JP2016171167A - 圧粉成形体を用いた磁気シート材およびその製造方法 - Google Patents

圧粉成形体を用いた磁気シート材およびその製造方法 Download PDF

Info

Publication number
JP2016171167A
JP2016171167A JP2015049186A JP2015049186A JP2016171167A JP 2016171167 A JP2016171167 A JP 2016171167A JP 2015049186 A JP2015049186 A JP 2015049186A JP 2015049186 A JP2015049186 A JP 2015049186A JP 2016171167 A JP2016171167 A JP 2016171167A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic
magnetic powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015049186A
Other languages
English (en)
Other versions
JP6501148B2 (ja
Inventor
雄大 下山
Yudai Shimoyama
雄大 下山
石原 千生
Chio Ishihara
千生 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015049186A priority Critical patent/JP6501148B2/ja
Publication of JP2016171167A publication Critical patent/JP2016171167A/ja
Application granted granted Critical
Publication of JP6501148B2 publication Critical patent/JP6501148B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】極少量の樹脂添加量でありながら硬質な磁性粉を用いても高い機械的強度を有する磁気シート材を提供する。
【解決手段】軟磁性粉と樹脂を含む厚み1.0mm以下の薄板状圧粉成形体であり、アスペクト比が1.5〜2.5、ビッカース硬さが300〜500HVの軟磁性粉Aと、ビッカース硬さが70〜150HVである軟磁性粉Bとを含み、軟磁性粉Aの割合が30〜70質量%である。
【選択図】なし

