JP2016195111A - プロセス・ガスおよび冷却された表面を使用した荷電粒子ビーム処理 - Google Patents

プロセス・ガスおよび冷却された表面を使用した荷電粒子ビーム処理 Download PDF

Info

Publication number
JP2016195111A
JP2016195111A JP2016062904A JP2016062904A JP2016195111A JP 2016195111 A JP2016195111 A JP 2016195111A JP 2016062904 A JP2016062904 A JP 2016062904A JP 2016062904 A JP2016062904 A JP 2016062904A JP 2016195111 A JP2016195111 A JP 2016195111A
Authority
JP
Japan
Prior art keywords
gas
sample
chamber
process gas
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016062904A
Other languages
English (en)
Other versions
JP6765832B2 (ja
Inventor
エイデン・マーティン
Martin Aiden
ジェフ・マクレディー
Mccredie Geoff
ミロス・トス
Milos Toth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEI Co filed Critical FEI Co
Publication of JP2016195111A publication Critical patent/JP2016195111A/ja
Application granted granted Critical
Publication of JP6765832B2 publication Critical patent/JP6765832B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3178Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for applying thin layers on objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/002Cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2444Electron Multiplier
    • H01J2237/24445Electron Multiplier using avalanche in a gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】プロセス・ガスを用いた、画像化を含む改良された荷電粒子ビーム処理を提供する。【解決手段】加工物を処理室内で荷電粒子ビーム処理する方法であって、前記加工物の表面にプロセス・ガスを供給することと、前記加工物の表面に向かって荷電粒子ビームを導くことと、冷却された表面を前記処理室内に供給することとを含み、前記冷却された表面の温度が、前記処理室から汚染物を除去するのには十分だが、前記プロセス・ガスを凝縮させるのには不十分な低温である方法。【選択図】図5

