離がともにW2となり、かつ、半導体ピラー用パターン群G2のy方向の中心軸を構成する直線A2と、ダミーピラー用パターンMD1のy方向の中心軸を構成する直線A4とが1本の直線上に位置せず、半導体ピラー用パターン群G3のy方向の中心軸を構成する直線A3と、ダミーピラー用パターンMD2のy方向の中心軸を構成する直線A5とが1本の直線上に位置しないように形成される。
ハードマスク膜4を以上のように形成することの結果として、ダミーピラー用パターンMD1,MD2の中心は、半導体ピラー用パターンM1Aの中心から見て、直線A1に対してそれぞれ45°及び−45°の方向に位置することになる。
以上がハードマスク膜4の構成である。次に、ハードマスク膜4を形成するために用いる露光マスク30について、図1を参照しながら説明する。
露光マスク30は、露光の際に光を通過させる透光部31と、透光部31を囲むように配置される遮光部32とを有して構成される。遮光部32は、露光の際に光を遮る役割を果たす。透光部31は、図2に示したピラー形成領域PAに対応するもので、ピラー形成領域PA1に対応する第1の透光部31aと、ピラー形成領域PA2に対応する第2の透光部31bとによって構成される。遮光部32は、図2に示した周辺マスクパターンCに対応する。
第2の透光部31bの内部には、図2に示した複数の半導体ピラー用パターンM1のそれぞれに対応する複数の半導体ピラー用パターンL1(半導体ピラー用パターンL1A〜L1L)が配置される。また、第1の透光部31aと第2の透光部31bとの境界の近傍には、図2に示した給電ピラー用パターンMS1及びダミーピラー用パターンMD1,MD2にそれぞれ対応する給電ピラー用パターンLS1及びダミーピラー用パターンLD1,LD2が配置される。これらの各パターンの形状及び配置は、対応するハードマスク膜4内のパターンが上述した形状及び配置を有するように設定される。露光マスク上の各パターンはいずれも、矩形に形成される。このような矩形のパターンを用いているにもかかわらず、各半導体ピラー用パターンM1及びダミーピラー用パターンMD1,MD2の平面形状が略円形となり、給電ピラー用パターンMS1の平面形状が角丸長方形となるのは、露光マスク30上の矩形パターンをハードマスク膜4に転写する際、光近接効果により、その角が削れてしまうからである。
以上、露光マスク30の構成について説明した。次に、本実施の形態による半導体装置1の製造方法について、図3〜図8を参照しながら説明する。以下では、p型のシリコン単結晶基板である半導体基板2の表面に1つの並列トランジスタPTr(図8(a)参照)を形成する例について説明するが、本発明による半導体装置の製造方法は、他の種類の半導体基板を用いる例や、1つの半導体基板2の表面に複数の並列トランジスタを形成する例にも適用可能である。
まず初めに、半導体基板2の表面に素子分離領域3を埋め込むことによって、図3に示すように、半導体基板2の表面に活性領域kを区画する。素子分離領域3の埋め込みは、具体的には、半導体基板2の表面にトレンチを形成し、その内部にシリコン酸化膜を埋め込むことによって行えばよい。活性領域kの平面形状は、図3(a)に示すように、x方向に対向する2辺ka,kbと、y方向に対向する2辺kc,kdとからなる矩形とする。ただし、辺ka〜kdの長さは、それぞれ上述した第5〜第8の辺e5〜E8と同じ長さとする。また、活性領域kは、半導体基板2からなる上面ku1を有する。
次に、図2に示したハードマスク膜4の材料膜を全面に成膜した後、その上面にホトレジスト膜(図示せず)を成膜する。そして、図1に示した露光マスク30を用いてリソグラフィを行うことにより、ホトレジスト膜に露光マスク30のパターンを転写する。このとき、第2の透光部31bと活性領域kの中心及び傾きが一致するように、露光マスク30の位置合わせを行う。その後、露光マスク30のパターンを転写したホトレジスト膜をマスクとしてハードマスク膜4の材料膜をエッチングすることにより、図4に示すように、図2に示したハードマスク膜4を形成する。こうして形成したハードマスク膜4のピラー形成領域PA2は、上から見て活性領域kとちょうど重なる位置に配置される。また、ハードマスク膜4のピラー形成領域PA1は、素子分離領域3上に配置される。
ここで、比較例として、図1に示した露光マスク30からダミーピラー用パターンMD1,MD2を取り除いて上記の工程を行った場合の例を説明する。
図11は、本発明の背景技術による露光マスク30aを示す図であり、図12は、この露光マスク30aを用いて形成したハードマスク膜4aを示す図である。図11に示すように、露光マスク30aは、ダミーピラー用パターンLD1,LD2を有せず、その分、第1の透光部31aの面積が小さくなっている点で、図1に示した露光マスク30と相違する。なお、露光マスク30aにおける、第1の透光部31aのy方向に対応する2辺のそれぞれと、給電ピラー用パターンLS1との間のy方向の距離は、露光マスク30における、ダミーピラー用パターンLD1,LD2のそれぞれと、給電ピラー用パターンLS1との間のy方向の距離(W2)に等しい。
露光マスク30aを用いて形成したハードマスク膜4aでは、図2と図12を比較すると理解されるように、半導体ピラー用パターンM1Aの面積が小さくなっている。これは、給電ピラー用パターンLS1の存在によって透過光の周期性が損なわれ、ホトレジスト膜に形成されるパターンが小さくなってしまうためであると考えられる。本実施の形態によれば、露光マスク30aにダミーピラー用パターンLD1,LD2を設けたことにより、給電ピラー用パターンLS1と対向する半導体ピラー用パターンM1Aに関しても、透過光の周期性が確保される。その結果、図4に示すように、半導体ピラー用パターンM1Aの面積は他の半導体ピラー用パターンM1と同程度となっている。
半導体装置1の製造方法の説明に戻る。図4に示すハードマスク膜4の形成が完了した後、このハードマスク膜4をマスクとするドライエッチングにより、活性領域kを構成する半導体基板2と、素子分離領域3を構成するシリコン酸化膜とを同じエッチング速度でエッチングする。これにより、図5に示すように、それぞれ半導体基板2からなる複数の半導体ピラーP1と、シリコン酸化膜からなる給電ピラーS1a及び半導体基板2からなる給電ピラーS1bが合体してなる給電ピラーS1と、それぞれシリコン酸化膜からなる2つのダミーピラーD1,D2(図5には図示していない。後述する図8(a)を参照)と、これらのピラーを囲むように配置される周辺ピラーCaとが形成される。複数の半導体ピラーP1として具体的には、それぞれ半導体ピラー用パターンM1A〜M1Lに対応する12個の半導体ピラーP1A〜P1L(図8(a)参照)が形成される。このエッチングにより、活性領域kの上面ku1のうち上記各ピラーが形成される部分以外の部分はリセスされ、上面ku1に比べて深い位置に新たな上面ku2が形成される。エッチングが終了した後には、半導体基板2の露出面を保護するため、図示しないカバー絶縁膜を形成する。
次に、全面にヒ素などのn型不純物をイオン注入する。これにより、図6に示すように、上面ku2(活性領域kのうちエッチングによってリセスされた部分)の近傍に下部拡散層10が形成される。その後、例えばシリコン酸化膜を成膜してエッチングを行うことにより、下部拡散層10を覆う下部絶縁膜11を形成する。なお、下部絶縁膜11を先に形成してから、イオン注入による下部拡散層10の形成を行うこととしてもよい。
続いて、複数の半導体ピラーP1及び給電ピラーS1bそれぞれの側面から上述したカバー絶縁膜を除去することにより、これらのピラーの側面にシリコンを露出させる。そして、露出させたシリコン側面に、熱酸化法を用いてシリコン酸化膜からなるゲート絶縁膜12を形成する。さらに、不純物含有多結晶シリコン膜や窒化チタン膜などからなるゲート電極材料13を全面に成膜する。