Description

本発明は、電磁誘導方式を利用した非接触給電装置に用いて好適な磁気シート材およびその製造方法に関する。
近年、小型情報通信機器や電子機器の高性能化、高機能化が進められており、特に、携帯電話、スマートフォン等の利便性拡大のために非接触給電という新たな電力供給の手法が注目されている。これら小型携帯機器では、電源としてリチウムイオン電池などの二次電池が使用されている。この二次電池の充電方法には受電側の電極と給電側の電極とを直接接触させて充電を行う接触充電方式と、給電側と受電側の両方に伝送コイルを設け、電磁誘導を利用した電力伝送によって充電する非接触充電方式とがある。
高い電力伝送効率を得るために、伝送コイルに対して、給電装置と受電装置の接触面とは反対側に磁気シートが設置される。非接触充電装置の充電中において、コイル間で漏れ磁束が生じると、二次電池の内部またはケースとして使用される金属部材などの部品の内部に渦電流が生じることでこれらの部品が発熱する。磁気シートは、磁気シールド材としてこの発熱を抑制する役割を担う。また、磁気シートは、充電中にコイルで発生した磁束を増大させるヨーク部材としての機能も有し、コイルから生じる磁力(インダクタンス)を高める。
非接触充電方式において、一次伝送コイルに発生した磁束は、給電装置と受電装置を介して二次伝送コイルに起電力を発生させることで給電が行われる。したがって非接触充電方式において高い電力伝送効率を得るためには、一次コイル及び二次コイルの中心軸を一致させる必要がある。たとえば特許文献1〜3には、電力伝送効率の低下を抑制しつつ簡単な構造の非接触充電装置を提供するために、磁気吸着手段を伝送コイルの内側に配置して一次コイル及び二次コイルの中心軸を一致させる構成が開示されている。
特開2005‐340759公報 特開2006−42519号公報 WO2011/096569公報
本発明のような薄板状の圧粉成形体を磁気シートに用いる場合、圧粉成形体は、優れた磁気特性とともに高い機械的強度が求められる。圧粉成形体は、製造時にはクラックやひび割れがないように高い機械的強度が求められ、アンテナ材としてモジュール化される際は、組み込み工程に耐えうるだけの「ハンドリング性」が必要となる。
さらに、磁気シートは、数百kHzという高周波領域で使用されるため、高周波損失の少ないFe−Si粉やFe−Al−Si粉、アモルファス粉などの磁性粉を使用することも想定される。これらの磁性粉は、いずれも硬質な粉末であるため圧粉成形体を製造した場合には、密度や保形性、強度が著しく損なわれる。
圧粉成形体の強度改善方法の一つとして、磁性粉と樹脂を混合して成形・高温熱処理する手法が広く検討されている。磁性粉間を樹脂が結着することや圧粉成形体内の空隙部を樹脂が充填することで圧粉成形体の強度は大幅に改善されるが、密度が低下することで磁気特性(インダクタンス)も大きく低下する。また製造面においても樹脂量が多くなるにつれて、粉末の流れ性が悪化するため、粉末の充填不良や製品寸法のばらつきを引き起こす要因となってしまう。
一方、表面にリン酸塩による絶縁被膜を有し成形性に優れる純鉄粉のみを用いて高圧成形した場合、製品の金型に対する摺動面でカジリと呼ばれる摺動傷を生じやすい。カジリとは、製品を金型などから押し出す際、金属同士が十分に潤滑せずに摺り合うことで生じる摺動傷のことであり、このカジリが生じた場合、純鉄粉の表面に局所的な塑性変形が生じるため絶縁被膜が破損する。このような薄型圧粉体を高周波領域で使用した場合、著しく交流抵抗が増大し損失が増大する。そのため、純鉄粉を用いる場合にカジリを抑制するためには、多量の内部潤滑材を添加しなくてはならず、低密度化による磁力(インダクタンス)の低下や成形体の強度の低下を避けることができない。
磁気シートは、優れた磁気特性とともに端末の小型化・薄型化のニーズからその製品形態も1.0mm以下、好ましくは0.5mm以下という超極薄形状であることが強く求められる。本発明は、高密度・高インダクタンスという材料指標を基に、粉末冶金の技術を利用して厚み1.0mm以下でも密度比が90%を超える高密度な圧粉成形体の磁気シートを提供することを目的としている。
本発明は、上記課題を顧みたもので極少量の樹脂添加量でありながら硬質な磁性粉を用いても高い機械的強度を有する配合、および粉末形状の組み合わせを見出してなされたものである。すなわち、本発明の非接触給電用磁気シート材(以下、「磁気シート材」と略称する)は、軟磁性粉と樹脂を含む厚み1.0mm以下の薄板状圧粉成形体であり、アスペクト比が1.5〜2.5、ビッカース硬さが300〜500HVの軟磁性粉Aと、ビッカース硬さが70〜150HVである軟磁性粉Bとを含み、前記軟磁性粉Aの割合が30〜70質量%であることを特徴とする。
本発明においては、単一の磁性粉のみから構成される圧粉成形体と比べた場合、熱処理前、熱処理後ともに機械的強度を向上することができるため、クラックやひび割れの発生を抑制することが可能である。また磁気特性面をみても高周波特性に優れる磁性粉を含有していることで数百kHz領域でも損失(交流抵抗)を効果的に低減することができ、樹脂を添加する手法に比べて高い密度が達成できるため高い磁束(インダクタンス)を維持することが可能となる。
また、本発明においては、粒子径や粉末硬さの異なる軟磁性粉が混合され、強固に絡みついているため、少ない潤滑剤の量でも摺動面でのカジリを生じ難くすることができる。このように、潤滑剤や樹脂粉末の含有量を少なくすることで優れた粉末の流れ性を維持していることから製品の寸法制度も安定させることができる。
本発明においては、樹脂含有量が1.0質量%以下であることが望ましい。また、軟磁性粉Aは、Siを5.0〜7.0質量%含有するFe−Si粉であることが望ましく、軟磁性粉Bは、純鉄粉であることが望ましい。さらに、軟磁性粉Aおよび軟磁性粉Bの平均粒子径(円相当径)は下記数1を満足することが望ましい。
Figure 2016171167
次に、本発明の非接触給電用磁気シート材の製造方法は、複数の軟磁性粉と樹脂及び内部潤滑材を混合して混合粉末を得る混合工程と、前記混合粉末を金型に充填して成形する成形工程と、前記成形工程で得られた薄板状圧粉成形体を熱処理する工程とを備えたことを特徴とする。
本発明の磁気シート材を非接触給電機能を搭載したスマートフォンなどの小型電子機器に適応することで製品をより薄型化・小型化・高効率化することができる。さらには、高い機械的強度を維持できることでアンテナ材として製品特性の長期信頼性の向上にも好適に作用する等の効果が得られる。
Fe−6.5Si粉のアスペクト比と粒子径の抗折強度への影響を示すグラフである。 実施例1の断面研磨後の光学顕微鏡画像である。 比較例1の断面研磨後の光学顕微鏡画像である。 比較例2の断面研磨後の光学顕微鏡画像である。 Fe−6.5Si粉と純鉄粉の比率を変えた際の抗折強度への影響を示すグラフである。 樹脂添加量と抗折強度の関係を示すグラフである。 純鉄粉/Fe−6.5Si粉比率を変えた際の磁気特性を示すグラフである。
(磁気シートの機能)
磁気シートは、磁気シールド材として機能し、非接触充電装置の充電中に発生した漏れ磁束が、二次電池の内部またはケースとして使用される金属部材などの部品に流れるのを抑制し、それら部品の発熱を抑制する。また、磁気シートは、充電中にコイルで発生した磁束を還流させるヨーク部材として機能し、コイルから生じる磁力(インダクタンス)を高める。
(既存のフェライトシート)
