JP2016167387A - Sofcセルチューブ及び固体酸化物形燃料電池装置 - Google Patents

Sofcセルチューブ及び固体酸化物形燃料電池装置 Download PDF

Info

Publication number
JP2016167387A
JP2016167387A JP2015046535A JP2015046535A JP2016167387A JP 2016167387 A JP2016167387 A JP 2016167387A JP 2015046535 A JP2015046535 A JP 2015046535A JP 2015046535 A JP2015046535 A JP 2015046535A JP 2016167387 A JP2016167387 A JP 2016167387A
Authority
JP
Japan
Prior art keywords
power generation
generation element
cell tube
fuel
sofc cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015046535A
Other languages
English (en)
Other versions
JP6711558B2 (ja
Inventor
直樹 渡邉
Naoki Watanabe
直樹 渡邉
安藤 茂
Shigeru Ando
茂 安藤
大 籾山
Dai Momiyama
大 籾山
岡本 修
Osamu Okamoto
修 岡本
保夫 柿沼
Yasuo Kakinuma
保夫 柿沼
久保田 勝
Masaru Kubota
勝 久保田
潔 端山
Kiyoshi Hayama
潔 端山
正紀 古屋
Masanori Furuya
正紀 古屋
弘展 村上
Hironobu Murakami
弘展 村上
暢夫 井坂
Nobuo Isaka
暢夫 井坂
佐藤 真樹
Maki Sato
真樹 佐藤
田中 修平
Shuhei Tanaka
修平 田中
琢也 星子
Takuya Hoshiko
琢也 星子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2015046535A priority Critical patent/JP6711558B2/ja
Publication of JP2016167387A publication Critical patent/JP2016167387A/ja
Application granted granted Critical
Publication of JP6711558B2 publication Critical patent/JP6711558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】単一の発電素子を有するSOFCセルチューブに対してとくに燃料枯れの影響の大きい円筒横縞型のSOFCセルチューブにおいて、各発電素子に対して持続的な燃料供給を可能とし、瞬間的な燃料枯れの発生を抑制することを課題とする。
【解決手段】
円筒型の支持体に、所定間隔をあけて複数の横縞状の発電素子部を備えたSOFCセルチューブであって、発電素子部は、内側から外側に向けて燃料極層、固体電解質層、及び空気極層を少なくとも有し、SOFCセルチューブには、円筒内の通路を通過して発電素子部の燃料極層に供給される燃料ガスの流速を増加させるための流速増加手段が設けられているSOFCセルチューブ。
【選択図】図1