ここで、ゲート電極材料13の成膜は、横方向の膜厚がW1の1/2以上、W2の1/2未満となるように行う。これにより、W1の幅を有する凹部(例えば、図6に示した給電ピラーS1と半導体ピラーP1Aの間)はゲート電極材料13で埋設される一方、W2の幅を有する凹部(例えば、図6に示した給電ピラーS1と周辺ピラーCaの間)はゲート電極材料13で埋設されず、W2より狭い幅を有する凹部が残存することになる。
ゲート電極材料13の膜厚について、具体的な値を例示する。W1より大きくW1の1.5倍以下であるW2の範囲は、例えばW1が20nmである場合、20nm超かつ30nm以下(20nm<W2≦30nm)となる。したがって、この場合のW2は、例えば28nmに設定することができる。そしてW1が20nmでありかつW2が28nmであれば、ゲート電極材料13の成膜は、横方向の膜厚が10nm以上14nm未満となるように行えばよい。より好適には、横方向の膜厚が12nmとなるように行うことが好ましい。
次に、ドライエッチング法を用いて、上面が半導体ピラー用パターンM1の側面に位置する程度まで、ゲート電極材料13の全面エッチバックを行う。これにより、W2の幅を有する凹部(例えば、図6に示した給電ピラーS1と周辺ピラーCaの間)では、その中央でゲート電極材料13が分離されることになる。一方、W1の幅を有する凹部(例えば、図6に示した給電ピラーS1と半導体ピラーP1Aの間)では、ゲート電極材料13で埋設された状態が維持される。
ここまでの工程により、各半導体ピラーP1の側面にはサイドウォール状のゲート電極材料13が残存し、それによって、各半導体ピラーP1の側面を覆うゲート電極13aが形成される。同様に、給電ピラーS1の側面にもサイドウォール状のゲート電極材料13が残存し、それによって、給電ピラーS1の側面を覆うゲート電極13bが形成される。各半導体ピラーP1の側面周囲に形成されたゲート電極13aは、隣接する半導体ピラーP1間で互いに連結される。また、半導体ピラーP1Aの側面周囲に形成されたゲート電極13aは、ゲート電極13bと連結される。これらの連結を通じて、活性領域k内に形成されるすべてのゲート電極13aとゲート電極13bとが一体化し、それによって、活性領域k内に形成される並列トランジスタPTr(図8(a)参照)のゲート電極が構成される。
一方、ゲート電極材料13は、周辺ピラーCaの側面及びダミーピラーD1,D2それぞれの側面にも残存する。こうして残存したゲート電極材料13は、図5に示した工程の段階で周辺ピラーCa及びダミーピラーD1,D2のそれぞれと各半導体ピラーP1及び給電ピラーS1のそれぞれとの間に幅W2の空間を空けていたことから、ゲート電極13a,13bとは接触しない。したがって、活性領域k内に形成される並列トランジスタPTrのゲート電極の一部とはならない。仮に、周辺ピラーCaの側面及びダミーピラーD1,D2それぞれの側面に残存するゲート電極材料13がゲート電極13a,13bに接触し、並列トランジスタPTrのゲート電極の一部を構成するものとすると、ゲート電極の長さが過剰になり、ゲート電極の寄生容量が増加して半導体装置1の動作遅延をもたらす原因となるが、本実施の形態による半導体装置1では、上記のように、周辺ピラーCaの側面及びダミーピラーD1,D2それぞれの側面に残存するゲート電極材料13は並列トランジスタPTrのゲート電極の一部を構成しないので、このような寄生容量の増加並びに動作遅延が回避される。
次に、活性領域k及び素子分離領域3内に生じている凹部を埋設するようにシリコン酸化膜を成膜し、ハードマスク膜4が露出するまで表面を平坦化する。これにより、図7に示すように、活性領域k及び素子分離領域3内に生じている凹部を埋設する層間絶縁膜15が形成される。次に、各半導体ピラー用パターンM1を露出させる一方、給電ピラー用パターンMS1、ダミーピラー用パターンMD1,MD2、及び周辺マスクパターンCを露出させないマスク膜(図示せず)を形成し、そのマスク膜を用いてシリコン窒化膜を選択的に除去することにより、各半導体ピラーP1の上面を露出させる。そして、各半導体ピラーP1の上方に形成されたホールの側面にシリコン窒化膜からなるサイドウォール状の絶縁膜16を形成した後、イオン注入法によってヒ素などのn型不純物を各半導体ピラーP1の上面に導入することにより、各半導体ピラーP1の上部に上部拡散層14を形成する。さらに露出している半導体基板2を種とする選択エピタキシャル成長法により、各半導体ピラーP1の上面にシリコンプラグ17を形成する。その後さらに、イオン注入法によって、各シリコンプラグ17の中にn型不純物を導入する。
次に、全面を覆う層間絶縁膜20(図8(b)参照)を形成した後、図8(a)(b)に示すように、シリコンプラグ17ごとに設けられ、対応するシリコンプラグ17の上面を露出させる複数の半導体ピラー用コンタクトホール21hと、ゲート電極13bの一部分(例えば周辺ピラーCaに近い部分)の上面を露出させる給電ゲート電極用コンタクトホール22hと、それぞれ下部拡散層10の一部を露出させる複数の下部拡散層コンタクトホール23hとを形成する。そして、これらコンタクトホール21h〜23hのそれぞれに導体を埋設することにより、シリコンプラグ17ごとに設けられ、底面で対応するシリコンプラグ17の上面と接触する複数の半導体ピラー上部拡散層給電プラグ21と、ゲート電極13bの一部分(例えば周辺ピラーCaに近い部分)の上面と接触する給電ゲート電極コンタクトプラグ22と、それぞれ下部拡散層10の一部と接触する複数の下部拡散層給電用プラグ23とを形成する。
続いて、上記各プラグ21〜23の上面に接続する金属膜を全面に形成した後、これをパターニングすることにより、各半導体ピラー上部拡散層給電プラグ21に共通に接続する半導体ピラー上部配線25、給電ゲート電極コンタクトプラグ22に接続するゲート電極給電配線26、各下部拡散層給電用プラグ23に共通に接続する下部拡散層給電配線27を形成する。これにより、各半導体ピラーP1には、下部拡散層10をソース/ドレインの一方とし、対応する上部拡散層14をソース/ドレインの他方とし、ゲート電極13a,13bをゲート電極とする縦型トランジスタが形成される。各縦型トランジスタのチャネル領域は、対応する半導体ピラーP1内に形成される。こうして形成される12個の縦型トランジスタは、ゲート電極13a及び下部拡散層10を共有し、さらに、上部拡散層14も半導体ピラー上部配線25によって互いに接続されていることから、1つの並列トランジスタPTrを構成する。
最後に、半導体装置1の構成について、図8(a)を参照しながらまとめて説明する。
半導体装置1を構成する半導体基板2の表面には、並列トランジスタPTrを形成するための領域として、x方向に並んで配置されたピラー形成領域PA1,PA2からなるピラー形成領域PAが配置される。ピラー形成領域PAの周囲は、周辺ピラーCaによって区画される。また、半導体基板2には、表面に埋め込まれた素子分離領域3によって、矩形の活性領域k(第1の活性領域)が形成される。ピラー形成領域PA2は活性領域k上に配置される領域であり、その平面形状及び平面的な配置は活性領域kのものと一致する。一方、ピラー形成領域PA1は、y方向に対向する2辺のうちの一方をピラー形成領域PA2と共有する矩形の領域であり、素子分離領域3上に配置される。
並列トランジスタPTrは、互いに直交するx方向(第1の方向)及びy方向(第2の方向)に沿ってマトリクス状に整列し、かつ、活性領域k内に配置される複数の半導体ピラーP1(第1の半導体ピラー)と、複数の半導体ピラーP1のうちx方向の一端に位置する半導体ピラーP1A(第1Aの半導体ピラー)とx方向に上述した間隔W1(図示せず)を空けて対向し、かつ、素子分離領域3及び活性領域kに跨る位置(ピラー形成領域PA1とピラー形成領域PA2の境界近傍)に配置される給電ピラーS1(第1の給電ピラー)と、給電ピラーS1を挟んでy方向に対向するように素子分離領域3内に配置されるダミーピラーD1,D2(第1及び第2のダミーピラー)とを有して構成される。給電ピラーS1のうち素子分離領域3内に配置される部分はシリコン酸化膜からなる給電ピラーS1aを構成し、活性領域k内に配置される部分は半導体基板2からなる給電ピラーS1bを構成する。また、ダミーピラーD1,D2のそれぞれは、給電ピラーS1とy方向に間隔W2(>W1)を空けて対向する。
