JP2016149918A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2016149918A
JP2016149918A JP2015026869A JP2015026869A JP2016149918A JP 2016149918 A JP2016149918 A JP 2016149918A JP 2015026869 A JP2015026869 A JP 2015026869A JP 2015026869 A JP2015026869 A JP 2015026869A JP 2016149918 A JP2016149918 A JP 2016149918A
Authority
JP
Japan
Prior art keywords
model
control
error
speed
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015026869A
Other languages
English (en)
Other versions
JP7049754B2 (ja
Inventor
井出 勇治
Yuji Ide
勇治 井出
通生 北原
Michio Kitahara
通生 北原
敏雄 平出
Toshio Hiraide
敏雄 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2015026869A priority Critical patent/JP7049754B2/ja
Priority to CN201610076504.0A priority patent/CN105897069B/zh
Priority to TW105104121A priority patent/TWI683196B/zh
Priority to PH12016000059A priority patent/PH12016000059A1/en
Publication of JP2016149918A publication Critical patent/JP2016149918A/ja
Application granted granted Critical
Publication of JP7049754B2 publication Critical patent/JP7049754B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】1個の可動部を複数のモータで駆動する機械において、機台振動やねじり振動が生じる可能性がある場合にもこれらの振動を抑制して高い同期精度を実現する。
【解決手段】共通の外部位置指令に基づいて駆動される2個のモータ2,3により共同して1個のテーブル4といった可動部を可動させるモータ制御装置1は、可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系10,50と、2個のモータ2,3と1対1対応で設けられてモデル指令に基づいて各々のモータをフィードバック制御する2個のフィードバック制御系30,70と、を有する。一方のフィードバック制御系30は、そのモータ2を制御する際の制御誤差を、残りの他方のフィードバック制御系70での制御誤差との差分により補償する。
【選択図】 図1

Description

本発明は、複数個のモータが共同して一個の可動部を駆動して可動部を高速高精度に位置決めできるモータ制御装置に関する。
マウンタ装置などの部品実装機では、可動部をモータにより高速に駆動して高精度に位置決めすることにより単位時間当たりの部品実装数を増やすことができる。これにより、部品実装作業による製造コストを低減することができる。
そして、たとえば多数のプリント基板を同時に実装することができる大きな可動部を使用する大型のマウンタ装置では、該1個の可動部を複数個のモータで高速に駆動することが考えられる。
たとえば特許文献1のモータ制御装置は、1個の可動部を2個のモータで駆動している。2個のモータの各々はそれぞれに対応して設けられたモータ制御モデルおよびサーボコントローラにより制御される。サーボコントローラは、外部位置指令に基づいてモータの動きを実際に制御する。モータ制御モデルは、サーボコントローラの各要素に対応する要素モデルを有し、外部位置指令に基づいてモデルトルク、モデル速度、およびモデル位置を生成する。また、これらのモデル情報とサーボコントローラからフィードバックされる実際の制御での制御トルク、制御速度、制御位置との差分を演算し、その差分を一定の割合でサーボコントローラへ戻している。このようにモータ制御モデルにおいてサーボコントローラの制御誤差を演算し、その制御誤差をサーボコントローラへ戻すことにより、サーボコントローラはモータ制御モデルで生成されるモデルトルク、モデル速度、およびモデル位置に追従してモータの動きを制御し得る。
このように特許文献1のモータ制御装置は、モータ制御モデルとサーボコントローラとの誤差を外乱としてとらえてこれを位相補償することによりモデルとサーボコントローラの制御とのずれを抑えているので、複数個のモータの制御系に同じモデルを用いることで軸間のずれ(同期誤差)を抑えることができると考えられる。
また、特許文献1とは異なり1個の可動部を1個のモータで駆動する場合には可動部がモータの駆動方向に対して傾くようにヨーイングすることがあるが、特許文献1のように1個の可動部を2個のモータで駆動することによりこのヨーイングを抑えることも期待し得ると考えられる。
特開2003−345442号公報
しかしながら、実際の機械系では、たとえば複数個のモータに対して可動部を駆動するボールねじ等がねじり振動したり、複数個のモータおよび可動部が取り付けられる機台が振動したりすることにより、可動部が振動することがある。
そして、特許文献1の手法では、これらのねじり振動を抑制したり、機台振動を抑制したりする機能が搭載されていないため、たとえば機械系の剛性が低い場合にはこれらの振動を十分に抑制することができないという問題がある。
また、実際に機台振動やねじり振動が生じ得る場合には、それらの振動が生じないように制御する結果として個々の軸のサーボコントローラの制御応答を十分に高くすることができなくなる。個々の軸のサーボコントローラの制御応答が高くないと、モデルとサーボコントローラ間の誤差抑制が十分に行えなくなる。モデルとサーボコントローラ間の誤差抑制が十分に行えないと、軸間の同期精度を高めることができなくなる。
本発明はこのような課題を解消するためになされたものであり、その目的は、1個の可動部を複数個のモータで駆動する機械において、可動部に対する振動の影響を抑制して高い同期精度を実現し、その結果として高速高精度な位置決めを実現できるモータ制御装置を提供することにある。
