JP2016161311A - 熱流計および電子機器 - Google Patents

熱流計および電子機器 Download PDF

Info

Publication number
JP2016161311A
JP2016161311A JP2015037885A JP2015037885A JP2016161311A JP 2016161311 A JP2016161311 A JP 2016161311A JP 2015037885 A JP2015037885 A JP 2015037885A JP 2015037885 A JP2015037885 A JP 2015037885A JP 2016161311 A JP2016161311 A JP 2016161311A
Authority
JP
Japan
Prior art keywords
heat
heat flow
heat transfer
flow meter
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037885A
Other languages
English (en)
Other versions
JP2016161311A5 (ja
JP6759526B2 (ja
Inventor
陽 池田
Hiromi Ikeda
陽 池田
興子 清水
Kyoko Shimizu
興子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015037885A priority Critical patent/JP6759526B2/ja
Priority to CN201610104583.1A priority patent/CN105919552B/zh
Priority to US15/053,531 priority patent/US10260965B2/en
Priority to EP16157600.4A priority patent/EP3061389A1/en
Publication of JP2016161311A publication Critical patent/JP2016161311A/ja
Publication of JP2016161311A5 publication Critical patent/JP2016161311A5/ja
Application granted granted Critical
Publication of JP6759526B2 publication Critical patent/JP6759526B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • A61B2562/0276Thermal or temperature sensors comprising a thermosensitive compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Obesity (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】生体表面と外環境との間に生じる熱流を精度良く測定できる熱流計および電子機器を提供すること。
【解決手段】熱流センサー10は、互いに対面する第1面11aと第2面11bとを有し、可撓性を有する伝熱層11と、伝熱層11の第1面11aと第2面11bとの間の温度差を計測する温度差計測部20とを備えている。伝熱層11は、可撓性を有する第1部材と、第1部材よりも熱伝導率が高い第2部材とを含み、伝熱層11の厚さは0.5mm以上であり、伝熱層11の熱伝導率は10W/(m×K)以上であり、伝熱層11のショア硬さはA50以下である。
【選択図】図6