従来、非接触給電における磁気シート材は、高周波特性に優れるフェライトが使用されていた。しかしながら、酸化鉄であるフェライトは、飽和磁束密度が小さいためにシート厚を薄くした場合、磁気飽和(磁性体に付与する磁界をいくら強めてもそれ以上磁化が変化しなくなった状態)を生じやすいという問題を有する。これにより、インダクタンスの大幅な低下や電池パック周辺での渦電流損の増大による発熱を引き起こす。このような現象は、特に、コイル間の位置合わせに永久磁石を用いる場合に顕著になり、シート材が磁気飽和しないようにするためには、シート材の厚さをより厚くしなくてはならなかった。一般的に、軟磁性材料における高周波特性と飽和磁束密度の高さはトレードオフの関係にあるため、フェライトを用いた磁気シートでは、要求特性と端末の薄型化を両立することは困難であった。
(本発明の磁気シート材)
一方、本発明の磁気シート材は、高密度、高透磁率な圧粉成形体であるため、同じ厚みで既存のフェライトシートと比較した場合、高いインダクタンスを有することが特徴である。そのため、コイル巻き数の低減や、漏れ磁束の抑制、また磁場干渉下での磁気飽和を回避することができるので高効率な給電が可能となる。
(薄板状圧粉成形体の課題)
しかしながら、本発明の磁気シートは、高周波損失を低減するために微細な磁性分を使用し、かつ極薄の圧粉成形体であるがため機械的強度が低いということが製品上の大きな課題となる。本発明でいう機械的強度とは、2通りの意味合いを持ち、1つは「製造工程内で求められる強度」である。熱処理前の圧粉成形体は、熱処理後の圧粉成形体に比べて強度が低いため、クラックや割れが生じ易く、そのような成形体は作業性およびハンドリング性にも難が残る。2つ目は、製品として考えた場合、磁気シート材としてコイルなどとともにモジュール化される際に破損してしまうことの防止と、製品の長期信頼性を保つ上で高強度であることが求められる。
本発明による極薄形状の圧粉成形体を用いた磁気シート材は、軟磁性材料によって構成され、後述する諸特性を向上させるために樹脂や潤滑剤などを用いて製造する。以下、それぞれの構成要素について順に説明する。なお、以下の説明において「%」は「質量%」を意味する。
[磁性材料粉末]
本発明に用いて好適な軟磁性粉について説明する。本発明の軟磁性粉は、複数の軟磁性粉から構成されることが特長である。一方の軟磁性粉(軟磁性粉B)は、成形性および圧縮性に優れた純鉄粉である。他方の軟磁性粉(軟磁性粉A)は、Siを含む軟磁性粉であり、例えばケイ素鋼(Fe−1.0〜10.0%Si)、センダスト(Fe−Si−Al合金であり、Siが0.1〜15%、Alが0.1〜10%)、Fe−Si−Cr合金(Siが0.1〜15%、Crが0.1〜10%)、アモルファス粉(例えば、Fe−Si−Cr−B合金、Fe−Si−Cr−B―C合金など)等を例示することができる。
Siの役割は、磁気異方性、磁歪定数を小さくする効果や、電気抵抗を高め渦電流損失を低減させる効果がある。Siの添加量としては1%より少ないと軟磁気特性の改善効果に乏しく、10wt%より多いと飽和磁化の低下が大きく直流重畳特性が低下する。そのため、Siは、3〜8%以下がより好ましく、より好ましくは5.0〜7.0%がよい。
[粒子径]
本発明で用いる軟磁性粉は、異なる2種以上の軟磁性粉を併用することが特徴である。
一方の軟磁性粉は、Siを含む硬質な軟磁性粉であり、他方の軟磁性粉は、前述したSiを含む硬質な軟磁性粉よりも粉末が柔らかく、圧縮性および成形性に優れる純鉄粉などである。それぞれ役割が異なるため好適な粒子径も異なり、圧縮性に優れる純鉄粉としては、比較的大きな粒子径のものが好ましく、具体的には平均粒子径が20〜100μmであることが好ましく、より好ましくは、30〜75μmがよい。
一方、Siを含む硬質な軟磁性粉としては、純鉄粉よりも大きい場合や10μm未満の微粉となる場合は、著しく成形体の強度が低下するため好ましくない。特に、軟磁性粉の粒子径が10μm未満のものを使用した場合、成形体の密度の低下や気孔部の増加による強度の低下が生じることや、粉末の流動性、充填性が劣るため量産面でも好ましくない。Siを含む硬質な軟磁性粉の粒径は、具体的には10〜50μmが好ましく、20〜40μmであれば更に好ましい。圧粉成形体を構成する軟磁性粉を前述のような粒子径にすることで、120kHzという周波数領域でも渦電流損を抑制することができる。
[粉末形状]
本発明で用いるSiを含んだ軟磁性粉で好適なアスペクト比としては、1.5〜2.5とすることが好ましい。詳細は実施例において後述するが、アスペクト比をこのような範囲とすることで磁性粉間の絡みつきが向上し、これにより、圧粉成形体の機械的強度を著しく向上させることができる。アスペクト比が1.5未満あるいは、2.5よりも大きな磁性粉でも成形することは可能であるが、空隙部が形成されやすくなることや粉末間の絡みつきが著しく低下することにより、期待するような強度改善効果が得られない。
[表面絶縁被膜]
本発明で用いる軟磁性粉は、高周波領域における損失(交流抵抗)を低減するために、必要に応じて磁性粉表面に絶縁被膜を有していても良い。絶縁被膜は、表面の電気抵抗を向上することで渦電流損を低減することができればいかなるものも使用することができる。具体的には、リン酸塩による絶縁被膜のような無機被膜であってもよく、シリコーン樹脂やエポキシ樹脂、ポリイミド樹脂などを用いた有機被膜であってもよい。
[樹脂]
本発明で用いる樹脂は、軟磁性粉とともに混合されることで金型成形時に軟磁性粉の表面近傍に均一に配置される。また、樹脂の添加は絶縁性を付与することに加えて、成形後の熱処理工程を経ることで軟磁性粉どうしを強固に結びつけて圧粉成形体の高強度化にも強く寄与する。本発明における樹脂は、圧粉成形体内で完全に硬化していなくてもよい。また高温熱処理工程を経るために構造の一部が熱分解していてもよい。
本発明で用いる樹脂は、熱硬化樹脂および熱可塑樹脂のいずれも使用することができる。具体的には、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂などを挙げることができる。これらの樹脂の中でも歪み取りのための高温熱処理を行う都合上、耐熱性に優れるポリイミド樹脂やシリコーン樹脂が特に好ましい。本発明で用いるポリイミド樹脂は、高温熱処理を考慮してN雰囲気下で500℃以上の熱処理条件でも重量減少が少ないもの(系内に炭化物として残るもの)が好ましい。
具体的には、熱処理後の重量減少が20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であると更に好ましい。樹脂の重量平均分子量Mwは、5000g/mol以上であることが好ましく、10000g/mol以上であることがより好ましく、更に好ましくは500000g/mol以上がよい。粉末冶金の工程(ネットシェイプ成形と高温熱処理)を考慮すると、固形樹脂で粒子径が細かなものが工程上は好適であるが、アセトンやトルエンなどの適当な溶媒に樹脂を溶かし、塗布、乾燥して磁性粉表面に樹脂をコーティングしてもよい。
本発明における樹脂の添加量は、0.001〜5。0%とすることが好ましく、より好ましくは0.01〜2.0、更に好ましくは0.1〜0.5%がよい。樹脂量を増加させることで圧粉成形体の強度を高めることができ、また、後述する磁気特性としてもレジスタンス(交流抵抗)を低減することができる。樹脂を含まない場合には、圧粉成形体の強度が不十分となる傾向にある。一方、樹脂量が多すぎる場合には、十分な密度、インダクタンスが得られないため実用上好ましくない。