本発明のモータ制御装置は、共通の外部位置指令に基づいて駆動されるN個(N:2以上の自然数)のモータにより共同して1個の可動部を可動させるモータ制御装置であって、可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系と、N個のモータと1対1対応で設けられてモデル指令に基づいて各々のモータをフィードバック制御するN個のフィードバック制御系と、を有し、(N−1)個のフィードバック制御系は、各々のモータを制御する際の制御誤差を、残りの1個のフィードバック制御系での制御誤差との差分により補償する。
本発明では、N個のフィードバック制御系の各々は、外部位置指令ではなく、モデル位置を含むモデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系は、可動部に対する振動の影響を抑制するように状態をフィードバックするので、N個のフィードバック制御系はモデルに追従して振動の影響を抑制したフィードバック制御を互いに独立して実行し、N個のモータは外部位置指令に対して同様に追従するように制御され得る。N個のフィードバック制御系は、共通の外部位置指令に基づいてN個のモータを互いに同期させるように制御することができる。たとえば可動部等が取り付けられる機台が振動したりまたはモータに対して可動部が振動したりする結果として可動部が振動の影響を受け得るような場合においてその影響を抑制して、N個のモータを互いに同期させることができる。
しかも、本発明では、(N−1)個のフィードバック制御系は、各々での制御誤差を、残りの1個のフィードバック制御系での制御誤差との差分により補償する。(N−1)個のフィードバック制御系は、各々の制御誤差が1個のフィードバック制御系の制御誤差に対してずれが生じないように同期させながら、各々のフィードバック制御を実行する。すなわち、N個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、1個のフィードバック制御系と(N−1)個のフィードバック制御系との間で生じ得る制御誤差のずれを補償することができる。これらN個のフィードバック制御系の間で生じ得る制御誤差のずれを1個のフィードバック制御系と(N−1)個のフィードバック制御系との間で補償することができる。
このように、本発明では、1個の可動部を共同して可動させる複数個のモータを共通の外部位置指令で、かつ、可動部に対する振動の影響を抑制するように状態をフィードバックする同じモデルでモデル追従制御を行う事により、フィードバック制御系に与えるトルク指令を全軸で同一にする事ができ、これにより、たとえば機台振動が生じたりモータに対して可動部が振動したりするような場合であっても、これらに起因した可動部に対する振動の影響を抑制して指令に対する追従性を向上させて複数個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行しつつ、さらに、それでも他の原因によりN個のフィードバック制御系の間で生じ得る微小な制御誤差のずれをN個のフィードバック制御系の間で補償している。よって、N個のモータの制御系は、可動部に対する振動の影響を抑制して同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を複数個のモータで制御する場合での複数のモータの同期精度を高めることができる。その結果として高速高精度な位置決めを実現できる。
図1は、本発明の第1実施形態に係るモータ制御装置のブロック図である。 図2は、本発明の第2実施形態に係るモータ制御装置のブロック図である。 図3は、本発明の第3実施形態に係るモータ制御装置のブロック図である。 図4は、本発明の第4実施形態に係るモータ制御装置のブロック図である。
以下、本発明の実施形態を、図面に基づいて説明する。
[第1実施形態]
図1は、本発明の第1実施形態に係るモータ制御装置1のブロック図である。
図1のモータ制御装置1は、第1モータ2と第2モータ3との2個のモータが共同して1個の可動部を駆動して可動部を高速高精度に位置決めできるものである。
図1のモータ制御装置1は、可動部としてのテーブル4の制御位置を示す外部位置指令が入力されて各種の第1モデル指令を生成する第1モデル制御系10と、第1モータ2を含むフィードバックループを有して第1モデル指令に基づいて第1モータ2を実際に制御する第1フィードバック制御系30と、第1モデル制御系10と同じ外部位置指令が入力されて各種の第2モデル指令を供給する第2モデル制御系50と、第2モータ3を含むフィードバックループを有して第2モデル指令に基づいて第2モータ3を実際に制御する第2フィードバック制御系70と、を有する。
そして、本実施形態において、第1モデル指令は、第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令である。また、第2モデル指令は、第2モデル位置指令、第2モデル速度指令、第2モデルトルク指令である。
第1フィードバック制御系30は、第1制御位置誤差生成器31、第1同期位置誤差生成器32、第1位置同期補償器33、第1同期補償位置誤差生成器34、第1位置制御器35、第1検出速度生成器36、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク指令ローパスフィルタ40、第1トルク制御器41、を有する。
そして、第1制御位置誤差生成器31、第1同期補償位置誤差生成器34、第1位置制御器35、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク指令ローパスフィルタ40、第1トルク制御器41、第1モータ2、および第1センサ42は、第1モータ2を実際に制御するフィードバックループを構成する。
第1モータ2は、たとえば同期モータである。
第1センサ42は、第1モータ2の回転位置を検出する。第1センサ42は、たとえば第1モータ2の回転子軸に取り付けられたロータリエンコーダである。ロータリエンコーダは、モータの回転子軸の位置に応じたパルス信号を出力する。パルス信号は、第1モータ2の回転位置へ換算できる。
第1制御位置誤差生成器31は、第1モデル制御系10から供給される第1モデル位置指令と第1センサ42から得られる第1モータ2の第1検出位置とに基づいて、これらの位置誤差を示す第1制御位置誤差を生成する。第1制御位置誤差は、たとえば第1モデル位置指令から第1検出位置を減算したものでよい。