Description

本発明は、SOFC(固体酸化物形燃料電池)セルチューブに関する。とくに、円筒横縞型のSOFCセルチューブに関する。
近年、次世代のエネルギーとして、燃料電池装置として固体酸化物形燃料電池装置(SOFC:Solid Oxide Fuel Cell)の開発が進んでいる。燃料電池は、熱エネルギーや運動エネルギーの過程を経由する熱機関と異なり、天然ガスや水素などの燃料を、固体電解質を介して空気中の酸素と反応させ、燃料の持っている化学エネルギーから連続的に直接電気エネルギーを得るエネルギー変換器である。固体酸化物形燃料電池は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に空気や酸素等の酸素含有ガスを供給して、約600℃〜1000℃の高温状態下で発電反応を生じさせて発電を行う燃料電池である。SOFCは、固体高分子形燃料電池やリン酸型燃料電池、溶融炭酸塩形燃料電池と比べてエネルギー変換効率(発電効率)が高く、排熱を利用することで総合的なエネルギー利用率を高めることができることが知られている。
固体酸化物形燃料電池装置に用いる燃料電池セルとして、従来円筒横縞型のSOFCセルチューブが知られている。特許文献1に開示されるように、円筒横縞型のSOFCセルチューブは、筒形状の支持体の外周に、燃料極層、固体電解質層及び空気極層が順次積層された多層構造の発電素子を、支持体の長手方向に所定間隔をおいて複数形成されることにより構成されている。また、互いに隣接する発電素子どうしは、インターコネクタ(素子間接続部材)によって電気的に直列に接続されている。
上述した高温状態下において、支持体の長手方向に貫通して設けられた内部通路の一端から他端へ水素を含むガス(以下、燃料ガスという)を流すとともに、SOFCセルチューブの外周面に酸素を含むガス(以下、酸素含有ガスあるいは空気という)を流すと、燃料極層と空気極層との間の酸素分圧差による電位差が生じ、発電反応が生じる。すなわち、固体電解質層を介して空気極層から燃料極層へ移動する酸素イオンは、燃料極層において水素と結合することで電子を発生させるとともに、水となる。負荷を介して燃料極層と空気極層とを結ぶ閉回路を形成することで、発電反応を連続して起こして、起電力を生じさせて発電する。
特開平7−130380号公報
上述の従来の円筒横縞型のSOFCセルチューブは、燃料ガスを供給する内部通路の内径が発電素子部、非発電素子部において均一であった。ここで、燃料ガスはセルチューブの一端から他端に向けて流れるが、内部通路内の発電素子部に位置する場所では燃料ガスが発電のために消費されるため、燃料ガスが希薄となる状態が生じるおそれがある一方で、発電によりが発電素子部に水(水蒸気)が生成されるため、燃料極に供給される燃料ガスの拡散が阻害されやすくなる。
とくに、単一の燃料電池セルチューブにひとつの発電素子が形成された単純な構成の燃料電池セルチューブに比較して、円筒横縞型のSOFCセルチューブは複数の発電素子の配設方向(支持体の長手方向)に燃料ガスが流れるため、燃料ガスの下流側に配置される発電素子の発電で用いる燃料ガスの組成は、上流側に配置される発電素子の発電の影響を受ける。すなわち、下流側の発電素子に用いられる燃料ガスにおける水素濃度は、上流側に位置する発電素子で消費される燃料ガスにおける水素濃度よりも低くなる。また、上流側に位置する発電素子による発電によって生じた水(水蒸気)は、燃料ガスにより下流側に押し流されるため、下流側の発電素子に用いられる燃料ガスの水素濃度はさらに薄くなる。このため、とくに下流側に配置される発電素子では、燃料枯れが生じる危険性が高く、その結果セルが破損するリスクに曝される。
また、とくに単一の燃料電池セルチューブにひとつの発電素子が形成された単純な燃料電池セルチューブと比較して、円筒横縞型のSOFCセルチューブは1つの発電素子の面積が小さいため、燃料枯れが行った場合に発電素子の単位面積当たりにかかる発電の負荷が大きく、燃料枯れによる発電素子への影響が大きい。
以上のことから、単一の発電素子を有するSOFCセルチューブに対して、とくに燃料枯れの影響の大きい円筒横縞型のSOFCセルチューブにおいて、各発電素子に対して持続的な燃料供給を可能とし、瞬間的な燃料枯れの発生を抑制することを課題とする。
本発明にかかるSOFCセルチューブの一態様は、円筒型の支持体に、所定間隔をあけて複数の横縞状の発電素子部を備えたSOFCセルチューブであって、発電素子部は、内側から外側に向けて燃料極層、固体電解質層、及び空気極層を少なくとも有し、SOFCセルチューブには、円筒内の通路を通過して発電素子部の燃料極層に供給される燃料ガスの流速を増加させるための流速増加手段が設けられている。
従来の円筒横縞型のSOFCセルチューブは、燃料ガスを供給する内部通路の内径が発電素子部、非発電素子部において均一であった。ここで、燃料ガスはセルチューブの一端から他端に向けて流れるが、内部通路内の発電素子部に位置する場所では燃料ガスが発電のために消費されるため、燃料ガスが希薄となる状態が生じるおそれがある一方で、発電によりが発電素子部に水(水蒸気)が生成されるため、燃料極に供給される燃料ガスの拡散が阻害されやすくなる。
そこで本発明では、円筒横縞型のSOFCセルチューブにおいて、円筒内の通路を通過して発電素子部の燃料極層に供給される燃料ガスの流速を増加させるための流速増加手段を設けることで、速やかに燃料極へ燃料ガスを供給することができる。また、発電反応によって内部通路内に生じた水蒸気を、流速の高まった燃料ガスによって素早くセルチューブの上端からセルチューブの外部へ排出することができる。
これにより、発電素子部への燃料ガスの供給不良を解消し、安定的な発電運転を実現することができる。
また本発明の一態様においては、SOFCセルチューブの発電素子部における内径は、発電素子部の間に設けられた非発電素子部における内径よりも小さいことが好ましい。
すなわち、円筒横縞型のSOFCセルチューブにおいて、発電素子部に位置するセルチューブ内の燃料流路は非発電素子部に位置する燃料流路よりも狭く絞られている。言い換えると、発電素子部と非発電素子部とで支持体に内径差が設けられている。そうすると、発電素子部における内部通路の断面積が絞られているため、当該部分の内部通路を通過する燃料ガスの流速は増加する。その結果、発電素子部の燃料極への燃料ガスの拡散流速を増加させることができ、速やかに燃料極へ燃料ガスを供給することができる。また、発電反応によって内部通路内に生じた水蒸気を、流速の高まった燃料ガスによって素早くセルチューブの上端からセルチューブの外部へ排出することができる。さらに、発電素子部における三相界面への燃料ガスの拡散経路長を、従来よりも発電素子部の内径を小さくした分、短く設定することができる。
これにより、発電素子部への燃料ガスの供給不良を解消し、安定的な発電運転を実現することができる。
また本発明の一態様においては、SOFCセルチューブの発電素子部における外径は、非発電素子部における外径よりも小さいことが好ましい。
上述した効果を狙って、SOFCセルチューブの外径寸法を変えずに発電素子部における部分の内径を小さくすると、発電素子部における支持体の厚みが増加してしまう。その結果、燃料ガスの燃料極や三相界面への拡散距離が増加してしまう。そこで、内径と合わせて発電素子部の外径も小さくする(SOFCセルチューブの外見上、発電素子部がくびれた構造となる)ことで、上述の効果を損なわずに燃料ガスの拡散距離の増加を抑えることができる。
また本発明の一態様においては、SOFCセルチューブの一端又は両端には、SOFCセルチューブの内径及び外径が略一定である平坦領域を有することが好ましい。