Description

本発明は、熱流計および電子機器に関する。
人体の体温は、人体から放出される熱により維持されている。この体温を維持するための代謝を基礎代謝という。したがって、人体から放出される熱を測定すれば、代謝量を知ることができる。人体から放出される熱の経路には、空気や水などの対流によって外環境に伝達する対流熱伝達と、電磁波の放射によって周囲の物体表面に伝達する放射熱伝達とがある。この対流熱伝達や放射熱伝達といった熱伝達による熱流を測定すれば、人体から放出される熱(放熱量)を測定することができる。
例えば、特許文献1には、熱流センサー(熱束センサー)が設置されたアームバンド状の電子機器(センサー装置)を、熱流センサーが着用者の皮膚に接触するように装着し、上記熱伝達によって熱流センサー内に生じた温度差から熱流を測定する技術が開示されている。
特開2011−120917号公報
ところで、人体から放出される熱流を正確に測定するには、皮膚面の熱を熱流センサーまでロスなく伝達させる必要がある。特許文献1に記載された電子機器では、熱流センサー自体が可撓性を有していないため、可撓性を有し熱伝導性の良好な金属などからなるアタッチメントを皮膚面に接触させ、アタッチメントを介して皮膚面の熱を熱流センサーに伝達する構造となっている。しかしながら、このような構造では、皮膚面からの熱が熱流センサーに伝達される前に熱の一部が他の部材に流出してしまい、熱流の測定に誤差が生じることとなる。
また、熱の流出による伝達ロスを抑えるため、このような可撓性を有していない熱流センサーを人体のように曲面で構成された対象物に直接接触させると、熱流センサーと皮膚面との間に空気層が生じ易くなる。熱流センサーと皮膚面との間に空気層が生じると、熱流センサーと皮膚面との実質的な接触面積が小さくなり熱流センサーへ伝達される熱が少なくなるので、測定される熱流は実際の熱流よりも小さくなる。その結果、可撓性を有していない熱流センサーでは熱流の測定に誤差が生じて、人体からの放熱量の測定精度が低下するという課題がある。
本発明は、上述した課題の少なくとも一部を解決するためになされたものであり、以下の形態、または適用例として実現することが可能である。
[適用例1]本適用例に係る熱流計は、互いに対面する第1面と第2面とを有し、可撓性を有する伝熱部と、前記伝熱部の前記第1面と前記第2面との間の温度差を計測する温度差計測部と、を備えていることを特徴とする。
本適用例の構成によれば、熱流計は、可撓性を有する伝熱部の第1面と第2面との間の温度差を温度差計測部で計測して、熱伝達による熱流を測定することができる。例えば、伝熱部の第1面を人体(腕)などに接触させて熱流を測定する場合、伝熱部が可撓性を有しているので腕の表面(皮膚面)にフィットする。そのため、皮膚面への密着性が向上し伝熱部と皮膚面との間に空気層が生じにくくなるので、接触面積の減少が抑えられる。その結果、第1面が接する皮膚面と第2面が接する外環境との間に生じる熱流の測定における誤差を小さくできるので、人体からの放熱量を精度良く測定することができる。
[適用例2]上記適用例に係る熱流計であって、前記伝熱部は、可撓性を有する第1部材と、前記第1部材よりも熱伝導率が高い第2部材と、を含んでいることが好ましい。
本適用例の構成によれば、伝熱部は、可撓性を有する第1部材と、第1部材よりも熱伝導率が高い第2部材とを含んでいる。そのため、可撓性を有する第1部材を基材として伝熱部を構成し、第2部材で熱伝導性を付与することができる。
[適用例3]上記適用例に係る熱流計であって、前記伝熱部の厚さは0.5mm以上であり、前記伝熱部の熱伝導率は10W/(m×K)以上であり、前記伝熱部のショア硬さはA50以下であることが好ましい。
本適用例の構成によれば、伝熱部の厚さが0.5mm以上であるので、熱流を測定するための温度差を第1面と第2面との間で厚さ方向に発生させることができる。また、伝熱部の熱伝導率は10W/(m×K)であり、一般のゴムの伝導率よりも大きいので、伝熱部の材料として好適である。そして、伝熱部のショア硬さがA50以下であるので、伝熱部の可撓性を高めることができる。
[適用例4]上記適用例に係る熱流計であって、前記第1面に100W/(m×K)よりも大きな熱伝導率を有する熱拡散層が配置されていることが好ましい。
本適用例の構成によれば、伝熱部の第1面に伝熱部よりも大きな熱伝導率を有する熱拡散層が配置されているので、第1面の面内における温度分布をより均一にすることができる。そのため、熱流を測定する際に、皮膚面との接触状態に起因する変動や、皮膚面の温度分布に起因する変動があっても、熱流をより安定した状態で測定できる。
[適用例5]上記適用例に係る熱流計であって、前記熱拡散層のショア硬さはA50以下であることが好ましい。
本適用例の構成によれば、第1面に配置される熱拡散層のショア硬さが伝熱部と同程度であるので、伝熱部の可撓性を損ねることがない。
[適用例6]上記適用例に係る熱流計であって、前記熱拡散層の表面に、有機物からなる保護層が配置されていることが好ましい。
本適用例の構成によれば、熱拡散層の表面に保護層が配置されているので、外部の物体との接触などに対して、熱拡散層と伝熱部とを保護することができる。
[適用例7]上記適用例に係る熱流計であって、前記保護層のショア硬さはA50以下であることが好ましい。
本適用例の構成によれば、熱拡散層の表面に配置される保護層のショア硬さが熱拡散層および伝熱部と同程度であるので、伝熱部および熱拡散層の可撓性を損ねることがない。
[適用例8]上記適用例に係る熱流計であって、前記伝熱部と前記熱拡散層と前記保護層とが縫製により互いに接合されていることが好ましい。
本適用例の構成によれば、伝熱部と熱拡散層と保護層とが縫製により互いに接合されているので、熱流計全体の可撓性を損ねることなく互いの接合強度を高めることができる。
[適用例9]上記適用例に係る熱流計であって、前記温度差計測部は、前記第1面の複数点の温度情報と、前記第2面の複数点の温度情報と、に基づいて温度差を計測することが好ましい。
本適用例の構成によれば、第1面と第2面とのそれぞれにおいて複数点の温度情報に基づいて温度差を計測するので、第1面の面内における温度分布を平均化できる。そのため、熱流を測定する際に、腕の表面と第1面との接触状態に起因する変動、腕の表面の温度分布に起因する変動、第2面が接する外環境における温度分布に起因する変動などがあっても、皮膚面と外環境との間に生じる熱流をより安定した状態で測定できる。
[適用例10]本適用例に係る電子機器は、互いに対面する第1面と第2面とを有し可撓性を有する伝熱部と、前記伝熱部の前記第1面と前記第2面との間の温度差を計測する温度差計測部と、を備えた熱流計が装着されたベルトと、前記ベルトに接続された筐体と、前記筐体内に設置された制御部と、を備え、前記制御部が前記熱流計を制御することを特徴とする。
本適用例の構成によれば、電子機器は、上記の熱流計が装着されたベルトと、熱流計を制御する制御部が設置された筐体とを備えているので、例えば、電子機器をベルトにより人体(腕)に装着して人体からの放熱量を測定する場合に、熱流計と皮膚面との間に空気層が生じにくい。そのため、皮膚面と外環境との間に生じる熱流の測定における誤差を小さくできるので、人体からの放熱量を精度良く測定する電子機器を提供することができる。
[適用例11]上記適用例に係る電子機器であって、前記ベルトの熱伝導率は前記伝熱部の熱伝導率よりも低いことが好ましい。
本適用例の構成によれば、熱流計が装着されたベルトの熱伝導率が伝熱部の熱伝導率よりも低いので、皮膚面と外環境との間で熱流計の厚さ方向に生じる熱流に対して、熱流計との接触部から熱流計の厚さ方向と交差する方向にベルトへ漏れる熱を少なくできる。これにより、皮膚面と外環境との間に生じる熱流の測定における誤差を小さく抑えることができる。