第1同期位置誤差生成器32は、自身の第1制御位置誤差と後述する第2制御位置誤差生成器71により生成される第2制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成する。第1同期位置誤差は、たとえば自身の第1制御位置誤差から他の第2制御位置誤差を減算したものでよい。この場合、第2フィードバック制御系70に対する第1フィードバック制御系30の同期誤差が得られる。
第1位置同期補償器33は、第1同期位置誤差から、第1位置同期誤差補償量を生成する。本実施形態において第1位置同期補償器33には、たとえば比例制御器または比例積分制御器を用いるとよい。
第1同期補償位置誤差生成器34は、第1フィードバック制御系30での制御位置誤差である第1制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第1位置同期誤差補償量とに基づいて、同期補償処理後の第1制御位置誤差を生成する。同期補償処理後の第1制御位置誤差は、たとえば第1制御位置誤差と第1位置同期誤差補償量とを加算した合計値でよい。
第1位置制御器35は、同期補償処理後の第1制御位置誤差から、第1制御速度を生成する。第1位置制御器35は、第1フィードバック制御系30での制御位置誤差と、第2フィードバック制御系70を基準とした第1フィードバック制御系30の同期位置誤差とに応じた第1制御速度を生成する。そして、第2フィードバック制御系70の制御位置と比較して第1フィードバック制御系30の制御位置が遅れると、第1制御速度は大きくなる。
第1検出速度生成器36は、第1センサ42が検出した回転位置から第1モータ2の第1検出速度を生成する。
第1制御速度誤差生成器37は、第1制御速度、第1検出速度、および第1モデル速度指令に基づいて第1制御速度誤差を生成する。第1制御速度誤差は、たとえば第1制御速度から第1検出速度を減算して得られる制御速度誤差に対して、第1モデル速度指令を加算したものでよい。
第1速度制御器38は、第1制御速度誤差から、第1制御トルクを生成する。第1速度制御器38は、第1フィードバック制御系30での制御速度誤差と、第1モデル速度指令とに応じた第1制御トルクを生成する。そして、制御速度誤差および第1モデル速度指令の少なくとも一方が大きくなると、第1制御トルクは大きくなる。
第1制御トルク生成器39は、第1制御トルクと第1モデルトルク指令とに基づいて第1合計制御トルクを生成する。第1合計制御トルクは、たとえば第1制御トルクと第1モデルトルク指令とを加算したものでよい。
第1トルク指令ローパスフィルタ40は、第1合計制御トルクをローパスフィルタ処理する。このローパスフィルタ処理により、第1合計制御トルクから高周波成分を除くことができる。このような高周波成分としては、たとえば第1センサ42による位置の量子化リップル成分がある。
第1トルク制御器41は、ローパスフィルタ処理後の第1合計制御トルクに基づいて第1モータ2を制御する。
このような第1フィードバック制御系30でのフィードバック制御により、第1フィードバック制御系30は、第1モデル制御系10から出力される第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令にしたがって第1モータ2を回転駆動する。第1モータ2の回転にしたがってテーブル4は駆動される。
そして、第1フィードバック制御系30において制御位置または制御速度に誤差が生じると、または第2フィードバック制御系70の制御位置に対して第1フィードバック制御系30の制御位置がずれると、これらの誤差およびずれを抑制するように第1モータ2の駆動トルクが増減する。
これにより、第1モータ2は、第1モデルトルク指令および第1モデル速度指令にしたがう動きで第1モデル位置指令の位置まで制御される。
第1モデル制御系10は、外部位置指令を入力とし、第1フィードバック制御系30に対応するモデルを用いて第1フィードバック制御系30の仮想的な動作を演算し、第1フィードバック制御系30に与える第1モデル指令を生成する。
第1モデル位置指令は、第1モータ2の制御位置を示す指令である。
第1モデル速度指令は、駆動中の第1モータ2の制御速度を示す指令である。
第1モデルトルク指令は、駆動中の第1モータ2の制御トルクを示す指令である。
そして、本実施形態の第1モデル制御系10は、第1フィードバック制御系30の動作を演算するために、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1モデル速度演算器13、第1モデル速度誤差演算器14、第1モデル速度制御器15、第1モデルトルク誤差演算器16、第1モデルトルク指令ローパスフィルタ17、第1可動部モデル18、第1機台モデル19、第1モデル位置加算器20、第1状態帰還量演算器21、を有する。
また、第1状態帰還量演算器21は、第1機台帰還量演算器22、第1フィルタ帰還量演算器23、第1合計帰還量演算器24、を有する。これにより、第1状態帰還量演算器21は、機台の振動に起因して機台上でテーブル4が振動する場合において機台に対するテーブル4の振動を抑制するための合計帰還量を演算する。
そして、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1モデル速度誤差演算器14、第1モデル速度制御器15、第1モデルトルク誤差演算器16、第1モデルトルク指令ローパスフィルタ17、第1可動部モデル18および第1機台モデル19、第1モデル位置加算器20は、第1モデル制御系10のメインフィードバックループを構成する。この第1モデル制御系10のメインフィードバックループは、第1フィードバック制御系30のフィードバックループと対応する。
第1モデル位置誤差演算器11は、第1制御位置誤差生成器31に対応するモデルにより第1モデル位置誤差を演算する。第1モデル位置誤差演算器11は、外部位置指令から、第1モデル位置加算器20から出力される第1モデル位置を減算して第1モデル位置誤差を演算する。
第1モデル位置制御器12は、第1位置制御器35に対応するモデルにより第1モデル速度を演算する。第1モデル位置制御器12は、第1モデル位置誤差から第1モデル速度を演算する。
第1モデル速度演算器13は、第1検出速度生成器36に対応するモデルにより第1モデル検出速度を演算する。第1モデル速度演算器13は、第1モデル位置から第1モデル検出速度を演算する。第1モデル検出速度は、第1モデル速度指令として第1フィードバック制御系30へ出力される。
第1モデル速度誤差演算器14は、第1制御速度誤差生成器37に対応するモデルにより第1モデル速度誤差を演算する。第1モデル速度誤差演算器14は、第1モデル速度から第1モデル検出速度を減算して第1モデル速度誤差を演算する。
第1モデル速度制御器15は、第1速度制御器38に対応するモデルにより第1モデルトルクを演算する。第1モデル速度制御器15は、第1モデル速度誤差から第1モデルトルクを演算する。