SOFCセルチューブにおいて、発電素子部のように端部においてもくびれた構造とすると、SOFCセルチューブの端部中の位置によって、あるいは異なるSOFCセルチューブどうしによって外径が相違するため、セルチューブの搬送時の取り扱いや、燃料電池モジュールへの組み付けが困難になる。とくに、SOFCセルチューブを燃料マニホールドに挿入固定する場合、固定部分で外径が異なると燃料マニホールド内の気密性の確保が難しい。そこでセルチューブの端部に平坦領域を設けることで、上述した発電素子部への燃料ガスの供給不良を解消するとともに、SOFCセルチューブの搬送を容易とし、さらに気密性を担保した固定を確実なものとすることができる。
また本発明の一態様においては、支持体の厚みは2mm以下であることが好ましい。
支持体の厚みを薄くすることで、燃料ガスを三相界面に供給することが容易となる。とくに支持体の厚みが2mm以下であると燃料ガスを効果的に三相界面に供給することができる。また、発電素子部に位置する箇所をくびれた構造とする形成方法としては種々の方法が考えられるが、支持体を2mm以下に薄くすることで支持体上に積層する膜の応力を調整することによって、焼成時に発電素子部がくびれた構造を形成することができる。
また本発明の一態様は、前記SOFCセルチューブを用いた固体酸化物形燃料電池装置である。
本発明にかかるSOFCセルチューブを固体酸化物形燃料電池装置に用いることで、発電性能の高い固体酸化物形燃料電池装置を実現することができる。
また本発明の一態様にかかる固体酸化物形燃料電池装置は、複数のSOFCセルチューブが天面に立設固定され、SOFCセルチューブの燃料極に燃料ガスを供給する、モジュール容器内に設けられた燃料マニホールドと、SOFCセルチューブの空気極に空気を供給する、空気供給管と、を有し、SOFCセルチューブは、発電素子部が隣り合う他のSOFCセルチューブの発電素子部との間で高さ位置が不揃いとなるように固定されていることが好ましい。
近接するSOFCセルチューブの発電素子部の位置が揃う場合、燃料ガス流路とは反対に発電素子部における空気が通過する断面積が広がってしまうことにより、空気極へ供給される空気の流速が低下してしまう。そこで、近接するSOFCセルチューブ間で発電素子部の高さ位置をずらして配置することで、空気の流速の低下を抑制することができる。
円筒横縞型のSOFCセルチューブにおいて、発電素子部の燃料極への燃料ガス供給量を、局所的に増加させることができる。これにより、各発電素子に対して持続的な燃料供給を可能とし、瞬間的な燃料枯れの発生を抑制することができる。よって、発電素子部への燃料ガスの供給不良を解消し、安定的な発電運転を実現することができる。
本発明の実施の形態にかかるSOFCセルチューブを示す説明図であり、図1(A)はSOFCセルチューブの外観形状、図1(B)は図1(A)に対応するSOFCセルチューブの断面形状を説明する図である。 本発明の実施の形態にかかるSOFCセルチューブを示す説明図である。 本発明の実施の形態による固体酸化物形燃料電池装置を示す説明図である。 本発明の実施例にかかる固体酸化物形燃料電池装置を示す説明図である。 本発明の実施例にかかる固体酸化物形燃料電池装置を示す説明図である。 本発明の実施例にかかるSOFCセルチューブにおける非発電素子部及び発電素子部近傍の断面を示す説明図である。
図1及び図2を用いて、本発明にかかる発明の実施形態について説明する。
図1(A)はSOFCセルチューブ1000の外観形状を示し、図1(B)は図1(A)に対応するSOFCセルチューブ1000の断面形状を示す。SOFCセルチューブ1000は、筒形状の支持体の外周に、燃料極層、固体電解質層及び空気極層が順次積層された多層構造の発電素子部1002を、支持体の長手方向に所定間隔をおいて複数形成される。隣接する発電素子部1002の間には非発電素子部1003が設けられている。非発電素子部1003は隣接する発電素子部1002どうしを電気的に接続するインターコネクタ(素子間接続部材)などにより構成され、当該部分は発電機能を有していない。このようなSOFCセルチューブ1000の構造は、円筒横縞型と呼ばれている。円筒横縞型のSOFCセルチューブ1000は、複数の発電素子部1002を直列に接続しているため、単一の発電素子部1002の発生電圧が1V程度の電圧であるところ、接続個数に応じて一つのセルチューブで高い電圧を発生させることが可能となる。従って、単一の発電素子部を有するセルチューブに比べ、省スペースで高電圧を実現することができる点で有用である。
また図1(B)に示すように、SOFCセルチューブ1000は円筒形状であり、セルチューブの長手方向に対してセルチューブを一端から他端に貫通する内部通路1005が設けられている。この内部通路1005には燃料ガスが流動する。
ここで本発明にかかるSOFCセルチューブ1000は、発電素子部1002と非発電素子部1003とにおける内部通路1005の径が異なり、発電素子部1002に位置する内径(R1)が非発電素子部1003に位置する内径(R2)よりも小さい(R1<R2)。換言すると、発電素子部1002に位置する内部通路1005の断面積は、非発電素子部1003の断面積よりも狭い。
またSOFCセルチューブ1000の外表面は、発電素子部1002と非発電素子部1003とにおける外径が異なり、発電素子部1002に位置する外径(L1)が非発電素子部1003に位置する外径(L2)よりも小さいことが好ましい(L1<L2)。
また、図1(A)及び図1(B)に示すように、SOFCセルチューブ1000の両先端に位置する端部1004においては、SOFCセルチューブの内径及び外径が略一定である平坦領域を有する。図1(A)及び図1(B)においては、端部1004の内径及び外径は、非発電素子部1003の内径及び外径と同一である。
SOFCセルチューブを燃料マニホールドに挿入固定する場合、端部1004に平坦領域を設けることで、SOFCセルチューブ1000の搬送を容易とする一方で、気密性を担保した固定を確実なものとすることができる。このため、少なくとも搬送及び気密性の担保に必要な端部の領域に平坦領域を形成すればよく、平坦領域を形成するためには発電素子部1002を構成する部材を適宜選択すればよい。例えば、燃料マニホールド内にSOFCセルチューブ1000を挿入して固定し、燃料マニホールドの内部でSOFCセルチューブ1000の集電を行う構成とする場合、発電素子部1002と集電部材と接続するための接続端子をリードで接続する必要がある。このリード部は例えば燃料極層と固体電解質層とによって構成することができ、これらの層を平坦に積層することによって平坦領域を形成することができる。
次に、図2を用いて本発明の実施の形態にかかるSOFCセルチューブにおける、発電素子部1002への燃料供給について説明する。
図2において、円筒横縞型のSOFCセルチューブ1000は、内部通路1005を有する筒状の支持体1001と、支持体上に発電素子部1002及び非発電素子部1003を有しており、発電素子部1002は非発電素子部1003よりも内径が小さい。
なお、図2においては、支持体1001とその上に積層形成された発電素子部1002とは異なる部材として示しているが、支持体1001が一部発電素子部1002の機能を有していても良い。例えば支持体1001をNi/YSZ(イットリア安定化ジルコニア)で構成することにより、その上層に形成する積層体からなる発電素子部1002を支持する機能の他、燃料極層としての機能を持たせてもよい。すなわち本発明において支持体1001は、少なくとも上層に設けられる積層体を支持する機能を有するものであれば良い。
この円筒横縞型のSOFCセルチューブ1000は、図2に示すように、内部通路1005の一端から他端へ燃料ガスが流通し(例えば、矢印が示す下端から上端に向かう方向に流通し)、SOFCセルチューブの長手方向において、所定の間隔をおいて配置されるそれぞれの発電素子部1002に燃料ガスが供給される。なお、ひとつのSOFCセルチューブ1000においては、発電素子部1002の面積が広いほど発電量が増加するため、発電素子部1002の設置面積を広く、逆に非発電素子部1003の設置面積を狭くすることが好ましく、製造マージンに合わせて適宜設計すると良い。