第1の実施形態に係る電子機器の概略構成を示す側面図。 第1の実施形態に係る電子機器の構成を示す平面図。 第1の実施形態に係る電子機器の構成を示す平面図。 第1の実施形態に係る電子機器の構成を示す側面図。 第1の実施形態に係る電子機器の概略機能構成を示すブロック図。 第1の実施形態に係る熱流センサーの構成を模式的に示す斜視図。 第1の実施形態に係る熱流センサーの構成を模式的に示す断面図。 第2の実施形態に係る熱流センサーの構成を模式的に示す斜視図。 第2の実施形態に係る熱流センサーの構成を模式的に示す断面図。
以下、本発明を具体化した実施形態について図面を参照して説明する。使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大、縮小、あるいは誇張して表示している。また、説明に必要な構成要素以外は図示を省略する場合がある。
以下の実施形態では、電子機器の例として、ユーザーの腕に装着されて人体からの放熱量を測定する装着型生体情報取得機器を例に挙げて説明する。
(第1の実施形態)
<電子機器>
まず、第1の実施形態に係る電子機器の概略構成について、図1、図2、図3、および図4を参照して説明する。図1は、第1の実施形態に係る電子機器の概略構成を示す側面図である。図2および図3は、第1の実施形態に係る電子機器の構成を示す平面図である。図4は、第1の実施形態に係る電子機器の構成を示す側面図である。詳しくは、図2(a)は電子機器の正面図であり、図2(b)は電子機器の背面図である。また、図3は筐体2からベルト8a,8bを外した状態を示す背面図であり、図4は図3の状態を側方からみた側面図に相当する。
図1は、第1の実施形態に係る電子機器1をユーザーの腕(人体)Mに装着した状態を模式的に示す図である。図1に示すように、第1の実施形態に係る電子機器1は、筐体2と、筐体2に接続された一対のベルト8a,8bとを備えている。ベルト8aには尾錠9aが取り付けられており、ベルト8bには尾錠9aと係合する穴部9b(図2(a)参照)が複数設けられている。
図1には、2点鎖線で腕Mの断面を模式的に示している。電子機器1は、筐体2を一対のベルト8a,8bにより環状にユーザーの腕Mに巻き付けることで装着されて、人体からの放熱量を測定する腕時計型のウェアラブル機器である。本実施形態では筐体2およびベルト8a,8bにおける腕Mの表面(以下では、皮膚面という)に接する側(内側)を背面といい、背面と反対の側(外側)を正面という。電子機器1は、筐体2の背面とベルト8a,8bの背面とが皮膚面に接触した状態でユーザーの腕Mに装着される。
筐体2の正面の法線方向を、図1における上方側を正とするZ軸方向とする。また、Z軸方向と交差する方向であって、腕Mの長さ方向を、図1における手前側を正とするX軸方向とする。そして、Z軸方向およびX軸方向と交差する方向であって、腕Mの幅方向、すなわちベルト8a,8bの延在方向を、ベルト8a側を正とするY軸方向とする。
図2(a)は、電子機器1を腕Mから取り外し正面側を上にして平坦な面に載置した状態を示す平面図である。図2(b)は、電子機器1を腕Mから取り外し背面側を上にして平坦な面に載置した状態を示す平面図である。
図2(a)に示すように、筐体2は、正面側にディスプレイ3を備えている。詳細は図示しないが、ディスプレイ3は、表示装置と、表示装置に一体または別体で積層されたタッチパネルとを備えている。したがって、ディスプレイ3は、ユーザーに画像などの情報を表示する表示部35(図5参照)としての機能と、ユーザーが各種操作の入力をするための操作部34(図5参照)としての機能とを有している。
筐体2は、側方(+X方向)に、操作部34として機能する操作ボタン4を有している。なお、操作ボタン4の数、形状、配置場所は特に限定されるものではない。ユーザーは、ディスプレイ3(タッチパネル)と操作ボタン4などを用いて測定開始操作など各種の操作入力をすることができる。
図2(a),(b)に示すように、筐体2には、充電式のバッテリー5と、制御基板6と、記憶媒体7とが内蔵されている。筐体2には、その他にも、熱流の測定結果を外部装置に送信するための通信装置や、熱流の測定結果をメモリーカードに読み書きするためのリーダーライター装置などが適宜設けられていてもよい。バッテリー5への充電方式は、例えば、筐体2の背面側に電気接点を別途設け、電気接点を介してクレードル経由で充電される構成でもよいし、非接触式の無線式充電などでもよい。
制御基板6には、図示しないが、CPU(Central Processing Unit)やIC(Integrated Circuit)が搭載されている。制御基板6には、その他にも、ASIC(Application Specific Integrated Circuit)や、各種集積回路等の必要な電子部品を適宜搭載することができる。記憶媒体7としては、メモリーやハードディスクなどが用いられる。電子機器1は、制御基板6に搭載されたCPUが記憶媒体7に格納されているプログラムを実行することによって、熱流測定等の各種機能を実現する。
ベルト8a,8bは、Y軸方向に沿って延在している。ベルト8aは筐体2の一端側(+Y方向側)に接続され、ベルト8bは筐体2の他端側(−Y方向側)に接続される。ベルト8a,8bは、シリコーンやポリウレタンなどの軟質樹脂や、皮革あるいは合成皮革などの柔軟性を有する材料で構成される。
ベルト8aの筐体2に接続される側とは反対側(+Y方向側)の端部には、尾錠9aが取り付けられている。ベルト8bの筐体2に接続される側とは反対側(−Y方向側)には尾錠9aと係合する穴部9bが複数設けられている。複数の穴部9bのいずれかが尾錠9aと係合することにより、ベルト8aとベルト8bとが接続される。尾錠9aと係合する穴部9bを適宜選択することにより、装着状態におけるベルト8a,8bの実質的な長さが調整でき、これにより腕Mに対するベルト8a,8bの締め付け力を調整することができる。
ベルト8a,8bの各々には、熱流計としての熱流センサー10が設けられている。熱流センサー10は、ベルト8a,8bの各々に埋設されている。換言すれば、熱流センサー10は、ベルト8a,8bをZ軸方向に貫通し、側面(±X方向の面および±Y方向の面)がベルト8a,8bに接合され、正面(+Z方向の面)および背面(−Z方向の面)がベルト8a,8bの表面側に露出するように設けられている。熱流センサー10のベルト8a,8bへの取付方法は、接着剤により熱流センサー10の側面がベルト8a,8bに接着されていてもよいし、熱流センサー10とベルト8a,8bとが縫製により互いに接合されていてもよい。
熱流センサー10は、可撓性および柔軟性を有している。熱流センサー10の背面を面10aとし(図2(b))、熱流センサー10の正面を面10bとする(図2(a)参照)。熱流センサー10は、電子機器1をユーザーの腕Mに装着した状態では、ベルト8a,8bとともに腕Mの曲面に沿って湾曲して、ベルト8a,8bの内側に露出する面10aが腕Mの表面に接し、ベルト8a,8bの外側に露出する面10bが外環境と接するように配置される(図1参照)。
熱流センサー10は、温度差計測部20を備えている。詳細は後述するが、温度差計測部20は、生体表面(本実施形態では、ユーザーの皮膚面)と外環境との間の温度差を計測する機能を有している。電子機器1は、熱流センサー10が備える温度差計測部20の計測結果に基づいて皮膚面と外環境との間に生じる熱流を測定し、人体からの放熱量を測定する。
図3および図4に示すように、筐体2のY軸方向における両端部には、筐体2の背面側から正面側に窪んだ凹部2aが設けられている。凹部2aのX軸方向における両端部には、ベルト8a,8bを接続するための接続部41が設けられている。接続部41は、導電性を有する金属などの材料で構成される。接続部41は、配線部43により制御基板6と電気的に接続されている(図3参照)。なお、筐体2の内部には、図3に示す配線部43の他にも配線部が設けられている。接続部41は、例えば、中空の管状となっている。
ベルト8a,8bは、筐体2と接続される側の端部に張出部8cを有している。ベルト8a,8bの張出部8cが筐体2の凹部2aに挿入された状態で、ベルト8a,8bが筐体2に接続される(図2(b)参照)。張出部8cのX軸方向における両端部には、筐体2に接続するための接続部42が設けられている。接続部42は、導電性を有する金属などの材料で構成される。接続部42は、配線部44により熱流センサー10の温度差計測部20と電気的に接続されている(図3参照)。接続部42は、例えば、棒状であり、バネなどの付勢によりX軸方向に伸縮可能に構成されている。