複数の半導体ピラーP1は、半導体ピラーP1Aとy方向の一方側に隣接する半導体ピラーP1B(第1Bの半導体ピラー)と、半導体ピラーP1Aとy方向の他方側に隣接する半導体ピラーP1C(第1Cの半導体ピラー)とを含んで構成される。ダミーピラーD1のx方向の複数の半導体ピラーP1側の端点と、半導体ピラーP1Bのx方向のダミーピラーD1側の端点との間のx方向の距離、ダミーピラーD2のx方向の複数の半導体ピラーP1側の端点と、半導体ピラーP1Cのx方向のダミーピラーD2側の端点との間のx方向の距離は、ともにW2に等しくなっている。
各半導体ピラーP1の側面にはサイドウォール状のゲート電極13aが配置され、給電ピラーS1の側面にはサイドウォール状のゲート電極13bが配置される。これらゲート電極13a,13bは、横方向の膜厚がW1の1/2以上、W2の1/2未満となるようにゲート電極材料13を成膜し、エッチバックを行うことによって形成されており、したがって、ゲート電極13a,13bは一体化しており、1つのゲート電極を構成する。一方、各ダミーピラーD1,D2の側面及び周辺ピラーCaの側面に残存するゲート電極材料13はゲート電極13a,13bと接触せず、したがって、並列トランジスタPTrのゲート電極を構成しない。
各半導体ピラーP1の上部には上部拡散層14及びシリコンプラグ17が配置され、シリコンプラグ17の上面は、半導体ピラー上部拡散層給電プラグ21を通じて上層の半導体ピラー上部配線25に接続される。半導体ピラー上部配線25は、複数の半導体ピラーP1それぞれに対応する複数のシリコンプラグ17の上面に共通に接続される。また、活性領域k内に位置する半導体基板2の表面のうち半導体ピラーP1及び給電ピラーS1が形成されていない部分には下部拡散層10が形成され、下部拡散層10の上面は、複数の下部拡散層給電用プラグ23によって、上層の下部拡散層給電配線27に接続される。さらに、ゲート電極13bの一部分(例えば周辺ピラーCaに近い部分)の上面は、給電ゲート電極コンタクトプラグ22によって、上層のゲート電極給電配線26に接続される。
以上説明したように、本実施の形態による半導体装置1及びその製造方法によれば、露光マスク30に、給電ピラー用パターンLS1に対応するダミーピラー用パターンLD1,LD2を配置することが可能になる。したがって、給電ピラー用パターンLS1と対向する半導体ピラー用パターンL1Aに関しても透過光の周期性を確保できるので、各半導体ピラーP1の断面積を揃えることが可能になる。その結果、ゲート電極13a,13bからなるゲート電極の断線や、並列トランジスタPTrの特性のばらつきを回避することが可能になる。
また、W2をW1より広くしたので、ダミーピラーD1,D2及び周辺ピラーCaの側面に残存するゲート電極材料13が並列トランジスタPTrのゲート電極を構成するゲート電極13a,13bと接触し、その結果として並列トランジスタPTrのゲート電極の寄生容量が増加してしまうことが防止される。
次に、本発明の第2の実施の形態による半導体装置1及びその製造方法について、図9を参照しながら説明する。本実施の形態による半導体装置1は、図9(b)に示すように、2つの並列トランジスタPTra,PTrbを備えており、これらのゲート電極が接続ピラーEの側面に形成されたゲート電極13eを通じて互いに接続された構成を有している。並列トランジスタPTra,PTrb個々の構成は第1の実施の形態で説明した並列トランジスタPTrのものとほぼ同様であるが、接続ピラーEに関する点で、並列トランジスタPTrと相違している。以下、相違点を中心に詳しく説明する。
半導体装置1を構成する半導体基板2の表面には、図9(b)に示すように、並列トランジスタPTra,PTrbを形成するための領域として、一列に並んで配置された5つのピラー形成領域PA1,PA2,PA5,PA4,PA3からなるピラー形成領域が配置される。このピラー形成領域の周囲は、周辺ピラーCaによって区画される。また、半導体基板2には、表面に埋め込まれた素子分離領域3によって、ともに矩形である活性領域k1,k2(第1及び第2の活性領域)が形成される。ピラー形成領域PA2は活性領域k1上に配置される領域であり、その平面形状及び平面的な配置は活性領域k1のものと一致する。また、ピラー形成領域PA4は活性領域k2上に配置される領域であり、その平面形状及び平面的な配置は活性領域k2のものと一致する。一方、ピラー形成領域PA1は、y方向に対向する2辺のうちの一方(ピラー形成領域PA4から見て遠い側の辺)をピラー形成領域PA2と共有する矩形の領域であり、素子分離領域3上に配置される。また、ピラー形成領域PA3は、y方向に対向する2辺のうちの一方(ピラー形成領域PA2から見て遠い側の辺)をピラー形成領域PA4と共有する矩形の領域であり、素子分離領域3上に配置される。ピラー形成領域PA5は、y方向に対向する2辺のうちの一方をピラー形成領域PA2と共有し、かつ、y方向に対向する2辺のうちの他方をピラー形成領域PA4と共有する矩形の領域であり、素子分離領域3上に配置される。
並列トランジスタPTraは、互いに直交するx方向(第1の方向)及びy方向(第2の方向)に沿ってマトリクス状に整列し、かつ、活性領域k1内に配置される複数の半導体ピラーP1(第1の半導体ピラー)と、複数の半導体ピラーP1のうちx方向の一端に位置する半導体ピラーP1A(第1Aの半導体ピラー)とx方向に上述した間隔W1(図示せず)を空けて対向し、かつ、素子分離領域3及び活性領域k1に跨る位置(ピラー形成領域PA1とピラー形成領域PA2の境界近傍)に配置される給電ピラーS1(第1の給電ピラー)と、給電ピラーS1を挟んでy方向に対向するように素子分離領域3内に配置されるダミーピラーD1,D2(第1及び第2のダミーピラー)とを有して構成される。給電ピラーS1のうち素子分離領域3内に配置される部分はシリコン酸化膜からなる給電ピラーS1aを構成し、活性領域k1内に配置される部分は半導体基板2からなる給電ピラーS1bを構成する。以上の構成は、第1の実施の形態で説明した並列トランジスタPTrのものと同様である。各ピラーのサイズ、個数、配置、及び、各ピラーと周辺ピラーCaの間の距離も、並列トランジスタPTrのものと同様となっている。
また、並列トランジスタPTrbは、互いに直交するx方向(第3の方向)及びy方向(第4の方向)に沿ってマトリクス状に整列し、かつ、活性領域k2内に配置される複数の半導体ピラーP2(第2の半導体ピラー)と、複数の半導体ピラーP2のうちx方向の他端に位置する半導体ピラーP2A(第2Aの半導体ピラー)とx方向に上述した間隔W1(図示せず)を空けて対向し、かつ、素子分離領域3及び活性領域k2に跨る位置(ピラー形成領域PA3とピラー形成領域PA4の境界近傍)に配置される給電ピラーS2(第2Aの給電ピラー)と、給電ピラーS2を挟んでy方向に対向するように素子分離領域3内に配置されるダミーピラーD3,D4(第3及び第4のダミーピラー)とを有して構成される。給電ピラーS2のうち素子分離領域3内に配置される部分はシリコン酸化膜からなる給電ピラーを構成し、活性領域k2内に配置される部分は半導体基板2からなる給電ピラーを構成する。以上の並列トランジスタPTrbの構成は、y軸を対称軸として並列トランジスタPTraの構成を反転させたものとなっている。