ここで、内部通路1005が従来のように内径を略一定とするものであるならば、内部通路1005を通過する燃料ガスの流速は一定である。これに対し、本発明にかかるSOFCセルモジュール1000は、発電素子部1002に位置する内部通路1005の径が非発電素子部1003に位置する内部通路1005の径よりも小さいため(換言すると発電素子部1002に位置する内部通路1005の断面積が非発電素子部1003に位置する内部通路1005の断面積よりも小さいため)、発電素子部1002に位置する内部通路1005を通過する燃料ガスの流速は、非発電素子部1003に位置する内部通路1005を通過する燃料ガスの流速に比べ大きくなる。
その結果、燃料ガス供給量が一定である場合でも、発電素子部1002の燃料極への燃料ガスの拡散流速を増加させることができ、速やかに燃料極へ燃料ガスを供給することができる。また、発電反応によって内部通路内に生じた水蒸気を、流速の高まった燃料ガスによって素早くSOFCセルチューブの一端からSOFCセルチューブの外部へ排出することができる。さらに、発電素子部1002における三相界面への燃料ガスの拡散経路長を、従来よりも発電素子部1002の内径を小さくした分(換言すると、発電素子部1002が内部通路において非発電素子部1003よりも内側に突出している分)、短く設定することができる。これにより、発電素子部1002への燃料ガスの供給不良を解消し、安定的な発電運転を実現することができる。
次に添付図面を参照して、本発明の一実施例を説明する。
図3は、本発明の一実施例による固体酸化物形燃料電池装置(SOFC)を示す全体構成図である。図3に示すように、一実施例による固体酸化物形燃料電池装置(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材7を介して金属製のモジュール容器8が内蔵されている。この密閉空間であるモジュール容器8の下方部分である発電部10には、燃料ガスと酸素含有ガス(以下では適宜「発電用空気」又は「空気」と呼ぶ。)とにより発電反応を行うセルチューブ集合体12が配置されている。このセルチューブ集合体12は、複数の本発明にかかるSOFCセルチューブ14を備え、このSOFCセルチューブ14は、各々が直列に電気的接続された複数の発電素子部16を含む。
燃料電池モジュール2のモジュール容器8の発電部10の上方には、燃焼部としての燃焼部18が形成され、この燃焼部18で、発電反応に使用されなかった残余の燃料ガスと残余の空気とが燃焼し、排気ガス(言い換えると燃焼ガス)を生成するようになっている。さらに、モジュール容器8は断熱材7により覆われており、燃料電池モジュール2内部の熱が、燃料電池モジュール2の外部へ発散するのを抑制している。また、この燃焼部18の上方には、燃料ガスを改質する改質器120が配置され、残余ガスの燃焼熱によって改質器120を改質反応が可能な温度となるように加熱している。
さらに、ハウジング6内においてモジュール容器8の上方には、蒸発器140が断熱材7内に設けられている。蒸発器140は、供給された水と排気ガスとの間で熱交換を行うことによって、水を蒸発させて水蒸気を生成し、この水蒸気と原燃料ガスとの混合ガス(以下では「燃料ガス」と呼ぶこともある。)をモジュール容器8内の改質器120に供給する。
次に、補機ユニット4は、燃料電池モジュール2からの排気中に含まれる水分を結露させた水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料を遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)と、電源喪失時において、燃料流量調整ユニット38から流出する燃料ガスを遮断するバルブ39を備えている。さらに、補機ユニット4は、空気供給源40から供給される空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器120に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、図4を参照して、本発明の一実施例による燃料電池モジュールの内部構造について詳細に説明する。図4は、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールを示す側面断面図であり、上述した図3のうちハウジング6内に収容されたモジュール容器8について抜粋して示す図面である。
固体酸化物形燃料電池装置201において、断熱材(図示せず)に覆われたモジュール容器202は、その内部に本発明にかかる複数のSOFCセルチューブで構成されるセルチューブ集合体が配置される発電部203と、燃料ガスマニホールド204と、排気ガスマニホールド206と、改質部208とを収容する。
改質部208はモジュール容器202の内部の上方に配置され、モジュール容器202の外部から挿入された原料供給管210と一側面において接続されている。この一側面に対向する側面には、燃料ガス供給管209が接続されている。改質部208の内部には改質触媒が充填され、原料供給管210から供給された原料ガスを水素リッチな燃料ガスに改質する。改質触媒としては例えばアルミナボール等の基体にニッケルやルテニウム等の卑金属や貴金属を担持した球状等種々の形状の触媒を用いることができる。なお、改質部208への原料ガスの供給として、メタン等の原燃料、水蒸気、改質用空気を複数の原料供給管210から供給してもよいが、これらを予め混合した混合ガスを、一本の原料供給管210から改質部208の内部へ供給してもよい。また、燃料電池装置201の起動に際し、改質用空気を用いずに、原燃料ガスを燃焼させて改質部208を昇温させる燃料工程から、原燃料及び水蒸気のみを用いた水蒸気改質工程(SR工程)に遷移させてもよい。なお、改質部208に供給するための水蒸気を、上述のようにモジュール容器8の外部に設置した蒸発器140を用いて生成してもよいが、蒸発器140を改質部208の内部に蒸発部として設置することもできる。
改質部208の側面に接続固定された燃料ガス供給管209は下方に延在し、モジュール容器8の下方に配置された燃料ガスマニホールド204に接続固定される。燃料ガスマニホールド204の天面には複数のSOFCセルチューブが、燃料ガスマニホールド204内部に挿入されて絶縁性接着剤215bにより固定され、SOFCセルチューブの内部通路が燃料ガスマニホールド204と連通する。これにより、改質部208によって原燃料から水素リッチなガスに改質された燃料ガスは、燃料ガス供給管209を経由して、燃料ガスマニホールド204の内部に供給され、さらにSOFCセルチューブの内部通路を通って燃料極に供給される。
SOFCセルチューブは、燃料ガスマニホールド204の上方の発電部203に位置するように、発電素子部205aと非発電素子部205bとがSOFCセルチューブの長手方向において交互に配置されている。後述するように、非発電素子部205bには発電素子部205a間を電気接続するためのインターコネクタが配置されている。これにより、ひとつのSOFCセルチューブにおいて、複数の発電素子部205aが電気的に直列に接続されている。
ここで、SOFCセルチューブは、発電素子部205aに位置する箇所の内径及び外径が、非発電素子部205bに比べていずれも小さい。このため、SOFCセルチューブの発電素子部205aはくびれた外観形状である。なお、図4においては、燃料ガスマニホールド204上に立設する複数のSOFCセルチューブのそれぞれの発電素子部205aが、水平方向において高さ位置が揃うように設けられている。しかし、それぞれの発電素子部205aの高さ位置がずれるように、隣り合うSOFCセルチューブどうしをずらして設けることができる(図5参照)。この場合、SOFCセルチューブの高さ位置を異ならせるように燃料ガスマニホールド204の天面に固定することができる。また、隣り合うSOFCセルチューブと上下を反転させて配置させてもよい。あるいは、長手方向に異なる幅の発電素子部205a(言い換えれば長手方向に異なる幅の非発電素子部205b)が設けられたSOFCセルチューブを組み合わせて配置することもできる。