接続部41と接続部42とにより、筐体2とベルト8a,8bとが機械的に接続されるとともに、電気的に接続される。すなわち、図3および図4に示す状態からベルト8a,8bの接続部42を張出部8cの内側に押し込むようにして張出部8cを筐体2の凹部2aに挿入し、接続部42を管状の接続部41に嵌合させることで、ベルト8a,8bが筐体2に機械的に接続される。
また、接続部42が接続部41に嵌合することにより、接続部42と接続部41とが電気的に接続される。そして、接続部42と接続部41とを介して、ベルト8a,8bに設けられた熱流センサー10の温度差計測部20が、筐体2に内蔵された制御基板6に電気的に接続される。
なお、筐体2とベルト8a,8bとを機械的および電気的に接続する手段は、上述の接続部41と接続部42とを介する構成に限定されない。例えば、ベルト8a,8bを筐体2にネジなどで固定し、それぞれに設けられたフレキシブル基板同士を電気的に接続させる構成のように、機械的に接続する手段と電気的に接続する手段とが異なる構成であってもよい。
次に、第1の実施形態に係る電子機器1の概略機能構成について、図5を参照して説明する。図5は、第1の実施形態に係る電子機器の概略機能構成を示すブロック図である。図5に示すように、電子機器1は、一対のベルト8a,8bに設けられた2つの熱流センサー10と、筐体2に設けられた操作部34と表示部35と制御部30と記憶部32とを備えている。
操作部34は、ボタンスイッチ、レバースイッチ、ダイヤルスイッチなどの各種スイッチやタッチパネルなどの入力装置によって実現されるものであり、操作入力に応じた操作信号を制御部30に出力する。本実施形態では、例えば、図2(a)に示す操作ボタン4やディスプレイ3のタッチパネルがこれに該当する。
表示部35は、液晶装置(LCD:Liquid Crystal Display)や有機EL装置(Electroluminescence Display)などの表示装置によって実現されるものであり、制御部30から入力される表示信号をもとに各種画面を表示する。本実施形態では、例えば、図2(a)に示すディスプレイ3の表示装置がこれに該当する。
表示部35には、熱流の測定結果などが表示される。本実施形態では、例えば、熱流の測定結果は、操作部34に対する表示モードの切替操作に応じて、現在の熱流表示画面や、過去のロギングデータに基づき熱流変化をグラフ化した熱流変化表示画面などとして表示されるようになっている。
制御部30は、電子機器1の各部を統括的に制御する制御装置および演算装置である。制御部30は、CPU(Central Processing Unit)やGPU(Graphic Processing Unit)などのマイクロプロセッサーや、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、IC(Integrated Circuit)メモリーなどで実現される。本実施形態では、例えば、図2(a)に示す制御基板6に実装されたCPUがこれに該当する。制御部30は、熱流センサー10の計測結果に基づいて人体の熱流を測定する熱流測定部31を含む。
記憶部32は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)などの各種ICメモリーやハードディスクなどの記憶媒体により実現されるものである。本実施形態では、例えば、図2(a)に示す記憶媒体7がこれに該当する。記憶部32には、電子機器1を動作させ、電子機器1が備える種々の機能を実現するためのプログラムや、このプログラムの実行中に使用されるデータなどが事前に格納され、あるいは処理の都度一時的に格納される。また、記憶部32には、制御部30を熱流測定部31として機能させ、熱流測定処理を実行するための熱流測定プログラム33が格納されている。
<熱流の測定原理>
ここで、電子機器1が行う熱流の測定原理について説明する。一般に、大気中に存在する物体は、周囲の物質や他の物体と熱交換をしている。このとき、ある物体が放出する、あるいはその物体に流入する、単位時間当たりの熱量を熱流といい、[W(=J/s)]や[kcal/min]などの単位を用いて表される。
物体の熱流測定は、例えば、対象の物体の複数箇所に熱流センサーを設置し、熱流センサーに生じた温度差(温度勾配)を計測することで行われる。これは、物体を伝導する熱流が、物体内に存在する温度差に比例するというフーリエの法則に基づく(次式(1))。次式(1)において、Qは熱流[W(J/s)]を表し、Aは物体の面積[m2]を表し、λは熱伝導率[W/(m×K)]を表し、dは物体の厚さ[m]を表し、ΔTは物体内に存在する温度差[K]を表す。
Figure 2016161311
したがって、人体を対象とする場合は、皮膚面に熱流センサーを設置し、皮膚面と外環境との間の熱伝達によって熱流センサー内に生じた温度差、例えば、前述の熱伝達に起因して熱流センサーの表面(熱流センサーの外環境に面する側)から熱が奪われることで熱流センサー内に生じた温度差を計測することによって、その熱流を測定することができる。
本実施形態に係る電子機器1では、上述したように、熱流センサー10が埋設されたベルト8a,8bを人体の腕Mに巻き付けて装着することで、ベルト8a,8bの内側に露出する面10aが皮膚面に接し、ベルト8a,8bの外側に露出する面10bが外環境と接するように配置される(図1参照)。そして、熱流センサー10の面10a(皮膚面)と面10b(外環境)との間に生じた温度差を計測することによって、人体の熱流を測定することができる。
<熱流センサー>
次に、第1の実施形態に係る熱流センサーの構成について、図6および図7を参照して説明する。図6は、第1の実施形態に係る熱流センサーの構成を模式的に示す斜視図である。図7は、第1の実施形態に係る熱流センサーの構成を模式的に示す断面図である。なお、図6および図7は、図2〜図4と同様に、電子機器1を腕Mから取り外し平坦な面に載置した状態における熱流センサー10を示している。
図6および図7に示すように、第1の実施形態に係る熱流センサー10は、面10a側から+Z方向に順に積層された、第1保護層12と、第1熱拡散層15と、伝熱部としての伝熱層11と、第2熱拡散層16と、第2保護層13と、を備えている。そして、熱流センサー10は、伝熱層11の内部に組み込まれた温度差計測部20を備えている。
伝熱層11は、平板状である。伝熱層11の背面側(−Z方向側)の面を第1面11aとし、伝熱層11の正面側(+Z方向側)の面を第2面11bとする。熱流センサー10は、伝熱層11の第1面11a側に第1熱拡散層15と第1保護層12とが順に配置され、伝熱層11の第2面11b側に第2熱拡散層16と第2保護層13とが順に配置された構成を有している。
第1保護層12と第1熱拡散層15との間、第1熱拡散層15と伝熱層11との間、伝熱層11と第2熱拡散層16との間、および第2熱拡散層16と第2保護層13の間には、接着剤層14が配置され接着されている。また、第1保護層12から第2保護層13までの各層は、縫合糸17により縫製され隣り合う層同士が互いに接合されている。
第1保護層12の表面が熱流センサー10の面10aであり、第2保護層13の表面が熱流センサー10の面10bである。電子機器1をユーザーの腕Mに装着した状態では、熱流センサー10は面10aが腕Mの表面(皮膚面)に接し面10bが外環境に晒されるように配置されるので、第1保護層12が皮膚面に接し、第2保護層13が外環境に晒される。
以下、熱流センサー10の各部の構成を説明する。伝熱層11は、可撓性を有し、かつ、熱伝導性が良好な部材で構成される。より具体的には、伝熱層11は、可撓性を有する第1部材と、第1部材よりも熱伝導率が高い第2部材とを含む。伝熱層11において、第2部材は第1部材の中に分散されており、第2部材の体積比率は第1部材の体積比率よりも小さい。そのため、伝熱層11は、可撓性と熱伝導性とを併せ持つ。