並列トランジスタPTra,PTrbの間には、接続ピラーEが配置される。接続ピラーEは、複数の半導体ピラーP1のうちx方向の他端に位置する半導体ピラーP1D(第1Dの半導体ピラー)とx方向に間隔W1を空けて対向するとともに、複数の半導体ピラーP2のうちx方向の一端に位置する半導体ピラーP2D(第2Dの半導体ピラー)とx方向に間隔W1を空けて対向し、かつ、素子分離領域3及び活性領域k1,k2に跨る位置(ピラー形成領域PA2,PA5,PA4に跨る位置)に配置される。接続ピラーEのx方向の幅は、半導体ピラーP1Dと半導体ピラーP2Dの間の距離に応じて決定される。接続ピラーEのy方向の幅は、給電ピラーS1,S2と同様、W1である。
並列トランジスタPTraには、ダミーピラーD5,D6(第5及び第6のダミーピラー)が設けられる。ダミーピラーD5,D6は、接続ピラーEを挟んでy方向に対向するように素子分離領域3内に配置されており、それぞれ、接続ピラーEとy方向に上述した間隔W2を空けて対向している。同様に、並列トランジスタPTrbには、ダミーピラーD7,D8(第7及び第8のダミーピラー)が設けられる。ダミーピラーD7,D8も、接続ピラーEを挟んでy方向に対向するように素子分離領域3内に配置されており、それぞれ、接続ピラーEとy方向に上述した間隔W2を空けて対向している。ダミーピラーD5〜D8のそれぞれと周辺ピラーCaとの間の距離は、W2に設定される。
複数の半導体ピラーP1には、半導体ピラーP1Dとy方向の一方側に隣接する半導体ピラーP1E(第1Eの半導体ピラー)と、半導体ピラーP1Dとy方向の他方側に隣接する半導体ピラーP1F(第1Fの半導体ピラー)とが含まれる。そして、ダミーピラーD5のx方向の複数の半導体ピラーP1側の端点と、半導体ピラーP1Eのx方向のダミーピラーD5側の端点との間のx方向の距離、及び、ダミーピラーD6のx方向の複数の半導体ピラーP1側の端点と、半導体ピラーP1Fのx方向のダミーピラーD6側の端点との間のx方向の距離は、いずれもW2に設定される。
同様に、複数の半導体ピラーP2には、半導体ピラーP2Dとy方向の一方側に隣接する半導体ピラーP2E(第2Eの半導体ピラー)と、半導体ピラーP2Dとy方向の他方側に隣接する半導体ピラーP2F(第1Fの半導体ピラー)とが含まれる。そして、ダミーピラーD7のx方向の複数の半導体ピラーP2側の端点と、半導体ピラーP2Eのx方向のダミーピラーD7側の端点との間のx方向の距離、及び、ダミーピラーD8のx方向の複数の半導体ピラーP2側の端点と、半導体ピラーP2Fのx方向のダミーピラーD8側の端点との間のx方向の距離は、いずれもW2に設定される。
各半導体ピラーP1の側面にはサイドウォール状のゲート電極13aが配置され、給電ピラーS1の側面にはサイドウォール状のゲート電極13bが配置される。同様に、各半導体ピラーP2の側面にはサイドウォール状のゲート電極13cが配置され、給電ピラーS2の側面にはサイドウォール状のゲート電極13dが配置される。また、接続ピラーEの側面には、サイドウォール状のゲート電極13eが配置される。これらゲート電極13a〜13eは、第1の実施の形態と同様、横方向の膜厚がW1の1/2以上、W2の1/2未満となるようにゲート電極材料13を成膜し、エッチバックを行うことによって形成される。
ここで、上述したように、給電ピラーS1と半導体ピラーP1Aとの間の距離、半導体ピラーP1の配置間隔、接続ピラーEと半導体ピラーP1D,P2Dそれぞれとの間の距離、半導体ピラーP2の配置間隔、給電ピラーS2と半導体ピラーP2Aとの間の距離はいずれもW1である。したがって、ゲート電極13a〜13eは一体化しており、一体化したゲート電極13a〜13eにより、並列トランジスタPTra,PTrbに共通な1つのゲート電極が構成される。また、周辺ピラーCa及びダミーピラーD1〜D8のそれぞれと各半導体ピラーP1,P2、給電ピラーS1,S2、及び接続ピラーEのそれぞれとの間には、幅W2以上の空間が設けられる。したがって、各ダミーピラーD1〜D8の側面及び周辺ピラーCaの側面に残存するゲート電極材料13はゲート電極13a〜13eと接触せず、したがって、並列トランジスタPTra,PTrbのゲート電極を構成しない。
各半導体ピラーP1の上部には、並列トランジスタPTrと同様の上部拡散層14及びシリコンプラグ17が配置され、シリコンプラグ17の上面は、半導体ピラー上部拡散層給電プラグ21aを通じて上層の半導体ピラー上部配線25aに接続される。半導体ピラー上部配線25aは、複数の半導体ピラーP1それぞれに対応する複数のシリコンプラグ17の上面に共通に接続される。また、活性領域k1内に位置する半導体基板2の表面のうち半導体ピラーP1、給電ピラーS1、及び接続ピラーEが形成されていない部分には下部拡散層10が形成され、下部拡散層10の上面は、複数の下部拡散層給電用プラグ23aによって、上層の下部拡散層給電配線27aに接続される。さらに、ゲート電極13bの一部分(例えば周辺ピラーCaに近い部分)の上面は、給電ゲート電極コンタクトプラグ22aによって、上層のゲート電極給電配線26aに接続される。
同様に、各半導体ピラーP2の上部には、並列トランジスタPTrと同様の上部拡散層14及びシリコンプラグ17が配置され、シリコンプラグ17の上面は、半導体ピラー上部拡散層給電プラグ21bを通じて上層の半導体ピラー上部配線25bに接続される。半導体ピラー上部配線25bは、複数の半導体ピラーP2それぞれに対応する複数のシリコンプラグ17の上面に共通に接続される。また、活性領域k2内に位置する半導体基板2の表面のうち半導体ピラーP2、給電ピラーS2、及び接続ピラーEが形成されていない部分には下部拡散層10が形成され、下部拡散層10の上面は、複数の下部拡散層給電用プラグ23bによって、上層の下部拡散層給電配線27bに接続される。さらに、ゲート電極13dの一部分(例えば周辺ピラーCaに近い部分)の上面は、給電ゲート電極コンタクトプラグ22bによって、上層のゲート電極給電配線26bに接続される。
以上が、本実施の形態による半導体装置1の構成である。次に、この構成を形成するために用いる露光マスク30について、図9(a)を参照しながら説明する。
本実施の形態による露光マスク30は、第1の実施の形態で説明した露光マスク30と同様、露光の際に光を通過させる透光部31と、透光部31を囲むように配置される遮光部32とを有して構成される。ただし、本実施の形態による透光部31は、第1の実施の形態で説明した第1及び第2の透光部31a,31bに加え、第3〜第5の透光部31c〜31eも含んで構成される。
第4の透光部31dは、図9(b)に示したピラー形成領域PA4に対応するもので、その内部には、複数の半導体ピラーP2のそれぞれに対応する複数の半導体ピラー用パターンL2が配置される。また、第3の透光部31cは、図9(b)に示したピラー形成領域PA3に対応するもので、第3の透光部31cと第4の透光部31dとの境界の近傍には、給電ピラーS2及びダミーピラーD3,D4のそれぞれに対応する給電ピラー用パターンLS2及びダミーピラー用パターンLD1,LD2が配置される。第5の透光部31eは、図9(b)に示したピラー形成領域PA5に対応するもので、その内部には、接続ピラーE及びダミーピラーD5〜D8のそれぞれに対応する接続ピラー用パターンLE及びダミーピラー用パターンLD5〜LD8が配置される。なお、接続ピラー用パターンLEは、第2の透光部31b及び第4の透光部31dそれぞれの内側にも若干はみ出して設けられる。
以上の露光マスク30をリソグラフィの際に用いつつ、図4及び図5を参照して説明したものと同様の工程を行うことにより、図9(b)(c)に示した各ピラーが形成される。各ピラーが形成された後には、第1の実施の形態と同様の工程を進めることにより、本実施の形態による半導体装置1が完成する。
