JP2016173078A - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP2016173078A
JP2016173078A JP2015053898A JP2015053898A JP2016173078A JP 2016173078 A JP2016173078 A JP 2016173078A JP 2015053898 A JP2015053898 A JP 2015053898A JP 2015053898 A JP2015053898 A JP 2015053898A JP 2016173078 A JP2016173078 A JP 2016173078A
Authority
JP
Japan
Prior art keywords
amount
filter
region
oxidation
deposition amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015053898A
Other languages
English (en)
Other versions
JP6256393B2 (ja
Inventor
大地 今井
Daichi Imai
大地 今井
寛真 西岡
Hiromasa Nishioka
寛真 西岡
藤原 清
Kiyoshi Fujiwara
清 藤原
山下 芳雄
Yoshio Yamashita
芳雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015053898A priority Critical patent/JP6256393B2/ja
Priority to KR1020160030191A priority patent/KR101760607B1/ko
Priority to MYPI2016700909A priority patent/MY177948A/en
Priority to RU2016109192A priority patent/RU2628150C1/ru
Priority to EP16160708.0A priority patent/EP3070282B1/en
Priority to US15/071,668 priority patent/US9988962B2/en
Priority to CN201610154458.1A priority patent/CN105986859B/zh
Priority to BR102016005959A priority patent/BR102016005959A2/pt
Publication of JP2016173078A publication Critical patent/JP2016173078A/ja
Application granted granted Critical
Publication of JP6256393B2 publication Critical patent/JP6256393B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount

Abstract

【課題】簡便な手法により、フィルタでの局所的なPM堆積量を好適に算出する。【解決手段】排気の流れに沿って第1領域及び第2領域を有するフィルタにおいて、所定昇温処理が行われている際に、第1領域の温度が、捕集された粒子状物質の酸化が開始される所定酸化開始温度を超えてから、第2領域の温度が、該所定酸化開始温度を超えるまでの期間の少なくとも一部である第1酸化期間の長さに対する、該期間での排気差圧センサの検出値である第1差圧低下量の大きさの比率が大きくなるほど、第1領域での堆積量を多く算出する。また、その所定昇温処理が行われている期間であって第2領域の温度が所定酸化開始温度を超えた後の第2酸化期間の長さに対する、当該期間での排気差圧センサの検出値である第2差圧低下量のうち第2領域分に相当する低下量の大きさの比率が大きくなるほど、第2領域での堆積量を多く算出する。【選択図】図2