[潤滑剤]
本発明で用いる潤滑剤としては、粉末冶金において使用される潤滑剤であれば任意のものを使用することができる。具体的には、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸カルシウム等の金属石鹸、長鎖炭化水素やEBS(エチレンビスステアリン酸アミド)、ポリエチレンなどのワックス系潤滑剤を使用することができる。また潤滑剤は、適当な分散媒に分散して分散液とし、それを金型ダイス内壁面(パンチと接触する壁面)に塗布、乾燥して使用することができる。
[割合、組成比]
本発明の磁気シート材は、軟磁性粉と樹脂を含み、必要に応じて潤滑剤を含む複合磁性材料である。高インダクタンスの観点からより高密度であることが求められるため、軟磁性粉の割合は95%以上であることが好ましく、より好ましくは99%以上であり、更に好ましくは,99.5%以上がよい。製造工程における粉末の流動性、金型からの離形性を維持できるだけの潤滑剤を含み、軟磁性粉末間の絡みつきを損なわない程度の樹脂量に調整することにより、磁気特性と機械的強度および量産性を兼ね備えたバランスの良い粉末組成となる。
[軟磁性粉の配合比]
Siを含む軟磁性粉の配合比は30〜70%とする。この配合比とすることにより、抗折強度が高く、インダクタンス(磁力の強さの指標)が高くかつレジスタンス(交流抵抗)の低い磁気シート材を得ることができる。そのような効果については実施例で詳細に説明する。
[密度比]
本発明の磁気シート材として好適な薄型圧粉体は、密度比を用いて評価することができる。密度比は、軟磁性粉末の真密度(ρ)に対する圧粉成形体 の嵩密度(ρ)の比(ρ/ρ:%)で表す。例えば、成分A、成分B、成分Cからなる複合材料では、下記数2式が成り立つ。なお、数2式において、Xは含有率(質量比)、Wは重量、ρは密度である。
Figure 2016171167
ここで、X[%]+X[%]+X[%]=100[%]であるので材料全体の真密度ρは、下記数3式で表すことができる。
Figure 2016171167
本発明における薄型圧粉体の密度比は、91%以上であることが好ましく、より好ましくは95%以上がよい。91%未満の圧粉体では、強度およびハンドリング性が劣るため磁気シート材としての適用が困難となる。このような高密度な圧粉成形体とすることでインダクタンス(磁力の強さの指標)を高めることができる。また携帯端末内に磁気シート材として搭載した場合は、コイルの巻き戦数を削減することができるとともに、磁石を用いて位置合わせをした場合にも磁気飽和を生じることがなく、高いインダクタンスを得ることができる。
[製造工程]
本発明の磁気シート材は、金型内に粉末を充填して高圧成形し、得られた薄板形状の圧粉成形体を高温熱処理することで製造することができる。この製造工程は、軟磁性粉と微量の樹脂や潤滑剤を混合する混合工程と、混合粉末を成形用金型に充填して加圧成形する成形工程と、得られた薄板形状の圧粉成形体を高温熱処理する熱処理工程とに大別される。
[混合工程]
本発明の磁気シートを製造する際、得られる磁気シート材の諸特性及び寸法のバラツキを低減させるために軟磁性粉や樹脂、潤滑剤を均一に混合分散させることが好ましい。この混合工程は、任意の装置を使用することができる。具体的には、軟磁性粉が高比重であることからV型、W型混合機などで混合することが好ましい。処理量にもよるが、好適な混合条件としては、回転数が20〜60rpmで30分から2時間ほど混合撹拌することで軟磁性粉と樹脂や潤滑剤を均一に分散させることができる。
[成形工程]
本発明の薄型圧粉成形体を製造する際の成形工程は、冷間、温間を問わず、粉末冶金法による一般的な成形法によって行うことができる。また、高密度化による磁気特性および機械的強度の向上を図る観点から、潤滑剤を金型に塗布する金型潤滑法を採用することもできる。これにより、成形圧力を大きくしても、成形用金型の内面と被覆金属粉との間でカジリが生じたり抜圧が過大となることが抑制され、また金型寿命が長くなる。成形圧力が高圧であるほど高密度の圧粉磁心が得られるが、成形体の密度が真密度に近づくにつれて、ある一定値以上の成形圧力でもそれ以上の高密度化が実質的に望めなくなる。金型寿命や生産性を考慮すると、成形圧力を600〜1200MPaとすることが好ましい。
[成形形状]
本発明において圧粉成形体を用いた磁気シートは、厚みが0.1mm以上、1.0mm以下であることが特徴である。寸法は、成形時に用いる金型に依存し、圧粉成形体は必要に応じて凹凸を有していてもよい。
[熱処理工程]
一般に、軟磁性粉を高圧成形するとその内部には残留応力や残留歪を生じる。この高圧成形時に生じた成形歪を除去するために、得られた圧粉成形体に高温熱処理を施すことが好適である。成形歪を緩和することでヒステリシス損を低減することができ、かつ得られた圧粉成形体は高透磁率な材料となる。そのため、本発明において「圧粉成形体」とは熱処理後の成形体のことを意味する。
残留歪等は、熱処理温度が高い程効果的に除去される。ただし、耐熱性の樹脂であっても部分的な破壊が生じることがある。熱処理温度を500℃〜1000℃とすることで、残留歪の除去と被膜の優れた絶縁性の両立を図ることができる。加熱時間は、効果と経済性とから考えて、1〜120分が好ましく、さらに好ましくは10〜60分がよい。
熱処理を行う際の雰囲気は、真空雰囲気や不活性ガス(N)雰囲気中であることが好ましい。熱処理工程を非酸化雰囲気中で行うことで、磁気シート材を構成する磁性粉が酸化されて磁気特性や電気特性が低下するのを抑制することができる。
[圧粉成形体の強度]
本発明のような薄板状の圧粉成形体の強度は、その形状ゆえに精度よく強度を測定することが困難である。そのため、強度の指標を得るためにJIS−Z−2248に準拠した3点曲げ試験を実施して強度の相対評価を行う。抗折試験の詳細は、実施例に記載するが、小型の抗折試験片(12mm×34mm×5mm厚)を作製して三点曲げ試験を行うことで強度の指標を得る。本発明者らが検討した結果、本試験による抗折試験にて抗折強度を40MPa以上とすることが薄板状圧粉成形体を作製する上で好ましい。40MPa未満では、クラックや欠けが生じやすく作業性・ハンドリング性も不適である。製造工程上、製品の実使用上の観点から60MPa以上であることが好ましく、80MPa以上であることが更に好ましい。
[評価方法]
軟磁性材料の評価方法として、磁力の強さを示すインダクタンスと損失の指標となるレジスタンス(交流抵抗)が挙げられる。一般に、インダクタンスやレジスタンスの測定はLCRメータなどを用いて行う。実施例にて詳細に説明するが、リング状の試験片を作製し、コイルをリング状試験片に巻きつけて交流電流を流すことで磁束を形成させる。磁気シート材としては、高インダクタンスでかつ、低レジスタンスな材料であることが求められる。
実施例を参照して本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
ビッカース硬さが300〜500HVの軟磁性粉として、粒子径および形状の異なるFe−6.5Si粉を複数種類用意した(実施例1〜実施例8、比較例1〜比較例6)。またビッカース硬さが70〜150HVの軟磁性粉としては、ヘガネス社製絶縁被覆鉄粉(製品名:Somaloy110i 1P、平均粒子径D50=46.9μm)を用いた。これらの軟磁性粉の詳細を表1に示す。以下、本発明の圧粉成形体の製造方法及び評価方法を順に記載する。