以上説明したように、本実施の形態による半導体装置1及びその製造方法によれば、露光マスク30に、給電ピラー用パターンLS1,LS2及び接続ピラー用パターンLEのそれぞれに対応するダミーピラー用パターンLD1〜LD8を設けることが可能になる。仮にこれらを露光マスク30に設けないとすると、給電ピラーS1,S2及び接続ピラーEの存在によって透過光の周期性が損なわれるため、第1の実施の形態における半導体ピラーP1Aと同様、半導体ピラーP1A,P1D,P2A,P2Dの断面積が他の半導体ピラーP1,P2のそれに比べて小さくなってしまう。しかし、本実施の形態による半導体装置1及びその製造方法によれば、露光マスク30にダミーピラー用パターンLD1〜LD8を設けることができるので、このような半導体ピラーP1A,P1D,P2A,P2Dの断面積の縮小を回避し、各半導体ピラーP1,P2の断面積を揃えることができる。したがって、ゲート電極13a〜13eからなるゲート電極の断線や、並列トランジスタPTra,PTrbの特性のばらつきを回避することが可能になる。
また、本実施の形態による半導体装置1及びその製造方法によれば、第1の実施の形態と同様、ダミーピラーD1〜D8の側面に残存するゲート電極材料13が複数の半導体ピラーP1,P2、給電ピラーS1,S2、及び接続ピラーEの側面に形成されるゲート電極13a〜13eと接触し、その結果として並列トランジスタPTra,PTrbのゲート電極の寄生容量が増加してしまうことが防止される。
次に、本発明の第3の実施の形態による半導体装置1及びその製造方法について、図10を参照しながら説明する。本実施の形態による半導体装置1は、第2の実施の形態で説明した接続ピラーEに相当する部分が、並置された複数の接続ピラー(後述する接続ピラーE1,E2及び1以上の接続ピラーE3)によって構成される点で第2の実施の形態による半導体装置1と異なり、その他の点では第2の実施の形態による半導体装置1と同様である。以下、第2の実施の形態による半導体装置1との相違点を中心に詳しく説明する。
本実施の形態による半導体装置1は、第2の実施の形態で説明した接続ピラーEに代えて、図10(b)に示すように、接続ピラーE1,E2及び1以上の接続ピラーE3を有して構成される。
接続ピラーE1は、半導体ピラーP1Dとx方向に間隔W1を空けて対向し、かつ、素子分離領域3及び活性領域k1に跨る位置に配置される。また、接続ピラーE2は、半導体ピラーP2Dとx方向に間隔W1を空けて対向し、かつ、素子分離領域3及び活性領域k2に跨る位置に配置される。1以上の接続ピラーE3は、接続ピラーE1と接続ピラーE2の間に、接続ピラーE1,E2も含めて間隔W1で一列に並べて配置される。図10には3個の接続ピラーE3を配置する例を示しているが、これは一例であり、実際に配置する接続ピラーE3の個数は、接続ピラーE1と接続ピラーE2の間の距離に応じて決定される。また、接続ピラーE1〜E3はそれぞれ、x,y方向の幅がいずれもW1となるように形成される。
接続ピラーE1〜E3それぞれの側面には、サイドウォール状のゲート電極13eが配置される。このゲート電極13eの形成は、第2の実施の形態によるゲート電極13eの形成と同じ方法によって行われる。
ここで、上述したように、接続ピラーE1と半導体ピラーP1Dとの間の距離、接続ピラーE2と半導体ピラーP2Dとの間の距離、接続ピラーE1〜E3の配置間隔は、いずれもW1である。したがって、第2の実施の形態と同様、ゲート電極13a〜13eにより、並列トランジスタPTra,PTrbに共通な1つのゲート電極が構成される。また、周辺ピラーCa及びダミーピラーD1〜D8のそれぞれと各半導体ピラーP1,P2、給電ピラーS1,S2、及び接続ピラーE1〜E3のそれぞれとの間には、幅W2以上の空間が設けられる。したがって、各ダミーピラーD1〜D8の側面及び周辺ピラーCaの側面に残存するゲート電極材料13はゲート電極13a〜13eと接触せず、したがって、並列トランジスタPTra,PTrbのゲート電極を構成しない。
以上が、本実施の形態による半導体装置1の構成である。次に、この構成を形成するために用いる露光マスク30について、図10(a)を参照しながら説明する。
本実施の形態による露光マスク30は、図10(a)に示すように、接続ピラー用パターンLEに代えて接続ピラー用パターンLE1〜LE3が配置される点で、第2の実施の形態による露光マスク30と相違する。接続ピラー用パターンLE1〜LE3は、それぞれ接続ピラーE1〜E3に対応するパターンである。接続ピラー用パターンLE3の個数は、接続ピラーE3の個数と同一となる。
図10(a)に示した露光マスク30をリソグラフィの際に用いつつ、図4及び図5を参照して説明したものと同様の工程を行うことにより、図10(b)(c)に示した各ピラーが形成される。各ピラーが形成された後には、第1の実施の形態と同様の工程を進めることにより、本実施の形態による半導体装置1が完成する。
以上説明したように、本実施の形態による半導体装置1及びその製造方法によっても、露光マスク30に、給電ピラー用パターンLS1,LS2及び接続ピラー用パターンLE1,LE2のそれぞれに対応するダミーピラー用パターンLD1〜LD8を設けることが可能になる。したがって、第2の実施の形態と同様、半導体ピラーP1A,P1D,P2A,P2Dの断面積の縮小を回避し、各半導体ピラーP1,P2の断面積を揃えることができる。したがって、ゲート電極13a〜13eからなるゲート電極の断線や、並列トランジスタPTra,PTrbの特性のばらつきを回避することが可能になる。
また、本実施の形態による半導体装置1及びその製造方法によれば、第1及び第2の実施の形態と同様、ダミーピラーD1〜D8の側面に形成されるゲート電極材料13が複数の半導体ピラーP1,P2、給電ピラーS1,S2、及び接続ピラーE1〜E3の側面に形成されるゲート電極13a〜13eと接触し、その結果として並列トランジスタPTra,PTrbのゲート電極の寄生容量が増加してしまうことが防止される。
以上、本発明の好ましい実施の形態について説明したが、本発明は、上記実施の形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記第2及び第3の実施の形態では、複数の半導体ピラーP2の配列方向(第3及び第4の方向)を並列トランジスタPTraと同じx方向及びy方向とした。しかし、第3及び第4の方向は互いに直交する2方向であればよく、x方向及びy方向でなくともよい。この場合であっても、ピラー形成領域PA5及び接続ピラーEの形状(又は接続ピラーE3の配置)を適宜調整することにより、上記第2及び第3の実施の形態と同様、ゲート電極が接続ピラーE(又は接続ピラーE1〜E3)によって互いに接続された2つの並列トランジスタを形成することが可能になる。
1 半導体装置
2 半導体基板
3 素子分離領域
4 ハードマスク膜
10 下部拡散層
11 下部絶縁膜
12 ゲート絶縁膜
13 ゲート電極材料
13a〜13e ゲート電極
14 上部拡散層
15 層間絶縁膜
16 絶縁膜
17 シリコンプラグ
20 層間絶縁膜
21,21a,21b 半導体ピラー上部拡散層給電プラグ
21h 半導体ピラー用コンタクトホール
22,22a,22b 給電ゲート電極コンタクトプラグ
22h 給電ゲート電極用コンタクトホール
23,23a,23b 下部拡散層給電用プラグ
23h 下部拡散層コンタクトホール
25,25a,25b 半導体ピラー上部配線
26,26a,26b ゲート電極給電配線
27,27a,27b 下部拡散層給電配線
30 露光マスク
31,31a〜31e 透光部
32 遮光部
C 周辺マスクパターン
Ca 周辺ピラー
D1〜D8 ダミーピラー
e1〜e4 ピラー形成領域PA1の辺
e5〜e8 ピラー形成領域PA2の辺
E,E1〜E3 接続ピラー
G1〜G3 半導体ピラー用パターン群
L1,L1A〜L1L 半導体ピラー用パターン
L2 半導体ピラー用パターン
LD1〜LD8 ダミーピラー用パターン