Description

本発明は、内燃機関の排気浄化システムに関する。
内燃機関において排気中の粒子状物質(以下、「PM」と称する)が外部に放出されることを抑制すべく、排気通路にフィルタが設けられる。このフィルタには、内燃機関の運転とともに排気中のPMが捕集され次第に堆積していくため、その目詰まりを防止するためにフィルタ再生処理が行われる。例えば、ディーゼルエンジンでは、一般には排気の空燃比が継続的にリーン側の空燃比であることから、排気中に未燃燃料を供給し排気通路に設けられた酸化触媒等で酸化させて排気温度を上昇させ、以て、堆積PMの酸化除去が行われる。
ここで、一般にフィルタは排気の流れに沿った本体部分を有し、そこで排気中のPM捕集が行われる。しかしながら、フィルタにおけるPMの堆積状況は必ずしも均一ではなく、排気の流れや内燃機関での負荷推移等に起因するフィルタにおける温度分布によって、局所的にPM堆積量がばらつく可能性がある。このようにフィルタでの局所的なPM堆積量のばらつきは、上記フィルタ再生処理時にフィルタの過昇温を招く原因となる可能性があり、フィルタを劣化等させるおそれがあるため好ましくない。そこで、特許文献1には、フィルタの排気流れ方向に複数の電磁波送受信手段を配置し、その検出結果を利用してフィルタにおけるPM堆積量の空間分布(ばらつき)を計測する技術が開示されている。
特開2011−137445号公報 特開2010−144514号公報
このような電磁波を使用する計測手法では、電磁波の送受信のための装置をフィルタ近傍に設置する必要があり、内燃機関の排気系の設計が複雑となる。また、その製造コストも上昇する。
本発明は、上記した問題点に鑑みてなされたものであり、簡便な手法により、フィルタでの局所的なPM堆積量を好適に算出する技術を提供することを目的とする。
本発明において、上記課題を解決するために、フィルタの温度上昇過程における、局所的なPM堆積量の算出対象となるフィルタの部分領域でのPMの酸化速度に着目した。PM酸化速度は、当該部分領域におけるPM堆積量と相関を有している。そのため、当該相関に基づくことで、当該部分領域でのPM酸化速度から当該部分領域でのPM堆積量を算出することが可能となる。そして、本発明では、当該部分領域でのPM酸化速度に関連するパラメータとして、フィルタの温度上昇過程での酸化期間の長さと、フィルタの上流側と下流側との間の排気差圧に着目している。
具体的には、本発明は、内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタであって、該フィルタの一部である第1領域と、該第1領域よりも下流側に位置する該フィルタの一部である第2領域とを有するフィルタと、前記第1領域及び前記第
2領域に堆積している粒子状物質の一部のみを酸化させるように、前記フィルタをその上流側から昇温させる所定昇温処理を実行する昇温手段と、前記フィルタ上流の排気通路とその下流の排気通路との排気圧力差を取得する差圧取得手段と、前記所定昇温処理が行われている際に、前記第1領域の温度が、捕集された粒子状物質の酸化が開始される所定酸化開始温度を超えてから、前記第2領域の温度が、該所定酸化開始温度を超えるまでの期間の少なくとも一部である第1酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第1差圧低下量と、該第1酸化期間の長さとに基づいて、該第1領域における粒子状物質の堆積量である第1堆積量を算出する第1算出手段と、前記所定昇温処理が行われている期間であって前記第2領域の温度が前記所定酸化開始温度を超えた後の第2酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第2差圧低下量と、該第2酸化期間の長さとに基づいて、該第2領域における粒子状物質の堆積量である第2堆積量を算出する第2算出手段と、を備える、内燃機関の排気浄化システムである。そして、前記第1算出手段は、前記第1酸化期間の長さに対する前記第1差圧低下量の大きさの比率が大きくなるほど、前記第1堆積量を多く算出し、前記第2算出手段は、前記第2酸化期間の長さに対する、前記第2差圧低下量のうち前記第2領域分の差圧低下量に相当する第2領域部分低下量の大きさの比率が大きくなるほど、前記第2堆積量を多く算出する。
上記内燃機関には、その排気通路にフィルタが設けられることで、排気中のPMの捕集が行われる。ここで、フィルタには、排気の流れ方向に沿って位置する該フィルタを構成する部分的な領域として、少なくとも第1領域と第2領域が含まれる。フィルタにおいては、第2領域が第1領域の下流側に位置すればよく、これらの領域以外の該フィルタの部分領域が含まれてもよい。また、第1領域と第2領域は互いに隣接している領域であるのが好ましい。また、本発明における第1領域の温度及び第2領域の温度としては、実際には各領域内では微視的には何らかの温度分布が形成されるが、各領域を代表する温度である。各領域を代表する温度設定の手法については様々な手法が採用でき、例えば、各領域での排気流れ方向における中央点での温度を各領域の温度として代表させてもよく、別法としては、中央点以外の点で、好ましくは各領域において同義の位置となる中央点以外の点での温度を各領域の温度として代表させてもよい。
そして、昇温手段は、フィルタをその上流側から昇温させる所定昇温処理を行う。したがって、所定昇温処理が行われると、フィルタにおいて上流側の第1領域が先に昇温し、その後に第2領域が昇温していくことになる。ここで、所定昇温処理は、後述のように第1領域および第2領域において堆積しているPM量、すなわちフィルタにおいて局所的に堆積しているPM堆積量を算出するために、フィルタを昇温させる処理であり、当該算出のために、フィルタの各領域に堆積しているPMの一部のみを酸化燃焼させるようにフィルタを昇温させる。なお、所定昇温処理のための具体的な昇温形態は、既知の様々な昇温形態を採用することができる。例えば、フィルタの上流側に酸化触媒が配置されている場合や、フィルタ内に酸化触媒が担持されている場合には、内燃機関での燃焼条件を制御し排気中に未燃燃料成分を含めることで、その酸化熱によるフィルタの昇温を図ってもよい。また、別法として、排気通路に排気に燃料添加を行う弁を設けて、添加される燃料の酸化熱を利用してフィルタの昇温を図ってもよい。また、別法として、フィルタの上流端面の上流側に隣接して設けられたヒータやバーナにより、フィルタの昇温を図ってもよい。何れの昇温形態にせよ、所定昇温処理は、フィルタ全体に堆積しているPMを酸化燃焼させるものではなく、フィルタの各領域における堆積PMの一部のみを酸化燃焼させる昇温処理である。
ここで、本発明に係る排気浄化システムにおいては、フィルタの一部である第1領域において堆積しているPM量である第1堆積量が第1算出手段により算出され、フィルタの一部である第2領域において堆積しているPM量である第2堆積量が第2算出手段により
算出される。第1算出手段及び第2算出手段によるそれぞれのPM堆積量の算出においては、上記所定昇温処理が行われている際の、各領域におけるPMの酸化速度と、各領域でのPM堆積量との相関が考慮されている。
先ず、第1算出手段は、第1領域における第1堆積量を算出する。所定昇温処理が行われると、上流側に位置する第1領域は、第2領域よりも早期に昇温し、先に所定酸化開始温度に到達し超えることになる。当該所定酸化開始温度は、フィルタに堆積したPMが酸化され始める温度であり、事前の実験や技術常識等に従い適宜設定され得る。なお、所定昇温処理が実行されていると、第1領域が所定酸化開始温度を超えた後に、第2領域が同じく所定酸化開始温度に到達し超えることになる。この第1領域が所定酸化開始温度を超えてから第2領域が所定酸化開始温度を超えるまでの期間は、フィルタにおいて第1領域での堆積PMの酸化燃焼は進んでいるが、第2領域での堆積PMの酸化燃焼は進んでいない期間と言える。そこで、本発明では、当該期間の少なくとも一部を、第1酸化期間とする。
なお、フィルタにおける第1領域および第2領域の温度は、所定昇温処理によってフィルタに供給される熱量や、フィルタでの熱の伝播に関連する諸条件(例えば、フィルタの熱容量や排気流量等)に基づいて推定することができる。また、別法として、第1領域および第2領域に温度検出のためのセンサを設け、各領域の温度をそれぞれ検出するようにしてもよい。
ここで、第1酸化期間における第1差圧低下量は、所定昇温処理により第1領域での堆積PMが酸化燃焼されたことによる堆積PMの減少量を反映している。更に、その第1差圧低下量が生じた第1酸化期間の長さを考慮すると、第1酸化期間の長さに対する第1差圧低下量の大きさの比率(以下、「第1比率」とも言う)は、所定昇温処理における第1領域での堆積PMの酸化速度を反映している。そして、フィルタにおける堆積PMの酸化速度は堆積PM量に相関することを踏まえ、第1算出手段は、第1領域での第1堆積量を、上記第1比率に基づいて算出することが可能となる。詳細には、堆積PMの酸化速度は堆積PM量が多くなるほど速くなる傾向があることを踏まえ、第1算出手段は、第1比率が大きくなるほど、第1堆積量を多くなるように算出する。なお、第1算出手段により算出される第1堆積量は、上記堆積PMの酸化速度に基づいて算出されることを踏まえれば、堆積PMの酸化が行われる所定昇温処理の実行時の堆積量と言える。
次に、第2算出手段による、第2領域での第2堆積量の算出について説明する。所定昇温処理が行われている状態で第2領域の温度が所定酸化開始温度を超えた後の第2酸化期間では、第2領域での堆積PMの酸化燃焼も進むことになり、更に、上流側に位置する第1領域での堆積PMの酸化燃焼も継続されている状態にある。したがって、第2酸化期間では、所定昇温処理により、第1領域及び第2領域でのそれぞれの堆積PMが酸化燃焼されることになる。
したがって、第2酸化期間における第2差圧低下量は、所定昇温処理により第1領域及び第2領域での堆積PMが酸化燃焼されたことによる堆積PMの減少量を反映している。そこで、本発明では、第2差圧低下量のうち第2領域に存在する堆積PMが酸化燃焼したことによる差圧低下量を第2領域部分低下量とする。そして、第2酸化期間の長さに対する第2領域部分低下量の大きさの比率(以下、「第2比率」とも言う)は、所定昇温処理における第2領域での堆積PMの酸化速度を反映していることになる。そこで、上記の通り堆積PMの酸化速度は堆積PM量が多くなるほど速くなる傾向があることを踏まえ、第2算出手段は、第2比率が大きくなるほど、第2堆積量を多くなるように算出する。なお、第2算出手段により算出される第2堆積量は、上記堆積PMの酸化速度に基づいて算出されることを踏まえれば、堆積PMの酸化が行われる所定昇温処理の実行時の堆積量と言
える。
ここで、第2領域部分低下量については、前記第2酸化期間が前記第1酸化期間と同じ長さに設定される場合、前記第2領域部分低下量は、前記第2差圧低下量と前記第1差圧低下量との差分に基づいて算出されてもよい。第2酸化期間を第1酸化期間と同じ長さに設定すると、第2酸化期間における第1領域での堆積PMの酸化量と、第1酸化期間における第1領域での堆積PMの酸化量を概ね同一とみなすことができる。そこで、第2差圧低下量のうち第1領域での堆積PMが起因する差圧低下量は、上記第1差圧低下量と同量とみなすことができ、以て、第2差圧低下量から第1差圧低下量を減じた差圧低下量に基づいて第2領域部分低下量を算出できる。
また、別法として、第1酸化期間における第1領域での堆積PMの酸化燃焼速度と第2酸化期間における第1領域での堆積PMの酸化燃焼速度とが同程度であると考えて、第1差圧低下量に、第1酸化期間の長さに対する第2酸化期間の長さの割合を乗ずることで、第2酸化期間における第1領域での堆積PMの酸化燃焼に起因する差圧低下量として算出できる。そこで、第2差圧低下量から当該乗算結果を差し引くことで、第2領域部分低下量を算出できる。
このように本発明に係る内燃機関の排気浄化システムでは、フィルタを排気の流れ方向に区分した第1領域及び第2領域のそれぞれの堆積PM量を、フィルタの所定昇温処理及びフィルタの上流側と下流側との排気差圧を利用して算出できる。フィルタにおける所定昇温処理は、通常、フィルタで行われる堆積PMの酸化除去処理に関する構成を利用でき、また、当該排気差圧はフィルタを有する排気浄化システムにおいて広く利用されるパラメータである。したがって、当該排気浄化システムは、簡便な手法により、フィルタでの局所的なPM堆積量を好適に算出することを可能とする。
ここで、上記の内燃機関の排気浄化システムにおいて、上記第1堆積量の算出に当たって、このように第1酸化期間の長が一定の長さとなるように設定されている場合、上記第1比率における分母が固定値となるため、第1差圧低下量の大きさが、第1酸化期間における第1領域での堆積PMの酸化速度に直接反映されることになる。同様に、上記第2堆積量の算出に当たって、このように第2酸化期間の長が一定の長さとなるように設定されている場合、上記第2比率における分母が固定値となるため、第2領域部分低下量の大きさが、第2酸化期間における第2領域での堆積PMの酸化速度に直接反映されることになる。そこで、前記第1酸化期間が一定の長さの期間に設定された場合、前記第1算出手段は、前記第1差圧低下量が大きくなるほど、前記第1堆積量を多く算出し、前記第2酸化期間が一定の長さの期間に設定された場合、前記第2算出手段は、前記第2領域部分低下量が大きくなるほど、前記第2堆積量を多く算出してもよい。なお、第1酸化期間の長さと第2酸化期間の長さは必ずしも同じ長さである必要はない。
ここで、上記の内燃機関の排気浄化システムにおいて、前記第1酸化期間において前記所定昇温処理により前記フィルタに供給される単位時間当たりの熱量と、前記第2酸化期間において該所定昇温処理により該フィルタに供給される単位時間当たりの熱量とは同じに設定されてもよい。すなわち、第1領域での第1堆積量と第2領域での第2堆積量の算出に当たって、所定昇温処理によるフィルタへの供給熱量の条件を一定のものとする。これにより、各堆積量の算出において、第1領域での堆積PMの酸化条件と第2領域での堆積PMの酸化条件を可及的に近付けることができるため、各堆積量の算出精度を高めることが可能となる。
ここで、上述までの内燃機関の排気浄化システムにおいて、第1算出手段によって算出される第1堆積量と第2算出手段によって算出される第2堆積量とを利用する排気浄化処
理の形態として、以下の3つの形態を例示することができる。先ず、第1の形態として、上述までの内燃機関の排気浄化システムにおいて、前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、を更に備えてもよい。その場合、前記フィルタ全体に堆積した粒子状物質量が前記再生基準量よりも少ない部分算出基準量を超えたときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行う。その上で、該第1堆積量が第1基準堆積量を超えているか、又は該第2堆積量が第2基準堆積量を超えている場合には、前記再生手段は、該フィルタ全体に堆積した粒子状物質量が該再生基準量を超えていなくても前記フィルタ再生処理を実行してもよい。