一方SOFCセルチューブの上端は、排気ガスマニホールド206の内部に挿入されて排気ガスマニホールド206の底面に絶縁性接着剤215aにより固定されている。このため、SOFCセルチューブを長手方向に貫通する内部通路の上端が、排気ガスマニホールド206の内部に連絡するため、発電素子部205aにおいて発電に寄与せずに残留した燃料ガスや発電によって生じた水蒸気(これらをオフガスとよぶ)は、排気ガスマニホールド206の内部に排出される。排気ガスマニホールド206の上部には複数の排気ガス噴出孔が設けられ、この排気ガス噴出孔から噴出したオフガスを点火プラグやセラミックヒータ等の着火装置(図示せず)により着火することで燃焼させ、排気ガスマニホールド206の上方の燃焼部207に燃焼排ガスを生成する。燃焼部207の上方に上述した改質部208を配置することで、生じた燃焼排ガスの熱量により改質部208の底面や側面を加熱することができ、改質部208の内部で原料ガスを改質可能な状態にする。改質部208を加熱した燃焼排ガスは、燃焼排ガス排出管によりモジュール容器202の外部へ排出される。
一方、発電のためにSOFCセルチューブの外表面に供給される酸素含有ガス(発電用空気)は、モジュール容器202の外部より酸素含有ガス供給管211を介して導入される。酸素含有ガス供給管211は、モジュール容器202の一側面下方に配置されている。このため、酸素含有ガス供給管211から供給された酸素含有ガスは、SOFCセルチューブの長手方向に沿うように下方から上方へ移動し、SOFCセルチューブの発電素子部205aに供給される。また発電に残余した酸素含有ガスは上方に移動して一部は燃焼部207における燃焼に用いられ、燃焼排ガス排出管212から燃焼排ガスとともにモジュール容器202の外部へ排出される。
なお、酸素含有ガスは発電室203の内部の温度を均一に安定化するために、適度に昇温されていることが好ましい。このため、図4には記載しないが、燃焼部207で生じた高温の燃焼排ガスと熱交換させて昇温した後に、発電部203に供給することで発電部203の温度ムラの抑制とともに固体酸化物形燃料電池装置における熱利用率を高めることができる。燃焼排ガスを用いて酸素含有ガスを予熱するための熱交換部は、改質部208の上方に別体の熱交換器として設けてもよい。あるいは、モジュール容器202の内壁を流路の一部として利用して、仕切り板を用いてモジュール容器202の内壁に酸素含有ガス流路を形成することで、発電室203内の燃焼排ガスとの熱交換を行ってもよい。
図6は本発明にかかるSOFCセルチューブに配列された発電素子部205a及び非発電素子部205bの近傍の断面の一態様を示す模式図であり、内側電極を燃料極としたタイプについて示した。本発明におけるSOFCセルチューブは、例えば支持体として絶縁支持体502と、燃料極層503と燃料極触媒層504とからなる燃料極、反応抑制層505と電解質層506とからなる固体電解質、空気極508と、集電層509と、インターコネクタ507と、から構成される。
(絶縁支持体)
絶縁支持体502は、フォルステライトを含有してなる。絶縁支持体502は、フォルステライト(Mg2SiO4)結晶、結晶質及び/又は非晶質のMgO、結晶質及び/又は非晶質のSiO2、その他のガラス質や不純物を含有する焼結体である。絶縁支持体は、少なくとも発電素子が積層される側の表面領域において、Mg元素及びSi元素を、それぞれMgO及びSiO2換算で、合計で90質量%、好ましくは95質量%、より好ましくは98質量%以上含んでなる。本発明の燃料電池セルスタックにおいて、絶縁支持体は、X線回折により得られるフォルステライト結晶の第一回折線(すなわち、強度の最も大きい回折線)のピーク強度(以下、b)を100としたときに、それ以外の結晶成分の第一回折線のピーク強度の総和(以下、a)が5以下(すなわち、a/b=5%以下)であることが、より好ましい。好適には、絶縁支持体502は本質的にフォルステライトからなる(つまり、主としてフォルステライトから形成される)。例えば、絶縁支持体は、少なくとも90質量%のフォルステライトを含んでなる。絶縁支持体は、少なくとも発電素子が積層される側の表面領域において、好適にはCa元素含有量がCaO換算で0.2質量%以下、より好適には0.1質量%以下、さらに好適には0.06質量%以下であり、Ca元素を含まなくてもよい。
ここで、「表面領域」とは、表面から深さ約100μmまでの領域を意味する。このような表面領域のCa、Mg、およびSi元素含有量は、例えばXRFで測定できる。測定試料は、燃料電池セルの積層面を機械的にはぎ取り、次いで露出した多孔性支持体の表面から約100μmまでを機械的に粉砕しながらサンプリングし、XRFの試料とする。またCa元素含有量をXRFで定量するにあたっては(社)日本セラミックス協会の認証標準物質JCRM R 901タルク粉を用い、1点検量線を作成して行なう。また、MgおよびSiは公知の検量線法により定量する。
絶縁支持体中のCa元素の濃度分布は、均一なものであってもよく、また発電素子が積層される側の表面に向かって濃度が低くなるように傾斜していてもよい。あるいは、絶縁支持体502は、Ca元素含有量の異なる2層以上の積層体であってもよい。発電素子が積層される側の表面に向かってCa元素の濃度分布が傾斜している絶縁支持体502、又は2層以上の積層体である絶縁支持体502を使用する場合は、発電素子が積層される側の表面領域以外の領域のCa元素含有量は0.2質量%を超えていてもよい。絶縁支持体502は、Ca元素含有量が所定の範囲の成形体を作製し、次いで焼成することで得られるが、好ましくは、Ca元素とフォルステライトとを含み、上記範囲よりも高濃度でCa元素を含有する原料と、Ca元素とフォルステライトとを含み、上記範囲よりも低濃度でCa元素を含有する原料とを混合してCa元素含有量を所定の範囲とした成形体を作製し、次いで焼成する。
(内側電極および外側電極)
本発明のSOFCセルチューブは、内側電極は燃料極である。その理由は次の通りである。すなわち、絶縁支持体502ならびに集電層509はガス透過性がよい多孔質構造を採用する。絶縁支持体502はセルの構造が保持できる必要がある。そのため絶縁支持体502は、導電性だけが要求される集電層509より厚くなる。つまり絶縁支持体502は集電層509よりガスの透過性は悪くなりやすい。また酸素ガスと水素ガスのガス拡散速度を比較すると、水素ガスのほうが数倍、酸素ガスより速いことが知られている。これらのことから、内側電極が空気極である場合は、絶縁支持体を水素よりガス透過しにくい酸素が透過することになるので、内側電極が燃料極である場合と比較すると、ガス拡散過電圧が大きくなる。その結果、発電性能が低下する傾向にある。つまり内側電極が燃料極の場合であるほうが、発電性能に優れる。また、インターコネクタ507としてSLTを用いる場合、絶縁支持体のフォルステライト(線膨張係数:11×10-6/℃)とインターコネクタのSLT(線膨張係数:10×10-6/℃)の熱膨張率差により、もし、絶縁支持体502とインターコネクタ507とを接合すれば、その接合界面に応力が発生する。内側電極が燃料極である場合、絶縁支持体のフォルステライトとインターコネクタSLTの間に燃料極が介在し、還元によりNiとなった燃料極は応力を緩和する。なお、内側電極が燃料極である場合、外側電極は空気極となる。
(燃料極)