第1モデルトルク誤差演算器16は、第1モデルトルクから、第1状態帰還量演算器21により演算される合計帰還量を減算して状態フィードバック補償後の第1モデルトルクを演算する。状態フィードバック補償後の第1モデルトルクは、第1モデルトルク指令として第1フィードバック制御系30へ出力される。
第1モデルトルク指令ローパスフィルタ17は、第1トルク指令ローパスフィルタ40に対応するモデルによりフィルタ演算を実施する。第1モデルトルク指令ローパスフィルタ17は、状態フィードバック補償後の第1モデルトルクをローパスフィルタ処理する。
第1可動部モデル18は、第1モータ2からテーブル4までの機械系の動きに対応している可動部のモデルにより可動部モデルの位置を演算する。ここでは、第1モータ2、第1ボールネジ5からテーブル4までの機械系に対応する可動部モデルとして、それらの間でずれが生じない剛体モデルを用いる。第1可動部モデル18は、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1可動部モデル18の位置を演算する。
第1機台モデル19は、第1モータ2やテーブル4が取り付けられる機台の動きに対応している機台のモデルにより機台モデルの位置を演算する。機台は、たとえばレベリングボルトにより床に載置される。そして、テーブル4を高速に動かした場合に機台が振動し、それにより機台上でのテーブル4の相対的な位置が機台を振動しないとした場合での位置からずれることがある。機台のモデルは、たとえばこの機台の振動をモデリングしたものでよい。第1機台モデル19は、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1機台モデル19の位置を演算する。
第1モデル位置加算器20は、第1可動部モデル18の位置と第1機台モデル19の位置とを加算して、第1モデル位置を演算する。第1モデル位置加算器20が演算した第1モデル位置は、第1モデル位置指令として第1フィードバック制御系30へ出力される。
第1機台帰還量演算器22は、振動する位置についての帰還量を演算する。具体的にはたとえば、第1機台帰還量として、第1機台モデル19の位置に、機台位置フィードバックゲインKPBと、機台速度フィードバックゲインKVBSと、機台加速度フィードバックゲインKABとを加算した合算ゲイン(KPB+KVBS+KAB)を乗算したものを演算する。ここで、Sは微分演算子を示す。
第1フィルタ帰還量演算器23は、第1モデルトルク指令ローパスフィルタ17のフィルタ処理についての帰還量を演算する。具体的にはたとえば、フィルタ処理帰還量として、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクに、フィルタ処理フィードバックゲインKLPを乗算したものを演算する。
第1合計帰還量演算器24は、第1状態帰還量演算器21で演算される各種の帰還量を加算する。ここでは、第1機台帰還量とフィルタ処理帰還量とを加算して合計帰還量を演算する。演算された合計帰還量は、第1モデルトルク誤差演算器16へ出力される。
このような第1フィードバック制御系30に対応するフィードバック制御により、第1モデル制御系10は、機台とテーブル4との間の振動を抑制し得る第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令を生成する。
また、第1モデル制御系10の各要素には、テーブル4に対する制御が所望の位置決め制御となるように制御パラメータを設定すればよい。
たとえば、第1モデル制御系10の状態方程式に対する特性方程式が5重根を持つようにパラメータを算出して設定する。5重根を持つパラメータを設定することにより、第1モデル制御系10はテーブル4と機台との間に振動を生じないモデル指令を生成できる。そして、テーブル4と機台との間に振動を生じない第1モデル制御系10からのモデル指令により第1フィードバック制御系30を駆動することによって、第1フィードバック制御系30により実際に駆動されるテーブル4も振動を生じずに駆動されることになる。
また、第1フィードバック制御系30の安定性が許容できる範囲内で第1モデル制御系10および第1フィードバック制御系30のゲインを高めることにより、実際に駆動されるテーブル4と機台との間に振動を生じさせずに高速に駆動することができる。
第2フィードバック制御系70は、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク指令ローパスフィルタ80、第2トルク制御器81、を有する。
そして、第2制御位置誤差生成器71、第2位置制御器75、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク指令ローパスフィルタ80、第2トルク制御器81、第2モータ3、および第2センサ82は、第2モータ3を実際に制御するフィードバックループを構成する。
これら第2フィードバック制御系70の各構成要素は、第1フィードバック制御系30において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。
ただし、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。つまり、第1フィードバック制御系30とは異なり、同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
第2モデル制御系50は、第2フィードバック制御系70の動作を演算するために、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2モデル速度演算器53、第2モデル速度誤差演算器54、第2モデル速度制御器55、第2モデルトルク誤差演算器56、第2モデルトルク指令ローパスフィルタ57、第2可動部モデル58、第2機台モデル59、第2モデル位置加算器60、第2状態帰還量演算器61、を有する。
また、第2状態帰還量演算器61は、第2機台帰還量演算器62、第2フィルタ帰還量演算器63、第2合計帰還量演算器64、を有する。これにより、第2状態帰還量演算器61は、機台の振動に起因して機台上でテーブル4が振動する場合において機台に対するテーブル4の振動を抑制するための合計帰還量を演算する。
そして、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2モデル速度誤差演算器54、第2モデル速度制御器55、第2モデルトルク誤差演算器56、第2モデルトルク指令ローパスフィルタ57、第2可動部モデル58および第2機台モデル59、第2モデル位置加算器60は、第2モデル制御系50のメインフィードバックループを構成する。この第2モデル制御系50のメインフィードバックループは、第2フィードバック制御系70のフィードバックループと対応する。
