JP2016169723A - 噴霧干渉判定装置、気流制御装置 - Google Patents

噴霧干渉判定装置、気流制御装置 Download PDF

Info

Publication number
JP2016169723A
JP2016169723A JP2015051910A JP2015051910A JP2016169723A JP 2016169723 A JP2016169723 A JP 2016169723A JP 2015051910 A JP2015051910 A JP 2015051910A JP 2015051910 A JP2015051910 A JP 2015051910A JP 2016169723 A JP2016169723 A JP 2016169723A
Authority
JP
Japan
Prior art keywords
cylinder
interference
combustion
spray
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015051910A
Other languages
English (en)
Other versions
JP6429082B2 (ja
Inventor
幸平 元尾
Kohei Motoo
幸平 元尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015051910A priority Critical patent/JP6429082B2/ja
Priority to DE102016104241.2A priority patent/DE102016104241B4/de
Publication of JP2016169723A publication Critical patent/JP2016169723A/ja
Application granted granted Critical
Publication of JP6429082B2 publication Critical patent/JP6429082B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】圧縮自着火式の内燃機関の筒内に噴射された燃料噴霧間の燃焼時における干渉を簡易かつ精度良く判定できる噴霧干渉判定装置を提供する。
【解決手段】筒内のO2濃度が排気O2濃度である条件下で当量比が1となる燃料噴霧の噴孔からの到達距離を燃焼終了位置として推定する(S21)。筒内に発生した気流の角速度を推定する(S22)。噴射期間の最後に噴射された燃料が噴孔から燃焼終了位置に到達するまでの時間を推定する(S23)。1噴孔当たりの噴霧角に噴孔数を乗算することで、筒内に気流が無い場合のトータル噴霧角を推定する(S24)。そのトータル噴霧角と気流の角速度とS23で得られる時間とに基づいて気流がある場合のトータル噴霧角を推定する(S25)。そのトータル噴霧角と閾値との比較に基づき噴霧干渉を判定し(S26)、噴霧の干渉量が目標値より大きい場合は気流を弱くし、目標値以下の場合は気流を弱くし又は維持する。
【選択図】図6