燃料極としては、NiO/ジルコニウム含有酸化物、NiO/セリウム含有酸化物などが挙げられ、少なくともこれらのいずれかを含んでなる。ここで、NiO/ジルコニウム含有酸化物とは、NiOとジルコニウム含有酸化物とが、所定の比率で均一に混合されたものを意味する。また、NiO/セリウム含有酸化物とは、NiOとセリウム含有酸化物とが、所定の比率で均一に混合されたものを意味する。NiO/ジルコニウム含有酸化物のジルコニウム含有酸化物としては、例えばCaO、Y23、Sc23のうちの1種以上をドープしたジルコニウム含有酸化物などが挙げられる。NiO/セリウム含有酸化物のセリウム含有酸化物としては、一般式Ce1-yLny2(但し、LnはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yのいずれか1種又は2種以上の組み合わせであり、0.05≦y≦0.50)などが挙げられる。なお、NiOは燃料雰囲気下で還元されてNiとなるため、前記混合物はそれぞれNi/ジルコニウム含有酸化物又はNi/セリウム含有酸化物となる。燃料極は、単層であっても、又は複層であっても良い。内側電極が複層の燃料極である場合の例としては、例えば支持体側にNi/YSZ(イットリア安定化ジルコニア)を用い、電解質側にNi/GDC(Gd23−CeO2)(=燃料極触媒層)を用いる。
(空気極)
空気極508としては、La1-xSrxCoO3(但し、x=0.1〜0.3)及びLaCo1-xNix3(但し、x=0.1〜0.6)などのランタンコバルト系酸化物、(La、Sr)FeO3 系と(La、Sr)CoO3系の固溶体であるランタンフェライト酸化物(La1-mSrmCo1-nFen3(但し、0.05<m<0.50、0<n<1))などが挙げられる。空気極は、単層であっても、又は複層であっても良い。外側電極が複層の空気極である場合の例としては、例えば電解質側にLa0.6Sr0.4Co0.2Fe0.83(=空気極触媒層)を用い、最表層にLa0.6Sr0.4Co0.8Fe0.23(=空気極)を用いる。
(電解質)
固体電解質としては、ランタンガレート系酸化物、固溶種としてY、Ca、Scのいずれか1種又は2種以上を固溶した安定化ジルコニアなどが挙げられる。電解質は、好適にはSr及びMgがドープされたランタンガレート系酸化物であり、より好適には一般式La1-aSraGa1-b-cMgbCoc3(但し、0.05≦a≦0.3、0<b<0.3、0≦c≦0.15)で表されるランタンガレート系酸化物(LSGM)である。ここで、燃料極側には、反応抑制層として、Laを固溶させたセリア(Ce1-xLax2(但し、0.3<x<0.5))を設けてもよい。反応抑制層は、好適にはCe0.6La0.42である。電解質は、単層であっても、又は複層であっても良い。固体電解質が複層である場合の例としては、例えば燃料極とLSGMからなる電解質層の間にCe0.6La0.42などの反応抑制層を用いる。
(集電層)
集電層509は外側電極とインターコネクタ507とを電気的に接続して設けられ、ガス透過性に優れる。集電層はAgやPtなどの貴金属を含有する導電性ペーストやLa0.6Sr0.4Co0.8Fe0.23などの導電性酸化物を含有するペーストを焼き付けることで形成できる。また集電層はガス透過性を得るために多孔質もしくはメッシュなどの構造であることが好ましい。
(インターコネクタ)
インターコネクタ507としては(A,B)(Ti、C)O3−δで表されるチタン系ペロブスカイト型酸化物が挙げられる。ここで、Aは、例えばカルシウム(Ca)、ストロンチウム(Sr)、マグネシウム(Mg)、バリウム(Ba)等のアルカリ土類金属である。Bは、同式中のAの一部と置換可能な金属であり、例えばLn(ランタノイド元素(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)を示す。)、スカンジウム(Sc)、イットリウム(Y)などの3価の金属である。Cは、同式中のチタンの一部と置換可能な金属であり、例えばニオブ(Nb)、マンガン(Mn)、ガリウム(Ga)、スカンジウム(Sc)等である。また、δは酸素欠損量を意味する。δは、0以上0.8以下が好ましく、0以上0.15以下がより好ましい。本発明の固体酸化物形燃料電池セルスタックにおいて、AはSrであり、BはLaであり、Cは含有しない、Sr1-3X/2LaXTi1-y3−δが好適に使用できる。より好ましくは一般式:Sr1-3X/2 LaXTi1―y3−δ、ただし、0.1<X≦0.4、0≦y≦0.4、0≦δ≦0.8である。さらに好ましくは一般式:Sr1-3X/2LaXTi1―y3−δ、ただし、0.28<X≦0.40、0≦y≦0.075、0≦δ≦0.15である。
ここで、本発明にかかるSOFCセルチューブは、発電素子部205aに位置する支持体502の内径が、非発電素子部205bに位置する支持体502の内径よりも小さい。このため、図6に示す断面図においては、発電素子部205aに位置する支持体502の底面(内部通路を形成する内壁)が、非発電素子部205bに位置する支持体502の底面(内部通路を形成する内壁)よりも下方に位置する。発電素子部205a及び非発電素子部205bにそれぞれ位置する支持体502上の積層構造もこれに追従するため、図6において、例えば燃料極層503の上面は、発電素子部205aよりも非発電素子部205bにおいて高い位置にある。
なお、発電素子部502aと非発電素子部502bとの境界においては、支持体502の内径及び外径は連続的に変化するものであることが好ましい。発電素子部502aと非発電素子部502bとの内径をその境界部で徐々に変化させて整合させることで、支持体の内部通路における燃料ガスの流動に対し、不要な流路抵抗成分の形成を抑制することができる。一方、発電素子部502aと非発電素子部502bとの外径をその境界部で徐々に変化させて整合させることで、支持体上に形成する発電素子部502a及び非発電素子部502bの積層構造を連続的に形成することができ、積層構造における短絡や断線、積層構造の形成不良を防止することができる。
なお、上述のように発電素子部に位置するSOFCセルチューブの内径を、非発電素子部に位置するSOFCセルチューブの内径よりも小さくするために、あるいは発電素子部に位置するSOFCセルチューブの外径を、非発電素子部に位置するSOFCセルチューブの内径よりも小さくするために、種々の形成方法を採用することができ、例えば内径の異なる環状の支持体部材を重ねて接着して焼成しても良い。あるいは鋳型を用いてもよく、また焼成後にSOFCセルチューブを掘削することで成形してもよい。また、厚みが2mm以下の筒状形状の支持体を用い、該支持体の外周に発電素子部や非発電素子部を形成する膜を、焼成工程時の収縮により支持体に生じる応力を調整するように積層することで、SOFCセルチューブの焼成時に上記形状を形成することができる。
本発明にかかるSOFCセルチューブ及び固体酸化物形燃料電池装置は、円筒横縞型のSOFCセルチューブ及びこれを備えた固体酸化物形燃料電池装置において幅広く有用である。
1 固体酸化物形燃料電池装置
2 燃料電池モジュール
4 補機ユニット
6 ハウジング
7 断熱材
8 モジュール容器
8a 天板
8b 側板
8d,8e 閉鎖側板
10 発電部
12 セルチューブ集合体
14 SOFCセルチューブ
16 発電素子部
18 燃焼部
24 水供給源
26 純水タンク
28 水流量調整ユニット
30 燃料供給源
32 ガス遮断弁
36 脱硫器
38 燃料流量調整ユニット
39 バルブ
40 空気供給源
42 電磁弁
44 改質用空気流量調整ユニット
45 発電用空気流量調整ユニット
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
120 改質器
140 蒸発器
201 固体酸化物形燃料電池装置(SOFCモジュール)
202 モジュール容器
203 発電部
204 燃料ガスマニホールド
205a 発電素子部
205b 非発電素子部
205c セルチューブ端部
206 排気ガスマニホールド
207 燃焼部
208 改質部
209 燃料ガス供給管
210 原料供給管(混合ガス供給管)
211 酸素含有ガス供給管
212 燃焼排ガス排出管
213a 集電体
213b 集電体
214a 導電性接着剤
214b 導電性接着剤
215a 絶縁性接着剤
215b 絶縁性接着剤
216 電流取り出し部
1000 SOFCセルチューブ
1001 支持体
1002 発電素子部
1003 非発電素子部
1004 セルチューブ端部
1005 内部通路