伝熱層11の基材となる第1部材としては、例えば、天然ゴムや合成ゴムなどのゴム、あるいは、ポリウレタンやシリコーンなどの軟質樹脂のように可撓性と柔軟性とを有する材料を用いることができる。伝熱層11の基材内に分散させる第2部材としては、例えば、カーボンブラック粉末、炭素繊維、ダイヤモンド粉末、炭化ケイ素粉末、金属粉末などの熱伝導性フィラーを用いることができる。
伝熱層11に良好な可撓性と柔軟性とを持たせるため、伝熱層11(第1部材)のショア硬さはA50以下であることが好ましい。ショア硬さは、JIS K 6253により定められたタイプAデュロメーターで測定される。そして、伝熱層11の第1面11aと第2面11bとの間に熱流を測定するための温度差を発生させるため、伝熱層11(第1部材)の厚さは、0.5mm以上、かつ、3mm以下であることが好ましく、1.0mm以上、かつ、1.5mm以下であることがより好ましい。
なお、伝熱層11の厚さは、熱流を測定可能な温度差を発生できる範囲で、できるだけ薄いことが望ましい。伝熱層11が厚いと、第1面11aと第2面11bとの間の厚さ方向(Z軸方向)に生じる熱流に対して、交差する方向(X軸方向およびY軸方向)に漏れる熱が多くなってしまい、熱流の測定に誤差が生じるおそれがある。
また、熱流の測定において良好な応答性を得るため、伝熱層11の熱伝導率は10W/(m×K)以上であることが好ましい。一般的なゴムや樹脂の熱伝導率は0.1W/(m×K)〜0.5W/(m×K)程度であり、上述した熱伝導性フィラーの熱伝導率は通常100W/(m×K)以上である。ゴムや樹脂からなる第1部材(基材)に第2部材(熱伝導性フィラー)を分散させることで、伝熱層11の熱伝導率が高くなり、熱流を測定する際の応答性が高められる。例えば、第1部材に対して10%以上の割合で第2部材を分散すれば、伝熱層11の熱伝導率を10W/(m×K)以上とすることが可能である。
第1熱拡散層15および第2熱拡散層16は、伝熱層11の第1面11aおよび第2面11bの各々の面内における温度分布を均一にするためのものである。第1熱拡散層15および第2熱拡散層16の熱伝導率は、100W/(m×K)よりも大きいことが好ましい。第1熱拡散層15および第2熱拡散層16で伝熱層11の第1面11aおよび第2面11bの各々の面内における温度分布をより均一にすることで、熱流を測定する際に、熱流センサー10と皮膚面との接触状態に起因する変動や、皮膚面の温度分布に起因する変動があっても、熱流をより安定した状態で測定することができる。
また、伝熱層11の可撓性および柔軟性を損ねることがないように、第1熱拡散層15および第2熱拡散層16のショア硬さはA50以下であることが好ましく、第1熱拡散層15および第2熱拡散層16の厚さは0.1mm〜0.5mm程度であることが好ましい。このような第1熱拡散層15および第2熱拡散層16の材料としては、例えば、グラファイトシートやカーボンシートなどの炭素系熱伝導シート、アルミシートや銅箔などの金属薄膜を用いることができる。
第1保護層12および第2保護層13は、伝熱層11や第1熱拡散層15および第2熱拡散層16を、他の物体との不意の接触などによる損傷から保護するためのものである。第1保護層12および第2保護層13は、例えば、シリコーンゴムなどの有機物からなる材料で、伝熱層11、第1熱拡散層15、および第2熱拡散層16の可撓性および柔軟性を損ねることがないよう、ショア硬さがA50以下のものを用いることが好ましい。第1保護層12および第2保護層13の材料は、皮革や合成皮革であってもよい。また、第1保護層12および第2保護層13の厚さは、第1熱拡散層15および第2熱拡散層16を損傷から保護できるよう、0.1mm〜0.5mm程度であることが好ましい。
接着剤層14としては、例えば、ニトリルゴム接着剤やアクリル系接着剤などの、接着後においても柔軟性を保つことが可能な公知の接着剤を用いることができる。また、接着剤層14として、これらの接着剤に金属粉末や炭素繊維などの熱伝導性フィラーを分散させた公知の接着剤を用いてもよい。接着剤層14の厚さは、0.1mm以下であることが好ましい。接着剤層14の厚さは、熱流センサー10全体の可撓性および柔軟性を損ねることがないように、接着力が保持できる範囲でできるだけ薄いことが好ましい。
縫合糸17は、伝熱層11と、伝熱層11の第1面11a側に接着剤層14で接着され積層された第1熱拡散層15および第1保護層12と、伝熱層11の第2面11b側に接着剤層14で接着され積層された第2熱拡散層16および第2保護層13と、を貫通して縫合するためのものである。縫合糸17で縫合することにより、各層の間の接着剤層14による接合が剥がれにくくなる。縫合糸17としては、例えば、ポリエステルやナイロンなどの合成繊維、あるいは、綿や麻などの天然繊維を用いることができる。
縫合糸17で縫合することにより、熱流センサー10全体の可撓性および柔軟性を損ねることなく各層の間の接合を機械的に補強することができる。熱流センサー10における縫合糸17により縫合する位置は、伝熱層11に組み込まれる温度差計測部20を避けるため、熱流センサー10の外縁部分とすることが好ましい(図6参照)。なお、縫合糸17で縫合することによって熱流センサー10の各層の確実な密着および接着が担保される場合には、接着剤層14を省略することとしてもよい。
温度差計測部20は、伝熱層11の中に埋め込まれた温度差出力素子であり、例えば、サーモパイルで構成される。異なる2種類の金属導体22,23の両端を接合した熱電対(サーモカップル)24を、その温接点と冷接点とがそれぞれ伝熱層11の第1面11a(皮膚面側)と第2面11b(外環境側)とに位置するようにして複数個直列に接続することで、温度差計測部20(サーモパイル)が構成される。金属導体22,23としては、例えば、アルメルとクロメル、銅とコンスタンタンなどを用いることができる。
伝熱層11の第1面11aには第1熱拡散層15および第1保護層12を介して皮膚面の熱が伝達され、伝熱層11の第2面11bからは第2熱拡散層16および第2保護層13を介して外環境に熱が放出される。温度差計測部20は、伝熱層11の第1面11aと第2面11bとの間、すなわち、温接点と冷接点との間の温度差を電圧信号として出力する。したがって、温度差計測部20の計測結果として、電圧計25で検出した電圧値が制御部30に出力される(図7参照)。制御部30では、熱流測定部31(図5参照)が、温度差計測部20の計測結果に基づいて、人体(皮膚面)から放出される熱流を測定する処理を行う。
本実施形態に係る温度差計測部20は、熱電対24が複数個直列に接続されたサーモパイルで構成されている。そのため、温度差計測部20は、伝熱層11の第1面11aにおける複数点の温度情報と、第2面11bにおける複数点の温度情報とに基づいて温度差を計測する。このように、熱流センサー10が皮膚面に接触する面10a内の複数の箇所で温度差を計測できるので、1箇所のみで温度差を計測する場合と比べて、より平均的な値が得られる。そして、熱電対24を複数個直列に接続することで、熱電対24が一つの場合と比べて、より大きな電圧信号を出力できるので、より正確に熱流を測定できる。
ところで、人体から放出される熱(放熱量)を正確に測定するには、皮膚面の熱を熱流センサーまでロスなく伝達させる必要がある。特許文献1に記載された電子機器では、熱流センサー自体が可撓性を有していないため、可撓性を有し熱伝導性の良好な金属などからなるアタッチメントを皮膚面に接触させ、アタッチメントを介して皮膚面の熱を熱流センサーに伝達する構造となっている。しかしながら、このような構造では、皮膚面からの熱が熱流センサーに伝達される前に熱の一部が他の部材に流出してしまうため、熱流の測定に誤差が生じ、人体からの放熱量の測定精度が低下することとなる。