Description

本発明は、圧縮自着火式の内燃機関の筒内に噴射された燃料噴霧間の干渉を判定する噴霧干渉判定装置及び筒内の気流の強さを制御する気流制御装置に関する。
従来、ディーゼルエンジンに代表される、筒内に燃料を直接噴射してその燃料を自着火燃焼させる圧縮自着火式の内燃機関において、空気と燃料との混合状態を良好にするなどの目的で、スワール流といった気流を筒内に発生させる内燃機関が知られている。
この種の内燃機関にあっては、NOxやSootの排出を抑えるために、気流(スワール流)の強さを適切に制御することが必要である。気流を強くすると、燃焼領域の増加につながり、燃焼により生成されるNOxの量(NOx生成量)を増加させる。例えば、内燃機関の始動時のようなNOxを浄化する後処理部が十分に機能していない状態で気流を強くし過ぎると、後処理部で浄化しきれないNOx量、すなわち車両から排出されるNOx量が多くなる恐れがある。また、気流を強くし過ぎると、インジェクタの各噴孔から噴射された燃料噴霧間の干渉量が大きくなり、噴霧の干渉領域においては当量比の増加及び酸素不足によりSootの発生量が多くなる恐れがある。
逆に、気流を弱くし過ぎると、筒内において燃料噴霧が存在していない領域が大きくなり、その結果、燃焼領域が小さくなり、その燃焼領域において筒内の酸素を有効に利用できず、Sootの発生量が多くなる恐れがある。
特許文献1では、インジェクタの各噴孔から噴射されてスワール流の流れ方向で互いに隣り合う噴霧のうち、スワール流れ方向下流側に位置する噴霧のスワール上流側側面位置と、スワール流れ方向上流側に位置する噴霧のスワール下流側側面位置との間隔を求める。そして、その間隔を所定範囲内にするようにスワール流の速度を変更する発明が開示されている。
特開2013−160194号公報
特許文献1の発明では、燃料噴霧間の干渉を判定するために求める上記スワール上流側側面位置及びスワール下流側側面位置を、噴霧角、スワール速度、噴霧の壁面衝突時間から求めている。しかしながら、特許文献1の発明では、当量比といった燃料と空気との混合状態を考慮せずに噴霧干渉を判定しているため、実際に燃焼する際の噴霧干渉から誤差を生じる可能性が有る。噴霧干渉によるSootの発生を抑制するためには、燃焼時における噴霧干渉を高精度に判定する必要がある。
一方、CFD技術(CFD:Conputation Fluid Dynamics)を採用して、コンピュータ上で筒内の空間を細かくメッシュに分割し、メッシュごとに燃料と空気との混合状態を求めて、求めた各メッシュの混合状態に基づき燃焼領域を計算し、その燃焼領域に基づいて噴霧干渉を判定することも考えられる。しかし、この場合には、計算負荷が高くなってしまい、内燃機関を備えた実システム上に実装することは困難である。
本発明は上記事情に鑑みてなされたものであり、圧縮自着火式の内燃機関の筒内に噴射された燃料噴霧間の燃焼時における干渉を簡易かつ精度良く判定できる噴霧干渉判定装置、及び筒内の気流を制御することで噴霧干渉によるSootの発生を効果的に抑制できる気流制御装置を提供することを課題とする。
上記課題を解決するために、本発明の噴霧干渉判定装置は、気流が発生している筒内に複数の噴孔を有したインジェクタから燃料噴射が行われる圧縮自着火式の内燃機関の前記筒内に、1つの前記噴孔から噴射された燃料の燃焼終了位置を推定する終了位置推定手段と、
前記筒内の気流強さを示す指標を取得する指標取得手段と、
前記燃焼終了位置と前記指標とに基づき、異なる前記噴孔から噴射された複数の燃料噴霧間の干渉を判定する干渉判定手段と、
を備えることを特徴とする。
時間に対し連続的に燃料が噴射される内燃機関においては、噴射期間の各時点で噴射された各燃料は互いに同時、同位置で燃焼するわけではなく、噴射時点の早い燃料ほど、噴孔に近い位置、かつ早い時点で燃焼する。噴射時点の遅い燃料は、先に噴射された燃料の燃焼位置の酸素濃度が低下しているので、その燃焼位置よりも噴孔から離れた位置で燃焼する。このように、燃料噴霧が連続的に位置を変えて燃焼する。
この前提のもと、噴射期間の各時点で噴射された燃料のうち燃焼終了位置にて燃焼する燃料、すなわち噴射期間の最後に噴射された燃料が燃焼終了位置に到達するまでの期間が、他の時点で噴射された燃料が各燃焼位置に到達するまでの期間に比べて最も長い。よって、燃焼終了位置で燃焼する燃料が最も気流の影響を受けやすい。言い換えると、燃焼領域のうち燃焼終了位置が最も気流の影響を受けやすい。本発明では、気流の影響を最も受けやすい燃焼終了位置と気流の強さを示す指標とに基づき燃料噴霧間の干渉を判定しているので、燃焼時における干渉を精度良く判定できる。また、本発明では、噴霧干渉の判定の際に全体の燃焼領域を計算しなくても良いので、簡易に燃料噴霧間の干渉を判定できる。
また、本発明の気流制御装置は、本発明の噴霧干渉判定装置と、
前記干渉判定手段による前記干渉の判定結果に基づいて前記筒内の気流の強さを調整する気流調整手段と、
を備えることを特徴とする。
本発明によれば、本発明の噴霧干渉判定装置による高精度な干渉判定結果に基づいて気流の強さを制御するので、噴霧干渉によるSootの発生を効果的に抑制できる。また、燃焼終了時期(燃焼終了位置)において噴霧干渉により生成されたSootは、排気バルブが開くまでの再酸化期間が短いために、再酸化されずにSootとしてエンジンから排出されやすい。本発明では、燃焼終了位置に基づいて噴霧干渉を判定し、その判定結果に基づいて気流を制御するので、再酸化期間が短い燃焼終了時期のSootの発生を効果的に抑制できる。また、燃焼終了時期のSootの発生を抑制することで、Sootの再酸化期間を確保しやすくなり、その結果、エンジンからのSootの排出を抑制できる。
エンジンシステムの構成図である。 気筒の中心軸線に直角な筒内の断面の一部を示し、気流の強さごとの燃焼領域及び気流の強さに応じてNOx、Soot量がどのように変わるかを示した図である。 ECUが実行する燃料噴霧間の干渉判定及び気流調整処理のフローチャートである。 時間に対する燃料噴射率の図である。 噴孔から噴射された燃料が連続的に位置を変えて燃焼する様子を示した図である。 噴霧干渉判定処理(図3のS5の処理)のフローチャートである。 燃料噴霧75に対して運動量保存則を適用する検査面76、77を設定したことを示す図である。 上段に熱発生率の変化を示し、下段に筒内平均O2濃度の変化を示した図である。 気流が無い場合の噴霧の様子を上段に示し、気流がある場合の噴霧の様子を下段に示した図である。 筒内温に対するトータル噴霧角の閾値のマップを例示した図である。 時間に対して熱発生率(上段)、筒内平均O2濃度(中段)、筒内平均温(下段)の変化を示した図である。 上段に噴射期間を示し、下段に熱発生率を示した図である。
以下、本発明の第1実施形態を図面を参照しながら説明する。図1は、車両に搭載されたエンジンシステム1の構成図を示している。エンジンシステム1は、内燃機関としてのコモンレール式のディーゼルエンジン10(以下、単にエンジンという)と、そのエンジン10の運転に必要な各種構成とを備える形で構成されている。なお、本実施形態では、エンジン10は、4つの気筒11を有した4気筒エンジンである。エンジン10は、各気筒11において、吸気、圧縮、燃焼、排気の4行程を経て動力を生み出す4ストローク機関である。吸気、圧縮、燃焼、排気の4行程による燃焼サイクル(「720°CA」周期)が、例えば各気筒11間で「180°CA」ずらして逐次実行される。図1の右側の気筒11から順に1番から4番までの番号を付けたときに、例えば、1番、3番、4番、2番の気筒11の順に燃焼サイクルが実行される。
気筒11の上壁を構成するシリンダヘッドの中心には、気筒11内(以下、筒内という)に燃料(例えば軽油)を噴射するインジェクタ16(燃料噴射弁)が設けられている。そのインジェクタ16の先端には、インジェクタ16の中心軸線を中心とした円周方向に複数の噴孔が形成されており、各噴孔からは互いに異なる方向に燃料が噴射される。インジェクタ16から噴射された燃料噴霧が筒内で圧縮自着火燃焼する。また、気筒11の側壁を構成するシリンダブロックには、冷却水(クーラント)を循環させるための冷却水路(ウォータジャケット)が形成されている。その冷却水によりエンジン10が高温になりすぎるのを防いでいる。
また、各気筒11には、筒内に吸入される吸入空気(ガス)の導入口となる吸気ポートとして、スワール生成ポート12とタンブル生成ポート13の2つの吸気ポートが形成されている。それら吸気ポート12、13はシリンダヘッド内に形成されている。スワール生成ポート12は、スワール生成ポート12から筒内に吸入されるガスにスワール流を生じさせる吸気ポートである。タンブル生成ポート13は、タンブル生成ポート13から筒内に吸入されるガスにタンブル流を生じさせる吸気ポートである。ここで、スワール流とは、気筒11の中心軸線まわりのガスの渦状の流れ(旋廻流、横渦流)をいう。また、タンブル流とは、気筒11の中心軸線と直角な平面にある軸線まわりの旋廻流(縦渦)をいう。スワール生成ポート12から吸入されたガスは、タンブル生成ポート13から吸入されたガスよりも外側(壁面側)を周方向に旋回しながら筒内を進行する。これに対し、タンブル生成ポート13から吸入されたガスは、スワール生成ポート12から吸入されたガスよりも内側を下方向(ピストンの頂上面の方向)に進行する。
また、各吸気ポート12、13と筒内とを繋ぐ開口には、その開口の開閉を行う吸気バルブ14が設けられている。また、シリンダヘッド内には、筒内での燃焼後のガスを筒内から排出する排気ポートが形成されている。その排気ポートと筒内とを繋ぐ開口にはその開口の開閉を行う排気バルブ15が設けられている。
エンジンシステム1には、筒内に吸入される新気(空気)が流れる吸気通路21が設けられている。その吸気通路21には、上流側から、新気を圧縮する過給器31、過給器31で圧縮された新気を冷却するインタークーラ32が設けられている。また、インタークーラ32より下流の吸気通路21には、新気量を調整するスロットル33が設けられている。そのスロットル33より下流の吸気通路21から、各気筒11に繋がる通路22(インテークマニホールドの通路。以下、EGRリーンガス通路という)が分岐している。各EGRリーンガス通路22は各気筒11のスワール生成ポート12に接続されている。EGRリーンガス通路22及び吸気通路21には、新気のみ又は後述する接続通路29から流入するEGRガスが混ざったガス(以下、EGRリーンガスという)が流れる。