この排気浄化処理の形態では、フィルタに堆積したPMを酸化除去するためのフィルタ再生処理が、フィルタ全体に堆積したPM量に基づいて再生手段によって実行される。ここで、当該フィルタ再生処理が実行される前のタイミング、すなわちフィルタ全体でのPM堆積量が部分算出基準量を超えたときに、その時点での第1領域及び第2領域での局所的なPM堆積量である第1堆積量と第2堆積量が算出される。そして、その算出された第1堆積量と第2堆積量とは、それぞれに対応する第1基準堆積量又は第2基準堆積量と比較される。ここで、第1基準堆積量及び第2基準堆積量は、第1領域でのPM堆積量又は第2領域でのPM堆積量が、それぞれに対応する基準堆積量を超えた状態でもフィルタ再生処理が行われず、そしてその後フィルタ全体のPM堆積量を基準としてフィルタ再生処理が行われると、局所的に多く堆積したPMによりフィルタにおいて局所的な過昇温が発生するおそれがあると判断するための基準となるPM堆積量である。更に、第1基準堆積量及び第2基準堆積量は、各領域でのPM堆積量が同堆積量であるときにフィルタ再生処理が行われたとしても、各領域において局所的な過昇温を招くことのないPM堆積量とされる。例えば、第1基準堆積量及び第2基準堆積量の設定値としては、フィルタ全体に関する上記再生基準量に対して、フィルタ全体の容量に対する第1領域又は第2領域のぞれぞれの容量の比率が乗算されて求められた値としてもよい。以上より、第1の形態に係る排気浄化処理では、フィルタ全体としてはまだ再生基準量には到達していないものの、第1堆積量が第1基準堆積量を超えているか、又は第2堆積量が第2基準堆積量を超えている場合には、フィルタ再生処理が実行される。すなわち、フィルタ再生処理の実行が早められることになる。
次に、上記排気浄化処理の第2の形態として、上述までの内燃機関の排気浄化システムにおいて、前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、を更に備えてもよい。その場合、前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行い、該第1堆積量が第3基準堆積量を超えておらず、且つ該第2堆積量が第4基準堆積量を超えていない場合には、該所定昇温処理に続いて、前記再生手段は前記フィルタ再生処理を開始してもよい。
この排気浄化処理の形態では、フィルタ再生処理の実行条件が成立した際、すなわち、フィルタ全体でのPM堆積量が再生基準量を超えたときに、そのフィルタ再生処理の前に、その時点での第1領域及び第2領域での局所的なPM堆積量である第1堆積量と第2堆積量が算出される。そして、その算出された第1堆積量と第2堆積量のいずれもが、それぞれに対応する第3基準堆積量又は第4基準堆積量を超えていないときには、その後にフィルタ再生処理が行われても局所的な過昇温が発生するおそれはないと判断できる。そこで、そのような場合には、第1堆積量等の算出のために行われた所定昇温処理に続いてフ
ィルタ再生処理が実行開始される。これにより、フィルタ再生処理時の過昇温の発生を抑制しつつ、所定昇温処理によってある程度昇温されているフィルタに対してフィルタ再生処理を行うことができ、フィルタ再生処理に要するエネルギー、すなわちフィルタ全体に堆積しているPMを酸化除去するのに要するエネルギー量を低減することができる。
ここで、上記の排気浄化処理の形態に係る上記内燃機関の排気浄化システムは、少なくとも前記第1堆積量が前記第3基準堆積量を超えているか、又は前記第2堆積量が前記第4基準堆積量を超えている場合に、該第1堆積量の該第3基準堆積量に対する超過量が大きくなるほど、又は該第2堆積量の該第4基準堆積量に対する超過量が大きくなるほど、前記フィルタ再生処理と比べて前記フィルタに供給する単位時間当たりの熱量を小さくする緩慢フィルタ再生処理を行う緩慢再生手段を、更に備えてもよい。すなわち、局所的な多量の堆積PMによりフィルタが過昇温するおそれがある場合には、再生手段によるフィルタ再生処理とは異なる、緩慢再生手段による緩慢フィルタ再生処理が行われる。そして、当該緩慢フィルタ再生処理では、その際のフィルタへの単位時間当たりの熱供給量が、その過昇温のおそれの程度、すなわち上記超過量に応じて調整される。これにより、フィルタ全体の堆積PM除去に要する時間は長くなるものの、フィルタの過昇温を可及的に抑制しながら堆積PMの酸化除去を遂行できる。
次に、上記排気浄化処理の第3の形態として、上述までの内燃機関の排気浄化システムにおいて、前記内燃機関の運転状態に基づいて、前記第1領域における粒子状物質の堆積量である推定第1堆積量、及び前記第2領域における粒子状物質の堆積量である推定第2堆積量を推定する部分堆積量推定手段と、前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、を更に備えてもよい。その場合、前記フィルタ再生処理が終了した後に所定時間が経過したときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行い、該算出された第1堆積量及び該算出された第2堆積量に基づいて、前記部分堆積量推定手段により推定される前記推定第1堆積量及び前記推定第2堆積量を補正してもよい。
この排気浄化処理の形態では、部分堆積量推定手段により、内燃機関の運転状態に基づいて推定第1堆積量と推定第2堆積量の推定が行われている。この部分堆積量推定手段による推定は、第1算出手段及び第2算出手段による算出とは独立した処理である。なお、部分堆積量推定手段により推定された推定第1堆積量及び推定第2堆積量は、排気浄化システムにおいて様々な目的の処理に利用することができる。例えば、上述したフィルタ再生処理や、フィルタにおける目詰まりの判定処理等が例示できる。
ここで、部分堆積量推定手段による推定は、内燃機関の運転状態に基づいて行われる処理であるため、所定昇温処理を伴う第1算出手段及び第2算出手段による算出よりも更に簡便な手法によりフィルタ内の局所的なPM堆積量の取得が可能である。その反面、内燃機関の運転状態が変動するなど、その条件次第では、推定精度が低下する可能性も高い。そこで、この部分堆積量推定手段による推定精度を可及的に高めるために、第1算出手段及び第2算出手段による算出結果を利用して、その推定結果が補正される。なお、当該排気浄化処理の形態では、フィルタ再生処理が終了してから所定時間が経過したときに、推定結果を補正するための第1算出手段及び第2算出手段による算出が行われる。これは、第1算出手段及び第2算出手段による算出では、上記の通り、第1領域及び第2領域に堆積しているPMを部分的に酸化燃焼させ、それを排気差圧に反映させる必要があるため、その反映が的確に行われるためには、ある程度の量のPMが第1領域及び第2領域に堆積していることが好ましいと考えられるからである。そこで、所定時間として、このような
PM堆積状態が形成されるのに要する時間が設定される。
ここで、フィルタにおいて第2領域よりも更に下流側の第3領域でのPM堆積量を算出する形態の一例について言及する。詳細には、上述までの内燃機関の排気浄化システムにおいて、前記フィルタは、前記第2領域よりも下流側に位置する該フィルタの一部である第3領域を有し、前記第2酸化期間は、前記所定昇温処理が行われている際に、前記第2領域の温度が、前記所定酸化開始温度を超えてから、前記第3領域の温度が、該所定酸化開始温度を超えるまでの期間の少なくとも一部の期間としてもよい。その場合、前記内燃機関の排気浄化システムは、前記所定昇温処理が行われている期間であって前記第3領域の温度が前記所定酸化開始温度を超えた後の第3酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第3差圧低下量と、該第3酸化期間の長さとに基づいて、該第3領域における粒子状物質の堆積量である第3堆積量を算出する第3算出手段を、更に備え、前記第3算出手段は、前記第3酸化期間の長さに対する、前記第3差圧低下量のうち前記第3領域分の差圧低下量に相当する第3領域部分低下量の大きさの比率が大きくなるほど、前記第3堆積量を多く算出する。
また、このようなフィルタにおける3つの部分領域のそれぞれでのPM堆積量の算出に対しても、上述までの2つの部分領域での算出の形態で示した技術思想を適用することができる。例えば、上記内燃機関の排気浄化システムにおいて、前記第1酸化期間が一定の長さの期間に設定された場合、前記第1算出手段は、前記第1差圧低下量が大きくなるほど、前記第1堆積量を多く算出し、前記第2酸化期間が一定の長さの期間に設定された場合、前記第2算出手段は、前記第2領域部分低下量が大きくなるほど、前記第2堆積量を多く算出し、前記第3酸化期間が一定の長さの期間に設定された場合、前記第3算出手段は、前記第3領域部分低下量が大きくなるほど、前記第3堆積量を多く算出してもよい。
また、上記内燃機関の排気浄化システムにおいて、前記第1酸化期間、前記第2酸化期間、前記第3酸化期間はいずれも同じ長さに設定される場合、前記第2領域部分低下量は、前記第2差圧低下量と前記第1差圧低下量との差分に基づいて算出され、前記第3領域部分低下量は、前記第3差圧低下量と前記第2差圧低下量との差分に基づいて算出されてもよい。また、前記第1酸化期間において前記所定昇温処理により前記フィルタに供給される単位時間当たりの熱量と、前記第2酸化期間において該所定昇温処理により該フィルタに供給される単位時間当たりの熱量と、前記第3酸化期間において該所定昇温処理により該フィルタに供給される単位時間当たりの熱量とはいずれも同じになるように設定されてもよい。
なお、上述までの内燃機関の排気浄化システムにおいて、フィルタを第1領域及び第2領域に区分する場合は、第1領域をフィルタの上流側領域、第2領域をフィルタの下流側領域としてもよい。また、フィルタを第1領域、第2領域、第3領域に区分する場合は、第1領域をフィルタの上流側領域、第2領域をフィルタの中流側領域、第3領域をフィルタの下流側領域としてもよい。
本発明によれば、簡便な手法により、フィルタでの局所的なPM堆積量を好適に算出することが可能となる。
本発明に係る内燃機関の排気浄化システムの概略構成を示す図である。 図1に示す排気浄化システムで、フィルタを2つの領域に分けた場合の、フィルタの部分PM堆積量を算出する際に行われる昇温処理によるフィルタ温度の推移、及びフィルタ前後での排気差圧の推移を示す図である。 図1に示す排気浄化システムが備えるフィルタにおける部分堆積PM量の算出手法を説明するための図である。 図1に示す排気浄化システムで実行される、フィルタの部分堆積量を算出するための処理に関する第1のフローチャートである。 図1に示す排気浄化システムで実行される、フィルタの部分堆積量を算出するための処理に関する第2のフローチャートである。 図4A及び図4Bに示す部分堆積量算出処理を利用した、フィルタの再生処理を行うための第1のフィルタ再生制御のフローチャートである。 図4A及び図4Bに示す部分堆積量算出処理を利用した、フィルタの再生処理を行うための第2のフィルタ再生制御のフローチャートである。 図4A及び図4Bに示す部分堆積量算出処理を利用した、フィルタにおける部分堆積量の推定処理を行うための部分堆積量推定制御のフローチャートである。 図1に示す排気浄化システムで、フィルタを3つの領域に分けた場合の、フィルタの部分PM堆積量を算出する際に行われる昇温処理によるフィルタ温度の推移、及びフィルタ前後での排気差圧の推移を示す図である。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1の上段(a)は、本発明に係る内燃機関1の排気浄化装置の概略構成を示す。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には排気通路2が接続されている。排気通路2には、排気中のPMを捕集するパティキュレートフィルタ4(以下、単に「フィルタ」という。)が設けられている。このフィルタ4は、ウォールフロータイプのフィルタであり、その基材には酸化触媒が担持されている。また、排気通路2におけるフィルタ4より上流側であって、フィルタ4の上流端面に概ね隣接するようにヒータ3が配置されている。このヒータ3は、隣接するフィルタ4の上流端面を加熱可能なように構成されており、具体的には、外部電源からの供給電力によりフィルタ4の上流端面に熱エネルギーを供給し、フィルタ4をその上流側から昇温させ得る。なお、ヒータ3は、フィルタ4の上流側に配置されているものの、フィルタ4への排気の流入を妨げることがないようにその形状や配置位置が調整されている。
そして、ヒータ3の上流側に、フィルタ4に流れ込む排気に燃料(未燃燃料)を供給する燃料供給弁5が設けられている。また、フィルタ4に流れ込む排気温度を検出可能となる位置、すなわち、ヒータ3とフィルタ4との間の排気通路2に温度センサ7が設置され、また、フィルタ4の下流側の排気通路2を流れる排気の温度を検出する温度センサ9が設置されている。更に、フィルタ4を挟んだ上流側および下流側の排気通路2における排気圧力の差(以下、単に「排気差圧」ともいう)を検出する差圧センサ8も設けられている。
また、内燃機関の吸気通路13には、該吸気通路13を流れる吸気流量を計測可能なエアフローメータ10が配置されている。そして、内燃機関1には電子制御ユニット(ECU)20が併設されており、該ECU20は内燃機関1の運転状態等を制御するユニットである。このECU20には、上述した燃料供給弁5や温度センサ7、9、差圧センサ8、エアフローメータ10、クランクポジションセンサ11及びアクセル開度センサ12等が電気的に接続され、燃料供給弁5は、ECU20からの指示に従い排気への燃料供給制御を行い、また、各センサによる検出値がECU20に渡されている。例えば、クランクポジションセンサ11は内燃機関1のクランク角を検出し、アクセル開度センサ12は内
燃機関1を搭載した車両のアクセル開度を検出し、ECU20へと送る。その結果、ECU20は、クランクポジションセンサ11の検出値に基づいて内燃機関1の機関回転速度を導出し、アクセル開度センサ12の検出値に基づいて内燃機関1の機関負荷を導出する。また、ECU20は、温度センサ7の検出値に基づいてフィルタ4に流れ込む排気温度を検出し、また排気温度センサ9の検出値に基づいてフィルタ4の温度を推定することができる。また、ECU20は、差圧センサ8を通して排気差圧を検出可能である。また、ECU20は、エアフローメータ10の検出値及び燃料噴射量に基づいて、排気流量を取得することも可能である。
ここで、本実施例では、図1の下段(b)に示すように、フィルタを排気流れ方向に上流側に位置するフロント領域4aと、下流側に位置するリア領域4bとに分割し、それぞれの領域におけるPMの部分堆積量が算出される。なお、図1(b)において、白抜きの矢印が排気の流れを示す。また、フロント領域4aにおけるPM堆積量をフロント領域堆積量PM_Frといい、リア領域4bにおけるPM堆積量をリア領域堆積量PM_Rrという。
上記の通り構成される内燃機関1の排気浄化装置では、概略的には、排気に含まれるPMはフィルタ4によって捕集され、外部への放出が抑制される。その他、図示されない排気浄化用の触媒(NOx浄化用の触媒等)が設けられてもよい。ここで、フィルタ4はウォールフロータイプのフィルタであり、フィルタ4の基材上には酸化能を有する酸化触媒、例えば白金族金属PGMが担持されている。酸化触媒は、フィルタ内壁面及びフィルタ基材の細孔内の上流側から下流側にわたって担持されている。この酸化触媒の酸化能により、排気中の未燃燃料やNOを酸化させることが可能となる。なお、NOが酸化されNOとなると、NO自身の酸化能により、フィルタ4に堆積したPMの酸化除去を促進させることが可能となる。