したがって、誤差が生じないように熱流を測定するためには、熱流センサーを直接皮膚面に接触させて熱の伝達ロスを抑えることが望ましい。しかしながら、従来の熱流センサーは硬い素材を基材として構成されているため可撓性を有しておらず、このような可撓性を有していない熱流センサーを人体(腕M)のように曲面で構成された対象物に接触させると、熱流センサーと皮膚面との間に空気層が生じ易くなる。
ここで、一般に、熱流センサーは、対象物(皮膚面)に接触する面積全体で検出する熱流(温度差)を一つの電圧信号として出力する。上述した式(1)に示すように、熱流Qは物体の面積Aに比例するので、熱流センサーと対象物との接触面積が小さくなると、熱流センサーにより測定される熱流も小さくなる。
そのため、熱流センサーと皮膚面との間の一部分に空気層が生じると、空気層が生じた部分だけ熱流センサーと皮膚面との実質的な接触面積が小さくなり熱流センサーへ伝達される熱が少なくなるので、熱流センサーにより測定される熱流は実際に生じた熱流よりも小さくなる。また、空気層が生じたことにより、装着者が腕を動かす動作や運動を行った際などに熱流センサーと皮膚面との接触面積が変動すると、熱流センサーにより測定される熱流も変動してしまう。その結果、可撓性を有していない熱流センサーでは、熱流の測定に誤差が生じ、人体からの放熱量の測定精度が低下することとなる。
本実施形態に係る電子機器1では、熱流センサー10が皮膚面に直接接触する。熱流センサー10は可撓性と柔軟性とを有しているので、電子機器1を人体のように曲面で構成された対象物に装着すると、熱流センサー10が腕Mの表面に沿って湾曲し皮膚面にフィットする。そのため、皮膚面への密着性が向上し熱流センサー10と皮膚面との間に空気層が生じにくくなるので、接触面積の減少が抑えられるとともに接触面積の変動も抑えられる。その結果、皮膚面と外環境との間に生じる熱流の測定における誤差を小さくできるので、人体の熱流を精度良く測定することができる。
なお、熱流センサー10により人体の熱流を高精度に測定するため、熱流センサー10が埋設されるベルト8a,8bは、熱流センサー10(伝熱層11)よりも熱伝導性が低い材料で構成されることが望ましい。これは、熱流センサー10の厚さ方向に伝達される熱が、熱流センサー10との接触部からベルト8a,8bへと熱流センサー10の厚さ方向と交差する方向に流出し、熱流の測定に誤差が生じることを抑止するためである。ベルト8a,8bの熱伝導率は1W/(m×K)よりも小さいことが好ましい。
また、ベルト8a,8bは、熱流センサー10と同等か、より柔軟な材料で構成されることが望ましい。これは、ベルト8a,8bにより電子機器1を人体(腕M)に装着した際に、熱流センサー10を人体(腕M)のように曲面で構成された対象物に良好に接触させるためである。ベルト8a,8bのショア硬さは、A50以下であることが好ましい。
(第2の実施形態)
第2の実施形態では、第1の実施形態に対して、電子機器1の全体構成はほぼ同じであるが、熱流センサーにおける温度差計測部の構成が異なっている。ここでは、第2の実施形態に係る熱流センサー(温度差計測部)の構成について、第1の実施形態との相違点を説明する。
<熱流センサー>
第2の実施形態に係る熱流センサーについて、図8および図9を参照して説明する。図8は、第2の実施形態に係る熱流センサーの構成を模式的に示す斜視図である。図9は、第2の実施形態に係る熱流センサーの構成を模式的に示す断面図である。第1の実施形態と同じ構成要素については同一の符号を付してその説明を省略する。
図8および図9に示すように、第2の実施形態に係る熱流センサー50は、皮膚面に接触する面50aと、外環境に接する面50bとを有している。熱流センサー50は、面50a側から+Z方向に順に積層された、第1保護層12と、第1熱拡散層15と、伝熱層11と、第2熱拡散層16と、第2保護層13と、を備えている。そして、熱流センサー50は、伝熱層11の内部に組み込まれた温度差計測部20Aを備えている。
温度差計測部20Aは、伝熱層11の第1面11a(皮膚面側)に配置された温度素子26と、伝熱層11の第2面11b(外環境側)において温度素子26と対向する位置に配置された温度素子27と、温度素子26の出力温度と温度素子27の出力温度とを差動増幅する差動増幅器28(図9参照)とを備えている。温度差計測部20Aは、伝熱層11の第1面11aと第2面11bとの間の温度差を計測結果として制御部30(図9参照)に出力する。温度素子26,27には、サーミスターや熱電対等を用いることができる。
制御部30では、熱流測定部31(図5参照)が、温度差計測部20Aからの計測結果を用い、次式(2)に従って人体の熱流を測定する処理を行う。次式(2)において、Qは熱流[W(J/s)]を表し、Aは物体の面積[m2]を表し、λは熱伝導率[W/(m×K)]を表し、dは物体の厚さ[m]を表す。また、Taは温度素子26の出力温度[K]を表し、Tbは温度素子27の出力温度[K]を表す。
Figure 2016161311
第2の実施形態に係る熱流センサー50をベルト8a,8bに埋設して電子機器1に用いる場合も、第1の実施形態と同様に、可撓性と柔軟性とを有する熱流センサー50が皮膚面に直接接触する。したがって、皮膚面と外環境との間に生じる熱流を精度良く測定することができるので、人体の熱流を高精度に測定することができる。
なお、第1の実施形態に係る熱流センサー10(温度差計測部20)と第2の実施形態に係る熱流センサー50(温度差計測部20A)とを比較すると、サーモパイルを用いる熱流センサー10(温度差計測部20)の方が薄型化でき、加工も容易である。また、熱流センサー10(温度差計測部20)の方が複数の箇所で温度差を計測でき、大きな出力信号(電圧信号)を出力できるので、より正確に熱流を測定することが可能である。
上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。変形例としては、例えば、以下のようなものが考えられる。
(変形例1)
上記実施形態では、ベルト8a,8bの延在方向の一部に熱流センサー10,50が埋設される構造としているが、ベルト8a,8bの延在方向全体に熱流センサー10,50が埋設される構造としてもよい。このような構成にすれば、熱流センサー10,50が腕Mの周面に接触する面積がより大きくなるので、人体の熱流の測定精度をより向上させることができる。
(変形例2)
上記実施形態では、電子機器1を人体の腕Mに装着するために、尾錠9aと穴部9bとを係合させるベルト8a,8bを用いる構成としているが、尾錠9aの代わりに面ファスナーなどを用いる構成や、ベルト8a,8bの代わりに穴部がなくバックルで固定するベルトやマジックテープ(登録商標)などを用いる構成としてもよい。
(変形例3)
上記実施形態では、電子機器1を人体の腕Mに装着する構成としているが、電子機器1を装着する部位は腕Mに限定されない。例えば、上腕、腹部、大腿、脹脛、足首、首、頭などの部位に装着する構成としてもよい。その場合、ベルト8a,8bを長尺としたり、ベルト8a,8bの一部を伸縮素材としたりしてもよい。また、熱流センサー10,50が埋設されたベルト8a,8bを電子機器1から取り外して使用可能な構成としてもよいし、測定部位に適した長さや幅の熱流センサー10,50を別途用意する構成としてもよい。なお、測定対象物は人体に限定されず、例えば、動物の体、植物の幹や枝、電柱や柱などその他の人造物などであってもよい。
(変形例4)
上記実施形態では、電子機器1として人体の熱流を測定する熱流計を例示したが、本発明はこのような形態に限定されない。例えば、熱量計や消費カロリー計、代謝計、代謝機能測定機器、自律神経機能測定機器などに適用してもよい。また、筋肉の発熱量を測るスポーツ機器、登山者や高齢者、子供等を対象にした見守り機器、生体情報の測定結果を仮想空間の事象に反映する玩具などに適用してもよい。
1…電子機器、2…筐体、8a,8b…ベルト、10,50…熱流センサー(熱流計)、11…伝熱層(伝熱部)、11a…第1面、11b…第2面、12…第1保護層(保護層)、13…第2保護層(保護層)、15…第1熱拡散層(熱拡散層)16…第2熱拡散層(熱拡散層)、20,20A…温度差計測部、30…制御部。