また、各気筒11には、筒内から排出される排気ガスをまとめて排気通路27に渡すためのエキゾーストマニホールド23が接続されている。なお、排気通路27には、上流側から、排気ガスからエネルギーを回収する過給器のタービン37(可変ノズルターボ(VNT))、排気ガスに対して所定の処理を行う後処理装置38がこの順で配置されている。後処理装置38は、排気ガス中のCO、HC等を酸化して除去する酸化触媒や排気ガス中のPMを除去するDPFや、排気ガス中のNOxを還元浄化するNOx還元触媒などである。
エキゾーストマニホールド23には、排気ガスの一部をEGRガスとして吸気系に還流させるためのEGR通路24が接続されている。そのEGR通路24には、EGR通路24を流れるEGRガスを冷却するEGRクーラ34や、そのEGRクーラ34より下流にはEGRガスの流量を調整するEGRバルブ35が設けられている。そのEGRバルブ35より下流のEGR通路24からは、各気筒11に繋がる通路25(以下、EGRリッチガス通路という)が分岐している。各EGRリッチガス通路25は、各気筒11のタンブル生成ポート13に接続されている。EGRリッチガス通路25には、EGRリーンガス通路22を流れるEGRリーンガスよりもEGRガスの濃度が濃い(排気濃度が高い、酸素濃度が低い)ガス(以下、EGRリッチガスという)が流れる。
また、エンジンシステム1には、吸気通路21とEGR通路24とを接続する接続通路29が設けられている。その接続通路29は、EGRリーンガス通路22に分岐する前の吸気通路21と、EGRリッチガス通路25に分岐する前のEGR通路24とを接続している。その接続通路29を介してEGR通路24から吸気通路21にEGRガスを流し、又は吸気通路21からEGR通路24に新気を流すことで、スワール生成ポート12から筒内に吸入するガス量と、タンブル生成ポート13から筒内に吸入するガス量との割合を所定値に維持しつつ、所望のEGR率に調整できるようになっている。なお、EGR率は、筒内に吸入されるEGRガス(排気ガス)の量を、筒内に吸入されるガスの総吸入量(新気の吸入量+EGRガスの吸入量)で割った値である。
さらに、各EGRリッチガス通路25には、EGRリッチガス通路25を流れるガスの流量を調整することで、筒内でのスワール流(気流)の強さを調整するスワールコントロールバルブ41(以下、SCVという)が設けられている。SCV41の開度を小さくしてEGRリッチガスの流量が絞られると、スワール生成ポート12から吸入されるガスの勢いが増し、結果、スワール流を強めることができる。反対に、SCV41の開度を大きくしてEGRリッチガスの流量を多くすると、スワール生成ポート12から吸入されるガスの勢いを弱め、結果、スワール流を弱めることができる。SCV41にはモータ42が接続されており。SCV41はそのモータ42により開度が制御される。
エンジンシステム1には、エンジン10の運転制御に必要な各種センサが設けられている。具体的には、吸気通路21には、筒内に吸入するガス(図1ではEGRリーンガス)の圧力、つまり吸気圧(過給圧)Pを検出する吸気圧センサ56が設けられている。同じく、吸気通路21には、筒内に吸入するガスの温度、つまり吸気温Tを検出する吸気温センサ57が設けられている。また、タービン37より上流の排気通路27には、排気通路27を流れる排気ガス、すなわちエンジン10から排出されるガスの酸素濃度を検出する排気O2センサ58が設けられている。なお、排気O2センサ58はエキゾーストマニホールド23に設けられたとしても良い。また、排気O2センサ58に代えて、排気ガスの空燃比(A/F)を検出するA/Fセンサを設けたとしても良い。
さらに、エンジンシステム1には、これらセンサ56〜58以外のセンサも設けられている。具体的には、エンジンシステム1には、エンジン10の回転数を検出する回転数センサ52、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検知するアクセルペダルセンサ53、筒内に吸入する新気量を検出するエアフロメータ54、インジェクタ16から噴射される燃料の噴射圧を検出する噴射圧センサ55、筒内の圧力(筒内圧)を検出する筒内圧センサ59などが設けられている。回転数センサ52は、例えばエンジン10のクランク角を検出するクランク角センサである。またエアフロメータ54は吸気通路21に設けられて、例えば吸気通路21を流れるガスの体積流量を検出するセンサである。噴射圧センサ55は、例えばインジェクタ16に供給する高圧燃料を蓄えるコモンレール(図示外)に設けられて、そのコモンレール内の圧力を検出するセンサである。筒内圧センサ59は、先端側が筒内に露出する形でシリンダヘッドに取り付けられる。
エンジンシステム1には、上記各センサから入力される検出値に基づきSCV41を含む各バルブ(スロットル33、EGRバルブ35など)の開閉(開閉時期や開度など)やインジェクタ16による燃料供給などを制御することでエンジン10の運転を制御するECU50が設けられている。そのECU50は、CPU、ROM、RAM等を備えたコンピュータを主として構成されている。ECU50は、EEPROM、フラッシュメモリ等のメモリ51を備えている。そのメモリ51には、ECU50が実行する処理のプログラムや、各種マップ(例えば燃料噴射に関するマップや気流制御に関するマップ)などが記憶されている。
また、ECU50は、インジェクタ16の各噴孔から噴射された複数の燃料噴霧間の干渉を判定し、その判定結果に基づいて気流(スワール流)の強さを調整する。すなわち、ECU50は、本発明の噴霧干渉判定装置及び気流制御装置に相当する。ここで、図2は、気筒11の中心軸線に直角な筒内の断面の一部を示し、気流の強さを変化させた時に燃焼領域がどのように変わるか、及び、燃焼領域の変化によりNOx及びSootの生成量がどのように変わるかを説明する図である。図2では、インジェクタ16から筒内の壁面111の方に放射するように噴射された燃料噴霧の燃焼領域171〜173(燃料噴霧)の様子を示している。詳しくは、図2の左側には、気流の強さが小の時の燃焼領域171の様子を示し、図2の真ん中には、気流の強さが中の時の燃焼領域172の様子を示し、図2の右側には、気流の強さが大の時の燃焼領域173の様子を示している。
気流が大きくなると、燃料噴霧と空気との混合が促進されるので、混合気の領域が拡大する。すなわち、図2に示すように、気流が大きくなるにしたがって燃焼領域は、燃焼領域171→燃焼領域172→燃焼領域173の順にスワール流の方向に拡大する。また、気流が小の時には、燃焼領域171は小さいので、NOx生成量は少なくなるが、筒内の酸素を有効に利用できずにSootの生成量が多くなる。気流が中の時には、燃焼領域172は、気流が小の時の燃焼領域171から拡大するが、この拡大によりNOx生成量が増加する。一方、燃焼領域が拡大したことで、筒内の酸素の利用効率が上がり、結果、気流が小の時よりもSoot生成量は少なくなる。気流が大の時には、燃焼領域173はさらに大きくなるので、気流が中の時と同様にNOx生成量が多くなる。また、気流が大きすぎると、隣り同士の燃焼領域173(燃料噴霧)間で干渉(燃料噴霧の重なり)が発生し、その干渉領域においては当量比の増加及び酸素不足によりSootが増加する。
このように、気流の強弱によって燃焼領域が変わり、その燃焼領域の変化によりNOx及びSootの量が変わる。したがって、NOx及びSootの排出量を抑制するためには、燃焼領域に応じて気流の強さを適切に調整する必要がある。すなわち、燃料噴霧間の干渉が発生するとSootが増大するので、その干渉が発生しないように気流の強さを調整する必要がある。一方で、Sootの発生を抑制するためには燃焼の際に筒内の酸素を有効に利用する必要があり、そのためには、ある程度の大きさの燃焼領域を確保する必要があり、そのためにはある程度の気流強さを確保する必要がある。また、例えば、エンジン10の始動時など後処理装置38が十分に機能していない時があり、その時に気流を強くし過ぎると、後処理装置38で浄化しきれないNOx量が多くなる恐れがある。
以下、ECU50が実行する燃料噴霧間の干渉判定及び気流調整処理を説明する。図3は、その処理のフローチャートの一例を示している。図3の処理は、例えばエンジン10の始動と同時に開始し、以降エンジン10が停止するまで所定周期で繰り返し実行される。
図3の処理を開始すると、ECU50は、先ず、後述のS5で噴霧間の干渉を判定するために必要な各種条件を取得する(S1)。S1の条件取得処理は、エンジン10に関連する条件(エンジン条件)を取得する処理(S2)を含む。このS2の処理では、エンジン条件として、回転数センサ52からエンジン回転数NEを取得する。また、ピストンの上下動により筒内の体積は変化するが、その変化する体積の最大値である筒内最大体積Vmax及び体積の最小値である筒内最小体積Vminをエンジン条件として取得する。筒内最大体積Vmaxは、ピストンが下死点の位置にある時の筒内体積である。筒内最小体積Vminは、ピストンが上死点の位置にある時の筒内体積である。例えば、これら体積Vmax、Vminの値をメモリ51に記憶しておき、S2では、メモリ51から体積Vmax、Vminを取得すれば良い。
S1の条件取得処理は、インジェクタ16から噴射される燃料の噴射条件を取得する処理(S3)を含む。このS3の処理では、噴射条件として、燃料の噴射圧Pc、噴射量Q、噴射時期Tinj(燃料噴射が行われたクランク角の値)、噴射期間tinj(燃料噴射が行われたクランク角の幅)などを取得する。噴射圧Pcは、噴射圧センサ55(図1参照)から取得できる。また、噴射量Q、噴射時期Tinj、噴射期間tinjは、エンジン回転数やエンジン負荷(アクセルペダルセンサ53が検出するアクセルペダルの踏み込み量)などをパラメータとして最適なエンジン運転となるようにECU50自身が決定した値(適合値)を用いれば良い。
また、S1の条件取得処理は、筒内に吸入する空気の条件(吸気条件)を取得する処理(S4)を含む。このS4の処理では、吸気条件として、吸気圧P、吸気温T、吸気O2濃度、スワール比SRなどを取得する。吸気圧Pは吸気圧センサ56(図1参照)から取得できる。吸気温Tは吸気温センサ57(図1参照)から取得できる。