ここで、フィルタ4に堆積したPMは、フィルタ4での限界堆積量まで堆積すると排気通路2における背圧が上昇するため、フィルタ4の昇温により酸化除去される。当該酸化除去のための処理を、本明細書では、「フィルタ再生処理」という。具体的に、フィルタ再生処理では、燃料供給弁5から所定量の燃料が排気中に供給されて、フィルタ4に担持されている酸化触媒で酸化されることで、フィルタ4が昇温され、それによりフィルタ4に堆積しているPMの酸化除去が行われる。
ここで、フィルタ4の上流端面を含むフロント領域4aは、フィルタ再生処理により未燃燃料が燃料供給弁5から供給され、該未燃燃料がフロント領域4aに担持されている酸化触媒によって酸化されても、フィルタ4を流れる排気流量の条件次第では、その酸化反応熱は排気の流れによって下流側に移りやすく、フロント領域4a自身の温度を、堆積PMが酸化除去となる温度に維持しにくくなる場合がある。したがって、フィルタ再生処理が行われたとしても、フロント領域4aにはPMが燃え残り、その後、フィルタ4によるPM捕集が行われていく過程で、フロント領域4aの方がリア領域4bよりもPM堆積量が偏って存在する場合も生じ得る。また、別の場面としては、フィルタ4での排気流れの状況によっては、フィルタ再生処理が実行されたものの熱がリア領域4bまで十分に移行しないうちにフィルタ再生処理が終了してしまった場合、その後、フィルタ4によるPM捕集が行われていく過程で、リア領域4bの方がフロント領域4aよりもPM堆積量が偏って存在する場合も生じ得る。
すなわち、フィルタ4でフィルタ再生処理が行われたとしても、フィルタ4におけるPMの堆積分布は、様々な条件次第で変動し得る。特に、フィルタ4全体としての堆積量は比較的少なくても、フィルタ4の部分的な領域において局所的に多量のPMが堆積している状態でフィルタ再生処理が行われると、当該領域でフィルタ温度が局所的に過昇温し、
フィルタそのものの劣化や酸化触媒の劣化等が懸念される。そこで、本実施例では、フィルタ4における局所的なPM堆積量、すなわちフロント領域4aでのPM堆積量と、リア領域4bでのPM堆積量の算出が行われ、それぞれの局所的なPM堆積量を考慮してフィルタ再生処理が行われる。
そこで、図2及び図3に基づいて、フロント領域4aでのPM堆積量と、リア領域4bでのPM堆積量の算出について説明する。なお、本実施例において、フィルタ4全体でのPM堆積量と、フロント領域4aでのPM堆積量、又はリア領域4bでのPM堆積量を区別するために、これらの領域でのPM堆積量を部分堆積量と呼ぶ場合もある。図2の上段(a)は、各領域でのPM堆積量を算出する際に行われるフィルタ4の昇温処理(以下、「算出時昇温処理」という)による各領域の温度推移を表し、下段(b)は、その際の差圧センサ8の検出値の推移を表している。また、図3は、各領域でのPM堆積量のロジックを説明するための図であり、上段(a)は、フィルタ4全体でのPM堆積量と差圧センサ8により検出される排気差圧との相関を概略的に表しており、下段(b)は、フィルタ4でのPM堆積量と堆積PMの酸化速度との相関を概略的に表している。
各領域でのPM堆積量の算出に当たっては、上記の通り算出時昇温処理が行われる。当該処理は、フィルタ4を上流側から昇温させて、その昇温によりフィルタの各領域に堆積しているPMの一部を酸化燃焼させる処理である。具体的には、ヒータ3によりフィルタ4の上流側端面が加熱されることで、当該算出時昇温処理が実行される。その際に、ヒータ3からフィルタ4への加熱は、上記の通り、堆積PMを酸化燃焼させることが可能となるように供給エネルギー量が制御される。
そして、この算出時昇温処理が行われた際のフロント領域4aの温度推移が、図2(a)において線L1で示され、リア領域4bの温度推移が図2(a)において線L2で示されている。なお、各領域の温度推移としては、算出時昇温処理によりヒータ3からフィルタ4に対して供給される熱量と、フィルタ4における熱伝播に関する諸パラメータ(例えば、フィルタ4の熱容量、フィルタ4を流れる排気流量、フィルタ4での放熱係数等)に基づいて、各領域の代表点での温度推移がECU20によって推定される。本実施例における当該代表点は、フロント領域4a及びリア領域4bの排気流れ方向の中央点である。また、別法として、各領域に温度センサを埋め込んで直接各領域の温度を計測してもよい。
具体的には、タイミングT1で算出時昇温処理が開始されるとともに、上流側に位置するフロント領域4aの温度が上昇を開始する。このとき、下流側のリア領域4bには多くの熱がまだ伝播していないため、その温度の動きは少ない。そして、タイミングT2において、フロント領域4aの温度が、堆積PMが酸化燃焼を開始する酸化開始温度Tpmに到達する。この頃からリア領域4bの温度も次第に上昇していき、タイミングT3においてリア領域4bの温度も酸化開始温度Tpmに到達する。その後、タイミングT4において、算出時昇温処理が終了され、各領域の温度も降下していく。
このようにフィルタ4の各領域の温度が酸化開始温度Tpmを超えると、そこに堆積しているPMが酸化燃焼される。それにより、フィルタ4におけるPMの堆積状態が変化する。その結果、PMの堆積状態の変化が差圧センサ8による排気差圧に反映される。例えば、図2(b)に示すように、排気差圧は、フロント領域4aの温度が酸化開始温度Tpmに到達するタイミングT2から低下し始め、算出時昇温処理が行われている間、各領域での堆積PMの酸化燃焼に伴い排気差圧が低下していく。
具体的には、タイミングT2〜T3の期間では、酸化開始温度Tpmを超えているのはフロント領域4aのみであるから、当該領域に堆積しているPMのみが酸化燃焼して排気
差圧の低下が生じ、その低下量はΔdP_Frとされる。また、タイミングT3〜T4の期間では、酸化開始温度Tpmを超えているのはフロント領域4aとリア領域4bである。そのため、タイミングT3〜T4の期間では、両領域に堆積しているPMが酸化燃焼して排気差圧の低下が生じることになる。したがって、タイミングT3〜T4の期間でのフロント領域4aでの堆積PMの酸化燃焼による排気差圧の低下量がΔdP_Fr2とされ、リア領域4bでの堆積PMの酸化燃焼による排気差圧の低下量がΔdP_Rrとされると、同期間での排気差圧の低下量は、両低下量の和(ΔdP_Rr+ΔdP_Fr2)となる。
ここで、算出時昇温処理が行われた際の、フィルタ4の各領域での堆積PMの酸化速度に注目する。先ず、タイミングT2〜T3の期間では、フロント領域4aでの堆積PMが酸化燃焼している。したがって、当該期間で生じる排気差圧の低下量ΔdP_Frに対応するフィルタ4での堆積PMの減少量ΔXpm(図3(a)参照)は、フロント領域4aでの堆積PMの減少量を表すことになる。そして、この堆積PMの減少は、タイミングT2〜T3の期間において生じたものであるから、当該期間でのフロント領域4aでの堆積PMの酸化速度は、減少量ΔXpmを当該期間の長さで除した値Z0で表すことができる。
ここで、フィルタ4における堆積PMの酸化速度は、物理的には以下の式1に従う。
Z0 = k [PM] [O2]α [NO2]β (式1)
Z0: 酸化速度
k: 反応速度定数
[PM]: PM堆積量
[O2]α: 酸素量
[NO2]β: 二酸化窒素量
また、反応速度定数kは、以下の式2に従う。
k = A exp(-Ea/R T) (式2)
A: 頻度因子
Ea: 活性化エネルギ
R: 気体定数
T: 酸化温度(絶対温度)
上記式1からも理解できるように、フィルタ4のフロント領域4aにおける堆積PMの酸化速度Z0は、PM堆積量やPMを酸化させる様々な物質に関するパラメータの積で表すことができ、特に、PM堆積量に比例する相関を有している。そして、このようなPM堆積量と酸化速度の相関に基づいて、図3(b)に示すように、上記の酸化速度Z0より、フロント領域4aでのPM堆積量Ypmを算出することができる。ここで、酸化速度Z0は、直接的には減少量ΔXpmをタイミングT2〜T3の期間の長さで除したものであるが、減少量ΔXpmと排気差圧の低下量ΔdP_Frとの相関を踏まえると、酸化速度Z0は、当該期間の長さに対する排気差圧の低下量ΔdP_Frの大きさの比率であるフロント側比率に対応する。このフロント側比率は、上記の第1比率に相当する。したがって、図3(b)に示す相関を考慮すると、フロント領域4aでのPM堆積量は、フロント側比率が大きくなるほど多くなるように算出されることになる。
また、リア領域4bにおけるPM堆積量も、タイミングT3〜T4の期間での排気差圧の低下量と、当該期間の長さに基づいて、フロント領域4aの場合と同じように算出することができる。ただし、当該期間では、上記の通り、リア領域4bでの堆積PMだけでなくフロント領域4aでの堆積PMも酸化燃焼され、その結果が、差圧低下量ΔdP_Rr+ΔdP_Fr2に反映されている。したがって、リア領域4bにおけるPM堆積量を算出するためには、差圧低下量ΔdP_Rr+ΔdP_Fr2のうちリア領域4bに起因す
る分の低下量であるΔdP_Rrを利用する必要がある。そして、フロント領域4aの場合と同じように、リア領域4bでの酸化速度は、タイミングT3〜T4の期間の長さに対する排気差圧の低下量ΔdP_Rrの大きさの比率であるリア側比率に対応する。このリア側比率は、上記の第2比率に相当する。したがって、図3(b)に示す相関を考慮すると、リア領域4bでのPM堆積量は、リア側比率が大きくなるほど多くなるように算出されることになる。
ここで、タイミングT3〜T4の期間での排気差圧の低下量ΔdP_Rr+ΔdP_Fr2から、低下量ΔdP_Rrを抽出する手法としては、以下の手法が例示できる。第1の抽出手法としては、タイミングT3〜T4の期間においてフロント領域4aで酸化燃焼されるPM堆積量が、タイミングT2〜T3の期間においてフロント領域4aで酸化燃焼されるPM堆積量と同程度となるように、タイミングT3〜T4の期間を設定する。その設定の一例としては、タイミングT3〜T4の期間を、タイミングT2〜T3の期間と同じ長さとする。このような条件の下で計測されたタイミングT3〜T4の期間での低下量ΔdP_Rr+ΔdP_Fr2のうち低下量dP_Fr2は、タイミングT2〜T3の期間での低下量ΔdP_Frと同量になる。そこで、タイミングT3〜T4の期間での低下量ΔdP_Rr+ΔdP_Fr2からタイミングT2〜T3の期間での低下量ΔdP_Frを減じることで、低下量ΔdP_Rrを算出できる。
また、第2の抽出手法としては、算出時昇温処理が行われている間での、タイミングT2〜T3の期間におけるフロント領域4aでの堆積PMの酸化燃焼速度が、タイミングT3〜T4の期間におけるフロント領域4aでの堆積PMの酸化燃焼速度と同程度であるとの想定の下、低下量ΔdP_Rrが算出される。具体的には、タイミングT2〜T3の期間での低下量ΔdP_Frに、タイミングT2〜T3の期間の長さに対するタイミングT3〜T4の期間の長さの割合を乗じて、タイミングT3〜T4の期間におけるフロント領域4aでの堆積PMの酸化燃焼に起因する低下量ΔdP_Fr2が算出される。そして、タイミングT3〜T4の期間での低下量ΔdP_Rr+ΔdP_Fr2から、当該算出された低下量ΔdP_Fr2を差し引くことで、低下量ΔdP_Rrが算出される。
以上より、図1に示す内燃機関1の排気浄化システムでは、フィルタ4におけるフロント領域4aとリア領域4bでのPM堆積量を、算出時昇温処理の実行とともに差圧センサ8の検出値を用いて容易に算出することが可能となる。また、算出時昇温処理において、ヒータ3からフィルタ4に供給される単位時間当たりの熱量は、少なくともT2〜T3の期間と、T3〜T4の期間とで同一となるようにヒータ3を制御するのが好ましい。これにより、各期間でのフロント領域4aとリア領域4bでの堆積PMの酸化燃焼条件をより同一に近い状態とすることができるため、上述した各領域でのPM堆積量の算出精度を高めることができる。
<部分堆積量算出処理>
ここで、上述したフロント領域4a及びリア領域4bでの部分堆積量を算出するための処理である部分堆積量算出処理について、図4A及び図4Bに基づいて説明する。両図には、部分堆積量算出処理を分割して記載している。この部分堆積量算出処理は、ECU20のメモリに格納されている制御プログラムが実行されることで行われる。先ず、S101では、フロント領域4a及びリア領域4bでの部分堆積量の算出要求があるか否かが判定される。当該算出要求は、所定の制御において、各領域での部分堆積量が必要とされる場合等に出されるものである。例えば、後述する図5、図6に示すフィルタ再生制御や、図7に示す部分堆積量推定制御において、本部分堆積量算出処理が呼び出される場合、当該算出要求が出されることになる。S101で肯定判定されるとS102へ進み、否定判定されると本部分堆積量算出処理を終了する。
S102では、内燃機関1が、部分堆積量の算出が可能な状態にあるか否かが判定される。上記の通り部分堆積量の算出を行う場合、算出時昇温処理を行う必要がある。このとき、フロント領域4a及びリア領域4bにおける堆積PMの一部の酸化燃焼を生じさせるが、算出精度の低下を避けるために、算出時昇温処理を行う期間においてその酸化燃焼条件が大きく変動しないことが好ましい。そこで、例えば、内燃機関1からの排気流量や排気温度が安定しているアイドル運転時の場合に、内燃機関1が部分堆積量の算出が可能な状態にあると判定してもよい。S102で肯定判定されるとS103へ進み、否定判定されると本部分堆積量算出処理を終了する。
次に、S103では、フロント領域4a及びリア領域4bの温度推定が開始される。具体的には、上記の通り、ヒータ3による加熱条件(例えば、ヒータ3からフィルタ4に対して供給される単位時間当たりの熱量等)と、フィルタ4における熱伝播に関する諸パラメータ(例えば、フィルタ4の熱容量、フィルタ4を流れる排気流量、フィルタ4での放熱係数等)に基づいてECU20が温度推定を開始する。このとき、フロント領域4aの温度を代表する当該領域内の位置と、リア領域4bの温度を代表する当該領域内の位置との間の離間距離も考慮される。
次にS104では、算出時昇温処理が開始され、ヒータ3に駆動電流が供給される。これにより、単位時間当たりの熱供給量が一定の条件の下で、ヒータ3からフィルタ4へ熱エネルギーが供給される。なお、この算出時昇温処理での単位時間当たりの熱供給量は、上記の通り、フィルタ4の温度が、堆積PMが燃焼可能となる酸化開始温度Tpmに到達し得る値とされる。なお、当該算出時昇温処理が開始されたタイミングが、図2(a)におけるタイミングT1である。その後、S105で、推定されているフロント領域4aの温度Tfrが、酸化開始温度Tpmを超えたか否かが判定される。S105で肯定判定されるとS106へ進み、否定判定されると再びS105の処理を繰り返す。なお、S105で肯定判定されたタイミングが、図2(a)におけるタイミングT2である。
次にS106では、フロント領域4aの温度が酸化開始温度Tpmを超えたことをもって、上流側に位置するフロント領域4aでの堆積PMのみが酸化燃焼する第1酸化期間Δt1のカウントが開始される。したがって、第1酸化期間Δt1の始点は、図2(a)におけるタイミングT2である。そして、当該カウントとともに、フロント領域4aでの堆積PMのみが酸化燃焼することに起因する排気差圧の低下量である第1差圧低下量ΔdP1の測定が開始される。この第1差圧低下量ΔdP1は、第1酸化期間Δt1の始点であるタイミングT2での排気差圧を始点として計測されていくことになる。S106の処理が終了すると、S107へ進む。