まず、各Fe−Si粉と純鉄粉を1:1の質量比で混合した。次に、Fe−6.5Si粉と純鉄粉の混合粉に粉末状のポリイミド樹脂(三井化学社製、AULUM PD450)を0.15質量%、内部潤滑材としてステアリン酸亜鉛を0.2質量%となるように添加し、1kg容量のV型混合機を用いて1.0時間ほど混合撹拌した。
次に、軟磁性粉と樹脂及び潤滑剤を含む混合粉末を横12mm、縦34mmの成形金型内に充填し、厚み5.0mmとなるように2000kNアムスラー型万能試験機を用いて加圧し、抗折試験片を作製した。成形圧力はいずれも1176MPa(12ton/cm)で一定とした。抗折試験片は、高圧成形時に生じた加工歪を除去するために不活性ガス(N)雰囲気下、530℃にて30分間の熱処理を行い、熱処理前後での重量および寸法の変化を測定して各試験片の密度を測定した。
得られた抗折試験片に対して、強度の指標を得るためにJIS−Z−2248に準拠した3点曲げ試験を実施した。抗折試験は、いずれも精密万能試験機(オートグラフ)を用いて行い、支点間距離は25.4mm、加圧速度0.5mm/分の条件のもと、最大試験力から抗折強度を算出した。これらの結果を表1及び図1に示す。
Figure 2016171167
図1は、表1中の「Fe−6.5Si粉/純鉄粉 粒子径比」を横軸に、「Fe−6.5Si粉の長軸/短軸比(アスペクト比)」を縦軸に示した図であり、プロットの添え字が抗折強度を示す。なお、基準となる純鉄粉を図中に「●」で示した。図1より純鉄粉と配合したFe−6.5Si粉の円相当平均粒子径とアスペクト比によって抗折強度が11.2MPa〜68.8MPaまで大きく異なることが分かる。純鉄粉よりも粒子径の大きなFe−Si粉を使用した場合、すなわち横軸が1.0よりも大きくなる場合には、抗折強度が低下傾向にある。またFe−6.5Si粉/純鉄粉の粒子径比が0.4未満となった場合にも抗折強度が大きく低下している。これより、純鉄粉と混合するFe−6.5Si粉には好適な粒度があり、0.4≦「Fe−6.5Si粉/純鉄粉 粒子径比」≦1.0 とすることが好ましい。また、図1に示すように、アスペクト比(長軸/短軸比)を1.5〜2.5とすることで高い抗折強度を維持することができる。
次に、図2〜図4に実施例1及び比較例1、比較例2の断面研磨後の表面画像を示す。抗折強度の最も高い実施例1は、圧縮性および成形性に優れる純鉄粉が大きく塑性変形し、Fe−6.5Si粉と強く粉末間が絡みつきあっていることが確認できた。一方、比較例1、2では、空隙部が多く存在し、粉末間の絡みつきが弱いことが推測される。
(Fe−6.5Si粉の配合比の影響評価)
次に、実施例1で使用した純鉄粉及びFe−6.5Si粉を使用して、純鉄粉とFe−6.5Si粉の比率を変えて磁気特性及び折折強度への影響を評価した。抗折試験片は前記と同じ条件で作製し、三点曲げ試験により抗折強度を測定した。リング状試験片は、外径:30mm、内径:20mmの金型に混合粉を充填し、高さ5mmとなるように2000kNアムスラー型万能試験機を用いて加圧した。その際の成形圧は、抗折試験片作製時と同様に1176MPa(12ton/cm)として行った。
得られたリング状試験片及び抗折試験片は、不活性ガス(N)雰囲気下、530℃にて30分間の熱処理を行い、熱処理前後での重量および寸法の変化を測定して各試験片の密度を測定した。各リング状試験片の磁気特性評価は、LCRメーター(國洋電気工業社製、KC−605)を用いて周波数120KHzにおけるインダクタンス(L,磁力の強さの指標)とレジスタンス(R,交流抵抗)を測定した。なお、測定時の巻き線数は20ターンとし、電圧1.0V(一定)として測定した。試験に使用した粉末配合比を以下に示す。
(比較例7)
Fe−6.5Si粉を添加せず、純鉄粉のみで抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(比較例8)
純鉄粉とFe−6.5Si粉の比率を20%:80%として抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(実施例9)
純鉄粉とFe−6.5Si粉の質量比率を30%:70%として抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(実施例10)
純鉄粉とFe−6.5Si粉の比率を50%:50%として抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(実施例11)
純鉄粉とFe−6.5Si粉の比率を70%:30%として抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(実施例12)
純鉄粉とFe−6.5Si粉の比率を80%:20%として抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
(比較例9)
純鉄粉を添加せず、Fe−6.5Si粉のみで抗折試験片及びリング状試験片を作製した。その他の工程はいずれも実施例1と同様とした。
[抗折強度評価結果]
図5に圧粉成形体(熱処理なし)と熱処理体の抗折強度評価結果を示す。図5より熱処理体の強度は、純鉄粉の比率が高まるにつれて徐々に増加しているが、圧粉成形体の強度は純鉄粉単独やFe−6.5Si粉単独に比べて混合粉とした場合の方が高くなることが分かった。熱処理後の抗折強度を比較すると、Fe−6.5Si粉の比率が70%から80%に増加したときに大きく抗折強度が低下している。したがって、Fe−6.5Si粉を混合する場合、70%以下とすることが好ましい。
次に、樹脂量を変えて抗折強度を評価した。評価結果を図6に示す。Fe−6.5Si粉単独では、樹脂量の増加とともに抗折強度が増加傾向にあるが、強度を高めるためには、多量の樹脂添加が必要となる。一方、Fe−6.5Si粉と純鉄粉を50:50で混合した場合、樹脂量が0.3%のときに抗折強度の極大値が得られることが確認できた。全体的にもFe−6.5Si粉単独の結果よりも一様に高い抗折強度が得られている。樹脂添加量は、0.1%〜1.0%とすることが好ましく、0.3%とすることが最も好ましいことが明らかになった。
次に、図7にリング状試験片での磁気特性評価結果を示す。図7に示すように、Fe−6.5Si粉の割合が高くなるにつれて、70%まではインダクタンスが緩やかに低下する傾向にある。一方、レジスタンス(交流抵抗)は、Fe−6.5Si粉の割合が高くなるにつれて低下する傾向にあるが、Fe−6.5Si粉の比率が20%から30%に増加したときに大きくレジスタンスが低下している。したがって、Fe−6.5Si粉の比率は、30%以上とすることが磁気特性の上で必要である。なお、図7において、Lは高い方が好ましく(磁力が高い)、Rは低い方が好ましい(損失が少ない)。
以上の結果から、混合粉中のFe−6.5Si粉の割合は、30〜70%とすることが磁気特性と抗折強度のバランス化の観点から必要である。
本発明の磁気シート材を非接触給電機能を搭載したスマートフォン、タブレット端末、ウエアラブルデバイスなどの小型電子機器に適応することにより、製品をより薄型化・小型化・高効率化することができる。また本発明の磁気シート材は、硬質な軟磁性粉を多く含んでいても高い機械的強度を維持できることでアンテナ材として製品特性の長期信頼性の向上にも寄与するものである。

