JP6120004B2 - 内燃機関の気流制御装置 - Google Patents

内燃機関の気流制御装置 Download PDF

Info

Publication number
JP6120004B2
JP6120004B2 JP2014036492A JP2014036492A JP6120004B2 JP 6120004 B2 JP6120004 B2 JP 6120004B2 JP 2014036492 A JP2014036492 A JP 2014036492A JP 2014036492 A JP2014036492 A JP 2014036492A JP 6120004 B2 JP6120004 B2 JP 6120004B2
Authority
JP
Japan
Prior art keywords
airflow
combustion
combustion chamber
strength
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014036492A
Other languages
English (en)
Other versions
JP2015161216A (ja
Inventor
幸平 元尾
幸平 元尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014036492A priority Critical patent/JP6120004B2/ja
Priority to DE102015102619.8A priority patent/DE102015102619A1/de
Publication of JP2015161216A publication Critical patent/JP2015161216A/ja
Application granted granted Critical
Publication of JP6120004B2 publication Critical patent/JP6120004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の燃焼室の気流の強さを制御する気流制御装置に関する。
従来、内燃機関における熱損失を低減するなどの目的で燃焼室の気流の強さを内燃機関の運転条件に応じて制御(調整)する技術の提案がある(例えば特許文献1参照)。例えば特許文献1には、内燃機関(エンジン)の回転数や負荷に応じて燃焼室内に生じるスワール流(旋回渦流、横渦流)の強さとしてのスワール比を制御することが記載されている。
特開昭62−45931号公報
ところで、燃焼室の気流を強くすると燃焼室内から燃焼室の壁面への熱伝達を促進する。この熱伝達の促進を防ぐには気流を弱くすればよいが、気流を弱くすると、燃焼室での燃焼状態によっては燃焼室の壁面付近の燃焼量が増加し、その増加により壁面への熱損失が増加してしまう。従来の気流制御では、これら気流を強くすることによる熱伝達の促進と、気流を弱くすることによる壁面付近の燃焼量の増加とのトレードオフの関係を考慮したものとはなっていないので、気流を調整したとしても熱損失が増加してしまうおそれがあった。
本発明は上記問題に鑑みてなされたものであり、上記トレードオフの関係を考慮して気流制御することで熱損失を低減できる内燃機関の気流制御装置を提供することを課題とする。
上記課題を解決するために、本発明の内燃機関の気流制御装置は、内燃機関の燃焼室の気流の強さを調整する調整手段と、
前記燃焼室に供給された燃料噴霧の燃焼領域を決める条件を取得する条件取得手段と、
前記条件取得手段が取得した条件に基づいて、前記燃焼室の気流の強化により燃焼領域を前記燃焼室内の内側に変化させることができるか否かの内側化判定を行う内側化判定手段とを備え、
前記調整手段は、前記内側化判定手段により燃焼領域を内側に変化させることができると判定された場合には前記燃焼室の気流を強くし、燃焼領域を内側に変化させることができないと判定された場合には前記燃焼室の気流を弱くし又は気流の強さを維持することを特徴とする。
燃焼室での燃焼領域は、燃料の噴霧速度、燃焼室内の圧力等の条件で決まるが、その条件が変われば気流強化による燃焼領域の変化の様子が変わってくる。具体的には、燃焼領域を決める条件によっては、気流の強化により燃焼領域を燃焼室内の内側に変化させることができる場合もあれば、変化させることができない場合もある。本発明では、燃焼領域を決める条件を取得して、その条件に基づき気流強化により燃焼領域を内側に変化させることができるか否かの内側化判定を行う。その内側化判定の結果、燃焼領域を内側に変化させることができる場合には、燃焼室の気流を強くする。これによって、燃焼領域を内側に変化させることができるにもかかわらず気流を弱くした場合に比べて、燃焼室の壁面付近の燃焼量を低減でき、結果、熱損失を低減できる。また、内側化判定の結果、燃焼領域を内側に変化させることができない場合には、壁面付近の燃焼量は気流の強弱によってはそれほど変化しないので、壁面への熱伝達率を考慮して気流を弱くし又は気流の強さを維持する。これにより、気流を強くした場合に比べて、燃焼領域から壁面への熱伝達率を低減でき、結果、熱損失を低減できる。
エンジンシステムの構成図である。 噴霧速度が小さい場合における燃焼領域の様子を気流が弱いときと強いときとで比較した図である。 噴霧速度が大きい場合における燃焼領域の様子を気流が弱いときと強いときとで比較した図である。 燃焼室を平面視方向から見た図であり、インジェクタから供給された燃料噴霧が壁面側に放射される様子を示した図である。 気流の強弱によって噴霧速度と熱損失との関係がどのように変化するかを概念的に示した図である。 第1実施形態における気流調整処理のフローチャートである。 第1実施形態における気流制御を説明するための図であり、噴霧速度(燃焼条件)に対する燃焼領域、気流強さ、熱損失の関係を示した図である。 気流の強弱変化による燃焼領域の変化の様子を示した図である。 第2実施形態における気流調整処理のフローチャートである。 第2実施形態における気流制御を説明するための図であり、噴霧速度(燃焼条件)に対する燃焼領域、熱伝達率、気流強さの関係を示した図である。 第3実施形態における気流調整処理のフローチャートである。 第3実施形態における気流制御を説明するための図であり、噴霧速度に対する燃焼領域、気流強さの関係を示した図である。 第4実施形態における気流調整処理のフローチャートである。 第4実施形態における気流制御を説明するための図であり、噴霧速度(燃焼条件)に対する燃焼領域、壁面燃焼強さ、気流強さ、スモークの関係を示した図である。
(第1実施形態)
以下、本発明の第1実施形態を図面を参照しながら説明する。図1は、車両に搭載されたエンジンシステム1の構成図を示している。エンジンシステム1は、内燃機関としてのコモンレール式のディーゼルエンジン10(以下、単にエンジンという)と、そのエンジン10の運転に必要な各種構成とを備える形で構成されている。なお、本実施形態では、エンジン10は、4つの燃焼室11(気筒、シリンダ)を有した4気筒エンジンである。エンジン10は、各燃焼室11において、吸気、圧縮、燃焼、排気の4行程を経て動力を生み出す4ストローク機関である。吸気、圧縮、燃焼、排気の4行程による燃焼サイクル(「720°CA」周期)が、例えば各燃焼室11間で「180°CA」ずらして逐次実行される。図1の右側の燃焼室11から順に1番から4番までの番号を付けたときに、例えば、1番、3番、4番、2番の燃焼室11の順に燃焼サイクルが実行される。
燃焼室11の上壁を構成するシリンダヘッドの中心には、燃焼室11内に燃料(例えば軽油)を噴射(供給)するインジェクタ16が設けられている。インジェクタ16から供給された燃料噴霧が燃焼室11で圧縮自着火燃焼する。また、燃焼室11の側壁を構成するシリンダブロックには、冷却水(クーラント)を循環させるための冷却水路(ウォータジャケット)が形成されている。その冷却水によりエンジン10が高温になりすぎるのを防いでいる。
また、各燃焼室11には、燃焼室11に吸入される吸入空気(ガス)の導入口となる吸気ポートとして、スワール生成ポート12とタンブル生成ポート13の2つの吸気ポートが形成されている。それら吸気ポート12、13はシリンダヘッド内に形成されている。スワール生成ポート12は、スワール生成ポート12から燃焼室11に吸入されるガスにスワール流(横渦)を生じさせる吸気ポートである。タンブル生成ポート13は、タンブル生成ポート13から燃焼室11に吸入されるガスにタンブル流(縦渦)を生じさせる吸気ポートである。スワール生成ポート12から吸入されたガスは、タンブル生成ポート13から吸入されたガスよりも外側(壁面側)を周方向に旋回しながら燃焼室11内を進行する。これに対し、タンブル生成ポート13から吸入されたガスは、スワール生成ポート12から吸入されたガスよりも内側を下方向(ピストンの頂上面の方向)に進行する。
また、各吸気ポート12、13と燃焼室11とを繋ぐ開口には、その開口の開閉を行う吸気バルブ14が設けられている。また、シリンダヘッド内には、燃焼室11での燃焼後のガスを燃焼室11から排出する排気ポートが形成されている。その排気ポートと燃焼室11とを繋ぐ開口にはその開口の開閉を行う排気バルブ15が設けられている。
エンジンシステム1には、燃焼室11に吸入される新気が流れる吸気通路21が設けられている。その吸気通路21には、上流側から、新気を圧縮する過給器31、過給器31で圧縮された新気を冷却するインタークーラ32が設けられている。また、インタークーラ32より下流の吸気通路21には、新気量を調整するスロットル33が設けられている。そのスロットル33より下流の吸気通路21から、各燃焼室11に繋がる通路22(インテークマニホールドの通路。以下、EGRリーンガス通路という)が分岐している。各EGRリーンガス通路22は各燃焼室11のスワール生成ポート12に接続されている。EGRリーンガス通路22及び吸気通路21には、新気のみ又は後述する接続通路29から流入するEGRガスが混ざったガス(以下、EGRリーンガスという)が流れる。
また、各燃焼室11には、各燃焼室11から排出される排気ガスをまとめて排気通路27に渡すためのエキゾーストマニホールド23が接続されている。なお、排気通路27には、上流側から、排気ガスからエネルギーを回収する過給器のタービン37(可変ノズルターボ(VNT))、排気ガスに対して所定の処理を行う後処理装置38がこの順で配置されている。後処理装置38は、排気ガス中のCO、HC等を酸化して除去する酸化触媒や排気ガス中のPMを除去するDPFなどである。
エキゾーストマニホールド23には、排気ガスの一部をEGRガスとして吸気系に還流させるためのEGR通路24が接続されている。そのEGR通路24には、EGR通路24を流れるEGRガスを冷却するEGRクーラ34や、そのEGRクーラ34より下流にはEGRガスの流量を調整するEGRバルブ35が設けられている。そのEGRバルブ35より下流のEGR通路24からは、各燃焼室11に繋がる通路25(以下、EGRリッチガス通路という)が分岐している。各EGRリッチガス通路25は、各燃焼室11のタンブル生成ポート13に接続されている。EGRリッチガス通路25には、EGRリーンガス通路22を流れるEGRリーンガスよりもEGRガスの濃度が濃い(排気濃度が高い、酸素濃度が低い)ガス(以下、EGRリッチガスという)が流れる。
また、エンジンシステム1には、吸気通路21とEGR通路24とを接続する接続通路29が設けられている。その接続通路29は、EGRリーンガス通路22に分岐する前の吸気通路21と、EGRリッチガス通路25に分岐する前のEGR通路24とを接続している。その接続通路29を介してEGR通路24から吸気通路21にEGRガスを流し、又は吸気通路21からEGR通路24に新気を流すことで、所望のEGR率に調整できるようになっている。なお、EGR率は、燃焼室11に吸入されるEGRガス(排気ガス)の量を、燃焼室11に吸入されるガスの総吸入量(新気の吸入量+EGRガスの吸入量)で割った値である。
さらに、各EGRリッチガス通路25には、EGRリッチガス通路25を流れるガスの流量を調整することで、燃焼室11でのスワール流(気流)の強さを調整するスワールコントロールバルブ41(以下、SCVという)が設けられている。SCV41の開度を小さくしてEGRリッチガスの流量が絞られると、スワール生成ポート12から吸入されるガスの勢いが増し、結果、スワール流を強めることができる。反対に、SCV41の開度を大きくしてEGRリッチガスの流量を多くすると、スワール生成ポート12から吸入されるガスの勢いを弱め、結果、スワール流を弱めることができる。SCV41にはモータ42が接続されており。SCV41はそのモータ42により開度が制御される。
エンジンシステム1には、エンジン10の運転制御に必要な各種センサから構成されるセンサ群52が設けられている。具体的には、センサ群52には、例えばエンジン10の回転数を検出する回転数センサ、車両の運転者の要求トルクを車両側に知らせるためのアクセルペダルの操作量(踏み込み量)を検知するアクセルペダルセンサ、燃焼室11に吸入する新気量を検出するエアフロメータなどが含まれている。さらに、センサ群52には、燃焼室11での燃焼領域を決めるパラメータ(条件)を検出するセンサとして、燃焼室11に供給された燃料の状態(燃料の噴射圧、燃料温度などの噴射系パラメータ)を検出するセンサ、燃焼室11の吸気状態(吸気圧、吸気温、吸気O2等の吸気系パラメータ)を検出するセンサも含まれている。噴射圧を検出するセンサは、例えばインジェクタ16に供給する高圧燃料を蓄えるコモンレール(図示外)に設けられて、そのコモンレール内の圧力を検出する。また、燃料温度を検出するセンサは、例えばコモンレールに高圧燃料を供給するポンプ(図示外)に設けられて、そのポンプ内の燃料温度を検出する。また、吸気圧、吸気温、吸気O2等を検出するセンサは例えば吸気通路21に設けられる。
エンジンシステム1には、センサ群52から入力される検出値に基づきSCV41を含む各バルブ(スロットル33、EGRバルブ35など)の開閉(開閉時期や開度など)やインジェクタ16による燃料供給などを制御することでエンジン10の運転を制御するECU50が設けられている。そのECU50は、CPU、ROM、RAM等を備えたコンピュータを主として構成されている。ECU50は、EEPROM、フラッシュメモリ等のメモリ51を備えている。そのメモリ51には、ECU50が実行する処理のプログラムや、各種マップ(例えば燃料噴射に関するマップや気流制御に関するマップ)などが記憶されている。
また、ECU50は、燃焼室11にて生成された燃焼エネルギーの、燃焼室11の壁面による熱損失(冷損)を低減するために、モータ42を介してSCV41を制御することで、燃焼室11の気流(スワール流)の強さを調整する。なお、SCV41及びこのSCV41を制御するECU50が本発明の「調整手段」に相当する。ここで、図2、図3、図4を参照して、ECU50による気流制御の考え方を説明する。図4に示すように、インジェクタ16から供給された燃料噴霧17は、燃焼室11内を壁面111の方に向かって放射するように進行するが、図2、図3はその図4に示す燃焼室11の一部100を抜き出した図である。詳細には、図2は、燃料の噴霧速度が小さい(気流と同程度の噴霧速度。噴霧速度≒気流)場合における気流が弱いときの燃料噴霧の燃焼領域171の様子を左側に示し、気流が強いときの燃焼領域172の様子を右側に示した図である。図3は、噴霧速度が大きい(気流より十分大きい噴霧速度。噴霧速度>>気流)場合における気流が弱いときの燃焼領域173の様子を左側に示し、気流が強いときの燃焼領域174の様子を右側に示した図である。
燃料噴霧の燃焼領域は、噴霧速度、噴射圧等の噴射系パラメータ、燃焼室11内の吸気圧、吸気温等の吸気系パラメータ等の条件(以下、燃焼条件という)で決まってくる。具体的には、例えば燃焼条件の一つである噴霧速度が小さいと、大きい場合に比べて壁面111の側に到達する噴霧量が少なくなる。その結果、噴霧速度が大きい場合に比べて、燃焼室11内の内側(壁面111から離れた側)で燃焼しやすくなる(図2参照)。反対に、噴霧速度が大きいと、小さい場合に比べて壁面側に到達する噴霧量が多くなる。その結果、燃焼室11の壁面側(外側)で燃焼しやすくなる(図3参照)。
また、燃焼室11の気流の強さを変えたときに燃焼領域がどのように変化するか、つまり気流強さに対する燃焼領域の様子(感度)は燃焼条件によって変わってくる。具体的には、燃焼条件の一つである噴霧速度が小さい場合には、大きい場合に比べて、燃焼領域は気流の影響を受けやすくなる。すなわち、図2に示すように、噴霧速度が小さい場合には、気流が強くなると燃焼領域172は気流の影響を受けて内側に変化する。結果、燃焼領域172の壁面111との接触面積は、気流が弱いときの燃焼領域171の接触面積から減少する。ただし、気流を強くすると、燃焼領域から壁面111への熱伝達率が、気流が弱いときから増加する。つまり、噴霧速度が小さい場合には、気流が弱くなると熱伝達率は減少するかわりに接触面積は増加し、気流が強くなると接触面積は減少するかわりに熱伝達率は増加するという、冷損の低減に関してトレードオフの関係となる。
ここで、冷損は以下の式1で表される。式1において、hは燃焼領域から壁面への熱伝達率を示し、Tは燃焼温度を示し、Twは壁面温度を示し、Aは燃焼領域の壁面との接触面積を示している。式1に示すように、冷損は、燃焼温度Tと壁面温度Twの差(T−Tw)に、熱伝達率hと接触面積Aとを乗算した値から求まる。よって、冷損を低減するには、熱伝達率hと接触面積Aの少なくとも一方を減少させれば良い。
Figure 0006120004
図2に示す噴霧速度が小さい場合には、気流を強くすることで、熱伝達率hが若干増加するものの、その熱伝達率の増加による冷損増加よりも、接触面積Aが減少(壁面付近での燃焼量の減少)による冷損低減の効果のほうが大きい。よって、噴霧速度が小さい場合には、気流を強くすることでトータルとして冷損を低減できる。
他方、噴霧速度が大きい場合には、小さい場合に比べて、燃焼領域は気流の影響を受けにくくなる。すなわち、図3に示すように、噴霧速度が大きい場合には、気流が弱いときの燃焼領域173と、気流が強いときの燃焼領域174とは互いに同等の燃焼領域となっている。つまり、気流を強くしたとしても、燃焼領域174は内側にほとんど変化せず、結果、燃焼領域174の接触面積は気流が弱いときからほとんど変化しない。一方で、気流を強くすると、熱伝達率は増加する。結局、噴霧速度が大きい場合には、気流を強くすると、接触面積の減少はほとんど無く、熱伝達率が増加するので、トータルとして冷損が増加する。言い換えると、噴霧速度が大きい場合には、気流を弱くすることでトータルとして冷損を低減できる。
図5は、図2、図3を参照して説明した内容の結論を示し、詳細には、気流の強弱によって噴霧速度と熱損失(冷損)との関係がどのように変化するかを概念的に示した図である。図5において、実線は気流が強いときの噴霧速度と熱損失の関係を示し、点線は気流が弱いときの噴霧速度と熱損失の関係を示している。図5に示すように、噴霧速度が大きい領域では気流を弱くしたほうが熱損失を小さくでき、噴霧速度が小さい領域では気流を強くしたほうが熱損失を小さくできる。言い換えると、気流の強化により燃焼領域を内側に変化させることができる場合には気流を強くしたほうが熱損失を低減でき、気流の強化によっても燃焼領域を内側に変化させることができない場合には気流を弱くしたほうが熱損失を低減できる。
ECU50は、上述の気流制御の考え方をもとに、気流(スワール流)の強さを調整する気流調整処理を実行する。図6は、その気流調整処理のフローチャートの一例を示している。図6の処理は、例えばエンジン10の始動と同時に開始し、以降エンジン10が停止するまで一定間隔おきに繰り返し実行される。また、図7は、図6の処理を説明するための図であり、詳細には、噴霧速度(燃焼条件S)と燃焼領域との関係を上段に示し、噴霧速度と気流の強さの関係を中段に示し、噴霧速度と熱損失の関係を下段に示している。なお、図7の上段、下段における実線は気流が強いときを示し、点線は気流が弱いときを示している。
図6の処理を開始すると、ECU50は、先ず、現時点における燃焼領域を決める燃焼条件Sを取得する(S11)。具体的には、例えば噴射系パラメータとして、噴射率(インジェクタ16から噴射される燃料の単位時間当たりの噴射量)、噴射圧、噴射量(インジェクタ16から噴射される燃料の今回の噴射期間での総噴射量)、噴射時期(燃料噴射が行われたクランク角の値)、噴射期間(燃料噴射が行われたクランク角の幅)などを取得する。また、例えば、吸気系パラメータとして、吸気圧、吸気温、吸気O2などを取得する。なお、噴射率、噴射量、噴射時期、噴射期間は、エンジン回転数やエンジン負荷(アクセルペダルの踏み込み量)などをパラメータとして最適なエンジン運転となるようにECU50自身が決定した値を用いれば良い。また、噴射圧、吸気圧、吸気温、吸気O2は、センサ群52(図1参照)から入力される検出値から求めれば良い。
なお、燃焼条件Sとして噴霧速度を用いる場合には、S11では、例えば以下の式2により噴霧速度wfを算出する。なお、式2において、xfは噴霧到達距離(インジェクタ16の噴孔から噴霧の先端までの距離)、wは噴射時の速度(噴孔の位置における噴霧速度)、ρfは燃料密度、θは噴霧角(噴霧の噴射方向)、ρaは空気密度、dは噴孔径を示している。
Figure 0006120004
式2を用いて噴霧速度wfを算出する場合には、S11では式2中の各パラメータを取得する。この際、噴霧到達距離xfは以下の式3により取得する。なお、式3中の各パラメータw、ρf、θ、ρa、dは式2中の各パラメータw、ρf、θ、ρa、dと同じであり、式3中のtは時間を示している。また、噴射時の速度wは燃料の噴射状態(噴射率、噴射圧、噴射量など)に基づいて算出すれば良い。また、燃料密度ρf、空気密度ρaは、それぞれ予め定められた一定値を用いても良いし、予め定められた基本となる燃料密度、空気密度を燃料温度、燃焼室11内の温度(吸気温)、噴射圧、吸気圧などで補正することで取得したとしても良い。また、噴霧角θ、噴孔径dはそれぞれ予め定められた値を用いれば良い。なお、式2、式3は、文献「和栗雄太郎、藤井勝、網谷竜夫、恒屋礼次郎、「ディーゼル機関の噴霧到達距離に関する研究」、機械学会論文集 25−156(1959年)、p.820」を根拠としている。S11の処理を実行するECU50が本発明の「条件取得手段」に相当する。
Figure 0006120004
次に、S11で取得した燃焼条件Sに基づいて、予め定めた程度だけ気流を強化したときに燃焼領域がどの程度内側に変化するかを示した燃焼領域変化B(本発明の「第1変化程度」に相当)を算出する(S12)。S12の処理を実行するECU50が本発明の「第1の算出手段」に相当する。S12の処理を図7の上段のグラフ及び図8を参照して説明する。図8は、燃焼室内の燃焼領域の様子を示した図であり、詳細には気流が弱いときの燃焼領域181と気流が強いときの燃焼領域182とを示した図である。S11で取得した燃焼条件SがS(図7上段参照)であるとするとその燃焼条件Sにおいて気流が弱いときの燃焼領域181と、気流が強いときの燃焼領域182とをそれぞれ算出(特定)する(S12)。ここでは、例えば、燃焼室内における燃焼領域181、182の重心位置(燃焼重心)P1、P2(図8参照)を算出する。
燃焼重心P1、P2の算出方法を説明すると、例えば、S11で取得する燃焼条件S(噴射系パラメータ、吸気系パラメータ、噴霧速度など)と燃焼重心との関係(以下、燃焼重心マップという)を、気流が弱いときと強いときのそれぞれで予め実験や計算(シミュレーション)により求めておく。つまり、図7の上段に示す関係を予め求めておく。図7上段の関係では、図2、図3で説明したように、燃焼条件Sとしての噴霧速度がある閾値Sよりも小さい範囲では、気流が弱いとき(点線)に比べて強いとき(実線)のほうが燃焼領域が内側になることを示している。また、噴霧速度が閾値Sより大きい範囲では、気流が弱いときと強いときとで燃焼領域はほとんど変化しないことを示している。
予め求めた燃焼重心マップをメモリ51(図1参照)に記憶しておく。そして、S12では、メモリ51に記憶された気流が弱いときの燃焼重心マップ(図7上段の点線)に基づいて、今回の燃焼条件Sに対応する気流が弱いときの燃焼重心P1を算出する。また、気流が強いときの燃焼重心マップ(図7上段の実線)に基づいて、今回の燃焼条件Sに対応する気流が強いときの燃焼重心P2を算出する。
なお、燃焼重心は上記式3で示される噴霧到達距離xfに相関し、具体的には、噴霧到達距離xfが大きいほど燃焼重心は壁面に近づく。よって、S12では、燃焼重心マップに代えて、式3による噴霧到達距離xfに基づいて燃焼重心を算出しても良い。この際、式3の噴霧到達距離xfは気流の強さの影響が考慮されていないので、式3で得られた噴霧到達距離xfと気流の強弱を示す指標(例えばスワール比(燃焼室内における旋回回転数とエンジン回転数との比))との関係、つまり、気流の強弱によって噴霧到達距離xfがどのように変化するかを予め調べておく。そして、その関係及び式3により得られる今回の噴霧到達距離xfに基づいて、気流が弱いときの燃焼重心、気流が強いときの燃焼重心をそれぞれ算出する。
なお、上記「気流が弱いとき」とは、SCV41(図1参照)の開度を予め定められた開度E1(例えば全開)にしてスワール流を予め定めた強さF(図7の中段のグラフ参照)にした状態をいう。また、「気流が強いとき」とは、SCV41の開度を上記開度E1よりも小さい予め定められた開度E2にしてスワール流を上記強さFよりも強い予め定めた強さF(図7の中段のグラフ参照)にした状態をいう。本実施形態では、気流強さFは、気流強弱を調整可能な範囲における最小限の強さとし、気流強さFは最大限の強さとする。
本実施形態では、後述のS14、S15により気流の強さを2段階に切り替えるが、S11〜S13の処理時では、例えば気流が弱い状態(S15の状態。図7の中段に示す気流強さF))に制御されているものとする。この場合、S12では、現在の気流強さFを基準として気流を強化したときにおける燃焼領域変化を算出することになる。または、S11〜S13の処理時では、S14、S15の気流強さF、F(図7中段参照)の他に、気流強さF、Fの間に設定される予め定められた第3の気流強さ(初期気流強さ)F(図7中段参照)に制御されているものとする。この場合には、現在の気流強さである初期気流強さFを基準として気流を強化したときにおける燃焼領域変化を算出することになる。
そして、S12では、気流が弱いときの燃焼重心P1と強いときの燃焼重心P2の差(P2−P1)を気流強化による燃焼領域変化B(図7上段参照)として算出する。
なお、S12では燃焼条件Sの一例として噴霧速度に基づいて燃焼領域変化Bを算出しても良いし、噴霧速度に加え又は噴霧速度に代えて他の燃焼条件S(噴射系パラメータ、吸気系パラメータ)に基づいて燃焼領域変化Bを算出しても良い。噴霧速度だけを考慮することで、比較的簡単に燃焼領域変化Bを得ることができる。また、噴霧速度に加えて他の燃焼条件Sを考慮すれば、高精度の燃焼領域変化Bを得ることができる。
次に、S12で算出した燃焼領域変化Bが予め定められた閾値B(本発明の「第1閾値」に相当)より大きいか小さいかを判定する(S13)。なお、図7上段にはこの閾値Bを示している。S12及びS13の処理を実行するECU50が本発明の「内側化判定手段」に相当する。また、S13の処理を実行するECU50が本発明の「第1の判定手段」に相当する。燃料領域変化Bが閾値Bより大きい場合には(S13:Yes)、気流を強くする(S14)。具体的には、気流の強さが最大限の強さF(図7中段参照)となるようにSCV41の開度を予め定められた開度E2にする。図7の例では、燃焼条件Sでの燃焼領域変化Bは閾値Bより大きくなっているので(図7上段参照)、気流は強くされる(図7中段参照)。
これによって、図2の左側に示すように、燃焼領域を燃焼室の内側に変化させることができる。言い換えると、図8に示すように、燃焼領域の燃焼重心を外側の位置P1から内側の位置P2に変化させることができる。よって、燃焼領域の壁面111との接触面積を減少させることができ、つまり壁面111付近での燃焼量を減らすことができるので、図7下段の噴霧速度がSより小さい範囲で示すように、気流を弱くしたとき(点線)に比べて熱損失(冷損)を低減できる。S14の後、図6のフローチャートの処理を終了する。
S13において、燃焼領域変化Bが閾値Bより小さい場合には(S13:No)、気流を弱くする(S15)。具体的には、気流の強さが最小限の強さF(図7中段参照)となるようにSCV41の開度を予め定められた開度E1にする。なお、S11〜S13の処理時に気流強さFで制御していた場合には、S15ではこの気流強さFに維持する。また、S11〜S13の処理時に初期気流強さF(図7中段参照)で制御していた場合には、S15では、気流強さFから最小限の気流強さFに切り替える。これによって、図3で説明したように、熱伝達率の増加を抑えることができるので、図7下段の噴霧速度がSより大きい範囲で示すように、気流を強くしたとき(実線)に比べて熱損失を低減できる。S15の後、図6のフローチャートの処理を終了する。
以上説明したように、本実施形態によれば、気流強化により燃焼領域を内側に変化させることができるか否かで気流の強弱を切り替えているので、熱損失を効果的に低減できる。熱損失を低減することで、燃費を向上できる。また、本実施形態では、燃焼室の壁面側を旋回するスワール流の強弱を調整するので、燃焼領域を効果的に内側に変化させることができる。
(第2実施形態)
次に、本発明の第2実施形態を上記実施形態と異なる部分を中心に説明する。上記実施形態では、気流強化により燃焼領域を内側に変化させることができるか否かで気流の強弱を切り替えていた。本実施形態は、気流強化による燃焼領域の内側化に加え、熱伝達率の変化も考慮して、気流の強弱を切り替える実施形態である。本実施形態のエンジンシステムの構成は、図1の構成と同じである。ECU50が実行する気流調整処理が第1実施形態と異なっている。以下、この気流調整処理を説明する。
図9は本実施形態の気流調整処理のフローチャートである。図9において、図6の処理を同一の処理には同一の符号を付している。図9の気流調整処理では、S131、S132の処理が追加されており、それ以外は図6の気流調整処理と同じである。図10は、図9の処理を説明するための図であり、詳細には、噴霧速度(燃焼条件S)と燃焼領域との関係を上段に示し、噴霧速度と熱伝達率の関係を中段に示し、噴霧速度と気流の強さの関係を下段に示している。図10上段の関係は、図7上段の関係と同じである。図10中段における実線は気流が強いときを示し、点線は気流が弱いときを示している。図10下段の関係は、図7中段の関係と同じである。
図9の処理を開始すると、先ず、図7の処理と同様に気流強化による燃焼領域変化Bが閾値Bより大きいか小さいかを判定する(S11〜S13)。燃焼領域変化Bが閾値Bより大きい場合には(S13:Yes)、次に、気流強化により熱伝達率がどの程度変化(増加)するかを示した熱伝達率変化C(本発明の「第2変化程度」に相当)を算出する(S131)。なお、S131の気流強化の程度は、S12の気流強化の程度と同じである。このS131の処理を実行するECU50が本発明の「第2の算出手段」に相当する。S131の処理を図10中段のグラフを参照して説明する。
図10中段において、図2、図3で説明したように、気流が強いときの熱伝達率(実線)は、気流が弱いときの熱伝達率(点線)に比べて大きい。また、気流の強弱にかかわらず、燃焼条件S(図10では噴霧速度)に応じて熱伝達率は変化する。図10では、燃焼条件Sとしての噴霧速度が大きくなるほど、熱伝達率が大きくなっていく例を示している。燃焼条件Sに対する熱伝達率の変化の様子が、気流が強いときと弱いときとで異なる。そのため、気流強化による熱伝達率変化Cは燃焼条件Sによって変わってくる。
S131では、気流が弱いとき(現在の気流強さのとき(最下限の気流強さFにしたとき又は初期気流強さFのとき(図10下段参照)))における熱伝達率hと、気流が強いとき(最大限の気流強さF(図10下段参照))における熱伝達率hとをそれぞれ算出する。熱伝達率の算出方法を説明すると、例えば、燃焼条件Sと熱伝達率との関係(以下、熱伝達率マップという)を、気流が弱いときと強いときのそれぞれで予め実験や計算により求めておく。つまり、図10の中段に示す関係を予め求めておく。求めた熱伝達率マップをメモリ51(図1参照)に記憶しておく。
そして、S131では、メモリ51に記憶された気流が弱いときの熱伝達率マップ(図10中段の点線)に基づいて、今回の燃焼条件Sに対応する気流が弱いときの熱伝達率hを算出する。また、気流が強いときの熱伝達率マップ(図10中段の実線)に基づいて、今回の燃焼条件Sに対応する気流が強いときの熱伝達率hを算出する。そして、算出した2つの熱伝達率h、hの差(h−h)を気流強化による熱伝達率変化Cとして算出する。
なお、熱伝達率は、図10中段で示すように噴霧速度に相関すると考えられるので、S131では、熱伝達率マップに代えて、式2による噴霧速度wfに基づいて熱伝達率を算出しても良い。この際、式2による噴霧速度wfは気流の強さの影響が考慮されていないので、式2で得られた噴霧速度wfと気流の強弱を示す指標(例えばスワール比)との関係、つまり、気流の強弱によって噴霧速度wfがどのように変化するかを予め調べておく。そして、その関係及び今回の噴霧速度に基づいて気流が弱いときの熱伝達率、気流が強いときの熱伝達率をそれぞれ算出する。
なお、S131では燃焼条件Sの一例として噴霧速度に基づいて熱伝達率変化Cを算出しても良いし、噴霧速度に加え又は噴霧速度に代えて他の燃焼条件S(噴射系パラメータ、吸気系パラメータ)に基づいて熱伝達率変化Cを算出しても良い。噴霧速度だけを考慮することで、比較的簡単に熱伝達率変化Cを得ることができる。また、噴霧速度に加えて他の燃焼条件Sを考慮すれば、高精度の熱伝達率変化Cを得ることができる。
次に、熱伝達率変化Cを燃焼領域変化Bで除算した値(以下、除算値C/Bという)が予め定められた閾値Cより小さいか大きいかを判定する(S132)。このS132の処理を言い換えると、熱伝達率変化Cが、閾値Cと燃焼領域変化Bとの積(=C×B)より小さいか大きいかを判定する。この積C×Bは、本発明の「第2閾値」に相当し、燃焼領域変化Bが大きくなるほど大きくなる値である。なお、S132では、気流強化により、上記式1中の接触面積Aの減少量と、熱伝達率hの増加量のどちらが大きいかを判定することを意味する。このS132の処理を実行するECU50が本発明の「第2の判定手段」に相当する。
除算値C/Bが閾値Cより小さい場合には(S132:Yes)、今回の熱伝達率変化Cに基づく熱損失の増加量は、今回の燃焼領域変化Bに基づく熱損失の減少量よりも小さいとして、気流の強化を許可する(S14)。これによって、気流強化によって熱伝達率が増加するものの、その増加による熱損失は小さいので、トータルとして熱損失を低減できる。
これに対し、除算値C/Bが閾値Cより大きい場合には(S132:No)、今回の熱伝達率変化Cに基づく熱損失の増加量は、今回の燃焼領域変化Bに基づく熱損失の減少量よりも大きいとして、気流の強化を禁止する(S15)。つまり、気流を弱くし、又は現在の気流の強さを維持する(S15)。これによって、気流を強化したときに比べて、熱伝達率の増加を抑えることができるので熱損失を低減できる。
以上、本実施形態によれば、気流強化による燃焼領域の内側化に加えて、気流強化による熱伝達率の増加も考慮して気流の強弱を切り替えているので、より精度よく熱損失を低減できる。
(第3実施形態)
次に、本発明の第3実施形態を上記実施形態と異なる部分を中心に説明する。上記実施形態では、気流強化による燃焼領域変化を実際に算出し、算出した燃焼領域変化に基づいて燃焼領域を内側に変化させることができるか否かを判定していた。本実施形態は、気流強化による燃焼領域変化の算出を省略し、噴霧速度の大小で燃焼領域を内側に変化させることができるか否かを判定する実施形態である。本実施形態のエンジンシステムの構成は、図1の構成と同じである。ECU50が実行する気流調整処理が上記実施形態と異なっている。以下、この気流調整処理を説明する。
図11は本実施形態の気流調整処理のフローチャートである。また、図12は、図11の処理を説明するための図であり、詳細には、噴霧速度wfと燃焼領域との関係を上段に示し、噴霧速度と気流の強さの関係を下段に示している。図12上段では気流が強いときを実線で示し、弱いときを点線で示している。図11の処理を開始すると、先ず、上記式2により噴霧速度wfを算出する(S21)。すなわち、S21では、式2中の各パラメータw、ρf、θ、ρa、d、xfを取得して、取得した各パラメータを式2に代入することで噴霧速度wfを算出する。なお、S21の処理を実行するECU50が本発明の「条件取得手段」に相当する。
次に、S21で算出した噴霧速度wfが予め定められた閾値w(本発明の「噴霧閾値」に相当)より小さいか大きいかを判定する(S22)。図12上段のグラフにはこの閾値wを示している。S22の処理では、噴霧速度wfに応じて燃焼領域が図12上段のグラフのように変化すると仮定している。すなわち、図12上段に示すように、噴霧速度wfが閾値wよりも小さい範囲では、気流の強化により燃焼領域を内側に変化させることができると仮定している。また、噴霧速度wfが閾値wよりも大きい範囲では、気流強化したとしても燃焼領域を内側に変化させることができないと仮定している。なお、S22の処理を実行するECU50が本発明の「内側化判定手段」に相当する。
S22において、噴霧速度wfが閾値wよりも小さい場合には(S22:Yes)、気流強化により燃焼領域を内側に変化させることができるとして、気流を強くする(S23)。具体的には、図12の下段に示すように、気流を最大限の強さFに切り替える(S23)。これによって、燃焼領域を内側に変化させることができ、結果、熱損失を低減できる。S23の後、図11のフローチャートの処理を終了する。
これに対し、噴霧速度wfが閾値wよりも大きい場合には(S22:No)、気流強化により燃焼領域を内側に変化させることができないとして、気流を弱くする(S24)。具体的には、現在の気流強さが初期気流強さF(図12下段参照)の場合には、その初期気流強さFから最小限の気流強さFに切り替える(S24)。または、現在の気流強さが最小限の気流強さFの場合には、その気流強さFに維持する(S24)。これによって、気流を強くしたときに比べて熱伝達率の増加を抑えることができるので、熱損失を低減できる。S24の後、図11のフローチャートの処理を終了する。
以上説明したように、本実施形態によれば、気流強化による燃焼領域の内側化の判定として、噴霧速度の大小だけを判定しているので、燃焼領域変化の算出を省略でき、簡単に燃焼領域の内側化を判定できる。
(第4実施形態)
次に、本発明の第4実施形態を上記実施形態と異なる部分を中心に説明する。上記実施形態では、熱損失の低減を考慮して気流の強弱を切り替えていたが、本実施形態は、熱損失の低減に加えてスモーク(煤、NOx等のエミッション)の低減も考慮して気流の強弱を切り替える実施形態である。また、上記実施形態では、気流の強さを2段階で切り替えていたが、本実施形態は、気流の強弱を2段階より多い多段階で切り替える実施形態である。本実施形態のエンジンシステムの構成は、図1の構成と同じである。ECU50が実行する気流調整処理が上記実施形態と異なっている。以下、この気流調整処理を説明する。
図13は本実施形態の気流調整処理のフローチャートである。また、図14は、図13の処理を説明するための図であり、詳細には、噴霧速度(燃焼条件S)と燃焼領域との関係を最上段に示し、噴霧速度と壁面燃焼強さD(又は燃焼重心)との関係を2段目に示し、噴霧速度と気流の強さを3段目に示し、噴霧速度とスモークとの関係を最下段に示している。なお、図14の最上段、2段目、最下段における実線201、211、241は気流が強いときを示し、粗い点線202、212、242は気流が弱いときを示し、細かい点線203、213、243は気流の強さが中程度(気流が強いときと弱いときの中間)のときを示している。
図13の処理を説明する前に、図14を説明すると、図14の最上段に示すように、燃焼条件Sとしての噴霧速度がある値Sより小さい範囲では、気流強化により燃焼領域を内側に変化させることができる。詳細には、気流弱(粗点線202)→気流中(細点線203)→気流強(実線201)の順に燃焼領域が内側に変化していく。
また、気流強さが変わると、壁面付近での燃焼の強さD(以下、壁面燃焼強さという)がどのように変わるかは、図14の2段目に示すように、噴霧速度がある値Sより小さい範囲では、気流弱(粗点線212)→気流中(細点線213)→気流強(実線211)の順に壁面燃焼強さDが小さくなっていく。これは、気流が強くなるほど燃焼領域が内側に変化するためである。また、噴霧速度がある値Sより大きい範囲では、気流強化によっても燃焼領域は内側に変化しないので(図14の最上段参照)、壁面燃焼強さDも気流の強弱によってはほとんど変化しない。
なお、燃焼領域の重心(燃焼重心)が燃焼室の内側になるほど壁面燃焼強さDは小さくなる。つまり、壁面燃焼強さDは燃焼重心に相関する。よって、図14の2段目の縦軸は、壁面燃焼強さDに代えて燃焼重心であらわすこともできる。この燃焼重心の縦軸では、上にいくほど、燃焼重心が壁面側(外側)に近づくことを示している。縦軸を燃焼重心であらわした場合、気流弱(粗点線212)→気流中(細点線213)→気流強(実線211)の順に燃焼重心が内側になっていく。
一方、図14の最下段に示すように、気流の強弱によってスモークの発生量が変わってくる。具体的には、気流が弱すぎると燃焼室内において燃料噴霧と空気との混合が不十分となり、これによりスモークの発生量が多くなる。他方、気流が強すぎると、燃料噴霧同士が干渉(衝突)してしまい、これによりスモークの発生量が多くなる。よって、スモークの発生を抑えるためには、気流は弱過ぎでもなく、強過ぎでもない、中間の気流強さが好ましい。そのために、図14の最下段では、気流弱(粗点線242)→気流強(実線241)→気流中(細点線243)の順にスモークの発生量が少なくなることを示している。
さらに、壁面燃焼強さDがある程度小さい範囲では、気流強化によって燃焼領域を内側にできたとしても熱損失はほとんど改善しなくなる。以上を踏まえて、図13の処理では、熱損失がほとんど改善しなくなる壁面燃焼強さDの範囲内(図14の2段目において閾値Dのライン220より小さい範囲)では、スモーク抑制のために気流強化を禁止している。
すなわち、図13の処理を開始すると、先ず、図6のS11と同様に燃焼条件Sを取得する(S31)。なお、S31の処理を実行するECU50が本発明の「条件取得手段」に相当する。次に、図6のS12と同様に、燃焼条件Sに基づいて気流強化による燃焼領域変化Bを算出する(S32)。このS32の処理を実行するECU50が本発明の「第1の算出手段」に相当する。次に、図6のS13と同様に、燃焼領域変化Bが予め定められた閾値Bより大きいか小さいかを判定する(S33)。なお、図14の最上段にはこの閾値Bを示している。S32及びS33の処理を実行するECU50が本発明の「内側化判定手段」に相当する。また、S33の処理を実行するECU50が本発明の「第1の判定手段」に相当する。燃焼領域変化Bが閾値Bより小さい場合には(S33:No)、図6のS15と同様に、気流を弱くし、又は現在の気流の強さを維持する(S36)。つまり、図14の3段目に示すように、気流を最小限の強さFに切り替える。
燃焼領域変化Bが閾値Bより大きい場合には(S33:Yes)、S31で取得した燃焼条件Sに基づいて壁面燃焼強さDが予め定められた閾値D(本発明の「第3閾値」に相当)になる気流の強さ(以下、閾値気流強さという)を設定する(S34)。図14の2段目にはこの閾値Dのライン220を示している。閾値Dは、壁面燃焼強さDが十分小さいことにより気流を強化したとしても熱損失がほとんど改善しなくなる壁面燃焼強さDの範囲の上限値である。
閾値気流強さは噴霧速度等の燃焼条件Sによって変化する。そのため、閾値気流強さを設定するために、例えば、燃焼条件Sと壁面燃焼強さDの関係(以下、壁面燃焼マップという)を気流の強さごとに予め実験や計算により求めておく。図14の2段目では、気流の強さを強、中、弱の3段階に分けたときの燃焼条件Sと壁面燃焼強さDの関係を例示しているが、ここでは、さらに細かく気流強さを変化させたときの燃焼条件Sと壁面燃焼強さDの関係を調べる。そして、調べたその関係(気流強さごとの燃焼条件Sと壁面燃焼強さDの関係)を壁面燃焼マップとしてメモリ51(図1参照)に記憶しておく。なお、壁面燃焼強さDとして、例えば燃焼室での全体の燃焼量に対する壁面付近(壁面から所定距離以内の範囲)での燃焼量の割合を算出しても良いし、壁面付近での燃焼量そのものを算出しても良い。
そして、S34では、メモリ51に記憶された壁面燃焼マップを参照して、今回の燃焼条件Sにおいて壁面燃焼強さDが閾値Dとなる気流強さを読み取って、読み取ったその気流強さを閾値気流強さとして設定する。
なお、S34で設定する閾値気流強さと燃焼条件S(噴霧速度)との関係は、例えば図14の3段目のライン230で示される。このライン230で示す関係は、噴霧速度がある値S(燃焼領域変化Bが閾値Bとなる噴霧速度)より小さい範囲に設定される。ライン230における閾値気流強さは、噴霧速度Sで最大値Fとなり、噴霧速度が小さくなるにしたがって次第に小さくなっていく。S34では、このライン230で示される燃焼条件S(噴霧速度)と閾値気流強さの関係を実験や計算により予め求めてメモリ51に記憶しておき、この関係に基づいて今回の燃焼条件Sに対応する閾値気流強さを設定することを意味する。
なお、上述したように、壁面燃焼強さDは燃焼重心に相関するので、S34では、燃焼重心がある閾値Dとなる気流強さを設定しても良い。この場合、燃焼重心が閾値Dより小さくなると(内側になると)、気流を強化したとしても熱損失がほとんど改善しないことを意味する。燃焼重心は図6のS12で説明したように算出すれば良い。このS34の処理を実行するECU50が本発明の「禁止手段」、「気流設定手段」に相当する。
次に、S34で設定した閾値気流強さまで気流が強くなるように、SCV41の開度を調整する(S35)。これによって、気流強化をしなかった場合に比べて燃焼領域を内側に変化させることができるので熱損失を低減できる。加えて、気流を最大限の強さFにした場合に比べて、熱損失の低減量を同等にできるとともに、噴霧同士の干渉を抑えることができ、結果、スモークの発生を低減できる(図14の最下段参照)。また、S35では、燃焼条件Sに応じて気流強さを多段階で調整していることになる。S35の後、図13のフローチャートの処理を終了する。
以上説明したように、本実施形態によれば、上記実施形態の効果に加えて、気流の強弱調整により熱損失の低減とスモークの低減の両立を図ることができる。
なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、SCVにより気流(スワール流)の強弱を調整していたが、他の方法によりスワール流の強弱を調整しても良い。具体的には例えば吸気バルブ14の開閉タイミングや開度を、スワール生成ポート12とタンブル生成ポート13の間で異ならせることで、スワール流の強弱を調整しても良い。例えば、タンブル生成ポート13の吸気バルブ14の開度を、スワール生成ポート12の吸気バルブ14の開度より小さくするなどで、スワール流を強くすることができる。吸気バルブ14でスワール流の強弱を調整することで、SCVを省略できる。また、特許文献1のようにスワール生成ポート(主ポート)の終端部近くに角度を持って接続された副ポートを配置し、この副ポートからの流量を調整することでスワール流の強弱を調整しても良い。
また、上記第1実施形態、第2実施形態、第4実施形態では、気流強化による燃焼領域変化として燃焼重心の変化量を見ていたが、燃焼重心以外の指標(例えば式3による噴霧到達距離)の変化量を燃焼領域変化としても良い。また、上記各実施形態を組み合わせても良い。具体的には例えば第2実施形態と第4実施形態とを組み合わせても良い。この場合、例えば図9の処理において、S132の後に図13のS34の処理を追加する。また、図13のS31〜S33の処理に代えて図11のS21、S22の処理を実行しても良い。つまり、噴霧速度の大小で気流強化による内側化を判定し、内側にできる場合にはS34、S35により閾値気流強さとなるように気流を調整する。
また、上記実施形態では、スワール生成ポートとタンブル生成ポートの両方を備えたシステムに本発明を適用した例を説明したが、スワール生成ポートのみが設けられたシステムや、通常の吸気ポート(スワール流、タンブル流として吸入しない吸気ポート)が設けられたシステムに本発明を適用しても良い。また、図9のS132では、熱伝達率変化Cを燃焼領域変化Bで除算した値が閾値Cより小さいか大きいかを判定していたが、単純に、熱伝達率変化Cが閾値より小さいか大きいかを判定しても良い。これによっても、熱伝達率が大幅に増加する気流強化を防止でき、熱損失の増加を防止できるとともに、簡単に熱伝達率を考慮した気流調整をすることができる。
また、上記第1〜第3実施形態では、気流強化により燃焼領域を内側にできる場合には、気流を最大限に強さに切り替えていたが、現在の気流強さよりも強化することを条件に、最大限より小さい強さに調整しても良い。同様に、気流強化により燃焼領域にできない場合には、現在の気流強さよりも弱くし又は維持することを条件に、気流を最小限よりも大きい強さに調整しても良い。
1 エンジンシステム
10 ディーゼルエンジン(内燃機関)
11 燃焼室
41 スワールコントロールバルブ
50 ECU

Claims (9)

  1. 内燃機関(10)の燃焼室(11)の気流の強さを調整する調整手段(41、50)と、
    前記燃焼室に供給された燃料噴霧の燃焼領域を決める条件を取得する条件取得手段(S11、S21、S31)と、
    前記条件取得手段が取得した条件に基づいて、前記燃焼室の気流の強化により燃焼領域を前記燃焼室内の内側に変化させることができるか否かの内側化判定を行う内側化判定手段(S12、S13、S22、S32、S33)とを備え、
    前記調整手段(S14、S15、S23、S24、S35、S36)は、前記内側化判定手段により燃焼領域を内側に変化させることができると判定された場合には前記燃焼室の気流を強くし、燃焼領域を内側に変化させることができないと判定された場合には前記燃焼室の気流を弱くし又は気流の強さを維持することを特徴とする内燃機関の気流制御装置。
  2. 前記内側化判定手段は、
    前記燃焼室の気流の強化による燃焼領域の変化の程度である第1変化程度を前記条件に基づいて算出する第1の算出手段(S12、S32)と、
    前記内側化判定として前記第1変化程度が予め定められた第1閾値より大きいか小さいかを判定する第1の判定手段(S13、S33)とを備え、
    前記調整手段(S14、S15、S35、S36)は、前記第1変化程度が前記第1閾値より大きい場合に前記燃焼室の気流を強くし、前記第1変化程度が前記第1閾値より小さい場合に前記燃焼室の気流を弱くし又は気流の強さを維持することを特徴とする請求項1に記載の内燃機関の気流制御装置。
  3. 前記条件取得手段は、前記燃焼室に供給された燃料の噴霧速度を前記条件として取得することを特徴とする請求項1又は2に記載の内燃機関の気流制御装置。
  4. 前記条件取得手段(S21)は、前記燃焼室に供給された燃料の噴霧速度を前記条件として取得し、
    前記内側化判定手段(S22)は、前記内側化判定として前記噴霧速度が予め定められた噴霧閾値より小さいか大きいかを判定し、
    前記調整手段(S23、S24)は、前記噴霧速度が前記噴霧閾値より小さい場合に前記燃焼室の気流を強くし、前記噴霧速度が前記噴霧閾値より大きい場合に前記燃焼室の気流を弱くし又は気流の強さを維持することを特徴とする請求項1に記載の内燃機関の気流制御装置。
  5. 前記燃焼室の気流の強化による前記燃焼室内の燃焼領域から前記燃焼室の壁面への熱伝達率の変化の程度である第2変化程度を前記条件に基づいて算出する第2の算出手段(S131)と、
    前記第2変化程度が第2閾値より小さいか大きいかを判定する第2の判定手段(S132)とを備え、
    前記調整手段(S14、S15)は、前記第1変化程度が前記第1閾値より大きい場合には前記第2変化程度が前記第2閾値より小さいことを条件に前記燃焼室の気流を強くし、前記第2変化程度が前記第2閾値より大きい場合には前記第1変化程度が前記第1閾値より大きい場合であっても気流を弱くし又は気流の強さを維持することを特徴とする請求項2に記載の内燃機関の気流制御装置。
  6. 前記第2閾値は、前記第1変化程度が大きいほど大きくなる値であることを特徴とする請求項5に記載の内燃機関の気流制御装置。
  7. 前記内側化判定手段により燃焼領域を内側に変化させることができると判定された場合に、前記燃焼室の壁面付近の燃焼の強さである壁面燃焼強さ又はそれに相関する値が予め定められた第3閾値より小さくなる前記調整手段による気流の強化を禁止する禁止手段(S34)を備えることを特徴とする請求項1〜6のいずれか1項に記載の内燃機関の気流制御装置。
  8. 前記禁止手段は、前記壁面燃焼強さ又はそれに相関する値が前記第3閾値となる気流の強さを設定する気流設定手段であり、
    前記調整手段(S35)は、前記内側化判定手段により燃焼領域を内側に変化させることができると判定された場合には、前記気流設定手段により設定された気流の強さに調整することを特徴とする請求項7に記載の内燃機関の気流制御装置。
  9. 前記調整手段は、前記燃焼室内に生じるスワール流の強さを調整することを特徴とする請求項1〜8のいずれか1項に記載の内燃機関の気流制御装置。
JP2014036492A 2014-02-27 2014-02-27 内燃機関の気流制御装置 Active JP6120004B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014036492A JP6120004B2 (ja) 2014-02-27 2014-02-27 内燃機関の気流制御装置
DE102015102619.8A DE102015102619A1 (de) 2014-02-27 2015-02-24 Luftstromsteuervorrichtung für eine Verbrennungskraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036492A JP6120004B2 (ja) 2014-02-27 2014-02-27 内燃機関の気流制御装置

Publications (2)

Publication Number Publication Date
JP2015161216A JP2015161216A (ja) 2015-09-07
JP6120004B2 true JP6120004B2 (ja) 2017-04-26

Family

ID=53782631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036492A Active JP6120004B2 (ja) 2014-02-27 2014-02-27 内燃機関の気流制御装置

Country Status (2)

Country Link
JP (1) JP6120004B2 (ja)
DE (1) DE102015102619A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699582B2 (ja) * 2017-02-13 2020-05-27 トヨタ自動車株式会社 インジェクタ縮流評価方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910734A (ja) * 1982-07-09 1984-01-20 Toyota Central Res & Dev Lab Inc 圧縮着火式直接噴射内燃機関
JPH0650056B2 (ja) * 1985-08-23 1994-06-29 三菱自動車工業株式会社 スワ−ル制御装置
JP2003090247A (ja) * 2002-07-15 2003-03-28 Hitachi Ltd 筒内噴射エンジンの混合気成層化方法およびそれに使用する電子式エンジン制御装置
JP4229795B2 (ja) * 2003-09-30 2009-02-25 大阪瓦斯株式会社 予混合圧縮着火エンジン及びその運転制御方法
JP2007285244A (ja) * 2006-04-19 2007-11-01 Nissan Motor Co Ltd 筒内直接噴射式内燃機関
WO2010095258A1 (ja) * 2009-02-23 2010-08-26 トヨタ自動車株式会社 内燃機関
JP5549510B2 (ja) * 2010-09-30 2014-07-16 マツダ株式会社 リーンバーンエンジン

Also Published As

Publication number Publication date
JP2015161216A (ja) 2015-09-07
DE102015102619A1 (de) 2015-08-27

Similar Documents

Publication Publication Date Title
KR101781720B1 (ko) 내연 기관의 제어 장치
JP5974884B2 (ja) エンジン制御装置
EP3009643B1 (en) Engine control device
JP6183552B2 (ja) ディーゼルエンジンの制御装置および制御方法
JP6927084B2 (ja) 内燃機関
JP6795933B2 (ja) ターボ回転数制御装置およびターボ回転数制御方法
JP6120004B2 (ja) 内燃機関の気流制御装置
JP5581935B2 (ja) 内燃機関の燃料噴射制御装置
EP3273038B1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP6288452B2 (ja) 内燃機関の気流制御装置
JP6528791B2 (ja) エンジンシステム
JP5077491B2 (ja) 内燃機関の制御装置
JP6148155B2 (ja) 圧縮着火式内燃機関の制御システム
JP2018112146A (ja) 内燃機関の制御装置
JP6135587B2 (ja) 燃料噴霧制御装置
JP6429082B2 (ja) 噴霧干渉判定装置、気流制御装置
JP6497378B2 (ja) 内燃機関の制御装置
JP6429081B2 (ja) 燃焼領域推定装置、NOx生成量推定装置及び気流制御装置
JP2010144527A (ja) 内燃機関の燃料噴射制御装置及び制御方法
JP6769195B2 (ja) 内燃機関の制御装置
JP7189488B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2009091920A (ja) 燃料供給異常判定方法およびその装置
JP2017129047A (ja) 内燃機関制御装置
JP2021042693A (ja) ディーゼルエンジンの制御装置
JP6404090B2 (ja) Egr弁の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R151 Written notification of patent or utility model registration

Ref document number: 6120004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250