Description

本発明は、プロセス・ガスを使用した荷電粒子ビーム処理に関する。
走査電子顕微鏡(「SEM」)では、1次電子ビームが、調査対象の試料(sample)の領域を走査する。電子が試料に衝突した際に解放されるエネルギーによって、試料から、X線および後方散乱した電子を含む2次電子が放出される。これらのX線および2次電子の量およびエネルギーは、試料の性質、構造および組成に関する情報を提供する。用語「試料」は伝統的に、荷電粒子ビーム・システム内で処理または観察されている加工物を示すのに使用されており、本明細書で使用されるとき、この用語は任意の加工物を含み、より大きな母集団の代表として使用されている試料だけに限定されない。本明細書で使用されるとき、用語「2次電子」は、後方散乱した1次電子および試料から生じた電子を含む。2次電子を検出するため、SEMはしばしば1つまたは複数の電子検出器を備える。
電子ビームを、試料表面で化学反応を開始させる目的に使用することもできる。加工物を改変するために、荷電粒子ビームとともにプロセス・ガスが使用される。「ビーム・ケミストリ(beam chemistry)」は、荷電粒子ビーム、レーザ・ビームなどのビームによって開始される化学反応を指す。「電子ビーム・ケミストリ」には、電子ビーム誘起付着(electron beam−induced deposition:EBID)、電子ビーム誘起エッチング(electron beam−induced etching:EBIE)および電子ビーム誘起官能基化(electron beam−induced functionalization:EBIF)が含まれ、電子ビーム・ケミストリは通常、走査電子顕微鏡(SEM)内で実行される。これらの全ての電子ビーム・プロセスで、加工物表面に、前駆体ガスの分子を吸着させる。加工物に電子ビームが導かれ、そのビーム中の電子および放出された2次電子が吸着質(adsorbate)を解離させ、反応生成物を発生させる。EBIDでは、不揮発性反応生成物が付着物として基板表面に残り、揮発性反応生成物が脱離する。EBIEでは、前駆体分子分解生成物のうちの1種または数種が加工物表面と反応し、加工物から脱離する揮発性反応生成物を発生させ、表面材料を除去する。EBIFでは、電子ビーム誘起表面反応が、加工物表面の末端をなす元素種または分子種を変化させる。イオン・ビーム誘起付着(IBID)、イオン・ビーム誘起エッチング(IBIE)およびイオン・ビーム誘起官能基化(IBIF)でも同様の過程を経るが、イオンは質量がはるかに大きいため、これらの過程に加えて、スパッタリングによって、すなわち高エネルギー・イオンからの運動量移動によっても、基板から材料が、化学反応なしで除去される。イオン・ビームが吸着質と相互作用する機構と電子ビームが吸着質と反応する機構は異なると考えられる。
従来のSEMでは、ガス分子による1次電子ビームの散乱を防ぐため、および2次電子の捕集を可能にするために、試料が高真空中に保持される。ビーム・ケミストリは通常、ビームの衝突点に向かってガスを導く毛管針を有するガス注入システムを使用して、真空室内で実行される。このガスは急速に広がる。表面における局所ガス圧は、ビーム誘起反応を維持するのに十分であり、その一方で、試料室の残りの部分の圧力は、一般的にはエバーハート−ソーンリー(Everhart−Thornley)検出器と呼ばれているシンチレータと光電子増倍管の組合せなどの従来の検出器を使用して2次電子を検出することができる程度に十分に低い。
前駆体ガスで満たされた環境中に加工物を置いて電子ビーム・ケミストリを実行することもできる。試料がガス環境中に保持される1つのタイプの電子顕微鏡が、高圧走査電子顕微鏡(High Pressure Scanning Electorn Microscope:HPSEM)または環境制御型(Environmental)走査電子顕微鏡である。このようなシステムは例えば、Mancuso他の「Secondary Electron Detector for Use in a Gaseous Atmosphere」という名称の米国特許第4,785,182号明細書に記載されている。一例は、FEI CompanyのQuanta 600 ESEM(登録商標)高圧SEMである。
HPSEMでは、試料が、典型的には0.01トル(Torr)(0.013ミリバール)から50トル(65ミリバール)の間、より典型的には1トル(1.3ミリバール)から10トル(13ミリバール)の間の圧力を有するガス雰囲気中に維持される。ガス圧の高い領域は、集束カラム内を高真空に維持する1つまたは複数の圧力制限開口(pressure−limiting aperture)によって試料領域に限定される。対照的に、従来のSEMでは、大幅に低い圧力の真空中に試料が位置し、この大幅に低い圧力は通常、10−5トル(1.3×10−5ミリバール)よりも低い。HPSEMでは通常、「ガス・イオン化カスケード増幅(gas ionization cascade amplificaiton)」または「ガス・カスケード増幅」として知られるプロセスを使用して2次電子が検出される。このプロセスでは、電場によって2次荷電粒子が加速し、画像化ガス中のガス分子と衝突して、更なる荷電粒子を生み出し、それらの荷電粒子は別のガス分子と衝突して、荷電粒子をさらに生成する。このカスケードは、大幅に数が増えた荷電粒子が検出電極において電流として検出されるまで続く。いくつかの実施形態では、ガス圧および電極構成に応じて、試料表面からのそれぞれの2次電子が例えば20個超、または100個超、または1,000個超の更なる電子を発生させる。いくつかの実施形態では、電子の代わりに、ガス・カスケードで発生した正のガス・イオンまたは光子を検出し、それらを使用して画像を生成する。本明細書で使用されるとき、用語「ガス・カスケード増幅画像化」は、これらの3つの画像化信号の任意の組合せを使用して生成された画像を指す。本明細書で使用されるとき、用語「ガス・カスケード検出器」は、これらの3つの画像化信号の任意の組合せを検出する目的に使用することができる検出器を指す。
本発明の譲受人に譲渡された、参照によって本明細書に組み込まれるMartin他の「Electron Beam−Induced Etching」という名称の 米国特許出願公開第2014/0363978号明細書に記載されているとおり、ビーム・ケミストリのために使用されたときに、HPSEMはいくつかの問題を有する。試料室の内側の表面からの脱離によって、ならびにSEM室およびHPSEM室上で通常使用されるOリングを通した拡散によって、不純物が導入される。これら不純物は主にHO、NおよびOからなり、それらの不純物が、真空に適合しない試料の電荷制御および安定化のためにHO蒸気などのガスで室を満たす必要がある従来のHPSEM画像化操作を妨害するとは考えられなかった。しかしながら、これらの不純物はビーム・ケミストリを妨害する。HO、Oなどの分子は、大部分の有機金属化合物、WF、MoF、Pt(PF、XeF、F、Clなどの付着前駆体およびエッチング前駆体と反応して、それらの前駆体を分解させるためである。これらの不純物はさらに、試料表面の表面部位を占有し、それによってビーム・ケミストリのために使用された前駆体分子の吸着速度を低下させ、また、付着中にW、Moなどの材料を酸化させ、それによって付着した材料の組成および官能性を変化させる。米国特許出願公開第2014/0363978号明細書によって提案されている解決策は、前駆体ガスの沸点に近い温度に加工物を冷却して、凝縮させずに前駆体の表面被覆率を大きくするというものである。
高圧試料環境中での改良された制御を提供するために使用される他の方法は、試料室の内側の「環境セル(environmental cell)」を使用する方法である。「環境セル」は、試料の周囲の環境、通常は、環境セルが位置する試料室内に存在する環境とは異なる環境を提供する囲いを意味する。環境セルは、試料環境の制御を強化することができ、HPSEM処理中に存在するガス不純物の濃度を低下させ、HPSEMプロセス室の容積および内部表面積を低減させることができる。本出願の譲受人に譲渡された、参照によって本明細書に組み込まれる国際出願PCT/US2008/053223は、環境セルのいくつかの構成を記載している。
真空室内の汚染を低減させる他の方法は、クライオトラップ(cryotrap)(「コールド・トラップ(cold trap)」とも呼ばれる)、すなわち真空室内のガスを凝縮させる冷たい表面を使用して、真空を改善する方法である。プロセス・ガスが使用されているときにはクライオトラップは使用されない。これは、プロセス・ガスによって真空を意図的に劣化させているためである。クライオトラップはHPSEM内でも使用されない。これは、画像化ガスによって真空を意図的に劣化させているためであり、また、最も一般的な画像化ガスがHO蒸気であるためである。
ビーム・ケミストリの最近の2つの用途は、固有の電気および光学特性を有するグラフェン(graphene)およびダイヤモンドのナノパターニングである。ガスによって媒介されたEBIEは、グラフェンおよびダイヤモンドの機能構造の高速プロトタイピングに対してますます使用されている。これは、マスキングおよびイオン照射によって生成された材料の損傷をEBIEが排除するためである。EBIEは、グラフェン、カーボン・ナノチューブ、ダイヤモンド、超ナノ結晶性ダイヤモンド(ultra nanocrystalline diamond:UNCD)、ならびに炭素に富む非晶質ナノワイヤおよび膜を含む数多くの炭素材料をエッチングする目的に使用されている。電子と炭素の間のノックオン衝突(knock−on collision)による原子転位(atomic displacement)を無視することができる低い電子ビーム・エネルギー(<約30keV)において、炭素の除去は通常、化学エッチング(すなわち炭素の揮発)によるものと考えられている。このエッチングは一般に、エッチングされた材料の表面に吸着したHO、NHまたはH前駆体分子の電子誘起解離によって生成されたO、HまたはOHラジカルを含む化学経路によるものとされている。