Claims (7)

  1. 円筒型の支持体に、所定間隔をあけて複数の横縞状の発電素子部を備えたSOFCセルチューブであって、
    前記発電素子部は、内側から外側に向けて燃料極層、固体電解質層、及び空気極層を少なくとも有し、
    前記SOFCセルチューブには、前記円筒内の通路を通過して前記発電素子部の燃料極層に供給される燃料ガスの流速を増加させるための流速増加手段が設けられていることを特徴とするSOFCセルチューブ。
  2. 請求項1において、
    前記SOFCセルチューブの前記発電素子部における内径は、前記発電素子部の間に設けられた非発電素子部における内径よりも小さいことを特徴とするSOFCセルチューブ。
  3. 請求項2において、
    前記SOFCセルチューブの前記発電素子部における外径は、前記非発電素子部における外径よりも小さいことを特徴とするSOFCセルチューブ。
  4. 請求項3において、
    前記SOFCセルチューブの一端又は両端には、前記SOFCセルチューブの内径及び外径が略一定である平坦領域を有することを特徴とするSOFCセルチューブ。
  5. 請求項4において、
    前記支持体の厚みは2mm以下であることを特徴とするSOFCセルチューブ。
  6. 請求項1乃至請求項5のいずれか一項において、
    前記SOFCセルチューブを用いた固体酸化物形燃料電池装置。
  7. 請求項6において、
    複数の前記SOFCセルチューブが天面に立設固定され、前記SOFCセルチューブの燃料極に燃料ガスを供給する、モジュール容器内に設けられた燃料マニホールドと、
    前記SOFCセルチューブの空気極に空気を供給する、空気供給管と、を有し、
    前記SOFCセルチューブは、前記発電素子部が隣り合う他の前記SOFCセルチューブの前記発電素子部との間で高さ位置が不揃いとなるように固定されていることを特徴とする固体酸化物形燃料電池装置。
JP2015046535A 2015-03-10 2015-03-10 Sofcセルチューブ及び固体酸化物形燃料電池装置 Active JP6711558B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046535A JP6711558B2 (ja) 2015-03-10 2015-03-10 Sofcセルチューブ及び固体酸化物形燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046535A JP6711558B2 (ja) 2015-03-10 2015-03-10 Sofcセルチューブ及び固体酸化物形燃料電池装置