次に、S107では、推定しているリア領域4bの温度Trrが、酸化開始温度Tpmを超えたか否かが判定される。S107で肯定判定されるとS108へ進み、否定判定されると再びS107の処理を繰り返す。なお、S107で肯定判定されたタイミングが、図2(a)におけるタイミングT3である。その後、S108では、リア領域4bの温度が酸化開始温度Tpmを超えたことをもって、第1酸化期間Δt1が決定される。すなわち、第1酸化期間Δt1は、上記始点であるタイミングT2から終点となるタイミングT3までの期間として決定される。それと同時に、タイミングT2での排気差圧を始点としタイミングT3における排気差圧を終点として、第1差圧低下量ΔdP1が決定される。S108の処理が終了すると、S109へ進む。
S109では、リア領域4bの温度が酸化開始温度Tpmを超えたことをもって、下流側に位置するリア領域4bでの堆積PMが酸化燃焼し始める第2酸化期間Δt2のカウントが開始される。したがって、第2酸化期間Δt2の始点は、図2(a)におけるタイミングT3である。そして、当該カウントとともに、リア領域4bでの堆積PM及びフロン
ト領域4aでの堆積PMが酸化燃焼することに起因する排気差圧の低下量である第2差圧低下量ΔdP2の測定が開始される。この第2差圧低下量ΔdP2は、第2酸化期間Δt2の始点であるタイミングT3での排気差圧を始点として計測されていくことになる。S109の処理が終了すると、S110へ進む。
S110では、第2酸化期間Δt2が規定時間を超えたか否かが判定される。当該規定時間としては、リア領域4bでの堆積PM及びフロント領域4aでの堆積PMが酸化燃焼することに起因する第2差圧低下量ΔdP2として有意の差圧低下量が計測される限りにおいて、任意の時間を設定することができる。本実施例では、規定時間は、第1酸化期間Δt1と同じ長さの時間とする。S110で肯定判定されるとS111へ進み、否定判定されると再びS110の処理を繰り返す。なお、S110で肯定判定されたタイミングが、図2(a)におけるタイミングT4である。その後、S111では、第2酸化期間Δt2が規定時間を超えたことをもって、第2酸化期間Δt2が決定される。すなわち、第2酸化期間Δt2は、上記始点であるタイミングT3から終点となるタイミングT4までの期間、換言すれば第1酸化期間Δt1と同じ長さの期間として決定される。それと同時に、タイミングT3での排気差圧を始点としタイミングT4における排気差圧を終点として、第2差圧低下量ΔdP2が決定される。S111の処理が終了すると、S112へ進む。
S112では、フロント領域4aでのPM堆積量を算出するためのフロント領域低下量である上記dP_Frが、第1差圧低下量ΔdP1に基づいて決定される。具体的には、第1酸化期間Δt1においてはフロント領域4aでの堆積PMのみが酸化燃焼するため、フロント領域低下量dP_Frは、第1差圧低下量ΔdP1そのものとなる。次に、S113では、リア領域4bでのPM堆積量を算出するためのリア領域低下量である上記dP_Rrが、第2差圧低下量ΔdP2に基づいて決定される。具体的には、上述の第1の抽出手法に従い、第2酸化期間Δt2を第1酸化期間Δt1と同じ長さとしたことにより、第2酸化期間Δt2におけるフロント領域4aでの堆積PMの酸化量は、第1酸化期間Δt1におけるフロント領域4aでの堆積PMの酸化量と同量とみなすことができる。そこで、リア領域低下量dP_Rrは、第2差圧低下量ΔdP2から第1差圧低下量ΔdP1を減じた値となる。
次に、S114では、上記フロント側比率に相当する、第1酸化期間Δt1の長さに対するフロント領域低下量dP_Frの大きさの比率に基づいて、図3に基づいて説明したようにフロント領域4aでのPM堆積量PM_Frが算出される。具体的には、当該比率が大きくなるほど、フロント領域4aでのPM堆積量PM_Frが多くなるように算出される。また、上記リア側比率に相当する、第2酸化期間Δt2の長さに対するリア領域低下量dP_Rrの比率に基づいて、図3に基づいて説明したようにリア領域4bでのPM堆積量PM_Rrが算出される。具体的には、当該比率が大きくなるほど、リア領域4bでのPM堆積量PM_Rrが多くなるように算出される。
その後、S115では、次回の部分堆積量算出のために、第1酸化期間Δt1及び第2酸化期間Δt2のカウンタをクリアし、更に、第1差圧低下量ΔdP1及び第2差圧低下量ΔdP2の測定値をクリアする。
なお、上記の部分堆積量算出処理では、上記第1の抽出手法によりリア領域低下量ΔdP_Rrを抽出するために、第2酸化期間Δt2を第1酸化期間Δt1と同じ長さに設定したが、その態様に代えて、第2酸化期間Δt2を第1酸化期間Δt1と異なる時間としてもよい。たとえ両酸化期間を異なる時間としても、第2酸化期間Δt2におけるフロント領域4aでの堆積PMの酸化量が第1酸化期間Δt1におけるフロント領域4aでの堆積PMの酸化量と同量とみなすことができる場合には、上記第1の抽出手法によりリア領
域低下量ΔdP_Rrを抽出すればよい。また、同量とみなせない場合には、上記第2の抽出手法によりリア領域低下量ΔdP_Rrを抽出すればよい。
また、上記の部分堆積量算出処理では、第1酸化期間Δt1を、フロント領域4aの温度Tfrが酸化開始温度Tpmを超えてから、リア領域4bの温度Trrが酸化開始温度Tpmを超えるまでの期間(タイミングT2〜T3の期間)としているが、その態様に代えて、第1差圧低下量ΔdP1として有意の値が得られる限り、タイミングT2〜T3の期間の一部の期間であってもよい。この場合、第1差圧低下量ΔdP1は、当該一部の期間に対応した差圧低下量となる。また、第2酸化期間Δt2についても、第2差圧低下量ΔdP2として有意の値が得られる限り、リア領域4bの温度Trrが酸化開始温度Tpmを超えた後の何れかの期間であってもよい。この場合、第2差圧低下量ΔdP2は、当該何れかの期間に対応した差圧低下量となる。
<第1のフィルタ再生制御>
ここで、上記の部分堆積量算出処理を利用したフィルタ4のフィルタ再生処理を行うフィルタ再生制御の第1の例について、図5に基づいて説明する。このフィルタ再生制御は、ECU20のメモリに格納されている制御プログラムが実行されることで行われる。また、当該フィルタ再生制御が行われる前提として、ECU20は内燃機関1の機関回転速度や機関負荷等の運転状態に基づいて、フィルタ4の全体でのPM堆積量を随時推定している。このフィルタ4の全体でのPM堆積量の推定処理は、上記部分堆積量算出処理とは異なる処理であるが、当該推定処理は従来技術によるものであるからその詳細な説明は省略する。また、フィルタ4全体でのPM堆積量は全体PM堆積量X1と称される。
ここで、図5に示すフィルタ再生制御におけるS201〜S206の処理は、フィルタ再生処理を実行するための標準的な一連の処理である。先ず、S201では、フィルタ4の全体PM堆積量X1が、再生基準量R0を超えているか否かが判定される。当該再生基準量R0は、フィルタ4においてフィルタ再生処理を実行すべき程度にPMが堆積していると判断するための閾値である。フィルタ4全体でのPM堆積量がこの再生基準量R0を超えると、排気通路2での排気圧力が上昇し内燃機関1の運転に好ましくない影響が及ぼされ得る。S201で肯定判定されるとS202へ進み、否定判定されるとS207へ進む。
次に、S202では、フィルタ再生処理を開始するための開始条件が成立しているか否かが判定される。具体的には、当該開始条件としては、フィルタ4に流れ込む排気の温度が、効率的な堆積PMの酸化除去が阻害されない程度に高い所定温度以上であることが一例として挙げられる。なお、フィルタ4に流れ込む排気温度は、温度センサ7による検出値が利用できる。したがって、S202で肯定判定されるとS203へ進み、否定判定されると本制御を終了する。
そして、S203ではフィルタ再生処理が実行される。具体的には、上記の通り燃料供給弁5から排気へ燃料供給が行われることで、フィルタ4に担持されている酸化触媒による酸化反応を利用してフィルタ4が酸化開始温度Tpmを超える温度まで昇温され、その温度の維持が図られる。このフィルタ4の温度維持のために、温度センサ9による検出温度が利用される。このようにフィルタ再生処理が実行されると、フィルタ4に堆積しているPMが酸化除去されていく。そこで、その酸化除去によりPM堆積量が減少していく状態を全体PM堆積量X1に反映させるべく、S204で全体PM堆積量X1が更新される。この更新においては、フィルタ再生処理によって酸化除去される単位時間当たりのPM量と、フィルタ再生処理によりフィルタ4の温度が酸化開始温度Tpmに到達してからの経過時間等が考慮される。
そして、S205では、S204で更新された全体PM堆積量X1が、基準PM堆積量R2未満であるか否かが判定される。当該基準PM堆積量R2は、フィルタ再生処理の終了を判断するための閾値である。そして、S205で肯定判定されるとS206へ進み、否定判定されるとS204以降の処理が繰り返される。このようにS204以降の処理が繰り返される場合には、S203で開始されたフィルタ再生処理が継続されている状態にある。そして、S206では、フィルタ再生処理が終了される。なお、このフィルタ再生処理の終了時に、後述の部分堆積量算出処理が実行されたことを示す実行フラグがOFFに設定される。
このようにS201〜S206の処理によってフィルタ4の堆積PMの酸化除去が行われるが、これに対してS201で否定判定された場合に、上記部分堆積算出処理を含むS207〜S210の一連の処理が行われる。そこで、S207では、全体PM堆積量X1が部分算出基準量R1を超えているか否かが判定される。当該部分算出基準量R1は、再生基準量R0より少なく、且つ基準PM堆積量R2より多い値であり、後述のS209で実行される部分堆積算出処理を実行するか否かを判定するための閾値である。ここで肯定判定されるとS208へ進み、否定判定されると本制御を終了する。
次に、S208では、後述のS209で実行される部分堆積算出処理が実行され、既にフロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されているか否かが、上記実行フラグに基づいて判定される。本制御では、一のフィルタ再生処理と次のフィルタ再生処理との間の期間に一度の部分堆積量算出処理が行われる。したがって、S208における判定は、当該期間を対象に、既に部分堆積量算出処理が行われているかを判定するものである。S208で肯定判定されるとS210へ進み、否定判定されるとS209へ進む。
そして、S209では、部分堆積量算出処理が実行され、その実行フラグがONに設定される。この部分堆積量算出処理によって、フロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されることになる。その後、S210で、フロント領域堆積量PM_Frが第1基準堆積量Fr0を超えているか、又はリア領域堆積量PM_Rrが第2基準堆積量Rr0を超えているかについて判定が行われる。少なくとも一方が対応する基準量を超えているとS210は肯定判定されることになり、その場合はS202以降の処理が行われることになる。一方で、両方とも対応する基準量を超えていなければS210は否定判定されることになり、その場合は本制御を終了する。ここで、第1基準堆積量Fr0は、第1基準堆積量Fr0は、フロント領域4aでのPM堆積量が、当該第1基準堆積量Fr0を超えた状態でもフィルタ再生処理が行われず、そしてその後フィルタ全体のPM堆積量を基準としてフィルタ再生処理が行われると、フロント領域4aに局所的に多く堆積したPMにより局所的な過昇温が発生するおそれがあると判断するための閾値であるとともに、フロント領域4aでのPM堆積量が第1基準堆積量Fr0であるときにフィルタ再生処理が行われたとしても、フロント領域4aにおいて局所的な過昇温を招くことのないPM堆積量とされる。また、第2基準堆積量Rr0は、リア領域4bでのPM堆積量が、当該第2基準堆積量Rr0を超えたにもかかわらずフィルタ再生処理が行われないとし、その後フィルタ全体のPM堆積量を基準としてフィルタ再生処理が行われると、リア領域4bに局所的に多く堆積したPMにより局所的な過昇温が発生するおそれがあると判断するための閾値であるとともに、リア領域4bでのPM堆積量が第2基準堆積量Rr0であるときにフィルタ再生処理が行われたとしても、リア領域4bにおいて局所的な過昇温を招くことのないPM堆積量とされる。
このように構成されるフィルタ再生制御では、フィルタ4全体のPM堆積量が再生基準量R0を超えていない状態であっても、フロント領域4a又はリア領域4bの少なくとも何れかにおいてその部分堆積量が局所的な過昇温のおそれがある基準堆積量を超えると、
フィルタ再生処理が実行されることになる。このように早期のフィルタ再生処理が実行されることで、局所的な過昇温が顕在化する前にフィルタ4全体の堆積PMの酸化除去が行われることになり、以て、フィルタ再生処理によるフィルタ4の溶損や酸化触媒の劣化等を可及的に回避することができる。
なお、部分堆積量算出処理が行われると、各領域の部分堆積量を算出するために算出時昇温処理が行われ、各領域に堆積しているPMの一部が酸化燃焼されるため、フィルタ4全体でのPM堆積量も減少することになる。そこで、その場合、酸化燃焼されたPM量を、随時推定されている全体PM堆積量X1の値に反映させてもよい。また、算出時昇温処理によるPMの酸化量がわずかであり無視し得る程度であれば、それを全体PM堆積量X1の値に反映させなくてもよい。
<第2のフィルタ再生制御>
ここで、上記の部分堆積量算出処理を利用したフィルタ4のフィルタ再生処理を行うフィルタ再生制御の第2の例について、図6に基づいて説明する。このフィルタ再生制御は、ECU20のメモリに格納されている制御プログラムが実行されることで行われる。また、当該フィルタ再生制御が行われる前提として、上記の第1の例と同様に、フィルタ4の全体での全体PM堆積量X1を随時推定している。更に、一のフィルタ再生処理と次のフィルタ再生処理との間の期間において、部分堆積量算出処理が行われたか否かを識別するための実行フラグが利用される。
先ず、S301では、フィルタ4の全体PM堆積量X1が、再生基準量R0を超えているか否かが判定される。当該判定は上記のS201の判定と実質的に同一である。S301で肯定判定されるとS302へ進み、否定判定されると本制御を終了する。次に、S302では、後述のS303で実行される部分堆積算出処理が実行され、既にフロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されているか否かが、上記実行フラグに基づいて判定される。当該判定は上記のS208の判定と実質的に同一である。S302で肯定判定されるとS304へ進み、否定判定されるとS303へ進む。そして、S303では、部分堆積量算出処理が実行され、その実行フラグがONに設定される。この部分堆積量算出処理によって、フロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されることになる。