エッチング前駆体ガスが供給されないときでも、試料が意図せずにエッチングされることがあることを本出願の出願人は見出した。したがって、試料は、例えば高真空中での電子ビームによる画像化中の意図しないエッチング、または非エッチング性の不活性画像化ガスを使用しているときの意図しないエッチング、または付着プロセス中の意図しないエッチングによって劣化しうる。低エネルギー電子によるグラフェンおよびダイヤモンドのこのようなエッチングは、ノックオン、電子ビーム加熱、イオン化されたガス分子によるスパッタリング、およびNを含むいくつかのガスによって駆動される化学エッチングに起因する原子転位を含む機構によるものと考えられている。Y.Lan他、「Polymer−free Patterning of Graphene at Sub−10nm Scale by Low−Energy Repetitive Electron Beam」、Small、10、4778(2014)、D.Fox他、「Nitrogen assisted etching of graphene layers in a scanning electron microscope」、Appl.Phys.Lett.98、243117(2011)、およびJ.Niitsuma他、「Nanoprocessing of Diamond Using a Variable Pressure Scanning Electron Microscope」、Jpn.J.Appl.Phys.45、L71(2006)。具体的には、真空室にNを導入することによって、グラフェンおよびダイヤモンドからの炭素の電子ビーム誘起除去を加速させることができることが報告されている。これらの観察は非常に驚くべきものであり、窒素イオンによって引き起こされる炭素のスパッタリングおよび化学エッチングによるものと考えられている。意図的にエッチングするときには、一見して全く同じ処理条件下でも、エッチング速度は変化しうる。ナノスケール構造体を生成する一貫した処理結果を生み出すため、およびエッチングが起こらない、グラフェン、ダイヤモンド、カーボン・ナノチューブなどの材料の高分解能画像化を可能にするために、意図しないエッチングを低減させる方法が求められている。
米国特許第4,785,182号明細書 米国特許出願公開第2014/0363978号明細書
Y.Lan他、「Polymer−free Patterning of Graphene at Sub−10nm Scale by Low−Energy Repetitive Electron Beam」、Small、10、4778(2014) D.Fox他、「Nitrogen assisted etching of graphene layers in a scanning electron microscope」、Appl.Phys.Lett.98、243117(2011) J.Niitsuma他、「Nanoprocessing of Diamond Using a Variable Pressure Scanning Electron Microscope」、Jpn.J.Appl.Phys.45、L71(2006)
本発明の目的は、プロセス・ガスを用いた、画像化を含む改良された荷電粒子ビーム処理を提供することにある。この処理は画像化を含む。
プロセス・ガスを使用する操作の間にビームと反応する汚染ガスを低減させるコールド・トラップが提供される。このコールド・トラップは、汚染ガスは凝縮するが、プロセス・ガスは凝縮しない温度に設定される。コールド・トラップは、試料室内およびガス管路内で使用することができる。
以上では、以下の本発明の詳細な説明をより十分に理解できるように、本発明の特徴および技術上の利点をかなりおおまかに概説した。以下では、本発明の追加の特徴および追加の利点を説明する。開示される着想および特定の実施形態を、本発明の同じ目的を達成するために他の構造体を変更しまたは設計するベースとして容易に利用することができることを当業者は理解すべきである。さらに、このような等価の構造体は、添付の特許請求の範囲に記載された本発明の範囲を逸脱しないことを当業者は理解すべきである。
次に、本発明および本発明の利点のより完全な理解のため、添付図面に関して書かれた以下の説明を参照する。
冷却された表面を備える荷電粒子ビーム・システムの略図である。 選択されたガスについて、エッチ・ピット深さ(etch pit depth)を、冷却された表面の温度に対して示した表である。 レース状炭素(lacy carbon)およびグラフェンの、荷電粒子ビームによってエッチングされたエリアを示す図である。 ガス・ストリームに導入されている汚染物(contaminant)を示す図である。 荷電粒子システムの内部の冷却された表面に捕捉された汚染物を示す図である。 高圧走査電子顕微鏡を示す図である。 高真空デュアル・ビーム・システムを示す図である。
本発明の実施形態は、荷電粒子ビーム・システム内の汚染物ガスの分圧を低下させる手段、したがって荷電粒子ビームによって照射された加工物表面に吸着する汚染物分子の面密度を低下させる手段を提供する。その結果、以下に詳細に説明する技術革新は、ビーム・プロセスを実行し、同時に、システム内に汚染物が存在することによって起こる、望ましくないビーム・ケミストリ反応を大幅に低減させることを可能にする。
システム内のある領域にぶつかる汚染物分子を物理的に不動化することによって荷電粒子システム内の汚染物ガスの分圧を低下させる方法が提供される。
超高純度の不活性原料ガスを使用しているシステム内であっても、望ましくないビーム・ケミストリ反応が起こりうることが示されている。以前には、これが、そうではなく、不活性のガス分子と荷電粒子ビームによって照射されている試料の表面との間のビーム誘起反応によるものと考えられていた。しかしながら、望ましくないこれらのビーム誘起反応は、ガス源と試料の間の内部表面に吸着した汚染物など、ガス送達システム内および真空システム内に存在する汚染物によって起こることを本出願の出願人は見出した。これらの内部表面には、使用されるガス管路の内部表面および試料室の内部表面が含まれる。プロセス・ガスがこれらの表面と接触すると、吸着した汚染物は、表面から脱離し、プロセス・ガスを汚染し、試料室内の汚染物ガスの分圧を効果的に上昇させうる。プロセス・ガスを使用せずにシステムが高真空で操作されているとき、吸着した汚染物の多くは、真空室の内側の表面に吸着したまま留まり、ビームにさらされず、試料と反応しない。プロセス・ガスを導入すると、試料に送達される汚染物ガスの分圧が増大することを本出願の出願人は見出した。
いくつかの実施形態では、汚染物が水(HO)である。荷電粒子ビームの存在下で、水は、エッチング剤として振る舞いうる。理論によって縛られることを望むものではないが、このエッチングは一般に、HOの粒子誘起解離によって生成されたO・、H・またはOH・ラジカルを含む化学経路によるものとされている。
以下の開示では、用語「下流」が、ガス流の方向に沿って前方と定義される。
図1は、荷電粒子ビーム・システム100の略図を示す。このシステムは、ガス・リザーバ102、104および質量流量制御装置106を有し、ガス・リザーバ102、104と質量流量制御装置106は一緒にガス源108を構成する。2つのガス・リザーバ102、104が示されているが、任意の数のガス・リザーバを使用することができる。
ガス管路110が、質量流量制御装置106から下流へガスを運ぶ。いくつかの実施形態では、ガス管路110上にガス管路コールド・トラップ112が設置される。ガス管路コールド・トラップ112の冷却は冷却器114によって提供される。いくつかの実施形態では、冷却器114が、液体窒素もしくは他の低温液体(cryogenic liquid)の加熱もしくは蒸発によって、または所望の温度を達成することができる他の冷却手段によって冷却を提供する。例えば、機械式または熱電気式冷却を使用することができる。ガス経路中に存在する汚染物の大部分がコールド・トラップ112上で凝縮するように、このコールド・トラップは真空室の近くに位置することが好ましい。