Publications (2)

Publication Number Publication Date
JP2016167387A true JP2016167387A (ja) 2016-09-15
JP6711558B2 JP6711558B2 (ja) 2020-06-17

Family

ID=56898691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046535A Active JP6711558B2 (ja) 2015-03-10 2015-03-10 Sofcセルチューブ及び固体酸化物形燃料電池装置

Country Status (1)

Country Link
JP (1) JP6711558B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238760A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JP2012528426A (ja) * 2009-05-28 2012-11-12 エゼレロン ゲーエムベーハー 酸化物−セラミックの高温燃料電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238760A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
JP2012528426A (ja) * 2009-05-28 2012-11-12 エゼレロン ゲーエムベーハー 酸化物−セラミックの高温燃料電池

Also Published As

Publication number Publication date
JP6711558B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
JP5412960B2 (ja) 燃料電池装置
JP5442097B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池セルスタック装置ならびに燃料電池モジュール、燃料電池装置
EP3026745B1 (en) Hybrid device and hybrid system
US9478811B2 (en) Solid oxide fuel cell and method for producing the same
JP5409333B2 (ja) 燃料電池モジュールおよび燃料電池装置
CN105283994A (zh) 电池单元、电池堆装置、模块以及模块收纳装置
JP5377271B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2009099267A (ja) 固体酸化物形燃料電池モジュール
JP5334797B2 (ja) セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP2020030991A (ja) 固体酸化物形燃料電池セル
JP5388818B2 (ja) 燃料電池モジュールおよび燃料電池装置
CN104078697A (zh) 固体氧化物型燃料电池单电池及其制造方法
JP5437152B2 (ja) 横縞型固体酸化物形燃料電池セルスタックおよび燃料電池
JP6711558B2 (ja) Sofcセルチューブ及び固体酸化物形燃料電池装置
JP6183777B2 (ja) 固体酸化物型燃料電池装置
JP2012054015A (ja) 固体酸化物形燃料電池セルおよび燃料電池
JP5977142B2 (ja) 燃料電池装置
CN103682404A (zh) 固体氧化物型燃料电池单电池及其制造方法
JP2012209121A (ja) 固体酸化物形燃料電池セル、それを備えた燃料電池モジュール、および燃料電池装置
JP2011014495A (ja) 燃料電池モジュール
JP2010231919A (ja) 燃料電池モジュールおよび燃料電池装置
JP2015201429A (ja) 固体酸化物形燃料電池セル及びその製造方法
JP2016071947A (ja) 燃料電池モジュールおよび燃料電池装置
JP2021051983A (ja) 固体酸化物形燃料電池セル
JP2012114032A (ja) 燃料電池セル、燃料電池セル装置、燃料電池モジュールおよび燃料電池装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200528

R150 Certificate of patent or registration of utility model

Ref document number: 6711558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250