Claims (11)

  1. 互いに対面する第1面と第2面とを有し、可撓性を有する伝熱部と、
    前記伝熱部の前記第1面と前記第2面との間の温度差を計測する温度差計測部と、を備えていることを特徴とする熱流計。
  2. 請求項1に記載の熱流計であって、
    前記伝熱部は、可撓性を有する第1部材と、前記第1部材よりも熱伝導率が高い第2部材と、を含んでいることを特徴とする熱流計。
  3. 請求項1または2に記載の熱流計であって、
    前記伝熱部の厚さは0.5mm以上であり、前記伝熱部の熱伝導率は10W/(m×K)以上であり、前記伝熱部のショア硬さはA50以下であることを特徴とする熱流計。
  4. 請求項3に記載の熱流計であって、
    前記第1面に100W/(m×K)よりも大きな熱伝導率を有する熱拡散層が配置されていることを特徴とする熱流計。
  5. 請求項4に記載の熱流計であって、
    前記熱拡散層のショア硬さはA50以下であることを特徴とする熱流計。
  6. 請求項4または5に記載の熱流計であって、
    前記熱拡散層の表面に、有機物からなる保護層が配置されていることを特徴とする熱流計。
  7. 請求項6に記載の熱流計であって、
    前記保護層のショア硬さはA50以下であることを特徴とする熱流計。
  8. 請求項6または7に記載の熱流計であって、
    前記伝熱部と前記熱拡散層と前記保護層とが縫製により互いに接合されていることを特徴とする熱流計。
  9. 請求項1から8のいずれか一項に記載の熱流計であって、
    前記温度差計測部は、前記第1面の複数点の温度情報と、前記第2面の複数点の温度情報と、に基づいて温度差を計測することを特徴とする熱流計。
  10. 互いに対面する第1面と第2面とを有し可撓性を有する伝熱部と、前記伝熱部の前記第1面と前記第2面との間の温度差を計測する温度差計測部と、を備えた熱流計が装着されたベルトと、
    前記ベルトに接続された筐体と、前記筐体内に設置された制御部と、を備え、
    前記制御部が前記熱流計を制御することを特徴とする電子機器。
  11. 請求項10に記載の電子機器であって、
    前記ベルトの熱伝導率は前記伝熱部の熱伝導率よりも低いことを特徴とする電子機器。
JP2015037885A 2015-02-27 2015-02-27 熱流計および電子機器 Active JP6759526B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015037885A JP6759526B2 (ja) 2015-02-27 2015-02-27 熱流計および電子機器
CN201610104583.1A CN105919552B (zh) 2015-02-27 2016-02-25 热流计及电子设备
US15/053,531 US10260965B2 (en) 2015-02-27 2016-02-25 Heat flow meter and electronic device
EP16157600.4A EP3061389A1 (en) 2015-02-27 2016-02-26 Heat flow meter and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037885A JP6759526B2 (ja) 2015-02-27 2015-02-27 熱流計および電子機器