これら第2モデル制御系50の各構成要素は、第1モデル制御系10において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。第2モデル制御系50の各部のパラメータには、第1モデル制御系10と同じ値が設定される。
そして、以下の説明において、第2フィードバック制御系70および第2モデル制御系50での各種の信号名には、対応する第1フィードバック制御系30および第1モデル制御系10での各種の信号名の番号を第1から第2へ変更したものを使用する。
このように軸1の制御系と軸2の制御系とで同じ値のパラメータを使用することにより、第1モデル制御系10および第2モデル制御系50からの指令は各軸同時に同じ値で出力される。これにより、軸間のトルク印加が同時になる。
なお、図1のモータ制御装置1において、第1センサ42は、第1モータ2と一体に構成されてよい。そして、第1モータ2および第1センサ42以外の第1フィードバック制御系30の構成要素と第1モデル制御系10とは、第1モータ2および第1センサ42と第1ケーブルで接続される第1モータ制御装置中の第1コンピュータ装置に実現されてよい。この場合、第1フィードバック制御系30の各構成要素は演算処理により各々の処理を実行することになり、第1モデル制御系10の各部の演算処理と好適に対応し得る。
同様に、第2センサ82は、第2モータ3と一体に構成されてよい。そして、第2モータ3および第2センサ82以外の第2フィードバック制御系70の構成要素と第2モデル制御系50とは、第2モータ3および第2センサ82と第2ケーブルで接続される第2モータ制御装置中の第2コンピュータ装置に実現されてよい。この場合、第2フィードバック制御系70の各構成要素は演算処理により各々の処理を実行することになり、第2モデル制御系50の各部の演算処理と好適に対応し得る。
また、このように第1モータ制御装置と第2モータ制御装置とを用いる場合、第1モータ制御装置と第2モータ制御装置とは通信ケーブルで連結され、第2モータ制御装置から第1モータ制御装置へ第2制御位置誤差を送信する必要がある。
この他にもたとえば、第1コンピュータ装置と第2コンピュータ装置は、単一のモータ制御装置内に設けられてもよい。
また、図1中の第1モータ2、第1センサ42、第2モータ3および第2センサ82以外の構成要素は、単一のモータ制御装置中の単一のコンピュータ装置に実現されてもよい。この場合、第2制御位置誤差は、たとえばプログラム間通信により送信し得る。
また、第1モデル制御系10と第2モデル制御系50とを1個のモデル制御系とし、この1個のモデル制御系から第1フィードバック制御系30および第2フィードバック制御系70へ共通のモデル指令を供給してもよい。
次に、図1のモータ制御装置1の動作について説明する。
テーブル4の位置を制御するために、第1モデル制御系10および第2モデル制御系50には、上位のコントローラから共通の外部位置指令が同時に供給される。
外部位置指令が供給された第1モデル制御系10は、外部位置指令から第1モデル位置を減算し、第1モデル位置誤差から第1モデル速度を演算する。また、第1モデル位置から第1モデル検出速度を演算し、第1モデル速度から第1モデル検出速度を減算し、第1モデル速度誤差から第1モデルトルクを演算し、第1モデルトルクから合計帰還量を減算し、状態フィードバック補償後の第1モデルトルクをローパスフィルタ処理する。また、状態フィードバック補償処理およびローパスフィルタ処理後の第1モデルトルクから、第1可動部モデル18の位置と第1機台モデル19の位置とを演算し、これらを加算して第1モデル位置を演算する。また、振動する位置についての帰還量と、フィルタ処理についての帰還量とを演算し、これらを合計して合計帰還量を演算する。
この一連の演算処理により、第1モデル制御系10は、第1モデル指令として第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令を生成して第1フィードバック制御系30へ出力する。
第1モデル指令が供給された第1フィードバック制御系30は、第1モデル位置指令と第1センサ42から得られる第1検出位置との位置誤差を示す第1制御位置誤差を生成する。
また、第1フィードバック制御系30は、自身の第1制御位置誤差と第2制御位置誤差生成器71により生成される第2制御位置誤差との位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成し、第1位置同期誤差補償量を生成する。また、第1制御位置誤差と第1位置同期誤差補償量とから同期補償処理後の第1制御位置誤差を生成し、第1制御速度を生成する。
また、第1フィードバック制御系30は、第1制御速度、第1検出速度、および第1モデル速度指令から第1制御速度誤差を生成し、第1制御トルクを生成する。
また、第1フィードバック制御系30は、第1制御トルクおよび第1モデルトルク指令から第1合計制御トルクを生成し、ローパスフィルタ処理する。そして、第1トルク制御器41は、ローパスフィルタ処理後の第1合計制御トルクに基づいて第1モータ2を制御する。第1センサ42は、第1モータ2の回転位置を検出する。また、第1検出速度生成器36は、第1センサ42が検出した回転位置から第1検出速度を生成する。
また、第1モデル制御系10と同時に同じ外部位置指令が供給される第2モデル制御系50は、上述した第1モデル制御系10と同じフィードバック制御を実行する。第2モデル制御系50から第2モデル指令が供給される第2フィードバック制御系70も、上述した第1フィードバック制御系30と同じフィードバック制御を実行する。
ただし、第2フィードバック制御系70は、第1フィードバック制御系30の第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34に対応する構成要素を備えていないので、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
そして、本実施形態では、2個のフィードバック制御系の各々は、外部位置指令ではなく、モデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル指令を生成する2個のモデル制御系は、2個のモータで駆動される可動部の動きに対応している可動部モデルおよびモータおよび可動部が取り付けられる機台の動きに対応している機台モデルを含むとともに、機台モデルの状態をフィードバックして機台の振動に起因した機台とテーブル4との間の振動を抑制することにより、機台とテーブル4との相対振動を抑制して安定化させる。これにより、2個のフィードバック制御系はモデルに追従して機台とテーブル4との相対振動を生じないように安定したフィードバック制御を互いに独立して実行し、2個のモータは外部位置指令に対して同様に追従するように制御され得る。2個のフィードバック制御系は、同時に入力される共通の外部位置指令に基づいて2個のモータを互いに同期させるように制御することができる。そして、テーブル4が取り付けられる機台が振動するような場合においてもテーブル4の振動を抑制して、2個のモータを互いに同期させることができる。