その後、S304では、フロント領域堆積量PM_Frが第3基準堆積量Fr1以下であり、且つリア領域堆積量PM_Rrが第4基準堆積量Rr1以下であるかについて判定が行われる。ここで、第3基準堆積量Fr1は、上記S210における第1基準堆積量Fr0とは異なり、現時点でフィルタ再生処理が行われるとフロント領域4aに局所的に多く堆積したPMにより局所的な過昇温が発生するおそれがあると判断するための閾値である。同じように、第4基準堆積量Rr1も、上記S210における第2基準堆積量Rr0とは異なり、現時点でフィルタ再生処理が行われるとリア領域4bに局所的に多く堆積したPMにより局所的な過昇温が発生するおそれがあると判断するための閾値である。すなわち、第3基準堆積量Fr1及び第4基準堆積量Rr1は、各領域のPM堆積量がそれぞれ対応する基準堆積量と同量であるとき又は当該基準堆積量未満であるときにフィルタ再生処理が行われても局所的な過昇温のおそれはないが、各領域のPM堆積量がそれぞれ対応する基準堆積量を超えた場合にフィルタ再生処理が行われると局所的な過昇温が発生するおそれがある堆積量として設定される。S304で肯定判定されるとS305へ進み、否定判定されるとS306へ進む。
S305では、S304で肯定判定された場合のフィルタ4の再生処理として行われる標準フィルタ再生処理の実行条件が設定される。S304で肯定判定されたことは、現時点でフィルタ再生処理を実行しても、フィルタ4において局所的な過昇温が発生するおそ
れがないことを意味する。そこで、標準フィルタ再生処理の実行条件は、全体PM堆積量X1を超えるPMが堆積しているフィルタ4において燃料供給弁5から供給される燃料が酸化燃焼し、フィルタ4の温度を酸化開始温度Tpmを超える温度まで速やかに到達させ、且つ、供給された燃料がフィルタ4上に酸化されずに付着してしまわない程度の、燃料供給弁5による燃料供給条件とされる。当該燃料供給条件は、フィルタ4の温度や排気流量等に応じて変動させてもよい。S305で実行条件が設定されると、S307以降の処理により当該実行条件に従ったフィルタ再生処理、すなわち、標準フィルタ再生処理が行われることになる。
一方で、S306では、S304で否定判定された場合のフィルタ4の再生処理として行われる緩慢フィルタ再生処理の実行条件が決定される。S304で否定判定されたことは、現時点でフィルタ再生処理を実行すると、フィルタ4において局所的な過昇温が発生するおそれがあることを意味する。そこで、緩慢フィルタ再生処理の実行条件は、全体PM堆積量X1を超えるPMが堆積しているフィルタ4において燃料供給弁5から燃料が供給されたときに、フィルタ4において局所的な過昇温が抑制されるようにフィルタ4における温度上昇を緩やかにする程度の、燃料供給弁5による燃料供給条件とされる。そのため、フロント領域堆積量PM_Frが第3基準堆積量Fr1を超えている場合には、その超過量が大きくなるほど燃料供給弁5から単位時間あたりに供給される燃料量を少なくし、換言すれば、フィルタ再生処理のためにフィルタ4に供給される単位時間当たりの熱量を少なくする。同じように、リア領域堆積量PM_Rrが第4基準堆積量Rr1を超えている場合には、その超過量が大きくなるほど燃料供給弁5から単位時間あたりに供給される燃料量を少なくする。S306で実行条件が設定されると、S307以降の処理により当該実行条件に従ったフィルタ再生処理、すなわち、緩慢フィルタ再生処理が行われることになる。
S305又はS306の処理が終了すると、S307以降の処理が行われるが、S307〜S311の処理は、上記のS202〜S206の処理と実質的に同一であるから、その詳細な説明は割愛する。
このように構成されるフィルタ再生制御では、フィルタ4全体のPM堆積量が再生基準量R0を超えると、フィルタ4の再生処理が行われる前に、フロント領域4a及びリア領域4bの部分堆積量が算出される。そして、フィルタ4において局所的な過昇温のおそれが無い場合には、続いて標準フィルタ再生処理が行われる。すなわち、例えば、算出時昇温処理によって昇温されたフィルタの温度が低下することなく、引き続き標準フィルタ再生処理が行われる。このとき、フィルタ4は算出時昇温処理によってある程度昇温されているため、標準フィルタ再生処理によってフィルタ4を昇温させるエネルギー量を低減することができる。また、そして、フィルタ4において局所的な過昇温のおそれがある場合には、緩慢フィルタ再生処理によりフィルタ4の温度上昇を緩やかにすることで、堆積PMの酸化除去に要する時間が長くなるものの、フィルタ4の局所的な過昇温を回避することができる。
<部分堆積量推定制御>
ここで、上記の部分堆積量算出処理を利用したフィルタ4の部分堆積量推定制御について、図7に基づいて説明する。この部分堆積量推定制御は、フロント領域4a及びリア領域4bのそれぞれの部分堆積量を推定する制御であり、ECU20のメモリに格納されている制御プログラムが実行されることで行われる。また、本制御とは並列して、フィルタ4のためのフィルタ再生処理に関する制御、例えば、図5や図6に示す制御が繰り返し実行されているものとする。そして、本制御は、一のフィルタ再生処理と次のフィルタ再生処理との間の期間に、後述するS406での部分堆積量算出処理が一度だけ行われる。それとともに、フィルタ再生処理の終了時には、その時点までに部分堆積量算出処理が実行
されたことを示す実行フラグがOFFに設定される。
先ず、S401では、内燃機関1の運転状態が取得され、次に、S402では、前回の本制御が実行された際の各領域の推定出力値、すなわち後述のS408で出力された、フロント領域4a及びリア領域4bのそれぞれの部分堆積量の推定出力値が取得される。なお、この前回の推定出力値は、ECU20内のメモリに格納されている。
次に、S403では、S401で取得された内燃機関1の運転状態と、S402で取得された前回の推定出力値に基づいて、現時点でのフロント領域4a及びリア領域4bのそれぞれの部分堆積量が推定される。具体的には、内燃機関1の運転状態と、フィルタ4の各領域に追加的に堆積するPM量との相関を、事前の実験等で制御マップの形でECU20のメモリ内に格納しておく。そして、現時点の運転状態、すなわちS401で取得された運転状態に基づいて、当該制御マップにアクセスして追加的に各領域において堆積するPM堆積量を算出し、それを前回の各領域の推定出力値に加算して、今回の各領域の推定出力値として算出する。S403の処理が終了すると、S404へ進む。
S404では、本制御と並列して実行されているフィルタ4のフィルタ再生処理が終了してから所定時間が経過しているか否かが判定される。当該フィルタ再生処理の終了タイミングは、例えば、図5に示すフィルタ再生制御の処理S201又は図6に示すフィルタ再生制御の処理S311の実行タイミングである。ここで、当該所定時間とは、フィルタ再生処理が終了してから、そのフィルタ4において再びPMが堆積しPM堆積量が部分堆積量算出処理を実行可能な程度の量に到達するまでの時間である。すなわち、部分堆積量算出処理は、算出時昇温処理によって各領域の堆積PMの一部を酸化燃焼させる必要があることを考慮して、上記所定時間が決定される。S404で肯定判定されるとS405へ進み、否定判定されるとS408へ進む。
そして、S405では、後述のS406で実行される部分堆積算出処理が実行され、既にフロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されているか否かが上記実行フラグに基づいて判定される。当該判定は上記のS208等の判定と実質的に同一であるので、その詳細な説明は省略する。S405で肯定判定されるとS407へ進み、否定判定されるとS406へ進む。そして、S406では、部分堆積量算出処理が実行され、フロント領域堆積量PM_Frとリア領域堆積量PM_Rrが算出されるとともに、その実行フラグがONに設定される。
次に、S407では、S403で推定されたフロント領域4a及びリア領域4bのそれぞれの部分堆積量が、算出されたフロント領域堆積量PM_Frとリア領域堆積量PM_Rrに基づいて補正される。補正の一例としては、推定された部分堆積量と算出された各領域の堆積量との間にズレが存在する場合には、推定された部分堆積量が算出された各領域の堆積量に近づくように、該推定された部分堆積量に所定の補正値を加える。S407の処理が終了すると、S408へ進む。
S408では、今回の部分堆積量推定制御による各領域の部分堆積量の推定値が出力される。なお、S407を経てS408へ到達した場合には、S407での補正が施された各領域の推定値が、今回の推定値として出力される。また、S404で否定判定されてS408へ到達した場合には、S403で推定された各領域の推定値が、今回の各領域の推定値として出力される。そして、このS408で出力された各領域の推定値が、次の部分堆積量推定制御でのS402で取得対象となる各領域の推定出力値となる。
このように構成される部分堆積量推定制御では、内燃機関1の運転状態に基づいて各領域での部分堆積量が容易に推定することが可能である。一方で、その容易さ故に推定値が
実際の部分堆積量とかけ離れる可能性がある。そこで、上記のように部分堆積量算出処理が行われ、その算出結果に基づいて推定された部分堆積量が補正される。なお、当該算出結果が反映された、補正された部分堆積量は、次の部分堆積量推定制御で推定される部分堆積量に反映されるため、一度補正が行われると、それ以降の推定値には当該補正が引き続き反映されることになる。以上より、本部分堆積量推定制御によれば、容易な構成でより正確な各領域の部分堆積量を推定することが可能となる。
なお、推定された各領域の部分堆積量は、内燃機関1の排気浄化システムにおいて実行される様々な目的のための制御に利用することができる。また、S407の補正で使用される所定の補正値は、フィルタ4においてフィルタ再生処理が実行されるとクリアされる。
次に、フィルタ4を排気流れに沿って3つの領域であるフロント領域4A、センタ領域4B、リア領域4Cに区分した場合の、各領域でのPM堆積量の算出について、図8に基づいて説明する。なお、本実施例におけるフィルタ4の区分けについては、図8の下段(c)に示している。ここで、図8の上段(a)は、算出時昇温処理による各領域の温度推移を表し、線L11による推移がフロント領域4Aの温度推移であり、線L12による推移がセンタ領域4Bの温度推移であり、線L12による推移がリア領域4Cの温度推移である。これらの各領域の温度推移は、上記の実施例と同じように、ヒータ3からフィルタ4に対して供給される熱量と、フィルタ4における熱伝播に関する諸パラメータに基づいてECU20が推定する。また、図8の下段(b)は、その際の差圧センサ8の検出値の推移を表している。
具体的には、タイミングT11で算出時昇温処理が開始されるとともに、上流側に位置するフロント領域4Aの温度が上昇を開始する。このとき、下流側のセンタ領域4B、リア領域4Cには多くの熱がまだ伝播していないため、その温度の動きは少ない。そして、タイミングT12において、フロント領域4Aの温度が酸化開始温度Tpmに到達する。この頃からセンタ領域4Bの温度も次第に上昇していき、タイミングT13においてセンタ領域4Bの温度も酸化開始温度Tpmに到達する。更に、この頃からリア領域4Cの温度も次第に上昇していき、タイミングT14においてリア領域4Cの温度も酸化開始温度Tpmに到達する。その後、タイミングT15において、算出時昇温処理が終了され、各領域の温度も降下していく。
このようにフィルタ4の各領域の温度が推移すると、その温度が酸化開始温度Tpmを超えるとそこに堆積しているPMが酸化燃焼されることで、フィルタ4におけるPMの堆積状態が変化するための、その変化が差圧センサ8による排気差圧に反映されることになる。具体的には、タイミングT12〜T13の期間では、酸化開始温度Tpmを超えているのはフロント領域4Aのみであるから、当該領域に堆積しているPMのみが酸化燃焼して排気差圧の低下が生じ、その低下量はΔdP_Frとされる。また、タイミングT13〜T14の期間では、酸化開始温度Tpmを超えているのはフロント領域4Aとセンタ領域4Bである。そこで、両領域に堆積しているPMが酸化燃焼して排気差圧の低下が生じることになる。そして、当該期間でのフロント領域4Aでの堆積PMの酸化燃焼による排気差圧の低下量は、ΔdP_Fr2とされ、センタ領域4Bでの堆積PMの酸化燃焼による排気差圧の低下量は、ΔdP_Ceとされ、以て、タイミングT13〜T14の期間での排気差圧の低下量は両低下量の和(ΔdP_Ce+ΔdP_Fr2)となる。
更に、タイミングT14〜T15の期間では、酸化開始温度Tpmを超えているのはリア領域4Cを含む全領域である。そこで、全領域に堆積しているPMが酸化燃焼して排気差圧の低下が生じることになる。そして、当該期間でのフロント領域4Aでの堆積PMの
酸化燃焼による排気差圧の低下量は、ΔdP_Fr3とされ、センタ領域4Bでの堆積PMの酸化燃焼による排気差圧の低下量は、ΔdP_Ce2とされ、リア領域4Cでの堆積PMの酸化燃焼による排気差圧の低下量は、ΔdP_Rrとされる。したがって、タイミングT14〜T15の期間での排気差圧の低下量はこれらの低下量の和(ΔdP_Rr+ΔdP_Ce2+ΔdP_Fr3)となる。
そして、上記の実施例で示した第1の抽出手法を用いて、タイミングT13〜T14の期間での排気差圧の低下量のうちセンタ領域4B分の差圧低下量に相当するΔdP_Ce、及びタイミングT14〜T15の期間での排気差圧の低下量のうちリア領域4C分の差圧低下量に相当するΔdP_Rrを算出する。例えば、タイミングT12〜T13の期間、タイミングT13〜T14の期間、タイミングT14〜T15の期間が同じ長さである場合には、各期間での各領域における堆積PMの酸化量を同程度とみなすことができる。そこで、センタ領域4B分の差圧低下量に相当するΔdP_Ceは、タイミングT13〜T14の期間での排気差圧の低下量からタイミングT12〜T13の期間での排気差圧の低下量を減じることで算出される。更に、リア領域4C分の差圧低下量に相当するΔdP_Rrは、タイミングT14〜T15の期間での排気差圧の低下量からタイミングT13〜T14の期間での排気差圧の低下量を減じることで算出される。
そして、各領域に対応する差圧低下量であるΔdP_Fr、ΔdP_Ce、ΔdP_Rrと、タイミングT12〜T13の期間の長さ、タイミングT13〜T14の期間の長さ、タイミングT14〜T15の期間の長さに基づいて、図3に基づいて示した算出ロジックに従い、各領域での部分堆積量が算出される。このとき、タイミングT12〜T13の期間の長さに対するΔdP_Frの大きさの比率が大きくなるほど、フロント領域4Aでの部分堆積量は多くなるように算出され、タイミングT13〜T14の期間の長さに対するΔdP_Ceの大きさの比率が大きくなるほど、センタ領域4Bでの部分堆積量は多くなるように算出され、タイミングT14〜T15の期間の長さに対するΔdP_Rrの大きさの比率が大きくなるほど、リア領域4Cでの部分堆積量は多くなるように算出される。
そして、本実施例のようにフィルタ4を3つの領域に分割し、各領域での部分堆積量を算出した場合であっても、その算出された部分堆積量を利用して、第1の実施例において開示した第1のフィルタ再生制御、第2のフィルタ再生制御、部分堆積量推定制御に実質的に相当する制御を実現することが可能である。例えば、第1のフィルタ再生制御に相当する制御を行う場合には、フロント領域4A、センタ領域4B、リア領域4Cのそれぞれの部分堆積量と各領域に対応する基準堆積量(第1基準堆積量Fr0等に相当するPM堆積量の閾値)とを比較することで、早期のフィルタ再生処理を実行するようにしてもよい。
1 内燃機関
2 排気通路
3 ヒータ
4 フィルタ
4a、4A フロント領域
4b、4C リア領域
4B センタ領域
5 燃料供給弁
7、9 排気温度センサ
8 差圧センサ
10 エアフローメータ
11 クランクポジションセンサ
12 アクセル開度センサ
13 吸気通路
20 ECU