LE,LE1〜LE3 接続ピラー用パターン
LS1,LS2 給電ピラー用パターン
M1,M1A〜M1L 半導体ピラー用パターン
MD1,MD2 ダミーピラー用パターン
MS1,MS2 給電ピラー用パターン
P1,P2,P1A〜P1L,P2A,P2D,P2E,P2F 半導体ピラー
PA,PA1〜PA5 ピラー形成領域
PTr,PTra,PTrb 並列トランジスタ
S1,S1a,S1b,S2 給電ピラー
S11〜S14 給電ピラー用パターンMS1の端部
k,k1,k2 活性領域
ka〜kd 活性領域kの辺
ku1,ku2 活性領域kの上面

Claims (24)

  1. 半導体基板の表面に素子分離領域を埋め込むことによって活性領域を区画する工程と、
    互いに直交する第1及び第2の方向に沿ってマトリクス状に整列し、かつ、それぞれ前記活性領域内に配置される複数の半導体ピラー用パターン、前記複数の半導体ピラー用パターンのうち前記第1の方向の一端に位置する第1の半導体ピラー用パターンと前記第1の方向に第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記活性領域に跨る位置に配置される給電ピラー用パターン、並びに、前記給電ピラー用パターンを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第1及び第2のダミーピラー用パターンを含むマスクパターンを単一のリソグラフィにより形成する工程と、
    前記マスクパターンをマスクとして前記活性領域及び前記素子分離領域をエッチングすることにより、複数の半導体ピラー、給電ピラー、並びに、第1及び第2のダミーピラーを形成する工程とを備え、
    前記第1及び第2のダミーピラー用パターンのそれぞれは、前記給電ピラー用パターンと前記第2の方向に第2の間隔を空けて対向し、
    前記第2の間隔は、前記第1の間隔より広い
    ことを特徴とする半導体装置の製造方法。
  2. 前記複数の半導体ピラー用パターンは、それぞれの前記第1の方向の幅が互いに等しく、かつ、それぞれの前記第2の方向の幅が互いに等しくなるように形成され、
    前記複数の半導体ピラー用パターンは、前記第1の方向及び前記第2の方向のそれぞれに等間隔で配置される
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記複数の半導体ピラー用パターンの前記第1及び第2の方向それぞれの配置間隔は、前記第1の間隔に等しい
    ことを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記第1及び第2のダミーピラー用パターンはそれぞれ、前記複数の半導体ピラー用パターンのそれぞれと前記第1の方向の幅及び前記第2の方向の幅が等しくなるように形成され、
    前記第2の間隔は、前記第1の間隔の1.5倍以下である
    ことを特徴とする請求項2又は3に記載の半導体装置の製造方法。
  5. 前記複数の半導体ピラー用パターンは、前記第1の半導体ピラー用パターンと前記第2の方向の一方側に隣接する第2の半導体ピラー用パターンと、前記第1の半導体ピラー用パターンと前記第2の方向の他方側に隣接する第3の半導体ピラー用パターンとを含む
    ことを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。
  6. 前記第1のダミーピラー用パターンの前記第1の方向の前記複数の半導体ピラー用パターン側の端点と、前記第2の半導体ピラー用パターンの前記第1の方向の前記第1のダミーピラー用パターン側の端点との間の前記第1の方向の距離は前記第2の間隔に等しい
    ことを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記第2のダミーピラー用パターンの前記第1の方向の前記複数の半導体ピラー用パターン側の端点と、前記第3の半導体ピラー用パターンの前記第1の方向の前記第2のダミーピラー用パターン側の端点との間の前記第1の方向の距離は前記第2の間隔に等しい
    ことを特徴とする請求項5又は6に記載の半導体装置の製造方法。
  8. 前記複数の半導体ピラー用パターンは、それぞれ前記第1の方向に整列する複数の前記半導体ピラー用パターンからなる第1乃至第3の半導体ピラー用パターン群を含み、
    前記第1乃至第3の半導体ピラー用パターンはそれぞれ、前記第1乃至第3の半導体ピラー用パターン群の前記第1の方向の一端に位置する
    ことを特徴とする請求項5乃至7のいずれか一項に記載の半導体装置の製造方法。
  9. 前記給電ピラー用パターンの前記第2の方向の中心軸と、前記第1の半導体ピラー用パターン群の前記第2の方向の中心軸とは、前記第1の方向に延在する1本の直線上に位置する
    ことを特徴とする請求項8に記載の半導体装置の製造方法。
  10. 前記第1のダミーピラー用パターンの前記第2の方向の中心軸と、前記第2の半導体ピラー用パターン群の前記第2の方向の中心軸とは、前記第1の方向に延在する1本の直線上に位置しない
    ことを特徴とする請求項8又は9に記載の半導体装置の製造方法。
  11. 前記第2のダミーピラー用パターンの前記第2の方向の中心軸と、前記第3の半導体ピラー用パターン群の前記第2の方向の中心軸とは、前記第1の方向に延在する1本の直線上に位置しない
    ことを特徴とする請求項8乃至10のいずれか一項に記載の半導体装置の製造方法。
  12. 前記複数の半導体ピラー用パターン、前記給電ピラー用パターン、並びに、前記第1及び第2のダミーピラー用パターンは、周辺マスクパターンに囲まれてなるピラー形成領域内に形成される
    ことを特徴とする請求項1乃至11のいずれか一項に記載の半導体装置の製造方法。
  13. 前記ピラー形成領域は、
    前記第1の方向に対向する第1及び第2の辺と前記第2の方向に対向する第3及び第4の辺とによって構成され、かつ、前記素子分離領域内に配置される矩形領域である第1のピラー形成領域と、
    前記第1の方向に対向する第5及び第6の辺と前記第2の方向に対向する第7及び第8の辺とによって構成され、かつ、前記活性領域内に配置される矩形領域である第2のピラー形成領域とによって構成され、
    前記第2の辺は、前記第5の辺の一部を構成する
    ことを特徴とする請求項12に記載の半導体装置の製造方法。
  14. 前記第1のダミーピラー用パターンは、前記第2の方向に前記第2の間隔を空けて前記第3の辺と隣接し、
    前記第2のダミーピラー用パターンは、前記第2の方向に前記第2の間隔を空けて前記第4の辺と隣接する
    ことを特徴とする請求項13に記載の半導体装置の製造方法。
  15. 前記給電ピラー用パターンは、前記第1の方向に前記第2の間隔を空けて前記第1の辺と隣接する
    ことを特徴とする請求項13又は14に記載の半導体装置の製造方法。
  16. 前記複数の半導体ピラー用パターンのうち前記第1の方向の他端に位置するものは、前記第1の方向に前記第2の間隔を空けて前記第6の辺と隣接する
    ことを特徴とする請求項13乃至15のいずれか一項に記載の半導体装置の製造方法。
  17. 前記複数の半導体ピラー、前記給電ピラー、並びに、前記第1及び第2のダミーピラーを形成する工程の後、前記活性領域のうち前記エッチングによってリセスされた部分に下部拡散層を形成する工程と、
    前記下部拡散層を覆う下部絶縁膜を形成する工程と、
    前記複数の半導体ピラーの側面及び前記給電ピラーの側面のうち前記半導体基板によって構成されている部分にゲート絶縁膜を形成する工程と
    をさらに備えることを特徴とする請求項1乃至16のいずれか一項に記載の半導体装置の製造方法。