吸気O2濃度(筒内のO2濃度)は、新気(空気)中の酸素濃度(約21%)、新気量、筒内に吸入するEGRガス(排気ガス)中の酸素濃度及びEGRガス量に基づいて求めることができる。ここで、新気量は例えばエアフロメータ54の検出値から求めることができる。より詳しくは、エアフロメータ54の検出値から筒内に吸入される新気の体積Vが求まる。その体積Vと、吸気圧P、吸気温Tと、理想気体の状態方程式PV=nRTとから、筒内に吸入される新気のモル数n(=m/M、mは空気の質量、Mは空気の分子量)が求まり、そのモル数nを新気の質量mに換算することで、新気量が得られる。また、EGRガス中の酸素割合は、排気O2センサ58が検出する排気ガス中のO2濃度とすれば良い。また、EGRガス量はEGRバルブ35の開度(EGR率)から求めることができる。例えば、新気量を100、新気中の酸素濃度を21%、EGR率から求まるEGRガス量が50、EGRガス中の酸素濃度を10%(排気O2センサ58の検出値)とすると、筒内に吸入するガスの総量は150(=100+50)となり、その150中、酸素量は26(=21(=100×21%)+5(=50×10%))となる。よって、吸気O2濃度は、26÷150×100を計算して、約17.3%となる。
なお、吸気O2濃度は、吸気通路21に酸素濃度を検出するO2センサを設けて、そのO2センサにより直接求めても良い。
スワール比SRは、スワール流の回転速度ωとエンジン回転数NEの比を示す指標、つまり、ピストンが一往復する間にスワール流が何回転するかを示す指標である。このスワール比SRは、SCV41の開度に相関し、具体的には、SCV41の開度が小さいほどスワール比SRが大きくなる。よって、SCV41の開度とスワール比SRの関係を予め調べてメモリ51に記憶しておく。そして、メモリ51に記憶されたその関係と現時点のSCV41の開度とに基づいてスワール比SRを求めれば良い。
また、S1の条件取得処理では、S2〜S4の処理で取得する条件以外に、エンジンシステム1に備えられた各センサからの検出値も取得し、具体的には例えば排気O2センサ58が検出する排気O2濃度も取得する。この排気O2濃度は後述する燃焼終了位置の推定に用いられる。なお、S1の処理を実行するECU50が本発明の終了時濃度取得手段に相当する。また、排気O2濃度が本発明の終了時濃度に相当する。
S1で各種条件を取得した後、次に、S1で取得した条件に基づいて噴霧干渉を判定する(S5)。ここで、図4、図5は、噴霧干渉の判定の考え方を説明する図である。詳しくは、図4は、噴射期間tinj中に噴射された燃料70を、時間(横軸)に対する燃料噴射率(縦軸)として表した図である。図5は、インジェクタ16の噴孔161から噴射された燃料の燃焼領域101〜103を示した図である。インジェクタ16から噴射された燃料は、噴孔から離れるにしたがって次第に空気と混合していき、燃料と空気との混合状態が適切な状態になった時に燃料は燃焼すると考える。これを言い換えると、燃料は噴孔から離れるほど筒内の広い範囲に分散していくので、燃料の噴射方向における単位体積当たりの当量比は噴孔から離れるにしたがって小さくなっていく。そして、本発明では、当量比がある値になった時(例えば当量比=1)に燃料は燃焼すると考える。なお、当量比は、燃料と空気の混合気における燃料の濃さを表す指標であり、空気過剰率λの逆数、つまり理論空燃比を実際の混合気の空燃比で除算した値となる。
より詳しくは、図4に示すように時間に対し連続的に燃料70を噴射する場合、噴射期間tinjの初期(最初)に噴射された燃料71は、噴孔161に近い領域101で燃焼する(図5上段参照)。噴射期間tinjの中期に噴射された燃料72は、燃料71の燃焼により領域101の酸素濃度が低下しているため、図5の中段に示すように、領域101よりもやや遠い領域102で、燃料71の燃焼に遅れて燃焼する。また、噴射期間tinjの後期(最後)に噴射された燃料73は、領域101、102の酸素濃度が低下しているため、領域102よりもやや遠い領域103で燃料71、72の燃焼に遅れて燃焼する。ここで、最後に噴射した燃料73は、燃料71、72に比べて、噴射から燃焼完了までの期間が最も長いことから、気流の影響を最も受けやすい。よって、この燃料73が干渉するかどうかを判定すれば、燃焼全体で干渉したかどうかを判定できる。S5の処理では、この考え方をもとに噴霧干渉を判定する。以下、S5の処理の詳細を説明する。
図6は、S5の処理のフローチャートを示している。図6の処理では、先ず、噴射期間tinj中に1つの噴孔から噴射された総燃料のうち最後に燃焼する燃料、すなわち噴射期間tinjの最後に噴射された燃料の、燃焼時における噴孔からの到達距離(燃焼位置)を、燃焼全体に対する燃焼終了位置として推定する(S21)。なお、S21の処理を実行するECU50が本発明の終了位置推定手段に相当する。以下、燃焼終了位置の求め方を説明する。
図7に示すように、1つの噴孔161から噴射された燃料噴霧75に対して、噴孔161の位置と、噴孔161から距離xの位置とでそれぞれ噴射方向に直角な検査面76、77を設定する。検査面76、77間での運動量保存則により以下の式1が成立する。式1中、ρfは燃料密度、すなわち単位体積当たりの燃料の質量を示している。dは噴孔161の直径(噴孔径)を示している。v0は、噴孔161の位置での燃料噴霧の速度、すなわち噴霧初速を示している。ρaは燃料噴射時における筒内のガス密度を示している。xは、燃料の噴射方向における燃料噴霧の噴孔161からの到達距離(噴霧位置)を示している。θは筒内に気流が無い場合の1噴孔当たりの噴霧角(噴霧の広がり角度)を示している。vは噴霧位置xでの噴霧速度を示している。
Figure 2016169723
式1の左辺は、検査面76(噴孔位置)における噴霧の運動量を示している。すなわち、噴孔161の断面積π(d/2)に噴霧初速v0を乗算した値π(d/2)v0が単位時間当たりに検査面76を通過する噴霧の体積を示し、その体積に燃料密度ρfを乗算した値ρfπ(d/2)v0が単位時間当たりに検査面76を通過する噴霧の質量を示している。その質量に、噴霧初速v0を乗算した値ρfπ(d/2)v0が検査面76における噴霧の運動量となる。
式1の右辺は、検査面77における噴霧中のガスの運動量を示している。すなわち、噴霧は、噴孔161から離れるにしたがって、噴孔161の位置を頂点とした円錐状に広がると仮定して、検査面77の位置での噴霧の断面積π〔xtan(θ/2)〕に噴霧速度vを乗算した値π〔xtan(θ/2)〕vが単位時間当たりに検査面77を通過する噴霧中のガスの体積を示し、その体積に筒内ガス密度ρaを乗算した値ρaπ〔xtan(θ/2)〕vが単位時間当たりに検査面77を通過する噴霧中のガスの質量を示している。その質量に、噴霧速度vを乗算した値ρaπ〔xtan(θ/2)〕が検査面77における噴霧中のガスの運動量を示している。
ここで、オリフィスの流量式により、噴霧初速v0に関し以下の式2が成立する。式2中、cは収縮係数であり、インジェクタ16のノズル形状により定まる定数である。Pcは噴射圧、Pcylは燃料噴射時の筒内圧、ρfは燃料密度である。
Figure 2016169723
また、式1を噴霧速度vについての式に変形すると、以下の式3が成立する。
Figure 2016169723
ここで、v=dx/dt、∫dt=∫(1/v)dxの関係が成立するので、この関係を用いて式3中から噴霧速度vを消去すると、以下の式4が成立する。式4中、tは、噴孔161から燃料が噴射されてからの経過時間である。この式4は、後述のS23の処理で用いる。
Figure 2016169723
また、噴霧位置xに対する当量比φは、以下の式5で表すことができる。式5中、Lthは理論空燃比であり、O2は噴霧位置xにおける酸素濃度であり、それ以外は上述した。
Figure 2016169723
式5の分母中のρaπ〔xtan(θ/2)〕vは、図7の検査面77におけるガス量(ガスの質量)である。式5における分子中のρfπ(d/2)v0は、検査面77における燃料量(燃料の質量)である。なお、単位時間に検査面77を通過する燃料量は、単位時間に検査面76を通過する燃料量と同じとなる。また、噴霧位置xにおける酸素濃度O2の影響を当量比に反映させるために、式5には、21/O2を含んでいる。このことは、噴霧位置xにおいて、酸素濃度が21%より小さい場合には、21%の場合に比べて当量比が大きくなることを意味している。言い換えると、当量比が所定値(例えば1)となる噴霧位置xは、酸素濃度O2が小さくなるほど、大きくなることを意味している。
さらに、式5中の噴霧速度vに式3を代入すると、以下の式6が得られる。
Figure 2016169723
なお、上記各式の導出の考え方は、文献「和栗雄太郎、藤井勝、網谷竜夫、恒屋礼次郎、「ディーゼル機関の噴霧到達距離に関する研究」、機械学会論文集 25−156(1959年)、p.820」に記載されている。
ここで、図8は、時間に対する筒内の熱発生率の変化を上段に示し、時間に対する筒内の平均O2濃度(筒内の各位置でのO2濃度の平均値)の変化を下段に示している。図8の上段の図において熱発生率が発生している期間が燃焼期間を示している。図8に示すように、燃焼期間における筒内平均O2濃度は、時間の経過とともに次第に低下していく。また、燃焼開始時tsの筒内平均O2濃度は、吸気O2濃度となる。燃焼終了時teの筒内平均O2濃度は、排気行程においてエンジン10から排出される排気ガス中のO2濃度(排気O2濃度)となる。
また、当量比φ=1の時に燃焼するとし、燃焼終了時の筒内の酸素濃度を排気O2濃度O2_exとして、式6を変形すると、燃焼終了位置xeは以下の式7で表すことができる。式7は、式6のφ=1とし、O2=O2_exとし、xをxeとして、そのxeを左辺に移行した式である。式7は、筒内の酸素濃度が排気O2濃度である条件下で、当量比が1となる噴霧距離を意味する。燃焼終了位置xeは、噴射期間中に噴射された総燃料のうち最後に燃焼する燃料の燃焼位置(噴孔からの到達距離)に相当し、別の言い方をすると、噴射期間の最後に噴射された燃料の燃焼位置(噴孔からの到達距離)に相当する。
Figure 2016169723
図6のS21の処理では、式7に基づいて燃焼終了位置xeを推定する。このとき、燃料密度ρf、噴孔径d、理論空燃比Lth及び噴霧角θはメモリ51に予め記憶された一定値を用いれば良い。また、式7中の排気O2濃度O2_exは、排気O2センサ58の検出値とすれば良く、これはS1の処理で取得している。なお、排気O2濃度O2_exは、S1の処理で取得した吸気O2濃度及び噴射量Qに基づいて求めても良い。噴射量Qは筒内での燃焼量に相関し、燃焼量は燃焼によって消費される酸素量に相関する。よって、噴射量Qに基づいて燃焼によって消費される酸素量を求め、その酸素量の分だけ吸気O2濃度を減らすることで、排気O2濃度O2_exを求めることができる。