ガス管路110は、真空室128に封入された試料室124内まで続く。試料室124は試料126を含む。いくつかの実施形態では、ガス管路110が、真空室128の壁および試料室124の壁を貫通する。熱電気式冷却器を使用する場合には、熱電気式冷却器を真空室128内または試料室124内に置くことができ、除去された熱のための熱経路を提供することができる。試料室124内には試料室コールド・トラップ116が位置し、試料室コールド・トラップ116は冷却器118によって冷却される。試料126は試料ステージ146上に置かれる。荷電粒子カラム130が、荷電粒子ビーム144を生成し、集束させ、圧力制限開口142を通して試料室124内へ導く。荷電粒子カラム130は、粒子源132、第1の荷電粒子レンズ134、偏向器136、138および荷電粒子対物レンズ140を含む。オペレータ入力によって、またはメモリ162に記憶されたコンピュータ可読命令によって、制御装置160が電荷粒子ビーム100を制御する。試料室124内でのガス・カスケード増幅によって増幅され、検出電極166によって検出された2次電子から形成された画像を表示装置164が表示する。通常は、ビーム・ブランカ(beam blanker)、収差補正要素などの他の要素も存在する。いくつかの実施形態では、荷電粒子ビームが、電子ビーム、イオン・ビーム、クラスタ・ビームなどの荷電粒子ビームである。このビームをレーザ・ビームとすることもできる。プロセス・ガスが、そのプロセス・ガスが関与する反応を開始させるエネルギーを供給する任意のタイプのビームとともに使用されるときには、本発明の実施形態が有用である可能性がある。
いくつかの実施形態では、真空室128が高真空ポンプ148によってポンピングされ、高真空ポンプ148は、真空室真空管路150を通してバッキング・ポンプ(backing pump)152内へ排気する。
オペレータが、試料室圧力を監視し、室内への流量を調整して、所望の試料室圧力を達成することができるように、いくつかの実施形態では、試料室圧力管路120によって試料室128に圧力計122が接続される。
図2は、超ナノ結晶性ダイヤモンド(UNCD)中のエッチ・ピットの深さによって決定された、さまざまなガス、温度および圧力の電子ビーム・エッチング効果を示す。行202は、高真空での先行技術の処理を表し、この処理では、真空室へプロセス・ガスが導入されず、荷電粒子照射によって、深さ62ナノメートル(nm)および37nmのピットが生成された。行202の高真空下での照射中の試料室内の圧力は3×10−4パスカル(Pa)である。高真空照射の間、ガス管路コールド・トラップ112も試料室コールド・トラップ116も能動的には冷却されず、それらのトラップは室温のままであった。ガス管路110にプロセス・ガスが流れず、試料室124内にもプロセス・ガスがなかったため、試料室内の汚染物ガス分子の量は少ない。行204は、コールド・トラップを使用せずにプロセス・ガスを使用した先行技術の処理を表す。行204は、超高純度源(Ar99.998+%、HO≦3ppm)からのアルゴンで満たされて試料室が13Paに維持されている間に照射した結果を示す。行204の照射の間、コールド・トラップ112と116はともに室温のままであった。照射によって深さ417nmのエッチ・ピットが生成された。理論によって縛られることを望むものではないが、行204で生み出されたより深いエッチ・ピットは、プロセス・ガスによって試料に汚染物が送達された結果であると考えられる。特に、ガス源から試料室へ通じるガス管路の内部表面および試料室の壁にHO汚染物が吸着すると考えられる。前記HO吸着質は、ガス経路内の表面から脱離し、試料室へ流れるガス流とともに伴出されることがあり、また、試料室の壁から脱離することがある。行202でのエッチングは比較的に小さいが、行202の高真空条件では、プロセス・ガスが使用されたときに、行204の高いエッチング速度が生じる。
行206は、ガス管路コールド・トラップ112が約77Kに冷却されていることを除き行204の条件と同様の条件の下で生じたビーム誘起エッチングの結果を示す。生じたエッチ・ピット深さは、行204でのエッチング中に生成されたエッチ・ピットの深さの約半分である。理論によって縛られることを望むものではないが、これは、ガス管路コールド・トラップ112上での汚染物の捕捉によるものと考えられる。しかしながら、行206でのピット深さは、行202での高真空下で生じたピット深さよりも依然としてかなり大きい。このエッチングは、荷電粒子ビーム照射の間、試料室内に依然として存在する残留汚染物によるものであると考えられる。
行208は、試料室コールド・トラップ116が約218Kに冷却されていることを除き行206の条件と同様の条件の下で生じたビーム誘起エッチングの結果を示す。ガス管路コールド・トラップ112は約77Kのままである。行208の条件下で生じたエッチ・ピット深さは、たとえ室内のArの圧力が行206および204と同じに維持されても、高真空下で得られたエッチ・ピット深さに匹敵する。理論によって縛られることを望むものではないが、試料室コールド・トラップを約218Kまで冷却すると、それによって、試料室124内の汚染物が試料室コールド・トラップ116上で凝縮し、したがって試料室124内の雰囲気から有効に除去されると考えられる。汚染物が試料室124に入る前にガス管路コールド・トラップ112が汚染物を捕捉するため、試料室124に入るプロセス・ガスは最小限の汚染を持ち込む。試料室雰囲気からの汚染物の除去は、室内の汚染物ガスの分圧を低下させる働きをし、したがって、試料上の単位面積当たりの吸着汚染物粒子量を低減させる。
表1は、典型的な汚染物、電子ビームと汚染物との相互作用によって発生するラジカル、および1バールにおける汚染物の沸点を示す。一部の荷電粒子ビーム・システム内にはNF、Cl、NO、HClなどの汚染物が存在する。前記汚染物は例えば、多ガス源108内に位置する102、104などのガス・リザーバ内にこれらの材料を含む荷電粒子ビーム・システム100内で見つかる。
Figure 2016195111
プロセス・ガスの沸点およびあらゆる予想される汚染物の沸点を指標として使用して、コールド・トラップ温度を最適化することができる。いくつかの実施形態では、コールド・トラップの温度が、予想されるどの汚染物の沸点よりも低く、使用されているプロセス・ガスの沸点よりも高いことが好ましい。コールド・トラップの温度は、プロセス・ガスの沸点よりも少なくとも10度、20度、30度または少なくとも50度高いことが好ましい。できるだけ多くの汚染物を捕捉するためには、コールド・トラップの温度を、プロセス・ガスの沸騰温度よりもわずかに高い温度に設定することが望ましい。コールド・トラップの温度は、予想される汚染物の沸点よりも10度未満、20度未満、30度未満、50度未満または80度未満だけ低いことが好ましい。これらの温度は、ガス管路内のコールド・トラップまたは試料室内のコールド・トラップに適用される。沸点はガスの圧力によって変化するため、コールド・トラップの温度は、コールド・トラップにおけるプロセス・ガスの圧力、使用するプロセス・ガスのタイプ、および予想される汚染物に応じて変更することができる。
いくつかの実施形態では、以下の手順を使用して、最適なコールド・トラップ温度を見つける。(i)コールド・トラップ温度を室温に設定し、試料室を、真空システムのベース圧力まで排気する。(ii)所望の試料室圧力を達成するのに必要な流量を使用して、プロセス・ガスを試料室内へ注入する。(iii)コールド・トラップ上でプロセス・ガスが凝縮し始めるまで、コールド・トラップ温度を徐々に下げる。(iv)プロセス・ガスの凝縮を防ぐため、コールド・トラップ温度をわずかに上昇させる。上の手順のステップ(iii)では、試料室圧力の急激な低下によって、または所望の試料室圧力を維持するのに必要なプロセス・ガスの流量の急な増大によって、プロセス・ガス凝縮温度を識別することができる。
図1に示されているようないくつかの実施形態では、試料室が、PLA142以外に、荷電粒子ビーム・カラム130内へのガス出口を持たない。PLA142を通り抜けるガスの流量は試料室124に含まれるガスの量に比べて小さく、そのため、試料室124内のガス雰囲気のターンオーバ(turnover)の速度も小さい。すなわち、試料室124内の雰囲気は比較的に停滞している。先行技術では、これによって、試料室124内における汚染物ガス分子とプロセス・ガス分子の比がより大きくなった。これは、室壁から汚染物が脱離したときに、それらの汚染物が除去されなかったためである。本発明のいくつかの実施形態では、コールド・トラップが試料室124内の汚染物を除去し、室内への流量が小さいことは、追加の汚染物が小さな流量で導入され、その結果、全体の汚染物濃度がより低くなることを意味する。いくつかの実施形態では、コールド・トラップ112および116による汚染物の有効な捕捉と、試料室124内の雰囲気の低いターンオーバ速度との組合せが、試料室124内の汚染物ガスの分圧が、図2の行202の高真空などの高真空下での分圧に匹敵する分圧まで低下することを可能にする。
行210は、プロセス・ガスがアルゴンではなく窒素(N)であることを除き行206の条件と同様の条件の下で生じたビーム誘起エッチングの結果を示す。行210の条件下で得られたエッチ・ピット深さは、行206で得られたエッチ・ピット深さに匹敵し、このことは、以前の理論づけに従って、窒素が、エッチングの原因でないということを示す結果につながる。
コールド・トラップ116および112の表面は、例えば計量された液体窒素流または他の冷流体によってによって、ペルチエ冷却器などの機械式もしくは熱電気式冷却器によって、または他の冷却手段によって冷却することができる。いくつかの実施形態では、この冷却された表面を、室温よりも低いが、使用されている圧力におけるプロセス・ガスの凝縮温度よりも高い温度まで冷却する。さらなる実施形態では、この表面を、室内の汚染物ガスはその冷却された表面で凝縮するが、プロセス・ガスの凝縮は室内に導入されることがない温度まで冷却する。