  18. 前記ゲート絶縁膜を形成した後、横方向の膜厚が前記第1の間隔の1/2以上かつ前記第2の間隔の1/2未満となるように全面にゲート電極材料を形成し、さらに、該ゲート電極材料をエッチバックすることにより、前記複数の半導体ピラー、前記給電ピラー、並びに、前記第1及び第2のダミーピラーそれぞれの側面にサイドウォール形状のゲート電極を形成する工程
    をさらに備えることを特徴とする請求項17に記載の半導体装置の製造方法。
  19. 互いに直交する第1及び第2の方向に沿ってマトリクス状に整列し、かつ、半導体基板の表面に埋め込まれた素子分離領域によって区画される第1の活性領域内に配置される複数の第1の半導体ピラーと、
    前記複数の第1の半導体ピラーのうち前記第1の方向の一端に位置する第1Aの半導体ピラーと前記第1の方向に第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第1の活性領域に跨る位置に配置される第1の給電ピラーと、
    前記第1の給電ピラーを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第1及び第2のダミーピラーとを備え、
    前記第1及び第2のダミーピラーのそれぞれは、前記給電ピラーと前記第2の方向に第2の間隔を空けて対向し、
    前記第2の間隔は、前記第1の間隔より広い
    ことを特徴とする半導体装置。
  20. 前記第2の間隔は、前記第1の間隔の1.5倍以下である
    ことを特徴とする請求項19に記載の半導体装置。
  21. 前記複数の第1の半導体ピラーは、前記第1Aの半導体ピラーと前記第2の方向の一方側に隣接する第1Bの半導体ピラーと、前記第1Aの半導体ピラーと前記第2の方向の他方側に隣接する第1Cの半導体ピラーとを含み、
    前記第1のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Bの半導体ピラーの前記第1の方向の前記第1のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しく、
    前記第2のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Cの半導体ピラーの前記第1の方向の前記第2のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しい
    ことを特徴とする請求項19又は20に記載の半導体装置。
  22. 前記複数の第1の半導体ピラーそれぞれの上部に形成された複数の上部拡散層と、
    前記第1の活性領域内に位置する前記半導体基板の表面のうち前記複数の第1の半導体ピラー及び前記給電ピラーが形成されていない部分に形成された下部拡散層と、
    前記複数の第1の半導体ピラーの側面及び前記給電ピラーの側面のうち前記半導体基板によって構成されている部分に形成されたゲート絶縁膜と、
    前記複数の第1の半導体ピラー、前記給電ピラー、並びに、前記第1及び第2のダミーピラーそれぞれの側面にサイドウォール形状で形成されたゲート電極と
    を備えることを特徴とする請求項19乃至21に記載の半導体装置。
  23. 互いに直交する第3及び第4の方向に沿ってマトリクス状に整列し、かつ、前記素子分離領域によって区画される第2の活性領域内に配置される複数の第2の半導体ピラーと、
    前記複数の第2の半導体ピラーのうち前記第3の方向の他端に位置する第2Aの半導体ピラーと前記第3の方向に前記第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第2の活性領域に跨る位置に配置される第2の給電ピラーと、
    前記第2の給電ピラーを挟んで前記第4の方向に対向するように前記素子分離領域内に配置される第3及び第4のダミーピラーと、
    前記複数の第1の半導体ピラーのうち前記第1の方向の他端に位置する第1Dの半導体ピラーと前記第1の方向に前記第1の間隔を空けて対向するとともに、前記複数の第2の半導体ピラーのうち前記第3の方向の一端に位置する第2Dの半導体ピラーと前記第3の方向に前記第1の間隔を空けて対向し、かつ、前記素子分離領域並びに前記第1及び第2の活性領域に跨る位置に配置される接続ピラーと、
    前記接続ピラーを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第5及び第6のダミーピラーと、
    前記接続ピラーを挟んで前記第4の方向に対向するように前記素子分離領域内に配置される第7及び第8のダミーピラーとを備え、
    前記第5及び第6のダミーピラーのそれぞれは、前記接続ピラーと前記第2の方向に前記第2の間隔を空けて対向し、
    前記第7及び第8のダミーピラーのそれぞれは、前記接続ピラーと前記第4の方向に前記第2の間隔を空けて対向し、
    前記複数の第1の半導体ピラーは、前記第1Dの半導体ピラーと前記第2の方向の一方側に隣接する第1Eの半導体ピラーと、前記第1Dの半導体ピラーと前記第2の方向の他方側に隣接する第1Fの半導体ピラーとを含み、
    前記複数の第2の半導体ピラーは、前記第2Dの半導体ピラーと前記第4の方向の一方側に隣接する第2Eの半導体ピラーと、前記第2Dの半導体ピラーと前記第4の方向の他方側に隣接する第2Fの半導体ピラーとを含み、
    前記第5のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Eの半導体ピラーの前記第1の方向の前記第5のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しく、
    前記第6のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Fの半導体ピラーの前記第1の方向の前記第6のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しく、
    前記第7のダミーピラーの前記第3の方向の前記複数の第2の半導体ピラー側の端点と、前記第2Eの半導体ピラーの前記第3の方向の前記第7のダミーピラー側の端点との間の前記第3の方向の距離は前記第2の間隔に等しく、
    前記第8のダミーピラーの前記第1の方向の前記複数の第2の半導体ピラー側の端点と、前記第2Fの半導体ピラーの前記第1の方向の前記第8のダミーピラー側の端点との間の前記第3の方向の距離は前記第2の間隔に等しい
    ことを特徴とする請求項19乃至22に記載の半導体装置。
  24. 互いに直交する第3及び第4の方向に沿ってマトリクス状に整列し、かつ、前記素子分離領域によって区画される第2の活性領域内に配置される複数の第2の半導体ピラーと、
    前記複数の第2の半導体ピラーのうち前記第3の方向の他端に位置する第2Aの半導体ピラーと前記第3の方向に前記第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第2の活性領域に跨る位置に配置される第2の給電ピラーと、
    前記第2の給電ピラーを挟んで前記第4の方向に対向するように前記素子分離領域内に配置される第3及び第4のダミーピラーと、
    前記複数の第1の半導体ピラーのうち前記第1の方向の他端に位置する第1Dの半導体ピラーと前記第1の方向に前記第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第1の活性領域に跨る位置に配置される第1の接続ピラーと、
    前記複数の第2の半導体ピラーのうち前記第3の方向の一端に位置する第2Dの半導体ピラーと前記第3の方向に前記第1の間隔を空けて対向し、かつ、前記素子分離領域及び前記第2の活性領域に跨る位置に配置される第2の接続ピラーと、