式7における筒内ガス密度ρaは、ピストンが上死点の時に燃料が噴射されるとして、以下の式8に示すように、上死点の時の筒内ガスの質量mcylを、筒内の体積(筒内最小体積)Vminで除算した値となる。
Figure 2016169723
筒内最小体積Vminは、図3のS2の処理で取得している。筒内ガスの質量mcylは、上死点における筒内圧Pcyl、筒内最小体積Vmin、筒内ガスの分子量M、気体定数R、上死点における筒内ガスの温度Tcylを用いて、以下の式9により求めることができる。式9は、理想気体の状態方程式PV=nRTから導き出すことができる。
Figure 2016169723
式9において、筒内最小体積Vminは図3のS2の処理で取得している。分子量Mは空気の分子量として予め定められた値(約29)を用いれば良い。また、筒内圧Pcyl、温度Tcylは、以下の式10、式11により求めることができる。式10、式11はポアソンの法則から得られる式である。式10、式11中、Pは吸気圧、Vmaxは筒内最大体積、Vminは筒内最小体積、Tは吸気温、γは筒内のガスの比熱比である。P、Vmax、Vmin、TはS1の処理で取得している。また、比熱比γは予め定められた値を用いれば良い。なお、筒内圧Pcylは、筒内圧センサ59(図1参照)から直接求めても良い。
Figure 2016169723
Figure 2016169723
S21で燃焼終了位置を推定した後、次に、気流(スワール流)の強さを示す指標である気流の角速度ωを以下の式12に基づいて推定する(S22)。式12中、NEは、エンジン10の回転数であり、図3のS2の処理で取得している。SRはスワール比であり、S4の処理で取得している。なお、角速度ωを検出するセンサを設けて、そのセンサにより角速度ωを取得しても良い。S22の処理を実行するECU50が本発明の指標取得手段に相当する。
Figure 2016169723
次に、噴射期間の最後に噴射した燃料が噴孔161から燃焼終了位置xeに到達するまでの時間Δtを以下の式13に基づいて推定する(S23)。式13中、燃焼終了位置xeは上記式7により得られる。燃料密度ρf、噴孔径d、及び噴霧角θは予め定められた値を用いれば良い。また、筒内ガス密度ρaは上記式8により得られる。噴霧初速v0は上記式2により得られる。なお、式2中の、収縮係数c、燃料密度ρfは予め定められた一定値を用いれば良い。噴射圧PcはS3の処理で取得している。式2中の筒内圧Pcylは上記式10により得られる。
Figure 2016169723
なお、式13は、上記式4から得ることができる。すなわち、式4のxをxe、tをΔtに置き換えると、以下の式14となる。この式14をΔtについての式に変形すると式13となる。なお、S23の処理を実行するECU50が本発明の時間推定手段に相当する。
Figure 2016169723
次に、筒内に気流が無い場合の各噴孔から噴射された各燃料噴霧の噴霧角を合計したトータル噴霧角θall_0を推定する(S24)。詳しくは、筒内に気流が無い場合の各燃料噴霧の噴霧角θは各燃料噴霧間で同じであるとして、その噴霧角θと噴孔の個数Nとに基づいて以下の式15によりトータル噴霧角θall_0を求める。
Figure 2016169723
次に、筒内に気流がある場合の各燃料噴霧の噴霧角を合計したトータル噴霧角θall_1を推定する(S25)。詳しくは、図9に示すように、気流(角速度ω)がある場合には、噴射期間の最後に噴射した燃料が噴孔から燃焼終了位置xeに到達する間Δtに、角速度ωと時間Δtとの乗算値ωΔtの分だけ、1噴孔当たりの噴霧角が増加すると考え、以下の式16によりトータル噴霧角θall_1を求める。式16中、θall_0はS24の処理で得られる気流が無い場合のトータル噴霧角である。Nは噴孔数である。ωはS22の処理で得られる気流の角速度である。ΔtはS23の処理で得られる時間である。
Figure 2016169723
次に、トータル噴霧角θall_1に基づいて燃料噴霧間の干渉の有無及び干渉量を判定する(S26)。詳しくは、干渉判定のための閾値(例えば360°)を設定して、トータル噴霧角θall_1とその閾値θthとを比較する。そして、トータル噴霧角θall_1が閾値θthより大きい場合に噴霧が干渉していると判定し、トータル噴霧角θall_1が閾値θth以下の場合に噴霧が干渉していないと判定する。また、トータル噴霧角θall_1と閾値θthとの差分(=θall_1−θth)を噴霧の干渉量として求める。この干渉量がプラスの値の場合は噴霧が干渉していることを示し、マイナスの値の場合には干渉していないことを示す。
ここで、本実施形態では、当量比が1の条件で燃焼すると仮定しているが、条件によっては燃焼反応の時間遅れにより当量比が1になっても燃焼しない場合が存在する。特に筒内温が低いほど反応の時間遅れが大きくなる。そこで、S26の処理では、反応の時間遅れにより当量比が1になっても燃焼しない場合には干渉の要件を変更し、具体的には例えば、図10に示すように、筒内温に応じて、干渉判定のための閾値を変更する。すなわち、トータル噴霧角θall_1が同じ値であっても、筒内温が低いほど干渉有りと判定しやすくするよう、筒内温が低いほど干渉の判定基準である閾値を小さくする。このようにするのは、筒内温が低いほど、反応の時間遅れが大きくなることで、燃焼するまでの間に気流の影響をより受けやすくなるためである。
例えば、当初の閾値が360°、推定したトータル噴霧角θall_1が350°、反応の時間遅れにより、実際は閾値以上(360°以上)まで噴霧が拡大した時に燃焼、つまり干渉有りの状態で燃焼したとする。この場合にも、干渉有りと判定するために、筒内温に基づいて例えば閾値を360°から340°に変更することで、トータル噴霧角θall_1>閾値と判定、つまり干渉有りと判定できるようになる。
ここで、閾値設定に用いる筒内温の取得方法について説明する。図11は、上段に筒内での熱発生率の時間変化を示し、中段に筒内平均O2濃度(筒内の各位置でのO2濃度の平均値)の時間変化を示し、下段に筒内平均温(筒内の各位置での温度の平均値)の時間変化を示している。図11上段の熱発生率が発生している期間tb(熱発生率が所定値以上となる期間)が燃焼期間を示している。図11の中段、下段に示すように、筒内平均O2濃度及び筒内平均温は燃焼期間tbにおいて一定ではなく、燃焼が進むにしたがって変化する。詳しくは、筒内平均O2濃度は、燃焼開始時が最も高く、燃焼が進むにしたがって次第に低下していく。筒内平均温は、圧縮行程においてピストンが上昇するにしたがい次第に上昇していき、燃焼期間tbの初期が最も高くなり、燃焼が進むにしたがって次第に低下していく。
本実施形態では、燃焼期間tbの各時点における筒内平均温の平均値Tave(以下、単に燃焼期間中の平均筒内温という)を、閾値設定に用いる筒内温として求める。具体的には、以下の式17に基づいて、燃焼期間中の平均筒内温Taveを推定する。
Figure 2016169723
式17中、Tcyl_sは、燃焼開始時点における筒内温であって、燃焼による温度上昇分を考慮しない場合(つまり燃焼が無かった場合)の筒内温である。その筒内温Tcyl_sは、以下の式18により求めることができる。式18はポアソンの法則から得られる式である。式18中、Tは吸気温、Vmaxは筒内最大体積、γは比熱比、Vsは燃焼開始時点の筒内体積である。吸気温T、筒内最大体積VmaxはS1の処理で取得している。比熱比γは予め定められた値を用いれば良い。燃焼開始時点の筒内体積Vsは例えば以下に説明するように求める。
Figure 2016169723
ここで、図12は、上段に噴射期間tinjを、下段に熱発生率を示している。図12に示すように、燃焼開始時点tsは、噴射期間tinjの開始時点Tinj_sに、噴射期間tinjの最初に噴射された燃料が噴孔から該燃料の燃焼位置xsに到達するまでの時間Δtsを加えた時点となる。つまり、ts=Tinj_s+Δtsとなる。なお、燃焼位置xsは、噴射期間tinj中に噴射された総燃料のうち最初に燃焼する燃料の燃焼位置、すなわち、総燃料の燃焼開始位置を意味する。噴射開始時点Tinj_sは、S3の処理において噴射時期Tinjとして取得している。時間Δtsは以下の式19により求めることができる。
Figure 2016169723
この式19は、上記式4においてxをxs、tをΔtsに置き換えて、Δtsについての式に変形した式である。式19中、パラメータθ、d、v0、ρa、ρfは式13と同じであり、燃焼開始位置xsは以下の式20により求めることができる。式20は、上記式6において、当量比φ=1、酸素濃度O2=吸気O2濃度O2_in、x=xsとして、そのxsを左辺に移行した式である。式20は、筒内の酸素濃度が吸気O2濃度である条件下で、当量比が1となる噴霧距離を意味する。式20において、酸素濃度を吸気O2濃度O2_inとする理由は、図8に示すように燃焼開始時点tsの筒内平均O2濃度が吸気O2濃度となるためである。
Figure 2016169723
また、メモリ51に、クランク角と筒内体積との関係を記憶しておく。そして、ts=Tinj_s+Δtsの式に基づき燃焼開始時点tsが分かれば、その燃焼開始時点tsにおけるクランク角と、メモリ51に記憶されたクランク角と筒内体積との関係とに基づいて、燃焼開始時点tsにおける筒内体積Vsを求めることができる。なお、筒内圧センサ59が検出する筒内圧に基づいて熱発生率を算出し、その熱発生率に基づいて燃焼開始時点tsを特定しても良い。この場合、熱発生率が所定値未満の状態から所定値以上の状態に切り替わる時点を燃焼開始時点tsとすれば良い。
式17中、Tcyl_eは、燃焼終了時点における筒内温であって、燃焼による温度上昇分を考慮しない場合(つまり燃焼が無かった場合)の筒内温である。その筒内温Tcyl_eは、以下の式21により求めることができる。式21はポアソンの法則から得られる式である。式21中、Tは吸気温、Vmaxは筒内最大体積、γは比熱比、Veは燃焼終了時点の筒内体積である。吸気温T、筒内最大体積VmaxはS1の処理で取得している。比熱比γは予め定められた値を用いれば良い。燃焼終了時点の筒内体積Veは例えば以下に説明するように求める。
Figure 2016169723