Claims (5)

  1. 軟磁性粉と樹脂を含む厚み1.0mm以下の薄板状圧粉成形体であり、アスペクト比が1.5〜2.5、ビッカース硬さが300〜500HVの軟磁性粉Aと、ビッカース硬さが70〜150HVである軟磁性粉Bとを含み、前記軟磁性粉Aの割合が30〜70質量%であることを特徴とする非接触給電用磁気シート材。
  2. 前記軟磁性粉Aは、Siを5.0〜7.0質量%含有するFe−Si粉であることを特徴とする請求項1に記載の非接触給電用磁気シート材。
  3. 前記軟磁性粉Bは、純鉄粉であることを特徴とする請求項1または2に記載の非接触給電用磁気シート材。
  4. 前記軟磁性粉Aおよび前記軟磁性粉Bの平均粒子径(円相当径)が下記数1を満足することを特徴とする請求項1〜3のいずれかに記載の非接触給電用磁気シート材。
    Figure 2016171167
  5. 複数の軟磁性粉と樹脂及び内部潤滑材を混合して混合粉末を得る混合工程と、
    前記混合粉末を金型に充填して成形する成形工程と、
    前記成形工程で得られた薄板状圧粉成形体を熱処理する工程と
    を備えたことを特徴とする非接触給電用磁気シート材の製造方法。
JP2015049186A 2015-03-12 2015-03-12 圧粉成形体を用いた磁気シート材およびその製造方法 Active JP6501148B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049186A JP6501148B2 (ja) 2015-03-12 2015-03-12 圧粉成形体を用いた磁気シート材およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049186A JP6501148B2 (ja) 2015-03-12 2015-03-12 圧粉成形体を用いた磁気シート材およびその製造方法

Publications (2)

Publication Number Publication Date
JP2016171167A true JP2016171167A (ja) 2016-09-23
JP6501148B2 JP6501148B2 (ja) 2019-04-17

Family

ID=56982526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049186A Active JP6501148B2 (ja) 2015-03-12 2015-03-12 圧粉成形体を用いた磁気シート材およびその製造方法

Country Status (1)

Country Link
JP (1) JP6501148B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505758A (ja) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド 磁性コアおよびこれを含むコイル部品
KR20200050948A (ko) 2017-09-04 2020-05-12 도와 일렉트로닉스 가부시키가이샤 연자성 분말, Fe 분말 또는 Fe를 포함하는 합금 분말의 제조 방법, 연자성 재료, 및 압분자심의 제조 방법
CN112951537A (zh) * 2019-12-11 2021-06-11 Tdk株式会社 磁性薄片、和具备磁性薄片的线圈模块以及非接触供电装置
KR20210083245A (ko) 2018-10-30 2021-07-06 도와 일렉트로닉스 가부시키가이샤 연자성 분말, 연자성 분말의 열처리 방법, 연자성 재료, 압분자심 및 압분자심의 제조 방법
JPWO2020137542A1 (ja) * 2018-12-28 2021-11-04 株式会社村田製作所 焼結体およびその製造方法
KR20210137002A (ko) 2019-03-19 2021-11-17 도와 일렉트로닉스 가부시키가이샤 연자성 분말, 연자성 분말의 열처리 방법, 연자성 재료, 압분자심 및 압분자심의 제조 방법
JP2022551278A (ja) * 2019-10-29 2022-12-08 エスケイシー・カンパニー・リミテッド 無線充電装置およびそれを含む移動手段

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156249A (ja) * 1985-12-27 1987-07-11 Toshiba Corp 残留磁束密度の低い鉄―ケイ素系焼結材料とその製造方法
JPS6314838A (ja) * 1986-07-04 1988-01-22 Riken Corp Fe−Si系焼結軟磁性材料の製造方法
JPH0448005A (ja) * 1990-06-15 1992-02-18 Toshiba Corp Fe基軟磁性合金粉末とその製造方法およびそれを用いた圧粉磁心
JP2000212679A (ja) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Fe―Si系軟磁性焼結合金用原料粒体およびその製造方法ならびにFe―Si系軟磁性焼結合金部材の製造方法
JP2002064027A (ja) * 2000-08-22 2002-02-28 Daido Steel Co Ltd 圧粉磁心の製造方法
JP2008192897A (ja) * 2007-02-06 2008-08-21 Hitachi Metals Ltd 圧粉磁心およびリアクトル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156249A (ja) * 1985-12-27 1987-07-11 Toshiba Corp 残留磁束密度の低い鉄―ケイ素系焼結材料とその製造方法
JPS6314838A (ja) * 1986-07-04 1988-01-22 Riken Corp Fe−Si系焼結軟磁性材料の製造方法
JPH0448005A (ja) * 1990-06-15 1992-02-18 Toshiba Corp Fe基軟磁性合金粉末とその製造方法およびそれを用いた圧粉磁心
JP2000212679A (ja) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Fe―Si系軟磁性焼結合金用原料粒体およびその製造方法ならびにFe―Si系軟磁性焼結合金部材の製造方法
JP2002064027A (ja) * 2000-08-22 2002-02-28 Daido Steel Co Ltd 圧粉磁心の製造方法
JP2008192897A (ja) * 2007-02-06 2008-08-21 Hitachi Metals Ltd 圧粉磁心およびリアクトル

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505758A (ja) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド 磁性コアおよびこれを含むコイル部品
KR20200050948A (ko) 2017-09-04 2020-05-12 도와 일렉트로닉스 가부시키가이샤 연자성 분말, Fe 분말 또는 Fe를 포함하는 합금 분말의 제조 방법, 연자성 재료, 및 압분자심의 제조 방법
KR20210083245A (ko) 2018-10-30 2021-07-06 도와 일렉트로닉스 가부시키가이샤 연자성 분말, 연자성 분말의 열처리 방법, 연자성 재료, 압분자심 및 압분자심의 제조 방법
JPWO2020137542A1 (ja) * 2018-12-28 2021-11-04 株式会社村田製作所 焼結体およびその製造方法
JP7338644B2 (ja) 2018-12-28 2023-09-05 株式会社村田製作所 焼結体およびその製造方法
US11942267B2 (en) 2018-12-28 2024-03-26 Murata Manufacturing Co., Ltd. Sintered body and method for producing same
KR20210137002A (ko) 2019-03-19 2021-11-17 도와 일렉트로닉스 가부시키가이샤 연자성 분말, 연자성 분말의 열처리 방법, 연자성 재료, 압분자심 및 압분자심의 제조 방법
JP2022551278A (ja) * 2019-10-29 2022-12-08 エスケイシー・カンパニー・リミテッド 無線充電装置およびそれを含む移動手段
JP7329139B2 (ja) 2019-10-29 2023-08-17 エスケイシー・カンパニー・リミテッド 無線充電装置およびそれを含む移動手段
CN112951537A (zh) * 2019-12-11 2021-06-11 Tdk株式会社 磁性薄片、和具备磁性薄片的线圈模块以及非接触供电装置
CN112951537B (zh) * 2019-12-11 2023-08-15 Tdk株式会社 磁性薄片、和具备磁性薄片的线圈模块以及非接触供电装置

Also Published As

Publication number Publication date
JP6501148B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6501148B2 (ja) 圧粉成形体を用いた磁気シート材およびその製造方法
JP6277426B2 (ja) 複合磁性体およびその製造方法
JP5924480B2 (ja) 磁性粉末材料、その磁性粉末材料を含む低損失複合磁性材料、及びその低損失複合磁性材料を含む磁性素子
US6903641B2 (en) Dust core and method for producing the same
EP2750151B1 (en) Compressed powder compact
US8810353B2 (en) Reactor and method for manufacturing same
CN106663513B (zh) 磁芯、磁芯的制造方法以及线圈部件
JPWO2013051229A1 (ja) 圧粉磁心およびその製造方法
WO2013175929A1 (ja) 圧粉磁心、圧粉磁心の製造方法、及び、圧粉磁心の渦電流損失の推定方法
JP2009185312A (ja) 複合軟磁性材料、それを用いた圧粉磁心、およびそれらの製造方法
JP2010236020A (ja) 複合軟磁性材料及びその製造方法と電磁気回路部品
KR101639960B1 (ko) 압분자심용 철분 및 압분자심의 제조 방법
JP2007012745A (ja) 圧粉磁心およびその製造方法
US20090220372A1 (en) Low Magnetostrictive Body and Dust Core Using the Same
JP2015026749A (ja) 軟磁性粉末、圧粉磁心および軟磁性合金
JP2011243830A (ja) 圧粉磁芯及びその製造方法
WO2014097556A1 (ja) 圧粉磁芯用鉄粉
JP2010027871A (ja) 圧粉磁心及びその製造方法
JP2015109367A (ja) 磁気シート材およびその製造方法
CN107615411B (zh) 压粉磁芯用混合粉末以及压粉磁芯
JP6035788B2 (ja) 圧粉磁芯用粉末
JP6111524B2 (ja) 圧粉磁心の製造方法
JP2019186558A (ja) 圧粉磁心用混合粉末および圧粉磁心
JP7405659B2 (ja) 圧粉成形体、圧粉成形体の製造方法及び圧粉磁心の製造方法、
JP6174954B2 (ja) 圧粉成形体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R151 Written notification of patent or utility model registration

Ref document number: 6501148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350