    前記第1の接続ピラーと前記第2の接続ピラーの間に、前記第1及び第2の接続ピラーも含めて前記第1の間隔で一列に並べて配置される1以上の第3の接続ピラーと、
    前記接続ピラーを挟んで前記第2の方向に対向するように前記素子分離領域内に配置される第5及び第6のダミーピラーと、
    前記接続ピラーを挟んで前記第4の方向に対向するように前記素子分離領域内に配置される第7及び第8のダミーピラーとを備え、
    前記第5及び第6のダミーピラーのそれぞれは、前記第1の接続ピラーと前記第2の方向に前記第2の間隔を空けて対向し、
    前記第7及び第8のダミーピラーのそれぞれは、前記第2の接続ピラーと前記第4の方向に前記第2の間隔を空けて対向し、
    前記複数の第1の半導体ピラーは、前記第1Dの半導体ピラーと前記第2の方向の一方側に隣接する第1Eの半導体ピラーと、前記第1Dの半導体ピラーと前記第2の方向の他方側に隣接する第1Fの半導体ピラーとを含み、
    前記複数の第2の半導体ピラーは、前記第2Dの半導体ピラーと前記第4の方向の一方側に隣接する第2Eの半導体ピラーと、前記第2Dの半導体ピラーと前記第4の方向の他方側に隣接する第2Fの半導体ピラーとを含み、
    前記第5のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Eの半導体ピラーの前記第1の方向の前記第5のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しく、
    前記第6のダミーピラーの前記第1の方向の前記複数の第1の半導体ピラー側の端点と、前記第1Fの半導体ピラーの前記第1の方向の前記第6のダミーピラー側の端点との間の前記第1の方向の距離は前記第2の間隔に等しく、
    前記第7のダミーピラーの前記第3の方向の前記複数の第2の半導体ピラー側の端点と、前記第2Eの半導体ピラーの前記第3の方向の前記第7のダミーピラー側の端点との間の前記第3の方向の距離は前記第2の間隔に等しく、
    前記第8のダミーピラーの前記第1の方向の前記複数の第2の半導体ピラー側の端点と、前記第2Fの半導体ピラーの前記第1の方向の前記第8のダミーピラー側の端点との間の前記第3の方向の距離は前記第2の間隔に等しい
    ことを特徴とする請求項19乃至22に記載の半導体装置。
JP2015083919A 2015-04-16 2015-04-16 半導体装置及びその製造方法 Pending JP2016207709A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015083919A JP2016207709A (ja) 2015-04-16 2015-04-16 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083919A JP2016207709A (ja) 2015-04-16 2015-04-16 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2016207709A true JP2016207709A (ja) 2016-12-08

Family

ID=57490255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083919A Pending JP2016207709A (ja) 2015-04-16 2015-04-16 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2016207709A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079529A1 (ja) 2016-10-24 2018-05-03 王子ホールディングス株式会社 無機繊維シート、ハニカム成形体およびハニカムフィルタ
CN111403343A (zh) * 2019-01-02 2020-07-10 联华电子股份有限公司 半导体图案的形成方法
TWI721332B (zh) * 2018-05-14 2021-03-11 美商格芯(美國)集成電路科技有限公司 包含有在ram位置的主動區而具有沉積所決定之間距的半導體裝置
JP2022504582A (ja) * 2018-10-11 2022-01-13 長江存儲科技有限責任公司 垂直メモリデバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079529A1 (ja) 2016-10-24 2018-05-03 王子ホールディングス株式会社 無機繊維シート、ハニカム成形体およびハニカムフィルタ
TWI721332B (zh) * 2018-05-14 2021-03-11 美商格芯(美國)集成電路科技有限公司 包含有在ram位置的主動區而具有沉積所決定之間距的半導體裝置
JP2022504582A (ja) * 2018-10-11 2022-01-13 長江存儲科技有限責任公司 垂直メモリデバイス
JP7198921B2 (ja) 2018-10-11 2023-01-11 長江存儲科技有限責任公司 半導体デバイスおよび方法
CN111403343A (zh) * 2019-01-02 2020-07-10 联华电子股份有限公司 半导体图案的形成方法
CN111403343B (zh) * 2019-01-02 2022-08-30 联华电子股份有限公司 半导体图案的形成方法

Similar Documents

Publication Publication Date Title
KR100653712B1 (ko) 핀펫에서 활성영역과 실질적으로 동일한 상면을 갖는소자분리막이 배치된 반도체 장치들 및 그 형성방법들
KR100848850B1 (ko) 트렌치 dmos 트랜지스터 구조
JP5555452B2 (ja) 半導体装置及びその製造方法並びにデータ処理システム
JP5522622B2 (ja) 半導体記憶装置及びその製造方法
JP2016207709A (ja) 半導体装置及びその製造方法
JPH06252359A (ja) 半導体装置の製造方法
JP2012094762A (ja) 半導体装置および半導体装置の製造方法
TW201513308A (zh) 半導體裝置
JP2012238642A (ja) 半導体装置及びその製造方法
KR20150131450A (ko) 반도체 소자 및 그 제조방법
JP2013131737A (ja) 半導体装置
JP2011166089A (ja) 半導体装置及びその製造方法
JP2004071903A (ja) 半導体装置
JP2015061038A (ja) 半導体装置
US9379233B2 (en) Semiconductor device
KR100673144B1 (ko) 반도체소자의 트랜지스터 및 그 형성방법
KR100632046B1 (ko) 반도체 소자의 게이트 라인 및 그 제조 방법
US20150270268A1 (en) Semiconductor device
JP2012079931A (ja) 半導体装置およびその製造方法
JP2008078502A (ja) 半導体装置及びその製造方法
US20240120378A1 (en) Semiconductor device including nanosheet transistor
KR20040098106A (ko) 비휘발성 메모리 장치 및 그 제조 방법
JP2012049321A (ja) 半導体装置および半導体装置の製造方法
US20090166760A1 (en) Semiconductor Device and Method of Manufacturing the Same
WO2014042233A1 (ja) 半導体装置およびその製造方法