図12に示すように、燃焼終了時点teは、噴射期間tinjの終了時点Tinj_eに、噴射期間tinjの最後に噴射された燃料が噴孔から燃焼終了位置xeに到達するまでの時間Δtを加えた時点となる。つまり、te=Tinj_e+Δtとなる。噴射終了時点Tinj_eは、S3の処理において噴射時期Tinjとして取得している。時間Δtは上記式13により得られる。また、メモリ51に、クランク角と筒内体積との関係を記憶しておく。そして、te=Tinj_e+Δtの式に基づき燃焼終了時点teが分かれば、その燃焼終了時点teにおけるクランク角と、メモリ51に記憶されたクランク角と筒内体積との関係とに基づいて、燃焼終了時点teにおける筒内体積Veを求めることができる。なお、筒内圧センサ59が検出する筒内圧に基づいて熱発生率を算出し、その熱発生率に基づいて燃焼終了時点teを特定しても良い。この場合、熱発生率が所定値以上の状態から所定値未満の状態に切り替わる時点を燃焼終了時点teとすれば良い。
また、式17中、ΔTは、燃料が燃焼したことによる筒内の温度上昇分を示し、以下の式22により求めることができる。式22中、nは、筒内ガスのモル数であり、上記式9を変形して、モル数n=mcyl/M=(Pcyl・Vmin)/(R・Tcyl)の式から求めることができる。また、Cpは、定圧比熱、すなわち圧力を一定に保ったまま温度を1度上昇させるのに必要な熱量であり、予め定められた値を用いれば良い。ΔQは、燃料が燃焼した時の総熱発生量である。総熱発生量ΔQは、燃料の噴射量に相関し、噴射量が多いほど、大きい値となる。よって、例えば噴射量と総熱発生量ΔQとの関係を予め調べてメモリ51に記憶しておき、その関係と今回の噴射量とに基づいて、総熱発生量ΔQを求めれば良い。噴射量はS3の処理で取得している。なお、筒内圧センサ59(図1参照)が検出する筒内圧に基づいて総熱発生量ΔQを求めても良い。
Figure 2016169723
また、式17中、tbは燃焼期間である。図12に基づいて、燃焼期間tbは以下の式23で表すことができる。式23中、tinjは燃料の噴射期間(図12上段参照)であり、S3の処理で取得している。Δtは、噴射期間tinjの最後に噴射された燃料が噴孔から燃焼終了位置xeに到達するまでの時間であり、上記式13により得られる。Δtsは、噴射期間tinjの最初に噴射された燃料が噴孔から燃焼開始位置xsに到達するまでの時間であり、上記式19により得られる。なお、筒内圧センサ59(図1参照)が検出する筒内圧に基づいて熱発生率を算出し、その熱発生率に基づいて燃焼期間tbを求めても良い。この場合、熱発生率が所定値以上となる期間を燃焼期間tbとする。
Figure 2016169723
式17の右辺の第1項((Tcyl_s+Tcyl_e)/2)は、燃焼による温度上昇を考慮しない場合の燃焼期間中の平均筒内温を示し、第2項(ΔT/tb)は燃焼による温度上昇を燃焼期間tbで平均した値を示している。このように、式17を用いることで、燃焼期間中の全時点の筒内温を求めなくても、簡易に、燃焼期間中の平均筒内温Taveを推定できる。
S26の処理では、以上のようにして燃焼期間中の平均筒内温Taveを取得した後、この平均筒内温Taveと図10のマップとに基づいて、干渉判定のための閾値を設定する。そして、この閾値と式16から得られたトータル噴霧角θall_1との比較に基づき、噴霧干渉の有無及び干渉量を判定する。なお、図10のマップはメモリ51に予め記憶されているものとする。なお、図10では、閾値の上限を360°としているが、360°以外の角度(例えば360°より大きい角度)を閾値の上限としても良い。S26の後、図6の処理を終了して図3の処理に戻る。
なお、S24〜S26の処理を実行するECU50が本発明の干渉判定手段に相当する。また、S24、S25の処理を実行するECU50が本発明の噴霧角推定手段に相当する。S26の処理を実行するECU50が本発明の判定手段に相当する。
図3の処理に戻り、次に、S5の処理(図6のS26の処理)により得られた燃料噴霧間の干渉量(トータル噴霧角θall_1と閾値θthの差分)が予め定められた目標値より大きいか否かを判断する(S6)。この目標値は、例えばSootの発生を抑えるという観点で定められ、燃焼領域が小さ過ぎでも大き過ぎでもない、図2の真ん中の燃焼領域172の干渉量に相当する値に設定される。目標値は、例えばゼロ又はゼロよりも若干大きい値に設定される。
干渉量が目標値よりも大きい場合には(S6:Yes)、SCV41の開度を大きくして、気流(スワール流)を弱くする(S7)。このとき、SCV41の開度をどの程度大きくするかは、干渉量にかかわらずSCV41の開度の変化量を一定としても良いし、干渉量に応じて開度を変えても良い。干渉量に応じてSCV41の開度を変える場合には、干渉量が大きいほどSCV41の開度を大きくする。つまり、干渉量が大きいほど気流を弱くする。このように、気流を弱くすることで、図2の右側の状態から真ん中の状態まで燃焼領域を小さくして、噴霧間の干渉を抑制し、干渉によるSoot発生を抑制できる。また、燃焼領域が大きすぎることによるNOxの増加も抑制できる。S7の後、図3の処理を終了する。
一方、干渉量が目標値以下の場合には(S6:No)、SCV41の開度を小さくして気流を強くし、又はSCV41を現状の開度に維持して気流の強さを維持する(S8)。このとき、例えば、干渉量と目標値の差が所定値未満の場合、つまり干渉量が目標値付近の場合(図2の真ん中の燃焼領域172程度の場合)には気流の強さを維持し、その差が所定値以上の場合、つまり干渉量が目標値から大きく離れている場合(図2の左側の燃焼領域171の場合)には気流を強くする。また、気流を強くする場合には、干渉量にかかわらずSCV41の開度の変化量を一定としても良いし、干渉量に応じて開度を変えても良い。干渉量に応じて開度を変える場合には、例えば干渉量が小さいほどSCV41の開度を小さくする。つまり、干渉量が小さいほど気流を強くする。
このように、気流を強くすることで、図2の左側の状態から真ん中の状態まで燃焼領域を拡大でき、結果、筒内の酸素を有効に利用できるようになることでSootの発生を抑制できる。また、気流を維持することで、図2の真ん中の状態に燃焼領域を維持でき、結果、Sootの発生を抑制できる。図8の後、図3の処理を終了する。なお、S6〜S8の処理を実行するECU50が本発明の気流調整手段に相当する。
以上説明したように、本実施形態によれば、燃料の燃焼終了位置に基づいて噴霧干渉を判定しており、その燃焼終了位置は、噴射期間の最後に噴射された燃料の燃焼条件(当量比=1、酸素濃度=排気O2濃度)が反映された式7により求めているので、燃焼時における噴霧干渉を精度良く判定できる。また、燃焼領域のうち気流の影響を最も受けやすい燃焼終了位置に基づいて噴霧干渉を判定することで、その判定を簡易かつ精度良く行うことができる。また、燃焼終了位置の推定において、燃焼終了時の筒内の酸素濃度として排気O2濃度を用いているので、燃焼終了時を特定しなくても簡易にその酸素濃度を取得できる。
また、燃焼終了位置から判定された噴霧の干渉量に基づいて気流の強さを調整するので、全体の燃焼領域を推定しなくても、燃焼領域を、噴霧干渉を抑制した適切な大きさにでき、その結果、Sootの発生を効果的に抑制できる。燃焼終了時期(燃焼終了位置)において噴霧干渉により生成されたSootは、排気バルブが開くまでの再酸化期間が短いために、再酸化されずにSootとしてエンジンから排出されやすい。本発明では、燃焼終了位置に基づいて噴霧干渉を判定し、その判定結果に基づいて気流を制御するので、再酸化期間が短い燃焼終了時期のSootの発生を効果的に抑制できる。また、燃焼終了時期のSootの発生を抑制することで、Sootの再酸化期間を確保しやすくなり、その結果、エンジンからのSootの排出を抑制できる。
また、本実施形態では、気流がある場合の各燃料噴霧の噴霧角を合計したトータル噴霧角に基づいて噴霧干渉を判定しているので、燃焼全体の噴霧干渉を正確に判定できる。また、トータル噴霧角を、最も気流の影響を受けやすい噴射期間の最後に噴射した燃料が噴孔から燃焼終了位置に到達するまでの時間Δtに基づいて推定するので、噴霧干渉の判定に気流の影響を正確に反映させることができる。
また、燃焼期間における筒内温が低いほどトータル噴霧角の閾値(干渉の判定基準)を小さくするので、筒内温に応じた反応の時間遅れを反映した形で噴霧干渉をより正確に判定できる。
なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば上記実施形態では、式7における当量比φの値を1として、燃焼終了位置を推定していたが、当量比φが1以外の時に燃焼すると仮定する場合には、当量比φは1以外の値であっても良い。
また、上記実施形態では、トータル噴霧角に基づいて噴霧干渉を判定していたが、気流による噴霧角の増加分、すなわち、気流の角速度ωと、噴射期間の最後に噴射した燃料が噴孔から燃焼終了位置に到達するまでの時間Δtとの乗算値ωΔtに基づいて、噴霧干渉を判定しても良い。この場合、1噴孔当たりの噴霧角の増加分ωΔtが閾値より大きい場合に干渉有りと判定し、閾値以下の場合に干渉無しと判定する。また、噴霧角の増加分ωΔtに、噴孔数Nを乗算して得られる、トータル噴霧角の気流による増加分NωΔtに基づいて、噴霧干渉を判定しても良い。これによれば、トータル噴霧角を算出する必要がないので、より簡易に噴霧干渉を判定できる。
また、図3のS6〜S8では、干渉量が目標値より大きいか否かに基づいて気流を制御していたが、干渉の有無に基づいて気流を制御しても良い。つまり、図3のS6の処理を、干渉の有無を判定する処理に変更しても良い。
また、上記実施形態では、噴霧干渉の判定の際に、筒内温に応じてトータル噴霧角の閾値を変更したが、閾値を一定とし、推定したトータル噴霧角θall_1の方を筒内温に応じて補正(変更)するようにしても良い。この場合、筒内温が低いほど、トータル噴霧角θall_1を大きくする側に補正する。これによっても、筒内温に応じた反応の時間遅れを反映した形で噴霧干渉を判定できる。
また、上記実施形態では、トータル噴霧角の閾値の設定に用いる筒内温として燃焼期間中の平均筒内温Taveを取得したが、平均筒内温Taveに代えて燃焼期間中の特定の時点における筒内温(例えば燃焼終了時の筒内温)を取得しても良い。
また、上記実施形態では、SCVにより気流(スワール流)の強弱を調整していたが、他の方法によりスワール流の強弱を調整しても良い。具体的には例えば吸気バルブ14の開閉タイミングや開度を、スワール生成ポート12とタンブル生成ポート13の間で異ならせることで、スワール流の強弱を調整しても良い。例えば、タンブル生成ポート13の吸気バルブ14の開度を、スワール生成ポート12の吸気バルブ14の開度より小さくするなどで、スワール流を強くすることができる。吸気バルブ14でスワール流の強弱を調整することで、SCVを省略できる。
1 エンジンシステム
10 ディーゼルエンジン
16 インジェクタ
161 噴孔
50 ECU

Claims (11)

  1. 気流が発生している筒内に複数の噴孔(161)を有したインジェクタ(16)から燃料噴射が行われる圧縮自着火式の内燃機関(10)の前記筒内に、1つの前記噴孔から噴射された燃料の燃焼終了位置を推定する終了位置推定手段(S21)と、
    前記筒内の気流強さを示す指標を取得する指標取得手段(S22)と、
    前記燃焼終了位置と前記指標とに基づき、異なる前記噴孔から噴射された複数の燃料噴霧間の干渉を判定する干渉判定手段(S24〜S26)と、
    を備えることを特徴とする噴霧干渉判定装置(50)。
  2. 前記燃料が前記噴孔から前記燃焼終了位置に到達するまでの時間を推定する時間推定手段(S23)を備え、
    前記干渉判定手段は、前記時間と前記指標とに基づき前記干渉を判定することを特徴とする請求項1に記載の噴霧干渉判定装置。
  3. 前記燃料の燃焼が終了する時の前記筒内の酸素濃度である終了時濃度を取得する終了時濃度取得手段(S1)を備え、
    前記終了位置推定手段は、前記筒内の酸素濃度が前記終了時濃度である条件下で、当量比が所定値となる、前記燃料の前記噴孔からの到達距離を前記燃焼終了位置として推定することを特徴とする請求項1又は2に記載の噴霧干渉判定装置。
  4. 前記終了位置推定手段は、下記式により前記燃焼終了位置を推定し、下記式のφを前記所定値としたことを特徴とする請求項3に記載の噴霧干渉判定装置。
    Figure 2016169723
  5. 前記終了時濃度取得手段は、前記筒内から排出されるガスのO2濃度である排気O2濃度を前記終了時濃度として取得することを特徴とする請求項3又は4に記載の噴霧干渉判定装置。
  6. 前記所定値を1としたことを特徴とする請求項3〜5のいずれか1項に記載の噴霧干渉判定装置。
  7. 前記時間推定手段は、下記式により前記時間Δtを推定することを特徴とする請求項2に記載の噴霧干渉判定装置。
    Figure 2016169723
  8. 前記指標取得手段は、前記筒内に生じるスワール流の角速度を前記指標として取得し、
    前記干渉判定手段は、前記角速度と前記時間との乗算値を、1つの前記噴孔から噴射された燃料噴霧の気流による噴霧角の増加分として、その増加分に基づき前記干渉を判定することを特徴とする請求項2又は7に記載の噴霧干渉判定装置。
  9. 前記干渉判定手段は、
    前記増加分と、前記筒内に気流が無い場合の1つの前記噴孔当たりの噴霧角と、前記噴孔の個数とに基づいて、前記筒内に気流がある場合の各燃料噴霧の噴霧角を合計したトータル噴霧角を推定する噴霧角推定手段(S24、S25)と、
    前記トータル噴霧角に基づき前記干渉を判定する判定手段(S26)とを備えることを特徴とする請求項8に記載の噴霧干渉判定装置。
  10. 前記判定手段は、前記トータル噴霧角と閾値との比較に基づき前記干渉を判定し、燃焼期間における前記筒内の温度が低いほど干渉有りと判定しやすくする方向に前記閾値又は前記トータル噴霧角を変更することを特徴とする請求項9に記載の噴霧干渉判定装置。
  11. 請求項1〜10のいずれか1項に記載の噴霧干渉判定装置(50)と、
    前記干渉判定手段による前記干渉の判定結果に基づいて前記筒内の気流の強さを調整する気流調整手段(S6〜S8)と、
    を備えることを特徴とする気流制御装置(50)。
JP2015051910A 2015-03-16 2015-03-16 噴霧干渉判定装置、気流制御装置 Active JP6429082B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015051910A JP6429082B2 (ja) 2015-03-16 2015-03-16 噴霧干渉判定装置、気流制御装置
DE102016104241.2A DE102016104241B4 (de) 2015-03-16 2016-03-09 Sprühnebelinterferenz-Bestimmungsvorrichtung und Gasstrom-Steuervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051910A JP6429082B2 (ja) 2015-03-16 2015-03-16 噴霧干渉判定装置、気流制御装置

Publications (2)

Publication Number Publication Date
JP2016169723A true JP2016169723A (ja) 2016-09-23
JP6429082B2 JP6429082B2 (ja) 2018-11-28

Family

ID=56853380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051910A Active JP6429082B2 (ja) 2015-03-16 2015-03-16 噴霧干渉判定装置、気流制御装置

Country Status (2)

Country Link
JP (1) JP6429082B2 (ja)
DE (1) DE102016104241B4 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815920B2 (en) * 2018-10-19 2020-10-27 Deere & Company Engine system and method with hydrocarbon injection and EGR

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029171A (ja) * 2004-07-14 2006-02-02 Honda Motor Co Ltd 内燃機関の制御装置
JP2010007619A (ja) * 2008-06-30 2010-01-14 Nissan Motor Co Ltd ディーゼルエンジンの燃料噴射制御装置及び燃料噴射制御方法
JP2012145042A (ja) * 2011-01-12 2012-08-02 Denso Corp 燃料噴射制御装置
JP2012241640A (ja) * 2011-05-20 2012-12-10 Nippon Soken Inc 燃料噴射制御装置
JP2013160194A (ja) * 2012-02-08 2013-08-19 Nippon Soken Inc 内燃機関の燃料噴射制御装置
JP2014132166A (ja) * 2013-01-07 2014-07-17 Toyota Motor Corp 内燃機関

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135587B2 (ja) 2014-04-11 2017-05-31 株式会社デンソー 燃料噴霧制御装置
JP6288452B2 (ja) 2014-08-08 2018-03-07 株式会社デンソー 内燃機関の気流制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029171A (ja) * 2004-07-14 2006-02-02 Honda Motor Co Ltd 内燃機関の制御装置
JP2010007619A (ja) * 2008-06-30 2010-01-14 Nissan Motor Co Ltd ディーゼルエンジンの燃料噴射制御装置及び燃料噴射制御方法
JP2012145042A (ja) * 2011-01-12 2012-08-02 Denso Corp 燃料噴射制御装置
JP2012241640A (ja) * 2011-05-20 2012-12-10 Nippon Soken Inc 燃料噴射制御装置
JP2013160194A (ja) * 2012-02-08 2013-08-19 Nippon Soken Inc 内燃機関の燃料噴射制御装置
JP2014132166A (ja) * 2013-01-07 2014-07-17 Toyota Motor Corp 内燃機関

Also Published As

Publication number Publication date
JP6429082B2 (ja) 2018-11-28
DE102016104241B4 (de) 2021-10-28
DE102016104241A1 (de) 2016-09-22

Similar Documents

Publication Publication Date Title
JP5086887B2 (ja) 内燃機関の燃料噴射制御装置
US9593634B2 (en) Heat release rate waveform generating device and combustion state diagnostic system for internal combustion engine
JP5392418B2 (ja) 内燃機関の着火遅れ期間推定装置及び着火時期制御装置
JP2009167821A (ja) 内燃機関の燃料噴射制御装置
JP2015113790A (ja) 内燃機関の制御装置
US20130024097A1 (en) Combustion control apparatus for internal combustion engine
EP2511505B1 (en) Combustion control device
US8387586B2 (en) Fuel injection control apparatus of internal combustion engine
JP5177326B2 (ja) 内燃機関の燃料噴射制御装置
JP5105004B2 (ja) 内燃機関の制御装置
JP5257519B2 (ja) 内燃機関の制御装置
JP5077491B2 (ja) 内燃機関の制御装置
JP6429082B2 (ja) 噴霧干渉判定装置、気流制御装置
JP2012092748A (ja) 内燃機関のNOx発生量推定装置及び制御装置
JP5582076B2 (ja) 内燃機関の制御装置
JP6288452B2 (ja) 内燃機関の気流制御装置
JP5720479B2 (ja) 内燃機関の制御装置
JP6429081B2 (ja) 燃焼領域推定装置、NOx生成量推定装置及び気流制御装置
JP5257520B2 (ja) 内燃機関の制御装置
JP5240417B2 (ja) 内燃機関の拡散燃焼開始時期推定装置及び拡散燃焼開始時期制御装置
JP6237375B2 (ja) 燃料噴霧の広がり角度検出装置
JP6597763B2 (ja) エンジンの制御装置
JP2017020391A (ja) 内燃機関の制御装置
JP2017025747A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R151 Written notification of patent or utility model registration

Ref document number: 6429082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250