しかも、本実施形態では、第1フィードバック制御系30は、第2フィードバック制御系70の制御誤差との差分により、自身の制御誤差を補償する。第1フィードバック制御系30は、その制御誤差が第2フィードバック制御系70の制御誤差に対してずれが生じないように同期させながら、自身のフィードバック制御を実行する。すなわち、2個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、第1フィードバック制御系30と第2フィードバック制御系70との間で生じ得る制御誤差のずれを補償することができる。つまり、これら2個のフィードバック制御系の間で生じ得る制御誤差のずれを2個のフィードバック制御系において補償することができる。
このように、本実施形態では、1個の可動部を共同して可動させる2個のモータを共通の外部位置指令で、かつ、機台とテーブル4との間の振動を抑制するように状態をフィードバックする同じモデルでモデル追従制御を行うことにより、2個のフィードバック制御系に与えるトルク指令を全軸で同一にすることができる。これにより、機台振動が生じ得る場合であっても機台とテーブル4との間の振動を抑えて2個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行することができる。
しかも、それでも他の原因により2個のフィードバック制御系の間で生じ得る微小な制御誤差のずれを2個のフィードバック制御系の間で補償している。よって、2個のモータの制御系は、振動に起因する同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を2個のモータで制御する場合での2個のモータの同期精度を高めることができる。
その結果、本実施形態では、1個の可動部を2個のモータで駆動する機械において、機台振動が生じ得るような場合であってもこの機台とテーブル4との間の振動を抑制して指令に対する追従性を向上させることができ、さらに2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
なお、上記実施形態は、可動部を2個のモータで駆動するために、2組のモデル制御系およびフィードバック制御系を用いる例である。また、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器を、1個目のフィードバック制御系に適用した例である。
この他にも、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、2個目のフィードバック制御系に適用してもよい。
さらに他にも、可動部を3個以上のモータで駆動してもよい。この場合、モデル制御系およびフィードバック制御系は、基本的にモータと同数組で設ければよい。また、N(Nは2以上の自然数)個のモータを使用する場合、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、(N−1)個のフィードバック制御系に設ければよい。この(N−1)個のフィードバック制御系において(N−1)個の同期位置誤差生成器は、残りの1個のフィードバック制御系の制御位置誤差との間で位置同期誤差を生成すればよい。
[第2実施形態]
図2は、本発明の第2実施形態に係るモータ制御装置1のブロック図である。
図2のモータ制御装置1は、図1のものと比べて、第2フィードバック制御系70が第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74を有する点で異なる。
第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74は、第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34と対応する。
第2同期位置誤差生成器72は、自身の第2制御位置誤差と第1制御位置誤差生成器31により生成される第1制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第2同期位置誤差を生成する。第2同期位置誤差は、たとえば自身の第2制御位置誤差から他の第1制御位置誤差を減算したものでよい。この場合、第1フィードバック制御系30に対する第2フィードバック制御系70の同期誤差が得られる。
第2位置同期補償器73は、第2同期位置誤差から、第2位置同期誤差補償量を生成する。本実施形態では、第1フィードバック制御系30と第2フィードバック制御系70との間で相互に補償をかけているので、第1位置同期補償器33および第2位置同期補償器73には比例制御器を用いるとよい。
第2同期補償位置誤差生成器74は、第2フィードバック制御系70での制御位置誤差である第2制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第2位置同期誤差補償量とに基づいて、同期補償処理後の第2制御位置誤差を生成する。同期補償処理後の第2制御位置誤差は、たとえば第2制御位置誤差と第2位置同期誤差補償量とを加算した合計値でよい。
第2位置制御器75は、同期補償処理後の第2制御位置誤差から、第2制御速度を生成する。第2位置制御器75は、第2フィードバック制御系70での制御位置誤差と、第1フィードバック制御系30を基準とした第2フィードバック制御系70の同期位置誤差とに応じた第2制御速度を生成する。そして、第1フィードバック制御系30の制御位置と比較して第2フィードバック制御系70の制御位置が遅れると、第2制御速度は大きくなる。
これ以外の図2のモータ制御装置1の構成および動作は、図1のもの同様であり、説明を省略する。
そして、本実施形態では、第1フィードバック制御系30および第2フィードバック制御系70は、2軸間の位置誤差をそれらの間で互いに補償できる。その結果、個々のフィードバック制御系の制御応答が高くなくても、軸間の位置誤差を小さくして同期精度を高めることができる。第1実施形態よりも更に高い同期精度を期待し得る。
このため、たとえば第1フィードバック制御系30および第2フィードバック制御系70を同じ振動モデルに追従させることにより同期誤差が発生し難いようにしつつも、さらにそれでも他の原因により発生する軸間の同期誤差を第1実施形態より効果的に抑制することができる。