図3は、電子ビーム誘起エッチングの顕微鏡写真を示す。荷電粒子ビームにさらすことによってレース状炭素302およびグラフェン304をエッチングした。レース状炭素302およびグラフェン304は、グラフェン内の可視のエッチング領域306およびレース状炭素内の可視のエッチング領域308を有する。図3に示した画像は、室温の高真空(3×10Pa)環境中の低エネルギー電子ビーム、および電界放出銃(field emission gun)走査電子顕微鏡を使用して得たものである。SEM室をプラズマ洗浄してから、基板をシステム内に装填し、原位置(in−situ)で基板を加熱することにより、真空システム内の炭化水素汚染を最小限に抑えた。図3は、高真空条件および汚染除去にも関わらず、電子ビームによって試料がエッチングされたことを示している。
図4は、プロセス・ガス源402から弁406を通って試料室416へ流れるプロセス・ガス404の流れとともに汚染物が伴出される可能性があるプロセスを示す。プロセス・ガス404が、プロセス・ガス源402からガス管路422を通って流れると、プロセス・ガス分子424は、ガス管路422の内部表面408に吸着した汚染物分子410に遭遇する。吸着した一部の汚染物分子410は脱離し、弁414を通って試料室416に流入するプロセス・ガス流とともに伴出され412、試料室416を、汚染されたガス420で満たす。一部の汚染物分子は試料室416の壁に吸着し418、室内に存在する試料(図示せず)にも吸着する。場合によっては、このプロセスの結果、たとえ超高純度のプロセス・ガスが使用された場合であっても、プロセス・ガスが試料室416に到達したときにプロセス・ガス中の汚染物の濃度が容認できないレベルに達しうる。
次に図5を参照すると、荷電粒子ビーム・システムの試料室508が示されている。ガス管路502内にガス管路コールド・トラップ550が位置する。コールド・トラップ550は、弁554を通して冷却流体を流すことにより、冷却器552によって冷却される。プロセス・ガス504は、弁506を通って試料室508に入る前に、コールド・トラップ550によって浄化される。コールド・トラップ550よりも前のプロセス・ガス504は、プロセス・ガス分子512と汚染物分子510とを含む。試料室508の上方には、荷電粒子ビーム522を生成しそれを導く荷電粒子ビーム・カラム520があり、荷電粒子ビーム・カラム520は、圧力制限開口518によって試料室508に接続されている。試料室508内には試料室コールド・トラップ524が位置する。試料室コールド・トラップ524の冷却は冷却器528によって提供される。いくつかの実施形態では、冷却器528が、計量された冷却剤を弁526を通して流すことによって冷却を提供する。試料室コールド・トラップ524の冷却によって、汚染物分子530が表面で凝縮し、試料室508内の雰囲気から汚染物分子を除去し、試料室508内の汚染物分子510の濃度を低下させる。試料516は、試料室508内の試料ステージ514上に置かれる。室に入って来る汚染分子の濃度を低下させることによって、および試料室508内の雰囲気中の汚染を除去することによって、試料516上の単位面積当たりの吸着汚染物分子量は低減する。
図6は、HPSEM600を示す。HPSEM600では真空室128が試料室でもある。すなわち、部分的に囲われたセルが真空室128内にない。真空室128は、プロセス・ガスで満たされて、所望の処理圧力に維持される。圧力制限開口642が、集束カラム130内の圧力をこれよりも低い圧力に維持する。図1と共通する要素は同じ参照符号を使用して示されている。図1に示したシステムの場合と同様に、コールド・トラップ112が、真空室128に入る汚染ガスの量を低減させ、コールド・トラップ116が、真空室内の汚染ガスの量を低減させる。好ましい温度および他の操作パラメータは、図1に関して上で説明したものと同じである。
図7は、電子ビーム・カラム130と集束イオン・ビーム・カラム702とを含む高真空デュアル・ビーム・システム700を示す。2次電子は、シンチレータ光電子増倍管704を使用して検出される。後方散乱した電子は、後方散乱電子検出器706を使用して検出することができる。ノズル708によってプロセス・ガスが試料126の表面に向かって導かれる。ノズル708は、試料表面のプロセス・ガス濃度を比較的に高く維持するのに十分な程度に試料126の近くまで延び、その一方で、真空室128内のバックグラウンド圧力(back ground pressure)は比較的に低い。このバックグラウンド圧力は通常、シンチレータ光電子増倍管704を使用して2次電子を検出するのに十分な程度に低い。このシンチレータ光電子増倍管は通常、試料を含む室がガスで満たされる図1および図6のシステムで使用されるガス・カスケード増幅よりも高い増幅を提供する。室128内のバックグラウンド圧力は、電子ビーム・カラム130内およびイオン・ビーム・カラム702内の許容できる真空を維持するのにPLAを必要しない程度に十分に低い。本発明の実施形態は、プロセス・ガスのガス注入の使用と同時にコールド・トラップを使用する。
集束イオン・ビームは通常、イオンの質量のために、プロセス・ガスがない場合であっても試料をエッチングするが、集束イオン・ビーム中の汚染を低減させると、意図しない反応が低減し、ビーム誘起エッチングおよびビーム誘起付着のプロセス制御が改良される。
本明細書で使用されるとき、用語「処理」は、試料表面を改変するエッチング、付着などの処理と、画像化の両方を含む。用語「プロセス・ガス」または「処理ガス」は、画像化に使用されるガス、または荷電粒子ビームとともに使用されて試料を改変するガスを含むように使用される。用語「画像化ガス」は、主に画像化に使用されるガスを含むように使用される。これらのガスの種類は相互排除ではなく、一部のガスは、試料の改変と画像の形成の両方に使用される。
用語「試料室」は、その中で試料がプロセス・ガスおよびビームにさらされる室を示すために使用される。いくつかの実施形態では、試料室が、真空室内の処理セルを備える。いくつかの実施形態では、試料室が、環境制御型SEMの真空室であり、いくつかの実施形態では、試料室が、SEM、FIB、デュアル・ビームまたは他の真空処理システムの1次真空室である。その中で試料がガスおよびビームにさらされる試料室内にコールド・トラップが配置される。
本発明のいくつかの実施形態は、加工物を処理室内で荷電粒子ビーム処理する方法であって、
加工物の表面にプロセス・ガスを供給することと、
加工物の表面に向かって荷電粒子ビームを導くことと、
冷却された表面を処理室内に供給することと
を含み、冷却された表面の温度が、処理室から汚染物を除去するのには十分だが、プロセス・ガスを凝縮させるのには不十分な低温である
方法を提供する。
いくつかの実施形態では、冷却された表面を処理室内に供給することが、プロセス・ガスの凝縮温度よりも摂氏30度未満だけ高い温度を有する表面を供給することを含む。
いくつかの実施形態では、冷却された表面を処理室内に供給することが、試料から熱的に分離された冷却された表面を供給することを含む。
いくつかの実施形態では、プロセス・ガスを供給することが、荷電粒子ビームの存在下で加工物をエッチングしないプロセス・ガスを供給することを含む。
いくつかの実施形態では、プロセス・ガスを供給することが、荷電粒子ビームの存在下で加工物の表面と反応しないが、ガス・カスケード増幅画像化において使用するのに十分な程度にイオン化可能である画像化ガスを供給することを含む。
いくつかの実施形態では、プロセス・ガスを供給することが、付着前駆体ガスを供給することを含む。
いくつかの実施形態では、プロセス・ガスを供給することが、エッチング前駆体ガスを供給することを含む。
いくつかの実施形態では、プロセス・ガスが、O、NO、H、NH、Cl、HCl、NF、Ar、He、Ne、Kr、XeまたはNを含む。
いくつかの実施形態では、冷却された表面の温度が−55℃よりも低い。
いくつかの実施形態では、冷却された表面を処理室内に供給することが、冷却された表面と熱接触した液体窒素の流れを制御することによって、冷却された表面の温度を制御することを含む。
いくつかの実施形態では、加工物の表面にプロセス・ガスを供給することが、加工物の表面にプロセス・ガスの噴流を導くことを含み、プロセス室内のバックグラウンド圧力が10−7パスカルから10−2パスカルの間である。
いくつかの実施形態では、加工物の表面に向かって荷電粒子ビームを導くことが、荷電粒子ビーム光学カラムを通して荷電粒子ビームを導くことを含み、加工物の表面にプロセス・ガスを供給することが、加工物を、10−1パスカルから10パスカルの間の圧力に維持されたプロセス室内に保持することを含み、この室が、プロセス室から荷電粒子ビーム光学カラムへのガス流を限定する圧力制限開口を含む。
いくつかの実施形態では、加工物の表面にプロセス・ガスを供給することが、10−1パスカルから10パスカルの間の圧力に維持された環境セルを備える処理室内に加工物を保持することを含み、環境セルが、荷電粒子ビーム・システムの試料室内に配置され、圧力制限開口によって試料室から分離されている。
いくつかの実施形態では、加工物の表面にプロセス・ガスを供給することが、ガス管路を通してガス源からプロセス・ガスを供給することを含み、前記方法が、ガス管路内に第2の冷却された表面を供給することをさらに含み、第2の冷却された表面が、ガス管路から汚染物を除去するのには十分だが、プロセス・ガスを凝縮させるのには不十分な低温である。
いくつかの実施形態では、第2の冷却された表面の温度が−200℃から5℃の間である。
いくつかの実施形態は、ガス・カスケード増幅を使用して加工物の画像を形成することをさらに含む。