Claims (9)

  1. 内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタであって、該フィルタの一部である第1領域と、該第1領域よりも下流側に位置する該フィルタの一部である第2領域とを有するフィルタと、
    前記第1領域及び前記第2領域に堆積している粒子状物質の一部のみを酸化させるように、前記フィルタをその上流側から昇温させる所定昇温処理を実行する昇温手段と、
    前記フィルタ上流の排気通路とその下流の排気通路との排気圧力差を取得する差圧取得手段と、
    前記所定昇温処理が行われている際に、前記第1領域の温度が、捕集された粒子状物質の酸化が開始される所定酸化開始温度を超えてから、前記第2領域の温度が、該所定酸化開始温度を超えるまでの期間の少なくとも一部である第1酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第1差圧低下量と、該第1酸化期間の長さとに基づいて、該第1領域における粒子状物質の堆積量である第1堆積量を算出する第1算出手段と、
    前記所定昇温処理が行われている期間であって前記第2領域の温度が前記所定酸化開始温度を超えた後の第2酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第2差圧低下量と、該第2酸化期間の長さとに基づいて、該第2領域における粒子状物質の堆積量である第2堆積量を算出する第2算出手段と、
    を備える、内燃機関の排気浄化システムであって、
    前記第1算出手段は、前記第1酸化期間の長さに対する前記第1差圧低下量の大きさの比率が大きくなるほど、前記第1堆積量を多く算出し、
    前記第2算出手段は、前記第2酸化期間の長さに対する、前記第2差圧低下量のうち前記第2領域分の差圧低下量に相当する第2領域部分低下量の大きさの比率が大きくなるほど、前記第2堆積量を多く算出する、
    内燃機関の排気浄化システム。
  2. 前記第1酸化期間が一定の長さの期間に設定された場合、前記第1算出手段は、前記第1差圧低下量が大きくなるほど、前記第1堆積量を多く算出し、
    前記第2酸化期間が一定の長さの期間に設定された場合、前記第2算出手段は、前記第2領域部分低下量が大きくなるほど、前記第2堆積量を多く算出する、
    請求項1に記載の内燃機関の排気浄化システム。
  3. 前記第2酸化期間は、前記第1酸化期間と同じ長さに設定され、
    前記第2領域部分低下量は、前記第2差圧低下量と前記第1差圧低下量との差分に基づいて算出される、
    請求項1又は請求項2に記載の内燃機関の排気浄化システム。
  4. 前記第1酸化期間において前記所定昇温処理により前記フィルタに供給される単位時間当たりの熱量と、前記第2酸化期間において該所定昇温処理により該フィルタに供給される単位時間当たりの熱量とは同じに設定される、
    請求項1から請求項3の何れか1項に記載の内燃機関の排気浄化システム。
  5. 前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、
    前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、を更に備え、
    前記フィルタ全体に堆積した粒子状物質量が前記再生基準量よりも少ない部分算出基準量を超えたときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行
    い、該第1堆積量が第1基準堆積量を超えているか、又は該第2堆積量が第2基準堆積量を超えている場合には、前記再生手段は、該フィルタ全体に堆積した粒子状物質量が該再生基準量を超えていなくても前記フィルタ再生処理を実行する、
    請求項1から請求項4の何れか1項に記載の内燃機関の排気浄化システム。
  6. 前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、
    該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、を更に備え、
    前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行い、該第1堆積量が第3基準堆積量を超えておらず、且つ該第2堆積量が第4基準堆積量を超えていない場合には、該所定昇温処理に続いて、前記再生手段は前記フィルタ再生処理を開始する、
    請求項1から請求項4の何れか1項に記載の内燃機関の排気浄化システム。
  7. 少なくとも前記第1堆積量が前記第3基準堆積量を超えているか、又は前記第2堆積量が前記第4基準堆積量を超えている場合に、該第1堆積量の該第3基準堆積量に対する超過量が大きくなるほど、又は該第2堆積量の該第4基準堆積量に対する超過量が大きくなるほど、前記フィルタ再生処理と比べて前記フィルタに供給する単位時間当たりの熱量を小さくする緩慢フィルタ再生処理を行う緩慢再生手段を、更に備える、
    請求項6に記載の内燃機関の排気浄化システム。
  8. 前記内燃機関の運転状態に基づいて、前記第1領域における粒子状物質の堆積量である推定第1堆積量、及び前記第2領域における粒子状物質の堆積量である推定第2堆積量を推定する部分堆積量推定手段と、
    前記内燃機関の運転状態に基づいて、前記フィルタ全体に堆積した粒子状物質量を推定する全体推定手段と、
    前記フィルタ全体に堆積した粒子状物質量が再生基準量を超えたときに、該フィルタを昇温させて粒子状物質を酸化除去するフィルタ再生処理を行う再生手段と、
    を更に備え、
    前記フィルタ再生処理が終了した後に所定時間が経過したときに、前記昇温手段により前記所定昇温処理を行うとともに、前記第1算出手段による前記第1堆積量の算出及び前記第2算出手段による前記第2堆積量の算出を行い、該算出された第1堆積量及び該算出された第2堆積量に基づいて、前記部分堆積量推定手段により推定される前記推定第1堆積量及び前記推定第2堆積量を補正する、
    請求項1から請求項4の何れか1項に記載の内燃機関の排気浄化システム。
  9. 前記フィルタは、前記第2領域よりも下流側に位置する該フィルタの一部である第3領域を有し、
    前記第2酸化期間は、前記所定昇温処理が行われている際に、前記第2領域の温度が、前記所定酸化開始温度を超えてから、前記第3領域の温度が、該所定酸化開始温度を超えるまでの期間の少なくとも一部の期間であって、
    前記内燃機関の排気浄化システムは、
    前記所定昇温処理が行われている期間であって前記第3領域の温度が前記所定酸化開始温度を超えた後の第3酸化期間での、前記差圧取得手段によって取得される排気圧力差の低下量である第3差圧低下量と、該第3酸化期間の長さとに基づいて、該第3領域における粒子状物質の堆積量である第3堆積量を算出する第3算出手段を、更に備え、
    前記第3算出手段は、前記第3酸化期間の長さに対する、前記第3差圧低下量のうち前記第3領域分の差圧低下量に相当する第3領域部分低下量の大きさの比率が大きくなるほ
    ど、前記第3堆積量を多く算出する、
    請求項1に記載の内燃機関の排気浄化システム。
JP2015053898A 2015-03-17 2015-03-17 内燃機関の排気浄化システム Expired - Fee Related JP6256393B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015053898A JP6256393B2 (ja) 2015-03-17 2015-03-17 内燃機関の排気浄化システム
KR1020160030191A KR101760607B1 (ko) 2015-03-17 2016-03-14 내연 기관의 배기 정화 시스템
RU2016109192A RU2628150C1 (ru) 2015-03-17 2016-03-15 Система управления выбросами выхлопных газов двигателя внутреннего сгорания
MYPI2016700909A MY177948A (en) 2015-03-17 2016-03-15 Exhaust emission control system of internal combustion engine
EP16160708.0A EP3070282B1 (en) 2015-03-17 2016-03-16 Exhaust emission control system of internal combustion engine
US15/071,668 US9988962B2 (en) 2015-03-17 2016-03-16 Exhaust emission control system of internal combustion engine
CN201610154458.1A CN105986859B (zh) 2015-03-17 2016-03-17 内燃机的排气净化系统
BR102016005959A BR102016005959A2 (pt) 2015-03-17 2016-03-17 sistema de controle de emissão de escape de motor de combustão interna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053898A JP6256393B2 (ja) 2015-03-17 2015-03-17 内燃機関の排気浄化システム