このように本実施形態では、1個の可動部を複数個(ここでは2個)のモータで駆動する機械において同じモデルを用いて個々のモデル制御系を構成するとともに該モデルに追従させて実際のフィードバック制御系に制御を実行させることにより、機台振動が生じ得るような場合であってもこの機台とテーブル4との間の振動を抑制して2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
[第3実施形態]
図3は、本発明の第3実施形態に係るモータ制御装置1のブロック図である。
図3のモータ制御装置1は、第1モデル制御系10、第1フィードバック制御系30、第2モデル制御系50、および第2フィードバック制御系70を有し、図1のモータ制御装置1と同様に第1モータ2と第2モータ3との2個のモータが共同して1個の可動部を駆動して可動部を高速高精度に位置決めできるものである。
以下、図1のモータ制御装置1と相違点を中心に説明する。また、図1のモータ制御装置1と同様の構成要素については、図1と同様の符号を付してその説明を省略する。
第1フィードバック制御系30は、第1制御位置誤差生成器31、第1同期位置誤差生成器32、第1位置同期補償器33、第1同期補償位置誤差生成器34、第1位置制御器35、第1検出速度生成器36、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク制御器41、を有する。
そして、第1制御位置誤差生成器31、第1同期補償位置誤差生成器34、第1位置制御器35、第1制御速度誤差生成器37、第1速度制御器38、第1制御トルク生成器39、第1トルク制御器41、第1モータ2、および第1センサ42は、第1モータ2を実際に制御するフィードバックループを構成する。
第1トルク制御器41は、第1制御トルク生成器39から出力される第1合計制御トルクに基づいて第1モータ2を制御する。
第1モデル制御系10は、外部位置指令を入力とし、第1フィードバック制御系30に対応するモデルを用いて第1フィードバック制御系30の仮想的な動作を演算し、第1フィードバック制御系30に与える第1モデル指令を生成する。
本実施形態の第1モデル制御系10は、第1フィードバック制御系30の動作を演算するために、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1前段状態補償モデル速度誤差演算器91、第1後段状態補償モデル速度誤差演算器92、第1モデル速度制御器15、第1前段状態補償モデルトルク誤差演算器93、第1後段状態補償モデルトルク誤差演算器94、第1二慣性モデル95、第1トルク帰還量演算器106、第1速度帰還量演算器107、を有する。
そして、第1モデル位置誤差演算器11、第1モデル位置制御器12、第1前段状態補償モデル速度誤差演算器91、第1後段状態補償モデル速度誤差演算器92、第1モデル速度制御器15、第1前段状態補償モデルトルク誤差演算器93、第1後段状態補償モデルトルク誤差演算器94、および第1二慣性モデル95は、第1モデル制御系10のメインフィードバックループを構成する。この第1モデル制御系10のメインフィードバックループは、第1フィードバック制御系30のフィードバックループと対応する。
第1二慣性モデル95は、第1モータ2からテーブル4までの機械系の動作としてテーブル4が振動する動作を演算する。
二慣性モデルは、機械系を、第1モータ2側に相当するモータ側モデルと、テーブル4側に相当する負荷側モデルとの2個のモデルで表わし、それらの間のねじり振動成分を考慮したモデルである。
本実施形態の第1二慣性モデル95は、第1モータ側モデル96、第1前段モータ側積分器97、第1後段モータ側積分器98、第1ねじりトルク演算器99、第1負荷側モデル100、第1前段負荷側積分器101、第1後段負荷側積分器102、第1モデル内加速度誤差演算器103、第1モデル内速度誤差演算器104、第1モデル内位置誤差演算器105、を有する。
第1モータ側モデル96は、第1二慣性モデル95に入力される後述する状態補償後の第1モデルトルクに、モータ側イナーシャを考慮した1/Jのゲインを乗算して第1モータ側モデル加速度を演算する。
第1前段モータ側積分器97は、第1モータ側モデル加速度を積分して第1モータ側モデル速度を演算する。第1モータ側モデル速度は、第1二慣性モデル95が生成するモデル速度として用いることができ、第1モデル速度指令として出力される。
第1後段モータ側積分器98は、第1モータ側モデル速度を積分して第1モータ側モデル位置を演算する。第1モータ側モデル位置は、第1二慣性モデル95が生成するモデル位置として用いることができ、第1モデル位置指令として出力される。
第1負荷側モデル100は、第1ねじりトルク演算器99が演算する第1ねじりトルクに、負荷側イナーシャを考慮した1/Jのゲインを乗算して第1負荷側モデル加速度を演算する。
第1前段負荷側積分器101は、第1負荷側モデル加速度を積分して第1負荷側モデル速度を演算する。
第1後段負荷側積分器102は、第1負荷側モデル速度を積分して第1負荷側モデル位置を演算する。
第1モデル内加速度誤差演算器103は、第1モータ側モデル加速度から第1負荷側モデル加速度を減算して第1モデル内加速度誤差を演算する。
第1モデル内速度誤差演算器104は、第1モータ側モデル速度から第1負荷側モデル速度を減算して第1モデル内速度誤差を演算する。
第1モデル内位置誤差演算器105は、第1モータ側モデル位置から第1負荷側モデル位置を減算して第1モデル内位置誤差を演算する。
第1ねじりトルク演算器99は、第1モデル内位置誤差にねじり剛性に対応するゲインKBを乗算して第1ねじりトルクを生成する。
このような振動モデルにより、二慣性モデルは、モータ側モデルと負荷側モデルとの間でねじり振動を生じる動作を演算することができる。
第1トルク帰還量演算器106および第1速度帰還量演算器107は、二慣性モデルの状態のフィードバック量である帰還量を演算する。
第1トルク帰還量演算器106は、第1モデル内加速度誤差に帰還ゲインKABを乗算して第1トルク帰還量を演算する。
第1速度帰還量演算器107は、第1モデル内速度誤差に帰還ゲインKVBを乗算して第1速度帰還量を演算する。
第1前段状態補償モデル速度誤差演算器91は、第1モデル位置制御器12が演算した第1モデル速度から第1速度帰還量を減算する。
第1後段状態補償モデル速度誤差演算器92は、第1前段状態補償モデル速度誤差演算器91の演算結果から第1モータ側モデル速度を減算する。