いくつかの実施形態では、加工物の表面にプロセス・ガスを供給することが、電子と反応すると分解して、加工物の表面に材料を付着させるか、または加工物の表面から材料をエッチングする分子からなるガスを供給することを含む。
本発明のいくつかの実施形態は、試料を処理する荷電粒子ビーム装置であって、
荷電粒子の源と、
荷電粒子を集束させる集束カラムと、
試料をガス環境中に閉じ込める処理室と、
処理室にプロセス・ガスを供給するガス源と、
処理室と集束カラムの間にあって、集束カラム内の圧力を処理室内の圧力よりも低く維持する少なくとも1つの圧力制限開口と、
処理室内のクライオトラップ表面を冷却する冷却器と
を備え、冷却されたクライオトラップ表面が、処理室環境から汚染物を凝縮させて、汚染物が試料の表面に吸着することを防ぐ
装置を提供する。
いくつかの実施形態では、この荷電粒子ビーム装置が試料真空室を含み、処理室が、試料室内に配置された環境セルを備え、環境セルと試料室の間に少なくとも1つの圧力制限開口が配置されている。
いくつかの実施形態では、荷電粒子ビーム装置が集束カラムから真空分離可能(vacuum isolatable)な試料真空室を含み、処理室が試料室を備える。
いくつかの実施形態では、試料室が、シンチレータ光電子増倍管検出器を含む。
いくつかの実施形態では、試料室が固体検出器を含む。
いくつかの実施形態では、試料室が、電子後方散乱回折パターンを発生させるために使用される検出器を含む。
いくつかの実施形態では、試料室がX線検出器を含む。
いくつかの実施形態では、試料室が、ガス・カスケード増幅検出器を含む環境制御型走査電子顕微鏡試料真空室である。
いくつかの実施形態では、冷却器が液体窒素の源を備える。
いくつかの実施形態では、冷却器が熱電気式冷却器を備える。
いくつかの実施形態では、ガス源が、荷電粒子ビームの存在下で炭素をエッチングしない画像化ガスの源を備える。
いくつかの実施形態では、ガス源が、O、NO、H、NH、Cl、HCI、NF、Ar、He、Ne、Kr、XeまたはNの源を備える。
いくつかの実施形態では、この装置が、
ガス源と処理室の間のガス管路と、
ガス管路内に配置された第2のクライオトラップ表面と
をさらに備える。
いくつかの実施形態では、この装置が、第2のクライオトラップ表面を冷却する第2の冷却器をさらに備える。
本発明のいくつかの実施形態は、試料を処理する荷電粒子ビーム装置であって、
荷電粒子の源と、
荷電粒子を集束させる集束カラムと、
試料をガス環境中に閉じ込める処理室と、
加工物に向かってプロセス・ガスを導くガス源と、
処理室内のクライオトラップ表面を冷却する冷却器と、
荷電粒子ビーム装置を制御する制御装置と
を備え、制御装置が、加工物に向かってプロセス・ガスを導き、同時にクライオトラップを冷却するように構成されており、冷却されたクライオトラップ表面が、処理室環境から汚染物を凝縮させて、汚染物が試料の表面に吸着することを防ぐ
装置を提供する。
本発明の好ましい方法または装置は多くの新規の態様を有する。本発明は、目的の異なる、異なる方法または装置として実施することができるため、全ての実施形態に全ての態様が存在する必要はない。さらに、記載された実施形態の態様の多くは別個に特許を受けることができる。本発明は幅広い適用可能性を有し、上記の例において説明し示した多くの利点を提供することができる。本発明の実施形態は、具体的な用途によって大きく異なり、全ての実施形態が、これらの全ての利点を提供するわけではなく、本発明によって達成可能な全ての目的を達成するわけではない。
さらに、コンピュータ・ハードウェア、ハードウェアとソフトウェアの組合せ、またはコンピュータ可読の非一時的メモリに記憶されたコンピュータ命令によって、本発明の実施形態を実現することができることも認識すべきである。本発明の方法は、標準プログラミング技法を使用し、本明細書に記載された方法および図に基づいて、コンピュータ・プログラムとして実現することができ、このコンピュータ・プログラムは、コンピュータ・プログラムを含むように構成されたコンピュータ可読の非一時的記憶媒体を含み、そのように構成された記憶媒体は、コンピュータを、予め定義された特定の方式で動作させる。コンピュータ・システムと通信するため、それぞれのプログラムは、高水準手続き型プログラミング言語またはオブジェクト指向プログラミング言語で実現することができる。しかしながら、所望ならば、それらのプログラムを、アセンブラ言語または機械語で実現することもできる。いずれにせよ、その言語は、コンパイルまたは解釈される言語とすることができる。さらに、そのプログラムは、そのプログラムを実行するようにプログラムされた専用集積回路上で実行することができる。
さらに、方法論は、限定はされないが、荷電粒子ツールもしくは他の画像化デバイスとは別個の、荷電粒子ツールもしくは他の画像化デバイスと一体の、または荷電粒子ツールもしくは他の画像化デバイスと通信するパーソナル・コンピュータ、ミニコンピュータ、メインフレーム、ワークステーション、ネットワーク化されたコンピューティング環境または分散コンピューティング環境、コンピュータ・プラットホームなどを含む、任意のタイプのコンピューティング・プラットホームで実現することができる。本発明の諸態様は、取外し可能であるか、またはコンピューティング・プラットホームと一体であるかを問わない、ハードディスク、光学式読取りおよび/または書込み記憶媒体、RAM、ROMなどの非一時的記憶媒体または記憶装置上に記憶された機械可読コードであって、プログラム可能なコンピュータが、本明細書に記載された手順を実行するために、その記憶媒体または記憶装置を読んだときに、そのコンピュータを構成し、動作させるために、そのコンピュータが読むことができるように記憶された機械可読コードとして実現することができる。さらに、機械可読コードまたは機械可読コードの一部を、有線または無線ネットワークを介して伝送することができる。本明細書に記載された発明は、マイクロプロセッサまたは他のデータ処理装置と連携して上述の諸ステップを実現する命令またはプログラムを含む、これらのさまざまなタイプの非一時的コンピュータ可読記憶媒体、およびその他のさまざまなタイプの非一時的コンピュータ可読記憶媒体を含む。本発明はさらに、本明細書に記載された方法および技法に従ってプログラムされたコンピュータを含む。
入力データに対してコンピュータ・プログラムを使用して、本明細書に記載された機能を実行し、それによって入力データを変換して出力データを生成することができる。この出力情報は、ディスプレイ・モニタなどの1つまたは複数の出力装置に出力される。本発明の好ましい実施形態では、変換されたデータが物理的な実在する物体を表し、これには、その物理的な実在する物体の特定の視覚的描写を表示装置上に生成することが含まれる。
以上の説明の多くは、ドリル掘り屑からの鉱物試料を対象としているが、本発明は、適当な任意の物質の試料を調製する目的に使用することができる。特記しない限り、本出願では、用語「加工物」、「試料」、「基板」および「試験体(specimen)」が相互に交換可能に使用されている。さらに、本明細書において用語「自動」、「自動化された」または同種の用語が使用されるときには常に、それらの用語が、自動プロセスもしくは自動ステップ、または自動化されたプロセスもしくは自動化されたステップの手動開始を含むことが理解される。
以下の議論および特許請求の範囲では、用語「含む(including)」および「備える(comprising)」が、オープン・エンド(open−ended)型の用語として使用されており、したがって、これらの用語は、「...を含むが、それらだけに限定はされない(including,but not limited to)」ことを意味すると解釈すべきである。ある用語が本明細書で特に定義されていない場合、その用語は、その通常の一般的な意味で使用されることが意図されている。添付図面は、本発明の理解を助けることが意図されており、特記しない限り、一定の比率では描かれていない。本発明を実施するのに適した粒子ビーム・システムは例えば、本出願の譲受人であるFEI Companyから市販されている。
本明細書に記載されたさまざまな特徴は、本明細書の実施形態に記載された組合せだけでなく、任意の機能組合せまたはそれよりも下位の機能組合せで使用することができる。そのため、本開示は、このような組合せまたは下位の組合せの説明を提供するものであると解釈すべきである。
本発明および本発明の利点を詳細に説明したが、添付の特許請求の範囲によって定義された本発明の範囲から逸脱することなく、本明細書に記載された実施形態に、さまざまな変更、置換および改変を加えることができることを理解すべきである。さらに、本出願の範囲が、本明細書に記載されたプロセス、機械、製造、組成物、手段、方法およびステップの特定の実施形態に限定されることは意図されていない。当業者なら本発明の開示から容易に理解するように、本明細書に記載された対応する実施形態と実質的に同じ機能を実行し、または実質的に同じ結果を達成する既存のまたは今後開発されるプロセス、機械、製造、組成物、手段、方法またはステップを、本発明に従って利用することができる。したがって、添付の特許請求の範囲は、その範囲内に、このようなプロセス、機械、製造、組成物、手段、方法またはステップを含むことが意図されている。
108 ガス源
112 ガス管路コールド・トラップ
114 冷却器
116 試料室コールド・トラップ
118 冷却器
126 試料
128 真空室
130 荷電粒子カラム
146 試料ステージ
160 制御装置
162 メモリ
164 表示装置

Claims (32)

  1. 加工物を処理室内で荷電粒子ビーム処理する方法であって、
    前記加工物の表面にプロセス・ガスを供給することと、
    前記加工物の表面に向かって荷電粒子ビームを導くことと、
    冷却された表面を前記処理室内に供給することと
    を含み、前記冷却された表面の温度が、前記処理室から汚染物を除去するのには十分だが、前記プロセス・ガスを凝縮させるのには不十分な低温である
    方法。
  2. 冷却された表面を前記処理室内に供給することが、前記プロセス・ガスの凝縮温度よりも摂氏30度未満だけ高い温度を有する表面を供給することを含む、請求項1に記載の方法。
  3. 冷却された表面を前記処理室内に供給することが、前記試料から熱的に分離された冷却された表面を供給することを含む、請求項1または2に記載の方法。
  4. プロセス・ガスを供給することが、前記荷電粒子ビームの存在下で前記加工物をエッチングしないプロセス・ガスを供給することを含む、請求項1から3のいずれか一項に記載の方法。
  5. プロセス・ガスを供給することが、前記荷電粒子ビームの存在下で前記加工物の表面と反応しないが、ガス・カスケード増幅画像化において使用するのに十分な程度にイオン化可能である画像化ガスを供給することを含む、請求項4に記載の方法。
  6. プロセス・ガスを供給することが、付着前駆体ガスを供給することを含む、請求項1から5のいずれか一項に記載の方法。
  7. プロセス・ガスを供給することが、エッチング前駆体ガスを供給することを含む、請求項1から3のいずれか一項に記載の方法。
  8. 前記プロセス・ガスが、O、NO、H、NH、Cl、HCl、NF、Ar、He、Ne、Kr、XeまたはNを含む、請求項1から7のいずれか一項に記載の方法。
  9. 前記冷却された表面の温度が−55℃よりも低い、請求項1から8のいずれか一項に記載の方法。
  10. 冷却された表面を前記処理室内に供給することが、前記冷却された表面と熱接触した液体窒素の流れを制御することによって、前記冷却された表面の温度を制御することを含む、請求項1から9のいずれか一項に記載の方法。
  11. 前記加工物の表面にプロセス・ガスを供給することが、前記加工物の表面にプロセス・ガスの噴流を導くことを含み、前記処理室内のバックグラウンド圧力が10−7パスカルから10−2パスカルの間である、請求項1から10のいずれか一項に記載の方法。
  12. 前記加工物の表面に向かって荷電粒子ビームを導くことが、荷電粒子ビーム光学カラムを通して荷電粒子ビームを導くことを含み、前記加工物の表面にプロセス・ガスを供給することが、前記加工物を、10−1パスカルから10パスカルの間の圧力に維持された処理室内に保持することを含み、前記室が、前記処理室から前記荷電粒子ビーム光学カラムへのガス流を限定する圧力制限開口を含む、請求項1から10のいずれか一項に記載の方法。
  13. 前記加工物の表面にプロセス・ガスを供給することが、10−1パスカルから10パスカルの間の圧力に維持された環境セルを備える処理室内に前記加工物を保持することを含み、前記環境セルが、荷電粒子ビーム・システムの試料室内に配置され、圧力制限開口によって前記試料室から分離された、請求項1から10および12のいずれか一項に記載の方法。
  14. 前記加工物の表面にプロセス・ガスを供給することが、ガス管路を通してガス源からプロセス・ガスを供給することを含み、前記方法が、前記ガス管路内に第2の冷却された表面を供給することをさらに含み、前記第2の冷却された表面が、前記ガス管路から汚染物を除去するのには十分だが、前記プロセス・ガスを凝縮させるのには不十分な低温である、請求項1から13のいずれか一項に記載の方法。
  15. 前記第2の冷却された表面の温度が−200℃から5℃の間である、請求項14に記載の方法。
  16. ガス・カスケード増幅を使用して前記加工物の画像を形成することをさらに含む、請求項1から15のいずれか一項に記載の方法。
  17. 前記加工物の表面にプロセス・ガスを供給することが、電子と反応すると分解して、前記加工物の表面に材料を付着させるか、または前記加工物の表面から材料をエッチングする分子からなるガスを供給することを含む、請求項1から3および5から16のいずれか一項に記載の方法。
  18. 試料を処理する荷電粒子ビーム装置であって、
    荷電粒子の源と、
    前記荷電粒子を集束させる集束カラムと、
    試料をガス環境中に閉じ込める処理室と、
    前記処理室にプロセス・ガスを供給するガス源と、
    前記処理室と前記集束カラムの間にあって、前記集束カラム内の圧力を前記処理室内の圧力よりも低く維持する少なくとも1つの圧力制限開口と、
    前記処理室内のクライオトラップ表面を冷却する冷却器と
    を備え、冷却された前記クライオトラップ表面が、前記処理室の環境から汚染物を凝縮させて、前記汚染物が前記試料の表面に吸着することを防ぐ
    装置。
  19. 試料真空室を含み、前記処理室が、前記試料室内に配置された環境セルを備え、前記環境セルと前記試料室の間に少なくとも1つの圧力制限開口が配置された、請求項18に記載の装置。
  20. 前記集束カラムから真空分離可能な試料真空室を含み、前記処理室が前記試料室を備える、請求項18に記載の装置。
  21. 前記試料室が、シンチレータ光電子増倍管検出器を含む、請求項20に記載の装置。
  22. 前記試料室が固体検出器を含む、請求項20または21に記載の装置。
  23. 前記試料室が、電子後方散乱回折パターンを発生させるために使用される検出器を含む、請求項20から22のいずれか一項に記載の装置。
  24. 前記試料室がX線検出器を含む、請求項20から23のいずれか一項に記載の装置。
  25. 前記試料室が、ガス・カスケード増幅検出器を含む環境制御型走査電子顕微鏡試料真空室である、請求項20から24のいずれか一項に記載の装置。
  26. 前記冷却器が液体窒素の源を備える、請求項18から25のいずれか一項に記載の装置。
  27. 前記冷却器が熱電気式冷却器を備える、請求項18から25のいずれかに一項記載の装置。
  28. 前記ガス源が、荷電粒子ビームの存在下で炭素をエッチングしない画像化ガスの源を備える、請求項18から27のいずれか一項に記載の装置。
  29. 前記ガス源が、O、NO、H、NH、Cl、HCI、NF、Ar、He、Ne、Kr、XeまたはNの源を備える、請求項18から28のいずれか一項に記載の装置。
  30. 前記ガス源と前記処理室の間のガス管路と、
    前記ガス管路内に配置された第2のクライオトラップ表面と
    をさらに備える、請求項18から29のいずれか一項に記載の装置。
  31. 前記第2のクライオトラップ表面を冷却する第2の冷却器をさらに備える、請求項30に記載の装置。
  32. 試料を処理する荷電粒子ビーム装置であって、
    荷電粒子の源と、
    前記荷電粒子を集束させる集束カラムと、
    試料をガス環境中に閉じ込める処理室と、
    前記加工物に向かってプロセス・ガスを導くガス源と、
    前記処理室内のクライオトラップ表面を冷却する冷却器と、
    前記荷電粒子ビーム装置を制御する制御装置と
    を備え、前記制御装置が、前記加工物に向かってプロセス・ガスを導き、同時に前記クライオトラップを冷却するように構成されており、冷却された前記クライオトラップ表面が、前記処理室環境から汚染物を凝縮させて、前記汚染物が前記試料の表面に吸着することを防ぐ
    装置。
JP2016062904A 2015-03-31 2016-03-26 プロセス・ガスおよび冷却された表面を使用した荷電粒子ビーム処理 Active JP6765832B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/674,558 US9799490B2 (en) 2015-03-31 2015-03-31 Charged particle beam processing using process gas and cooled surface
US14/674,558 2015-03-31

Publications (2)

Publication Number Publication Date
JP2016195111A true JP2016195111A (ja) 2016-11-17
JP6765832B2 JP6765832B2 (ja) 2020-10-07

Family

ID=55637264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062904A Active JP6765832B2 (ja) 2015-03-31 2016-03-26 プロセス・ガスおよび冷却された表面を使用した荷電粒子ビーム処理

Country Status (4)

Country Link
US (1) US9799490B2 (ja)
EP (1) EP3076421A1 (ja)
JP (1) JP6765832B2 (ja)
CN (1) CN106024563B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074468A (ja) * 2017-10-18 2019-05-16 新日鐵住金株式会社 試料解析方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152183A (ja) * 2017-03-10 2018-09-27 株式会社日立製作所 微細構造体の製造方法および製造装置
CN111466010A (zh) * 2017-10-09 2020-07-28 艾德特斯解决方案有限公司 用于控制倍增电极电子发射表面上污染物沉积的方法和装置
US10395923B2 (en) 2017-10-11 2019-08-27 Lawrence Livermore National Security, Llc Localized electron beam induced deposition of silicon carbide
US10176983B1 (en) 2017-10-11 2019-01-08 Lawrence Livermore National Security, Llc Charged particle induced deposition of boron containing material
CN114730686A (zh) * 2019-09-06 2022-07-08 朗姆研究公司 用于半导体设备的吸附室壁
DE102020105706B4 (de) 2020-03-03 2021-09-16 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem, Verfahren zum Betreiben eines Teilchenstrahlsystems und Computerprogrammprodukt
EP4032648A1 (en) * 2021-01-25 2022-07-27 Infineon Technologies AG Arrangement for forming a connection
CN113984813A (zh) * 2021-09-27 2022-01-28 上海大学 一种高通量薄膜晶体结构表征装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308801A (ja) * 2002-04-15 2003-10-31 National Institute Of Advanced Industrial & Technology 電子ビーム装置
JP2009245907A (ja) * 2008-04-01 2009-10-22 Hitachi High-Technologies Corp 荷電粒子線装置
US20120112062A1 (en) * 2010-11-09 2012-05-10 Fei Company Environmental Cell for Charged Particle Beam System
JP2013514536A (ja) * 2009-12-15 2013-04-25 フェニックス ニュークリア ラブズ エルエルシー コンテナのアクティブ中性子問いかけを行う方法及び装置
WO2014175074A1 (ja) * 2013-04-23 2014-10-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び当該装置を用いる試料作製方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU67513A1 (ja) * 1972-11-20 1973-07-13
US4785182A (en) 1987-05-21 1988-11-15 Electroscan Corporation Secondary electron detector for use in a gaseous atmosphere
US5265463A (en) * 1992-07-24 1993-11-30 Modern Controls, Inc. Apparatus for measuring the transmission rate of volatile organic chemicals through a barrier material
WO1999046810A1 (fr) * 1998-03-12 1999-09-16 Hitachi, Ltd. Procede permettant de traiter la surface d'un echantillon
US20060065853A1 (en) 2004-09-30 2006-03-30 Chad Rue Apparatus and method for manipulating sample temperature for focused ion beam processing
US8921811B2 (en) * 2007-02-06 2014-12-30 Fei Company High pressure charged particle beam system
DE102007054074A1 (de) 2007-11-13 2009-05-14 Carl Zeiss Nts Gmbh System zum Bearbeiten eines Objekts
DE102008037951B4 (de) 2008-08-14 2018-02-15 Nawotec Gmbh Verfahren und Vorrichtung zum elektronenstrahlinduzierten Ätzen von mit Gallium verunreinigten Schichten
US8617668B2 (en) 2009-09-23 2013-12-31 Fei Company Method of using nitrogen based compounds to reduce contamination in beam-induced thin film deposition
DE102010001346B4 (de) * 2010-01-28 2014-05-08 Carl Zeiss Microscopy Gmbh Teilchenstrahlgerät und Verfahren zum Betreiben eines Teilchenstrahlgeräts
EP2402475A1 (en) * 2010-06-30 2012-01-04 Fei Company Beam-induced deposition at cryogenic temperatures
WO2012099635A2 (en) * 2010-10-28 2012-07-26 President And Fellows Of Harvard College Electron beam processing with condensed ice
JP5481401B2 (ja) * 2011-01-14 2014-04-23 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP5854781B2 (ja) * 2011-01-14 2016-02-09 キヤノン株式会社 質量分析方法および装置
US9255339B2 (en) 2011-09-19 2016-02-09 Fei Company Localized, in-vacuum modification of small structures
US9070533B2 (en) * 2012-07-30 2015-06-30 Fei Company Environmental scanning electron microscope (ESEM/SEM) gas injection apparatus with anode integrated with gas concentrating structure
US9142350B2 (en) * 2013-03-13 2015-09-22 GM Global Technology Operations LLC Synthesis of ordered L10-type FeNi nanoparticles
US9123506B2 (en) 2013-06-10 2015-09-01 Fei Company Electron beam-induced etching

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308801A (ja) * 2002-04-15 2003-10-31 National Institute Of Advanced Industrial & Technology 電子ビーム装置
JP2009245907A (ja) * 2008-04-01 2009-10-22 Hitachi High-Technologies Corp 荷電粒子線装置
JP2013514536A (ja) * 2009-12-15 2013-04-25 フェニックス ニュークリア ラブズ エルエルシー コンテナのアクティブ中性子問いかけを行う方法及び装置
US20120112062A1 (en) * 2010-11-09 2012-05-10 Fei Company Environmental Cell for Charged Particle Beam System
JP2012104478A (ja) * 2010-11-09 2012-05-31 Fei Co 荷電粒子ビーム・システム用の環境セル
WO2014175074A1 (ja) * 2013-04-23 2014-10-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び当該装置を用いる試料作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074468A (ja) * 2017-10-18 2019-05-16 新日鐵住金株式会社 試料解析方法

Also Published As

Publication number Publication date
US20160293380A1 (en) 2016-10-06
JP6765832B2 (ja) 2020-10-07
EP3076421A1 (en) 2016-10-05
CN106024563A (zh) 2016-10-12
US9799490B2 (en) 2017-10-24
CN106024563B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
JP6765832B2 (ja) プロセス・ガスおよび冷却された表面を使用した荷電粒子ビーム処理
US10304658B2 (en) Electron beam-induced etching
JP5677700B2 (ja) ビーム誘起処理における窒素ベース化合物の使用
US8921811B2 (en) High pressure charged particle beam system
JP5178926B2 (ja) 荷電粒子顕微鏡及びイオン顕微鏡
CN107039228B (zh) 带电粒子束诱导刻蚀
JP2009540534A (ja) イオン注入に使用するためのイオンをイオン源から抽出するための方法および装置
JP2015029072A5 (ja)
EP2787523B1 (en) Low energy ion milling or deposition
KR102520215B1 (ko) 탄소 제거를 위한 증진된 하전 입자 빔 방법
US20180247801A1 (en) Gallium implantation cleaning method
WO2017029754A1 (ja) イオンビーム装置、及び試料元素分析方法
EP3096343B1 (en) Method of imaging a sample with charged particle beam using an imaging gas
WO2018181410A1 (ja) 集束イオンビーム装置
JP2014149919A (ja) イオンビーム装置および不純物ガスの除去方法
JP2010257854A (ja) イオンビーム装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6765832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250