Publications (3)

Publication Number Publication Date
JP2016161311A true JP2016161311A (ja) 2016-09-05
JP2016161311A5 JP2016161311A5 (ja) 2018-02-22
JP6759526B2 JP6759526B2 (ja) 2020-09-23

Family

ID=55661090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037885A Active JP6759526B2 (ja) 2015-02-27 2015-02-27 熱流計および電子機器

Country Status (4)

Country Link
US (1) US10260965B2 (ja)
EP (1) EP3061389A1 (ja)
JP (1) JP6759526B2 (ja)
CN (1) CN105919552B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU169152U1 (ru) * 2016-10-27 2017-03-07 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Стенд для моделирования теплообмена транспортируемых конвейерами горячих материалов

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763142B2 (ja) * 2015-12-28 2020-09-30 セイコーエプソン株式会社 内部温度測定装置、リスト装着型装置及び内部温度測定方法
GB2567855B (en) * 2017-10-27 2020-06-17 Jaguar Land Rover Ltd Wearable monitor for personal thermal control in a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183832A (en) * 1981-05-01 1982-11-12 Terumo Corp Heat stream density measuring apparatus of live doby surface
JPS61135239U (ja) * 1985-02-13 1986-08-23
JPS61165436U (ja) * 1985-04-01 1986-10-14
JP2007208262A (ja) * 2006-02-03 2007-08-16 Samsung Electronics Co Ltd マイクロ熱流束センサアレイ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541728A (en) * 1983-07-25 1985-09-17 Ray L. Hauser Device and method for measuring heat flux and method for forming such a device
US5524618A (en) 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
DE4423663A1 (de) * 1994-07-06 1996-01-11 Med Science Gmbh Verfahren und Vorrichtung zur Erfassung von Wärmewechselwirkungen zwischen dem menschlichen Körper und der erfindungsgemäßen Vorrichtung und deren Korrelation mit der Glucosekonzentration im menschlichen Blut
DE69730298T2 (de) * 1996-06-12 2005-01-13 Seiko Epson Corp. Koerpertemperaturmessvorrichtung
US6238354B1 (en) * 1999-07-23 2001-05-29 Martin A. Alvarez Temperature monitoring assembly
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
EP1249691A1 (en) * 2001-04-11 2002-10-16 Omron Corporation Electronic clinical thermometer
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
CN1254215C (zh) * 2004-01-02 2006-05-03 北京科技大学 一种无损测量生物活体组织热参数的方法
JP5051767B2 (ja) 2004-03-22 2012-10-17 ボディーメディア インコーポレイテッド 人間の状態パラメータをモニターするためのデバイス
US20090209828A1 (en) * 2005-03-09 2009-08-20 Ramil Faritovich Musin Method and device microcalorimetrically measuring a tissue local metabolism speed, intracellular tissue water content, blood biochemical component concentration and a cardio-vascular system tension
CA2538940A1 (en) * 2006-03-03 2006-06-22 James W. Haslett Bandage with sensors
US7765811B2 (en) * 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
JP2011523863A (ja) 2008-05-23 2011-08-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センサ、アクチュエータ、又は電気部品を担持するように適合された基板層
US7942825B2 (en) * 2008-06-09 2011-05-17 Kimberly-Clark Worldwide Inc. Method and device for monitoring thermal stress
US20100198322A1 (en) * 2009-02-05 2010-08-05 Disney Enterprises, Inc. Personal temperature regulator
CN106264461A (zh) 2009-04-06 2017-01-04 皇家飞利浦电子股份有限公司 用于体温测量的温度传感器
DE102011114620B4 (de) * 2011-09-30 2014-05-08 Dräger Medical GmbH Vorrichtung und Verfahren zur Bestimmungder Körperkerntemperatur
US20130087180A1 (en) * 2011-10-10 2013-04-11 Perpetua Power Source Technologies, Inc. Wearable thermoelectric generator system
JP6081983B2 (ja) * 2012-02-14 2017-02-15 テルモ株式会社 体温計及び体温測定システム
US20150031964A1 (en) * 2012-02-22 2015-01-29 Aclaris Medical, Llc Physiological signal detecting device and system
JP6337416B2 (ja) * 2013-03-12 2018-06-06 セイコーエプソン株式会社 温度測定装置
JP2016057198A (ja) 2014-09-10 2016-04-21 セイコーエプソン株式会社 熱流計測装置及び代謝計測装置
US20160163949A1 (en) * 2014-12-03 2016-06-09 Perpetua Power Source Technologies Flexible thermoelectric generator
JP2016133484A (ja) 2015-01-22 2016-07-25 セイコーエプソン株式会社 熱流センサー及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183832A (en) * 1981-05-01 1982-11-12 Terumo Corp Heat stream density measuring apparatus of live doby surface
JPS61135239U (ja) * 1985-02-13 1986-08-23
JPS61165436U (ja) * 1985-04-01 1986-10-14
JP2007208262A (ja) * 2006-02-03 2007-08-16 Samsung Electronics Co Ltd マイクロ熱流束センサアレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU169152U1 (ru) * 2016-10-27 2017-03-07 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Стенд для моделирования теплообмена транспортируемых конвейерами горячих материалов

Also Published As

Publication number Publication date
US20160252407A1 (en) 2016-09-01
CN105919552B (zh) 2021-05-18
JP6759526B2 (ja) 2020-09-23
EP3061389A1 (en) 2016-08-31
US10260965B2 (en) 2019-04-16
CN105919552A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
US20190041277A1 (en) Force sensing device
ES2874158T3 (es) Un sensor capacitivo de fuerza y/o de presión
US20180028072A1 (en) Wearable thermometer patch capable of measuring human skin temperature at high duty cycle
US9028404B2 (en) Physiological status monitoring system
WO2018180800A1 (ja) 温度拡散係数計測装置、それを用いた深部体温計、深部体温計測装置、および深部体温計測方法
US20110301493A1 (en) Temperature Sensor Structure
JP6759526B2 (ja) 熱流計および電子機器
CN106913316A (zh) 内部温度测定装置、手腕安装式装置及内部温度测定方法
BR112014001020B1 (pt) Dispositivo que pode ser utilizado sobre o corpo e método de sua fabricação
JP2016164525A (ja) 温度測定装置及び温度測定方法
CN110996767A (zh) 耐环境条件的可身体安装的热耦合设备
CN111741710B (zh) 核心温度检测系统和方法
US20190021658A1 (en) Dual purpose wearable patch for measurement and treatment
JP2017131541A (ja) 熱流センサー及び検出単位体
JP7307619B2 (ja) センサ付衣服、体調管理システム、および体調管理プログラム
JP2016133484A (ja) 熱流センサー及び電子機器
TWM328632U (en) Sensitive patch, mounting belt device and wireless monitoring device
US20110168685A1 (en) Thermal Pixel Array Device
CN110672228A (zh) 贴片保护模块及贴片
TWI706133B (zh) 布料聲學感應器
KR102209879B1 (ko) 압박력센서, 압박력 측정장치 및 이를 포함하는 기능성 의류
TWI725358B (zh) 生理感測裝置
KR102402335B1 (ko) 패치형 체온계 고정용 접착밴드 및 이를 포함하는 패치형 체온계 키트
KR101418080B1 (ko) 건강 관리용 디지털 의류
TWI740253B (zh) 智慧防駝系統

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180905

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150