Publications (2)

Publication Number Publication Date
JP2016173078A true JP2016173078A (ja) 2016-09-29
JP6256393B2 JP6256393B2 (ja) 2018-01-10

Family

ID=55696907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053898A Expired - Fee Related JP6256393B2 (ja) 2015-03-17 2015-03-17 内燃機関の排気浄化システム

Country Status (8)

Country Link
US (1) US9988962B2 (ja)
EP (1) EP3070282B1 (ja)
JP (1) JP6256393B2 (ja)
KR (1) KR101760607B1 (ja)
CN (1) CN105986859B (ja)
BR (1) BR102016005959A2 (ja)
MY (1) MY177948A (ja)
RU (1) RU2628150C1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085423B1 (fr) * 2018-08-29 2020-12-18 Psa Automobiles Sa Procede d'estimation de charge d’un filtre a particules
US20230064208A1 (en) * 2021-09-01 2023-03-02 American CNG, LLC Supplemental fuel system for compression-ignition engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218486A (ja) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2006112252A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011137445A (ja) * 2009-12-01 2011-07-14 Ngk Insulators Ltd 粒子状物質の堆積量検出方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061246A (ja) * 2003-08-19 2005-03-10 Toyota Motor Corp 排気浄化装置
DE102004025436A1 (de) * 2004-05-24 2005-12-29 Umicore Ag & Co. Kg Virtueller Beladungssensor
JP4140640B2 (ja) * 2006-06-12 2008-08-27 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
JP4483832B2 (ja) * 2006-06-16 2010-06-16 トヨタ自動車株式会社 Pmトラッパの故障検出システム
JP2009002276A (ja) * 2007-06-22 2009-01-08 Nippon Soken Inc 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置
JP5120237B2 (ja) 2008-12-16 2013-01-16 日産自動車株式会社 内燃機関の排気浄化装置
SE535342C2 (sv) * 2010-08-31 2012-07-03 Scania Cv Ab Förfarande och system för regenerering av ett partikelfilter i en avgasreningsprocess vid en förbränningsmotor
US8444730B2 (en) * 2010-09-27 2013-05-21 Ford Global Technologies, Llc Even-loading DPF and regeneration thereof
JP2013002331A (ja) 2011-06-15 2013-01-07 Toyota Motor Corp 内燃機関の排気浄化システム
US9394837B2 (en) * 2012-08-13 2016-07-19 Ford Global Technologies, Llc Method and system for regenerating a particulate filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218486A (ja) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2006112252A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011137445A (ja) * 2009-12-01 2011-07-14 Ngk Insulators Ltd 粒子状物質の堆積量検出方法および装置

Also Published As

Publication number Publication date
US20160273436A1 (en) 2016-09-22
CN105986859A (zh) 2016-10-05
JP6256393B2 (ja) 2018-01-10
EP3070282B1 (en) 2017-06-21
CN105986859B (zh) 2018-10-09
KR20160111858A (ko) 2016-09-27
US9988962B2 (en) 2018-06-05
BR102016005959A2 (pt) 2016-10-11
EP3070282A1 (en) 2016-09-21
RU2628150C1 (ru) 2017-08-15
MY177948A (en) 2020-09-28
KR101760607B1 (ko) 2017-07-21

Similar Documents

Publication Publication Date Title
JP4403961B2 (ja) 内燃機関の排気浄化装置
JP3846309B2 (ja) 排気浄化装置
JP6197377B2 (ja) 排気浄化装置
JP5344084B2 (ja) パティキュレートフィルタの故障検出装置及び故障検出方法
JP6233450B2 (ja) 排気浄化システムの制御装置
JP2011256796A (ja) Pm量検出システム
JP2004245123A (ja) 内燃機関の排気浄化装置
JP2009097410A (ja) パティキュレートフィルタにおけるpm捕集量推定装置およびフィルタ再生システム
JP2008190470A (ja) 排気浄化フィルタの再生装置
JP6136298B2 (ja) 内燃機関の排気浄化装置
JP2009097491A (ja) 内燃機関の排気浄化装置
JP6256393B2 (ja) 内燃機関の排気浄化システム
JP2008255812A (ja) 内燃機関の排気浄化装置
JP5924546B2 (ja) フィルタの故障検出装置
JP5949870B2 (ja) 内燃機関の排気浄化装置
JP4905863B2 (ja) 内燃機関の排気浄化装置
JP2006057608A (ja) ディーゼルエンジンの排気後処理装置
JP2009036177A (ja) 内燃機関の排気浄化装置
JP2009222424A (ja) 排気ガスセンサの制御装置
JP2013234595A (ja) 内燃機関の排気浄化装置
JP2016223356A (ja) 内燃機関の排気浄化システム
JP2008064004A (ja) 内燃機関の排気浄化システム
JP2008121571A (ja) 内燃機関の排気浄化システム
JP2014145277A (ja) 内燃機関の排気浄化装置
JP6031737B2 (ja) Dpfの再生方法、及び、排気ガス浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6256393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees