JP6288452B2 - 内燃機関の気流制御装置 - Google Patents

内燃機関の気流制御装置 Download PDF

Info

Publication number
JP6288452B2
JP6288452B2 JP2014162275A JP2014162275A JP6288452B2 JP 6288452 B2 JP6288452 B2 JP 6288452B2 JP 2014162275 A JP2014162275 A JP 2014162275A JP 2014162275 A JP2014162275 A JP 2014162275A JP 6288452 B2 JP6288452 B2 JP 6288452B2
Authority
JP
Japan
Prior art keywords
airflow
cylinder
combustion region
gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014162275A
Other languages
English (en)
Other versions
JP2016037914A (ja
Inventor
幸平 元尾
幸平 元尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014162275A priority Critical patent/JP6288452B2/ja
Priority to DE102015112798.9A priority patent/DE102015112798B4/de
Publication of JP2016037914A publication Critical patent/JP2016037914A/ja
Application granted granted Critical
Publication of JP6288452B2 publication Critical patent/JP6288452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/109Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
    • F02D9/1095Rotating on a common axis, e.g. having a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の筒内の気流の強さを制御する気流制御装置に関する。
従来、内燃機関における燃費やエミッションを低減するなどの目的で筒内(燃焼室)の気流の強さを内燃機関の運転条件に応じて制御(調整)する技術の提案がある(例えば特許文献1参照)。例えば特許文献1には、内燃機関(エンジン)の回転数や負荷に応じて筒内に生じるスワール流(旋回渦流、横渦流)の強さとしてのスワール比を制御することが記載されている。
特開昭62−45931号公報
ところで、内燃機関の熱効率を向上するためには、筒内に噴射された燃料噴霧を、筒内のピストンが一番上に上がった時(ピストンが上死点の位置にある時)に短時間で燃焼させる必要がある。つまり、内燃機関の熱効率を向上するためには等容度を高くする必要がある。そのためには、燃料噴霧とガスとを速やかに混合させて、燃焼速度を良好にする必要がある。燃料噴霧とガスとの混合状態が悪ければ、燃焼速度が遅くなり、ピストンが上死点の位置にある時に短時間で燃焼させることができない。一方で、燃料噴霧とガスとの混合を促進するために気流を強くしすぎると、燃料噴霧同士の干渉が大きくなりすぎてしまい、結果、燃焼が悪化、つまり燃焼速度が低下してしまう。
燃料噴霧とガスの混合は、燃料噴霧の状態やガスの状態に応じて変わってくるが、特許文献1では、燃料噴霧の状態やガスの状態を考慮して気流を制御したものとなっていないので、ガスと燃料噴霧の混合を良好にし、燃焼速度を向上するという点では不十分である。
本発明は上記問題に鑑みてなされたものであり、筒内での燃料噴霧の状態やガスの状態を考慮して筒内の気流の強さを制御することで、ガスと燃料噴霧の混合を良好にし、燃焼速度を向上できる内燃機関の気流制御装置を提供することを課題とする。
上記課題を解決するために、本発明の内燃機関の気流制御装置は、筒内に燃料を噴射してその燃料噴霧を燃焼させることで動力を生成する内燃機関の前記筒内の気流の強さを調整する調整手段と、
前記筒内のガスの状態及び燃料噴霧の状態を取得する取得手段と、
前記取得手段が取得した前記ガスの状態及び前記燃料噴霧の状態に基づいて燃料噴霧の燃焼領域を推定する推定手段と、
前記推定手段が推定した前記燃焼領域である推定燃焼領域が目標燃焼領域に対して小さいか大きいかを判定する判定手段とを備え、
前記調整手段は、前記判定手段により前記推定燃焼領域が前記目標燃焼領域より小さいと判定された場合には前記筒内の気流を強くし、前記推定燃焼領域が前記目標燃焼領域より大きいと判定された場合には前記筒内の気流を弱くすることを特徴とする。
本発明によれば、筒内のガスの状態及び燃料噴霧の状態を取得して、取得した各状態に基づいて燃料噴霧の燃焼領域を推定する。その燃焼領域(推定燃焼領域)が目標燃焼領域より小さい場合には筒内の気流を強くするので、燃焼領域を拡大、つまり、燃料噴霧とガスとの混合を促進して燃焼速度を向上できる。また、推定燃焼領域が目標燃焼領域より大きい場合には筒内の気流を弱くするので、燃料噴霧同士の干渉を小さくでき、結果、燃焼速度を向上できる。このように、本発明では、筒内のガスの状態及び燃料噴霧の状態に基づいて定まる推定燃焼領域を目標燃焼領域に近づける方向に気流強さを制御するので、ガスと燃料噴霧の混合を良好にでき、燃焼速度を向上できる。
エンジンシステムの構成図である。 燃料の噴霧速度の大小によって、気流を変化させたときに燃焼領域がどのように変わるかを説明する図である。 燃料の噴射期間の長短によって、気流を変化させたときに燃焼領域がどのように変わるかを説明する図である。 噴射期間が短いときの吸気量(筒内のガス密度)に対する等容度の変化を示した図である。 噴射期間が長いときの吸気量(筒内のガス密度)に対する等容度の変化を示した図である。 気流調整処理のフローチャートである。 インジェクタの噴孔から噴霧が噴射された様子を示し、式1中の各パラメータの一部を示した図である。 噴霧速度から燃焼領域を推定する様子を示した図である。 筒内のO2濃度が小さいときと大きいときのそれぞれで、気流の強さが変化すると燃焼速度(等容度)がどのように変化するかを示した図である。 筒内のO2濃度と閾値の関係を示した図である。 気流の強さと燃焼領域の干渉量の関係を示した図である。 噴霧速度と気流強さの関係を示した図である。 噴射圧と気流強さの関係を示した図である。 噴射期間と気流強さの関係を示した図である。 噴射量と気流強さの関係を示した図である。 筒内のガス密度と気流強さの関係を示した図である。 筒内のO2濃度と気流強さの関係を示した図である。
以下、本発明の実施形態を図面を参照しながら説明する。図1は、車両に搭載されたエンジンシステム1の構成図を示している。エンジンシステム1は、内燃機関としてのコモンレール式のディーゼルエンジン10(以下、単にエンジンという)と、そのエンジン10の運転に必要な各種構成とを備える形で構成されている。なお、本実施形態では、エンジン10は、4つの気筒11(燃焼室)を有した4気筒エンジンである。エンジン10は、各気筒11において、吸気、圧縮、燃焼、排気の4行程を経て動力を生み出す4ストローク機関である。吸気、圧縮、燃焼、排気の4行程による燃焼サイクル(「720°CA」周期)が、例えば各気筒11間で「180°CA」ずらして逐次実行される。図1の右側の気筒11から順に1番から4番までの番号を付けたときに、例えば、1番、3番、4番、2番の気筒11の順に燃焼サイクルが実行される。
気筒11の上壁を構成するシリンダヘッドの中心には、気筒11内(以下、筒内という)に燃料(例えば軽油)を噴射(供給)するインジェクタ16が設けられている。インジェクタ16から供給された燃料噴霧が筒内で圧縮自着火燃焼する。また、気筒11の側壁を構成するシリンダブロックには、冷却水(クーラント)を循環させるための冷却水路(ウォータジャケット)が形成されている。その冷却水によりエンジン10が高温になりすぎるのを防いでいる。
また、各気筒11には、筒内に吸入される吸入空気(ガス)の導入口となる吸気ポートとして、スワール生成ポート12とタンブル生成ポート13の2つの吸気ポートが形成されている。それら吸気ポート12、13はシリンダヘッド内に形成されている。スワール生成ポート12は、スワール生成ポート12から筒内に吸入されるガスにスワール流(横渦)を生じさせる吸気ポートである。タンブル生成ポート13は、タンブル生成ポート13から筒内に吸入されるガスにタンブル流(縦渦)を生じさせる吸気ポートである。スワール生成ポート12から吸入されたガスは、タンブル生成ポート13から吸入されたガスよりも外側(壁面側)を周方向に旋回しながら筒内を進行する。これに対し、タンブル生成ポート13から吸入されたガスは、スワール生成ポート12から吸入されたガスよりも内側を下方向(ピストンの頂上面の方向)に進行する。
また、各吸気ポート12、13と筒内とを繋ぐ開口には、その開口の開閉を行う吸気バルブ14が設けられている。また、シリンダヘッド内には、筒内での燃焼後のガスを筒内から排出する排気ポートが形成されている。その排気ポートと筒内とを繋ぐ開口にはその開口の開閉を行う排気バルブ15が設けられている。
エンジンシステム1には、筒内に吸入される新気(空気)が流れる吸気通路21が設けられている。その吸気通路21には、上流側から、新気を圧縮する過給器31、過給器31で圧縮された新気を冷却するインタークーラ32が設けられている。また、インタークーラ32より下流の吸気通路21には、新気量を調整するスロットル33が設けられている。そのスロットル33より下流の吸気通路21から、各気筒11に繋がる通路22(インテークマニホールドの通路。以下、EGRリーンガス通路という)が分岐している。各EGRリーンガス通路22は各気筒11のスワール生成ポート12に接続されている。EGRリーンガス通路22及び吸気通路21には、新気のみ又は後述する接続通路29から流入するEGRガスが混ざったガス(以下、EGRリーンガスという)が流れる。
また、各気筒11には、筒内から排出される排気ガスをまとめて排気通路27に渡すためのエキゾーストマニホールド23が接続されている。なお、排気通路27には、上流側から、排気ガスからエネルギーを回収する過給器のタービン37(可変ノズルターボ(VNT))、排気ガスに対して所定の処理を行う後処理装置38がこの順で配置されている。後処理装置38は、排気ガス中のCO、HC等を酸化して除去する酸化触媒や排気ガス中のPMを除去するDPFなどである。
エキゾーストマニホールド23には、排気ガスの一部をEGRガスとして吸気系に還流させるためのEGR通路24が接続されている。そのEGR通路24には、EGR通路24を流れるEGRガスを冷却するEGRクーラ34や、そのEGRクーラ34より下流にはEGRガスの流量を調整するEGRバルブ35が設けられている。そのEGRバルブ35より下流のEGR通路24からは、各気筒11に繋がる通路25(以下、EGRリッチガス通路という)が分岐している。各EGRリッチガス通路25は、各気筒11のタンブル生成ポート13に接続されている。EGRリッチガス通路25には、EGRリーンガス通路22を流れるEGRリーンガスよりもEGRガスの濃度が濃い(排気濃度が高い、酸素濃度が低い)ガス(以下、EGRリッチガスという)が流れる。
また、エンジンシステム1には、吸気通路21とEGR通路24とを接続する接続通路29が設けられている。その接続通路29は、EGRリーンガス通路22に分岐する前の吸気通路21と、EGRリッチガス通路25に分岐する前のEGR通路24とを接続している。その接続通路29を介してEGR通路24から吸気通路21にEGRガスを流し、又は吸気通路21からEGR通路24に新気を流すことで、スワール生成ポート12から筒内に吸入するガス量と、タンブル生成ポート13から筒内に吸入するガス量との割合を所定値に維持しつつ、所望のEGR率に調整できるようになっている。なお、EGR率は、筒内に吸入されるEGRガス(排気ガス)の量を、筒内に吸入されるガスの総吸入量(新気の吸入量+EGRガスの吸入量)で割った値である。
さらに、各EGRリッチガス通路25には、EGRリッチガス通路25を流れるガスの流量を調整することで、筒内でのスワール流(気流)の強さを調整するスワールコントロールバルブ41(以下、SCVという)が設けられている。SCV41の開度を小さくしてEGRリッチガスの流量が絞られると、スワール生成ポート12から吸入されるガスの勢いが増し、結果、スワール流を強めることができる。反対に、SCV41の開度を大きくしてEGRリッチガスの流量を多くすると、スワール生成ポート12から吸入されるガスの勢いを弱め、結果、スワール流を弱めることができる。SCV41にはモータ42が接続されており。SCV41はそのモータ42により開度が制御される。
エンジンシステム1には、エンジン10の運転制御に必要な各種センサが設けられている。具体的には、吸気通路21には、筒内に吸入するガス(図1ではEGRリーンガス)の圧力、つまり吸気圧(過給圧)Pを検出する吸気圧センサ56が設けられている。同じく、吸気通路21には、筒内に吸入するガスの温度、つまり吸気温Tを検出する吸気温センサ57が設けられている。また、EGR通路24には、EGR通路24を流れるガス(EGRリッチガス、排気ガス)の空燃比(A/F)を検出するA/Fセンサ58が設けられている。このA/Fセンサ58は、排気ガス中のO2濃度を検出するために用いられる。A/Fセンサ58に代えて、直接にO2濃度を検出するO2センサが設けられたとしても良い。
さらに、エンジンシステム1には、これらセンサ56〜58以外のセンサも設けられている。具体的には、エンジンシステム1には、エンジン10の回転数を検出する回転数センサ52、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検知するアクセルペダルセンサ53、筒内に吸入する新気量を検出するエアフロメータ54、インジェクタ16から噴射される燃料の噴射圧を検出する噴射圧センサ55などが設けられている。回転数センサ52は、例えばエンジン10のクランク角を検出するクランク角センサである。またエアフロメータ54は吸気通路21に設けられる。噴射圧センサ55は、例えばインジェクタ16に供給する高圧燃料を蓄えるコモンレール(図示外)に設けられて、そのコモンレール内の圧力を検出するセンサである。
エンジンシステム1には、上記各センサから入力される検出値に基づきSCV41を含む各バルブ(スロットル33、EGRバルブ35など)の開閉(開閉時期や開度など)やインジェクタ16による燃料供給などを制御することでエンジン10の運転を制御するECU50が設けられている。そのECU50は、CPU、ROM、RAM等を備えたコンピュータを主として構成されている。ECU50は、EEPROM、フラッシュメモリ等のメモリ51を備えている。そのメモリ51には、ECU50が実行する処理のプログラムや、各種マップ(例えば燃料噴射に関するマップや気流制御に関するマップ)などが記憶されている。
また、ECU50は、筒内でのガス(空気)と燃料噴霧の混合を良好にして燃焼速度(熱効率)を向上するために、モータ42を介してSCV41を制御することで、気流(スワール流)の強さを調整する。ここで、ECU50による気流制御の考え方を説明する。図2は、インジェクタ16から噴射された燃料の噴霧速度の大小によって、気流を変化させたときに燃焼領域がどのように変わるかを説明する図である。図2は、噴霧速度が小さく、噴霧速度が弱いときと、噴霧速度が小さく、気流が強いときと、噴霧速度が大きく、気流が弱いときと、噴霧速度が大きく、気流が強いときのそれぞれについて、インジェクタ16から筒内の壁面111の方に放射するように噴射された燃料噴霧の燃焼領域171〜174(燃料噴霧)の様子を示している。
筒内での熱効率を向上するためには、筒内において燃料噴霧とガスとを速やかに混合させて、筒内での燃焼領域を大きくする必要がある。この点、図2の左上図に示すように、噴霧速度が小さく、気流が弱いときの燃焼領域171は小さく、また各燃料噴霧から形成される各燃焼領域間の干渉(燃料噴霧同士の干渉)が小さい。よって、噴霧速度が小さいときには、気流を強くすることで、図2の左下図に示すように、燃焼領域(燃料噴霧同士)の干渉を抑えつつ、気流が弱いときの燃焼領域171(破線)から拡大した燃焼領域172(実線)を形成できる。燃焼領域を拡大することで、燃焼を改善できる。
他方、図2の右上図に示すように、噴霧速度が大きいときの燃焼領域173は、噴霧速度が小さいときに比べて大きい。また、噴霧速度が大きいと、噴霧速度が小さいときに比べて、燃料噴霧の壁面111での跳ね返り量が多く、また、燃焼領域の干渉が大きくなる。そのため、噴霧速度が大きく、もともと燃焼領域173が大きいときに気流を強くすると、図2の右下図に示すように、さらに燃焼領域174(実線)が拡大するものの、燃焼領域174の干渉領域(斜線ハッチングの領域)も大きくなってしまう。結果、燃焼領域が拡大することによる燃焼改善より、干渉領域が大きくなることによる燃焼悪化のほうが大きければ、トータルとして燃焼悪化となってしまう。
図3は、インジェクタ16の燃料噴射期間の長短によって、気流を変化させたときに燃焼領域がどのように変わるかを説明する図であり、気流の強弱、噴射期間の長短のそれぞれ場合における燃焼領域175〜178(燃料噴霧)の様子を示している。図3の左上図に示すように、噴射期間が短く、気流が弱いときの燃焼領域175は小さく、また各燃料噴霧から形成された各燃焼領域間の干渉が小さい。よって、噴霧期間が短く燃焼領域175が小さいときに気流を強くすることによって、図3の左下図に示すように、燃焼領域の干渉を抑えつつ、気流が弱いときの燃焼領域175(破線)から拡大した燃焼領域176(実線)を形成できる。これにより、燃焼を改善できる。
他方、図3の右上図に示すように、噴射期間が長いときの燃焼領域177は、噴射期間が短いときに比べて大きい。また、噴射期間が長いと、噴射期間が短いときに比べて、燃料噴霧の壁面111での跳ね返り量が多く、また、燃焼領域の干渉が大きくなる。そのため、噴射期間が長く、もともと燃焼領域177が大きいときに気流を強くすると、図2の右下図に示すように、さらに燃焼領域178(実線)が拡大するものの、燃焼領域178の干渉領域(破線ハッチングの領域)も大きくなってしまう。結果、燃焼領域が拡大することによる燃焼改善よりも、干渉領域が大きくなることによる燃焼悪化のほうが大きければ、トータルとして燃焼悪化となってしまう。
ここで、図4は、噴射期間が短いときの吸気量(筒内のガス密度)に対する等容度の変化の実験結果を示している。また、図5は、噴射期間が長いときの吸気量に対する等容度の変化の実験結果を示している。図4、図5において黒塗りひし形のラインはスワール比が小さいとき(気流が弱いとき)を、黒塗り四角(■)のラインはスワール比が大きいとき(気流が強いとき)の結果を示している。なお、等容度とは、燃焼が上死点で起こる等容燃焼サイクル(定容サイクル)の場合の熱効率を1とし、燃焼が上死点を離れるにしたがって起こる熱効率の低下の度合いを全燃焼経過に対して積分したものである。つまり、等容度は、大きい値になるほど熱効率、燃焼速度が高いことを示している。また、スワール比は、スワール流の回転速度とエンジン回転数の比を示す指標、つまり、ピストンが一往復する間にスワール流が何回転するかを示す指標である。
図4に示すように、噴射期間が短いときには、気流(スワール比)を強くすることで、等容度(熱効率、燃焼速度)が増加することがわかる。これは、図3で説明したように、噴射期間が短いときには、気流を強くすることで干渉を抑えつつ燃焼領域を拡大できるためである。また、図4では、吸気量が大きいほど気流を強くしたことによる等容度の増加度合いが大きくなることを示している。これは、後述の式1で示すように、吸気量(筒内のガス密度)が大きいほど噴射速度が小さくなるが、図2で説明したように、噴射速度が小さいときには、気流を強くすることで干渉を抑えつつ燃焼領域を拡大できるためである。
他方、図5に示すように、噴射期間が長いときには、気流(スワール比)を強くすると、等容度が減少してしまうことがわかる。これは、図3で説明したように、噴射期間が長いときに気流を強くすると、燃焼領域(燃料噴霧)の干渉領域が大きくなってしまい、燃焼が悪化するためである。
このように、筒内でのガスと燃料噴霧の混合を良好にして燃焼速度を向上するためには、燃料噴霧の状態(噴霧速度、噴射期間等)やガスの状態(ガス密度等)に応じて気流の強さを制御する必要がある。そこで、ECU50は、この気流制御の考え方をもとに気流(スワール流)の強さを調整する気流調整処理を実行する。図6は、その気流調整処理のフローチャートの一例を示している。図6の処理は、例えばエンジン10の始動と同時に開始し、以降エンジン10が停止するまで一定間隔おきに繰り返しされる。
図6の処理を開始すると、ECU50は、先ず、現時点における燃焼領域を決める燃焼条件を取得する(S11)。燃焼領域は、インジェクタ16から噴射された燃料噴霧の状態及び筒内のガスの状態によって決まるので、ここでは、燃焼条件として燃料噴霧の状態やガスの状態に関連したパラメータを取得する。具体的には、例えば噴射系パラメータとして、噴射圧、噴射量、噴射タイミング(燃料噴射が行われたクランク角の値)、噴射期間(燃料噴射が行われたクランク角の幅)などを取得する。噴射圧は、噴射圧センサ55(図1参照)から取得できる。また、噴射量、噴射タイミング、噴射期間は、エンジン回転数やエンジン負荷(アクセルペダルの踏み込み量)などをパラメータとして最適なエンジン運転となるようにECU50自身が決定した値(適合値)を用いれば良い。これら噴射系パラメータは、燃料噴霧の状態に関連したパラメータである。
また、S11では、例えば吸気系パラメータとして、吸気圧(過給圧)、吸気温、吸気O2濃度、スワール比などを取得する。吸気圧は吸気圧センサ56(図1参照)から取得できる。吸気温は吸気温センサ57(図1参照)から取得できる。吸気O2濃度(筒内のO2濃度)は、新気(空気)中の酸素割合(約21%)、新気量、筒内に吸入するEGRガス(排気ガス)中の酸素割合及びEGRガス量とに基づいて求めることができる。ここで、新気量は例えばエアフロメータ54の検出値から求めることができる。また、EGRガス中の酸素割合は、A/Fセンサ58が検出するEGR通路24内のA/Fの値から求めることができる。また、EGRガス量はEGRバルブ35の開度から求めることができる。
スワール比はSCV41の開度に相関し、具体的には、SCV41の開度が小さいほどスワール比が大きくなる。よって、SCV41の開度とスワール比の関係を予め調べてメモリ51に記憶しておく。そして、メモリ51に記憶されたその関係と現時点のSCV41の開度とに基づいてスワール比を求めれば良い。これら吸気系パラメータは、筒内のガスの状態に関連したパラメータである。
また、S11ではエンジン回転数などのエンジンパラメータも取得する。エンジン回転数は回転数センサ52から取得できる。エンジン回転数は、後述する気流速度の算出のために用いられる。そのため、エンジン回転数は、筒内のガスの状態に関連したパラメータでもある。なお、S11の処理を実行するECU50が本発明の「取得手段」に相当する。
次に、S11で取得した燃焼条件に基づいて筒内での燃料噴霧の燃焼領域を推定する(S12)。具体的には、燃焼領域はS11で取得した各燃焼条件に応じて変化するので、各燃焼条件(噴射系パラメータ、吸気系パラメータ、エンジンパラメータ)に対する燃焼領域のマップを実験により求め、得られたマップをメモリ51に記憶しておく。そして、S12では、メモリ51に記憶されたこのマップと今回の燃焼条件とに基づいて燃焼領域を推定する。
また、図2で説明したように、燃焼領域は、噴霧速度及び気流の強さに応じて変わってくるので、S12では、マップによる燃焼領域の推定に代えて、噴霧速度及び気流強さ(気流速度)に基づいて燃焼領域を推定しても良い。具体的には、以下の式1により噴霧速度wfを算出する。ここで、図7は、インジェクタ16の噴孔から噴霧が噴射された様子を示した図であり、式1中の各パラメータの一部を示している。式1において、ρfは燃料密度、ρaは筒内のガス密度(空気密度)、d(図7参照)は噴孔径、w0は初期噴霧速度(噴孔の位置における噴霧速度)、θ(図7参照)は噴霧角(噴霧の噴射方向)、x(図7参照)は噴霧位置(噴孔からの距離)を示している。なお、式1は、文献「和栗雄太郎、藤井勝、網谷竜夫、恒屋礼次郎、「ディーゼル機関の噴霧到達距離に関する研究」、機械学会論文集 25−156(1959年)、p.820」を根拠としている。
Figure 0006288452
式1を用いて噴霧速度wfを算出する場合には、先のS11では式1中の各パラメータを取得する。具体的には、メモリ51には、燃料密度ρf、噴孔径d、噴霧角θのそれぞれの値が記憶されており、メモリ51に記憶された燃料密度ρfの値、噴孔径dの値、噴霧角θの値を取得する。また、ガス密度ρaは、理想気体の状態方程式:PV=nRT・・・(式2)に基づいて算出する。ここで、式2中のPは吸気圧(過給圧)であり、Tは吸気温である。Rは気体定数である。nは筒内のガスのモル数である。Vは、燃料噴射時における筒内のガスの体積、つまり燃料噴射時における筒内の容積である。ガス体積Vは、S11で取得した噴射タイミングに基づいて算出することができる。すなわち、噴射タイミングがピストンの上死点に近いほどガス体積(筒内容積)は小さくなり、反対に、噴射タイミングが上死点から離れるほどガス体積は大きくなる。そこで、噴射タイミングとガス体積の関係を予め調べてメモリ51に記憶しておき、メモリ51に記憶されたこの関係と今回の噴射タイミングとに基づいてガス体積を求める。
そして、式2を変形すると、n/V=P/RT・・・(式3)が得られる。式3中のn/Vがガス密度に相当する。すなわち、モル数nを重量に変換して、その重量をガス体積Vで割った値がガス密度となる。よって、式3に、吸気圧P、吸気温T及びガス体積Vを代入することで、ガス密度が得られる。
また、初期噴霧速度w0は以下の式4により得られる。
Figure 0006288452
式4はオリフィスの流量式であり、式4中のcは流量係数、Pcは噴射圧、Pcylは筒内圧(筒内の圧力)、ρfは燃料密度である。噴射圧PcはS11で取得しており、流量係数c及び燃料密度ρfはメモリ51に予め記憶された一定値を用いればよい。また、筒内圧Pcylは、ガスが断熱圧縮された時の圧力Pと体積Vの関係をあらわすポアソンの法則:PVγ=const(γは比熱比)に基づいて算出することができる。
具体的には、エンジン10の圧縮行程開始時(吸気行程終了時)の筒内の圧力をP1、体積をV1とし、燃料噴射時(燃焼時)の筒内の圧力をP2、体積をV2とすると、ポアソンの法則により、P1・V1γ=P2・V2γ・・・(式5)が成立する。式5を変形すると、P2=P1・(V1/V2)γ・・・(式6)となる。この式6に、圧縮行程開始時の圧力P1、体積V1、燃料噴射時の体積V2及び比熱比γを代入することで、筒内圧P2(式4の筒内圧Pcyl)を求めることができる。なお、圧力P1は、吸気圧センサ56が検出した吸気圧を用いれば良い。また、体積V1は、ピストンが最も下の位置にあるときの筒内の容積であって、予め定められた値を用いれば良い。体積V2は、上述のガス密度の算出で説明したように、噴射タイミングに基づいて求めることができる。比熱比γは、予め定められた値を用いれば良い。なお、筒内に筒内圧センサを設け、この筒内圧センサの検出値を筒内圧Pcylとして取得しても良い。
式1に示すように、噴霧速度wfは、初期噴霧速度w0が大きいほど大きい値となる。また、噴霧速度wfは、ガス密度ρaが高いほど小さい値となる。つまり、高噴射圧(初期噴霧速度が大)、低ガス密度の状態では噴霧速度(燃焼領域)は大きくなり、反対に、低噴射圧(初期噴霧速度が小)、高ガス密度の状態では噴霧速度(燃焼領域)は小さくなる。
式1に、噴霧位置x以外のパラメータを代入すると、噴霧位置xを変数とした噴霧速度の式が得られる。この式に各噴霧位置xの値を代入すると、噴霧位置xごとの噴霧速度が得られる。図8は、噴霧速度から燃焼領域を推定する様子を示した図であり、インジェクタ16から噴射された燃料噴霧によって形成された燃焼領域17を示している。図8には、式1から得られた各噴霧位置xにおける噴霧速度を、x軸(噴霧位置xの軸)上のベクトル(矢印)であらわしている。
式1は、筒内の気流が無い場合における噴霧速度をあらわしており、気流を考慮した燃焼領域を推定するために、以下の式7により、各噴霧位置xにおける気流速度wsを算出する。式7において、NEはエンジン回転数、SRはスワール比である。エンジン回転数NE及びスワール比SRはS11で取得している。
Figure 0006288452
式7に示すように、噴霧位置xが大きいほど(筒内の外周側に近いほど)気流速度が大きくなる。図8には、式7で求めた各噴霧位置xにおける気流速度を気流の流れ方向(噴霧位置xの軸に直交する方向)のベクトルであらわしている。これら各噴霧位置xにおける噴霧速度及び気流速度から、インジェクタ16から噴射された燃料噴霧がどのように筒内を進行していくかが推定でき、つまり燃焼領域17を推定できる。
マップにより又は噴霧速度及び気流速度により推定された燃焼領域(推定燃焼領域)は、図2で説明したように噴霧速度が大きいほど大きくなり、図3で説明したように噴射期間が長いほど大きくなる。また、噴射量は噴射期間に相関し、具体的には噴射量が多くなるほど噴射期間が長くなる。そのため、推定燃焼領域は、噴射量が多いほど大きくなる。また、噴射圧が大きいほど噴霧速度が大きくなるので(式1、式4参照)、推定燃焼領域は噴射圧が大きいほど大きくなる。また、筒内のガス密度が低いほど噴霧速度が大きくなるので(式1参照)、推定燃焼領域はガス密度が低いほど大きくなる。なお、S12の処理を実行するECU50が本発明の「推定手段」に相当する。
次に、S12で推定した燃焼領域における燃料噴霧同士が干渉している領域の大きさである干渉量を算出する(S13)。図2、図3の右下図では、斜線ハッチングの領域の大きさが、S13で算出する干渉量に相当する。なお、図2、図3の左上図などでは、他の条件時の燃焼領域との違いを分かりやすくするために燃焼領域間の干渉が無いように図示しているが、実際は、どのような条件であっても燃焼領域は少なからず干渉している。そのため、S13で算出する干渉量はゼロ以上の値となる。なお、S13の処理を実行するECU50が本発明の「干渉量算出手段」に相当する。
次に、推定燃焼領域(S13で算出した干渉量)が大きいか小さいかを判定するための閾値を設定する(S14)。この閾値は、具体的には、熱効率が最適となる燃焼領域を目標燃焼領域に設定したとき、この目標燃焼領域における燃料噴霧同士が干渉している領域の大きさ(干渉量)を示す値である。
図9は、この閾値設定の考え方を説明する図であり、詳細には、筒内のO2濃度(吸気O2濃度)が小さいときと大きいときのそれぞれで、気流の強さが変化すると燃焼速度(等容度)がどのように変化するかを示した図である。図9に示すように、気流を弱い状態から強くなるにしたがって途中までは燃焼速度は次第に増加していく。これは、気流を強くすると燃焼領域が拡大するためである。しかし、気流をさらに強くしていくと、燃焼速度は低下していく。これは、図2、図3の右下図で説明したように、燃焼領域が大きい状態からさらに気流を強くすると、燃焼領域(燃料噴霧同士)の干渉が大きくなって、燃焼領域が拡大することによる燃焼改善よりも干渉領域が大きくなることによる燃焼悪化のほうが大きくなるためである。
また、O2濃度の大小によって、燃焼速度の増加傾向から低下傾向に切り替わる気流強さ(等容度が最高となる気流強さ)が変わり、具体的には、O2濃度が大きいときには、小さいときに比べて、燃焼速度の増加傾向から低下傾向に切り替わる気流強さが大きくなる。これは、筒内のO2濃度が大きければ、燃焼領域の干渉がある程度大きかったとしても、干渉領域において各燃料噴霧を燃焼させる十分なO2量があることにより、燃焼悪化にならないためである。言い換えると、筒内のO2濃度が小さければ、燃焼領域の干渉が大きくなると、干渉領域において燃料噴霧の量に対してO2量が足りない状態となり、結果、O2濃度が大きいときに比べて燃焼速度の増加傾向から低下傾向に切り替わる気流強さが小さくなる。
つまり、図9の横軸を燃焼領域の干渉量に置き換えたときに、筒内のO2濃度が大きいときには、小さいときに比べて、最適な燃焼速度となる干渉量、つまり閾値が大きくなる。そこで、S14では、図10に示すように、筒内のO2濃度と閾値(目標燃焼領域の干渉量)の関係を予め調べてメモリ51に記憶しておく。図10の関係では、O2濃度が大きくなるほど閾値が大きくなっている。そして、メモリ51に記憶された図10の関係とS11で取得した吸気O2濃度とに基づいて、閾値を設定する。なお、S14の処理を実行するECU50が本発明の「閾値設定手段」に相当する。
次に、S13で算出した推定燃焼領域の干渉量がS14で設定した閾値より小さいか否かを判断する(S15)。推定燃焼領域の干渉量が閾値より小さい場合には(S15:Yes)、SCV41の開度を小さくして、気流を強くする(S16)。ここで、図11は、気流の強さ(SCV41の開度)をどの程度変更するのかを説明する図であり、詳細には、気流の強さ(SCV41の開度)と燃焼領域の干渉量の関係を示している。図11の関係では、気流が強くなるほど干渉量が大きくなっている。
S16では、気流を強くした後の燃焼領域の干渉量が目標燃焼領域の干渉量(閾値)となるように、SCV41の開度を調整する。すなわち、S13で算出した推定燃焼領域の干渉量がX1であったとすると、閾値とその干渉量X1の差分(乖離)を相殺する気流強さY1(図11参照)だけ気流が強くなるように、SCV41の開度を調整する。そのために、図11に例示する関係を予め調べてメモリ51に記憶しておく。そして、S16又は後述するS18では、メモリ51に記憶されたこの関係に基づいて、気流の強さの変更量を設定すれば良い。S16で気流を強くすることで、燃焼領域を目標燃焼領域まで拡大できる。図2、図3で説明すると、S16で気流を強くすることにより、例えば左上図の状態から左下図の状態まで燃焼領域を拡大できる。これによって、熱効率を向上できる。S16の後、図6のフローチャートの処理を終了する。
S15において、推定燃焼領域の干渉量が閾値より小さくない場合、つまり干渉量が閾値より大きい又は閾値と一致する場合には(S15:No)、次に、推定燃焼領域の干渉量が閾値より大きいか否かを判断する(S17)。大きい場合には(S17:Yes)、SCV41の開度を大きくして、気流を弱くする(S18)。具体的には、気流を弱くした後の燃焼領域の干渉量が目標燃焼領域の干渉量(閾値)となるように、SCV41の開度を調整する。すなわち、図11に示すように、推定燃焼領域の干渉量がX2であったとすると、閾値とその干渉量X2の差分を相殺する気流強さY2だけ気流が弱くなるように、SCV41の開度を調整する。これによって、燃焼領域の干渉量を目標燃焼領域の干渉量まで低減できる。図2、図3で説明すると、例えば右下図の状態から右上図の状態まで干渉量を低減できる。これによって、熱効率を向上できる。S18の後、図6のフローチャートの処理を終了する。なお、S13〜S15及びS17の処理を実行するECU50が本発明の「判定手段」に相当する。
一方、S17において、推定燃焼領域の干渉量が閾値と一致する場合には(S17:No)、気流強さを現状維持する(S19)。これによって、燃焼領域を目標燃焼領域に維持でき、気流強さの変更により燃焼が悪化してしまうのを回避できる。S19の後、図6のフローチャートの処理を終了する。なお、S16、S18及びS19の処理を実行するECU50及びSCV41が本発明の「調整手段」に相当する。
このように、S16、S18では、推定燃焼領域の干渉量が閾値となるように気流を制御するが、推定燃焼領域や目標燃焼領域は、S11やS12で取得したパラメータ(燃料噴霧の状態、筒内のガスの状態)に応じて変化するので、S16、S18の気流制御はこのパラメータに応じて気流を制御することに相当する。具体的には、例えば図12〜図17のように、気流の強さを制御することを意味する。ここで、図12は噴霧速度と気流強さの関係を示している。図13は噴射圧と気流強さの関係を示している。図14は噴射期間と気流強さの関係を示している。図15は噴射量と気流強さの関係を示している。図16は筒内のガス密度と気流強さの関係を示している。図17は筒内のO2濃度と気流強さの関係を示している。
例えば噴霧速度に応じて気流の強さを制御する場合には、図12に示すように、噴霧速度が小さいほど気流を強くする。これは、図2で説明したように、噴霧速度が小さいと燃焼領域が小さくなり、気流を強くすることで燃焼領域が拡大して熱効率が向上するためである。よって、S16で気流を強くする場合には噴霧速度が小さいほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合には噴霧速度が大きいほど気流を弱くする量を大きくすることに相当する。
また例えば噴射圧に応じて気流の強さを制御する場合には、図13に示すように、噴射圧が小さいほど気流を強くする。これは、上記式1、式4より、噴射圧が小さいほど噴霧速度が小さくなるためである。よって、S16で気流を強くする場合には噴射圧が小さいほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合には噴射圧が大きいほど気流を弱くする量を大きくすることに相当する。
また例えば噴射期間に応じて気流の強さを制御する場合には、図14に示すように、噴射期間が短いほど気流を強くする。これは、図3で説明したように、噴射期間が短いと燃焼領域が小さくなり、気流を強くすることで燃焼領域が拡大して熱効率が向上するためである。よって、S16で気流を強くする場合には噴射期間が短いほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合には噴射期間が長いほど気流を弱くする量を大きくすることに相当する。
また例えば噴射量に応じて気流の強さを制御する場合には、図15に示すように、噴射量が少ないほど気流を強くする。これは、噴射量が少ないほど噴射期間が短くなるためである。よって、S16で気流を強くする場合には噴射量が少ないほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合には噴射量が多いほど気流を弱くする量を大きくすることに相当する。
また例えば筒内のガス密度に応じて気流の強さを制御する場合には、図16に示すように、ガス密度が高いほど気流を強くする。これは、上記式1により、ガス密度が高いほど噴霧速度が小さくなるためである。よって、S16で気流を強くする場合にはガス密度が高いほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合にはガス密度が低いほど気流を弱くする量を大きくすることに相当する。
また例えば筒内のO2濃度に応じて気流の強さを制御する場合には、図17に示すように、O2濃度が高いほど気流を強くする。これは、図9、図10で説明したように、O2濃度が高いほど、目標燃焼領域の干渉量(閾値)が大きくなり、その干渉量にするためには気流を強くして燃焼領域を拡大させる必要があるためである。よって、S16で気流を強くする場合にはO2濃度が高いほど気流を強くする量を大きくすることに相当し、S18で気流を弱くする場合にはO2濃度が低いほど気流を弱くする量を大きくすることに相当する。
このように、S16、S18では、図11の関係に代えて、図12〜図17の各パラメータと気流強さの関係に基づいて気流の強さを調整しても良く、これによっても燃焼領域を目標燃焼領域にすることができ、熱効率を向上できる。
以上説明したように、本実施形態によれば、推定燃焼領域と目標燃焼領域(閾値)の比較に基づいて気流の強さを調整するので、燃料噴霧とガスとの混合を良好にでき、燃焼速度を向上できる。よって、ピストンが上死点付近の位置にあるときに短時間で燃焼させることができ、等容度(熱効率)を向上できる。また、本実施形態では、気流調整後の燃焼領域が目標燃焼領域となるように気流の強さを調整するので、より一層、熱効率を向上できる。また、本実施形態では、推定燃焼領域の干渉量と、目標燃焼領域の干渉量とを算出して、それらを比較するので、推定燃焼領域と目標燃焼領域の大小を容易に評価できる。
なお、本発明は上記実施形態に限定されるわけではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、SCVにより気流(スワール流)の強弱を調整していたが、他の方法によりスワール流の強弱を調整しても良い。具体的には例えば吸気バルブ14の開閉タイミングや開度を、スワール生成ポート12とタンブル生成ポート13の間で異ならせることで、スワール流の強弱を調整しても良い。例えば、タンブル生成ポート13の吸気バルブ14の開度を、スワール生成ポート12の吸気バルブ14の開度より小さくするなどで、スワール流を強くすることができる。吸気バルブ14でスワール流の強弱を調整することで、SCVを省略できる。また、特許文献1のようにスワール生成ポート(主ポート)の終端部近くに角度を持って接続された副ポートを配置し、この副ポートからの流量を調整することでスワール流の強弱を調整しても良い。
また、上記実施形態では、気流の強弱を決定するために、推定燃焼領域の干渉量と閾値とを比較していたが、推定燃焼量と、目標燃焼領域の大小を直接比較をしても良い。具体的には、図6のS11で取得した燃焼条件の場合における熱効率が最適となる燃焼領域を目標燃焼領域として設定する。そして、その目標燃焼領域と、S12で推定した推定燃焼領域の大小(例えば面積の大小)を比較する。そして、推定燃焼領域が目標燃焼領域より小さい場合には気流を強くし、推定燃焼領域が目標燃焼領域より大きい場合には気流を弱くし、推定燃焼領域と目標燃焼領域とが一致する場合には気流の強さを維持する。これによっても、熱効率を向上できる。
また、上記実施形態では、スワール生成ポートとタンブル生成ポートの両方を備えたシステムに本発明を適用した例を説明したが、スワール生成ポートのみが設けられたシステムや、通常の吸気ポート(スワール流、タンブル流として吸入しない吸気ポート)が設けられたシステムに本発明を適用しても良い。
また、上記実施形態では、推定燃焼領域の干渉量と閾値の乖離の程度に応じて気流の強さ(SCVの開度)の変更量を変化させていたが、その乖離の程度にかかわらずその変更量を一定としても良い。これによっても、気流調整後の燃焼領域を目標燃焼領域に近づけることができ、熱効率を向上できる。
1 エンジンシステム
10 ディーゼルエンジン(内燃機関)
11 気筒
41 スワールコントロールバルブ
50 ECU

Claims (7)

  1. 筒内に燃料を噴射してその燃料噴霧を燃焼させることで動力を生成する内燃機関(10)の前記筒内の気流の強さを調整する調整手段(41、50)と、
    前記筒内のガスの状態及び燃料噴霧の状態を取得する取得手段(S11)と、
    前記取得手段が取得した前記ガスの状態及び前記燃料噴霧の状態に基づいて燃料噴霧の燃焼領域を推定する推定手段(S12)と、
    前記推定手段が推定した前記燃焼領域である推定燃焼領域が目標燃焼領域に対して小さいか大きいかを判定する判定手段(S13〜S15、S17)とを備え、
    前記調整手段(S16、S18)は、前記判定手段により前記推定燃焼領域が前記目標燃焼領域より小さいと判定された場合には前記筒内の気流を強くし、前記推定燃焼領域が前記目標燃焼領域より大きいと判定された場合には前記筒内の気流を弱くし、
    前記判定手段は、前記推定燃焼領域における燃料噴霧同士が干渉している領域の大きさである干渉量を算出する干渉量算出手段(S13)を含み、
    前記判定手段(S15、S17)は、前記干渉量算出手段が算出した前記干渉量が、前記目標燃焼領域における燃料噴霧同士が干渉している領域の大きさである閾値より小さいか大きいかを判定し、
    前記調整手段は、前記干渉量が前記閾値より小さい場合には前記筒内の気流を強くし、前記干渉量が前記閾値より大きい場合には前記筒内の気流を弱くし、
    前記取得手段は、前記ガスの状態として前記筒内のO2濃度を取得し、
    前記判定手段は、前記取得手段が取得した前記O2濃度が高いほど大きい前記閾値を設定する閾値設定手段(S14)を備えることを特徴とする内燃機関の気流制御装置。
  2. 前記推定手段は、前記ガスの状態及び前記燃料噴霧の状態に基づいて燃料の噴霧速度を算出し、その噴霧速度が大きいほど大きい燃焼領域を推定することを特徴とする請求項1に記載の内燃機関の気流制御装置。
  3. 前記取得手段は、前記燃料噴霧の状態として燃料の噴射期間を取得し、
    前記推定手段は、前記取得手段が取得した前記噴射期間が長いほど大きい燃焼領域を推定することを特徴とする請求項1又は2に記載の内燃機関の気流制御装置。
  4. 前記調整手段は、前記推定燃焼領域と前記目標燃焼領域の乖離の程度が大きいほど、前記筒内の気流を強くし又は弱くする際の気流強さの変更量を大きくすることを特徴とする請求項1〜3のいずれか1項に記載の内燃機関の気流制御装置。
  5. 前記調整手段は、前記筒内の気流を強くし又は弱くする際の気流強さを、前記取得手段が取得した前記ガスの状態又は前記燃料噴霧の状態に基づいて設定することを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の気流制御装置。
  6. 前記調整手段(S19)は、前記推定燃焼領域が前記目標燃焼領域に一致する場合には気流の強さを維持することを特徴とする請求項1〜5のいずれか1項に記載の内燃機関の気流制御装置。
  7. 前記調整手段は、前記筒内に生じるスワール流の強さを調整することを特徴とする請求項1〜6のいずれか1項に記載の内燃機関の気流制御装置。
JP2014162275A 2014-08-08 2014-08-08 内燃機関の気流制御装置 Active JP6288452B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014162275A JP6288452B2 (ja) 2014-08-08 2014-08-08 内燃機関の気流制御装置
DE102015112798.9A DE102015112798B4 (de) 2014-08-08 2015-08-04 Gasströmungssteuervorrichtung für eine Verbrennungsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162275A JP6288452B2 (ja) 2014-08-08 2014-08-08 内燃機関の気流制御装置

Publications (2)

Publication Number Publication Date
JP2016037914A JP2016037914A (ja) 2016-03-22
JP6288452B2 true JP6288452B2 (ja) 2018-03-07

Family

ID=55134987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162275A Active JP6288452B2 (ja) 2014-08-08 2014-08-08 内燃機関の気流制御装置

Country Status (2)

Country Link
JP (1) JP6288452B2 (ja)
DE (1) DE102015112798B4 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429081B2 (ja) 2015-03-16 2018-11-28 株式会社デンソー 燃焼領域推定装置、NOx生成量推定装置及び気流制御装置
JP6429082B2 (ja) 2015-03-16 2018-11-28 株式会社デンソー 噴霧干渉判定装置、気流制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650056B2 (ja) * 1985-08-23 1994-06-29 三菱自動車工業株式会社 スワ−ル制御装置
US20080046128A1 (en) * 2006-08-18 2008-02-21 Honda Motor Co., Ltd. Control system for internal combustion engine
JP4694444B2 (ja) * 2006-08-18 2011-06-08 本田技研工業株式会社 内燃機関の制御装置
JP5310128B2 (ja) * 2009-03-10 2013-10-09 日産自動車株式会社 圧縮着火式内燃機関の燃焼制御装置
JP2013160194A (ja) * 2012-02-08 2013-08-19 Nippon Soken Inc 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
JP2016037914A (ja) 2016-03-22
DE102015112798A1 (de) 2016-02-11
DE102015112798B4 (de) 2020-03-19

Similar Documents

Publication Publication Date Title
KR101781720B1 (ko) 내연 기관의 제어 장치
JP6011477B2 (ja) エンジンの制御装置
KR101787228B1 (ko) 내연 기관의 제어 장치
JP2015113790A (ja) 内燃機関の制御装置
EP3006705A1 (en) Control device for internal combustion engine
JP6288452B2 (ja) 内燃機関の気流制御装置
JP5720479B2 (ja) 内燃機関の制御装置
JP5932052B2 (ja) 内燃機関の制御装置及びその制御方法
EP3273038B1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP6429082B2 (ja) 噴霧干渉判定装置、気流制御装置
JP6429081B2 (ja) 燃焼領域推定装置、NOx生成量推定装置及び気流制御装置
WO2012032627A1 (ja) 内燃機関の制御装置
JP6237375B2 (ja) 燃料噴霧の広がり角度検出装置
JP6120004B2 (ja) 内燃機関の気流制御装置
JPWO2011036794A1 (ja) 内燃機関の制御装置
JP6497378B2 (ja) 内燃機関の制御装置
JP6414492B2 (ja) ディーゼル機関の制御装置
JP2019090374A (ja) Egr制御装置
JP2013238120A (ja) 内燃機関の圧縮ガス温度推定装置
JP2013224616A (ja) 内燃機関のトルク推定装置および運転制御装置
JP2010101259A (ja) 内燃機関の制御装置
JP6404090B2 (ja) Egr弁の制御装置
JP2017020391A (ja) 内燃機関の制御装置
JP2018096216A (ja) 燃料噴射制御装置、内燃機関、及び、燃料噴射制御方法
JP2017008785A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R151 Written notification of patent or utility model registration

Ref document number: 6288452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250