これにより、第1モデル速度と第1モータ側モデル速度との第1モデル速度誤差から、第1二慣性モデル95で演算される速度に関する状態帰還量を減算して補償した状態補償後の第1モデル速度誤差が得られる。第1モデル速度制御器15は、状態補償後の第1モデル速度誤差から第1モデルトルクを演算する。
第1前段状態補償モデルトルク誤差演算器93は、第1モデルトルクから第1トルク帰還量を減算する。
第1後段状態補償モデルトルク誤差演算器94は、第1前段状態補償モデルトルク誤差演算器93の演算結果から第1ねじりトルクを減算する。
これにより、第1モデルトルクと第1ねじりトルクとの第1モデルトルク誤差から、第1二慣性モデル95で演算される加速度に関する状態帰還量を減算して補償した状態補償後の第1モデルトルク誤差が得られる。この状態補償後の第1モデルトルク誤差が、第1二慣性モデル95の第1モータ側モデル96へ出力される。また、状態補償後の第1モデルトルク誤差は、第1二慣性モデル95に与えられるモデルトルクであり、第1モデルトルク指令として出力される。
このような第1フィードバック制御系30に対応するフィードバック制御により、第1モデル制御系10は、第1モデル位置指令、第1モデル速度指令および第1モデルトルク指令を生成する。
また、第1モデル制御系10の各要素には、テーブル4に所望の位置決め制御を可能とするための制御パラメータを設定すればよい。
本実施形態のように二慣性系の機械モデルを用いてモータ側モデルと負荷側モデルとの間での加速度差(モデル内加速度誤差)と速度差(モデル内速度誤差)との状態フィードバックを行う場合、現代制御理論を適用することでテーブル4が振動を生じないように安定するパラメータを算出できる。モデル制御系の状態方程式に対する特性方程式が4重根を持つようにパラメータを算出して設定することにより、テーブル4は振動を生じないように安定する。
第2フィードバック制御系70は、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク制御器81、を有する。
そして、第2制御位置誤差生成器71、第2位置制御器75、第2検出速度生成器76、第2制御速度誤差生成器77、第2速度制御器78、第2制御トルク生成器79、第2トルク制御器81、第2モータ3、および第2センサ82は、第2モータ3を実際に制御するフィードバックループを構成する。
これら第2フィードバック制御系70の各構成要素は、第1フィードバック制御系30において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。
ただし、第2位置制御器75は、第2制御位置誤差生成器71が生成した第2制御位置誤差から、第2制御速度を生成する。つまり、第1フィードバック制御系30とは異なり、同期補償処理をしていない第2制御位置誤差に基づいて第2制御速度を生成する。
第2モデル制御系50は、第2フィードバック制御系70の動作を演算するために、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2前段状態補償モデル速度誤差演算器111、第2後段状態補償モデル速度誤差演算器112、第2モデル速度制御器55、第2前段状態補償モデルトルク誤差演算器113、第2後段状態補償モデルトルク誤差演算器114、第2二慣性モデル115、第2トルク帰還量演算器126、第2速度帰還量演算器127、を有する。
また、第2二慣性モデル115は、第2モータ側モデル116、第2前段モータ側積分器117、第2後段モータ側積分器118、第2ねじりトルク演算器119、第2負荷側モデル120、第2前段負荷側積分器121、第2後段負荷側積分器122、第2モデル内加速度誤差演算器123、第2モデル内速度誤差演算器124、第2モデル内位置誤差演算器125、を有する。
そして、第2モデル位置誤差演算器51、第2モデル位置制御器52、第2前段状態補償モデル速度誤差演算器111、第2後段状態補償モデル速度誤差演算器112、第2モデル速度制御器55、第2前段状態補償モデルトルク誤差演算器113、第2後段状態補償モデルトルク誤差演算器114、および第2二慣性モデル115は、第2モデル制御系50のメインフィードバックループを構成する。この第2モデル制御系50のメインフィードバックループは、第2フィードバック制御系70のフィードバックループと対応する。
これら第2モデル制御系50の各構成要素は、第1モデル制御系10において番号が異なる同名の構成要素と同一であり、その詳細な説明を省略する。第2モデル制御系50の各部のパラメータには、第1モデル制御系10と同じ値が設定される。
そして、以下の説明において、第2フィードバック制御系70および第2モデル制御系50での各種の信号名には、対応する第1フィードバック制御系30および第1モデル制御系10での各種の信号名の番号を第1から第2へ変更したものを使用する。
また、軸1の制御系と軸2の制御系とで同じ値のパラメータを使用することにより、第1モデル制御系10および第2モデル制御系50からの指令は各軸同時に同じ値で出力される。これにより、軸間のトルク印加が同時になる。
次に、図3のモータ制御装置1の動作について説明する。
テーブル4の位置を制御するために、第1モデル制御系10および第2モデル制御系50には、上位のコントローラから共通の外部位置指令が同時に供給される。
外部位置指令が供給された第1モデル制御系10は、外部位置指令から第1モデル位置を減算し、第1モデル位置誤差から第1モデル速度を演算する。また、第1モデル速度から第1速度帰還量を減算し、さらに第1モータ側モデル速度を減算して、状態補償後の第1モデル速度誤差を演算する。また、状態補償後の第1モデル速度誤差から第1モデルトルクを演算し、第1モデルトルクから第1トルク帰還量を減算し、さらに第1ねじりトルクを減算して、状態補償後の第1モデルトルク誤差を演算する。
第1二慣性モデル95では、まず、状態補償後の第1モデルトルク誤差から第1モータ側モデル加速度を演算し、さらに第1モータ側モデル速度と第1モータ側モデル位置とを演算する。また、第1ねじりトルクから第1負荷側モデル加速度を演算し、さらに第1負荷側モデル速度と第1負荷側モデル位置とを演算する。また、モータ側と負荷側との差分である第1モデル内加速度誤差、第1モデル内速度誤差および第1モデル内位置誤差を演算する。また、第1ねじりトルク、第1トルク帰還量、および第1速度帰還量を演算する。
この一連の演算処理により、第1モデル制御系10は、第1モデル指令としての第1モデル位置指令、第1モデル速度指令、第1モデルトルク指令を生成して第1フィードバック制御系30へ出力する。
第1モデル指令が供給された第1フィードバック制御系30は、第1モデル位置指令と第1センサ42から得られる第1検出位置との位置誤差を示す第1制御位置誤差を生成する。
また、第1フィードバック制御系30は、自身の第1制御位置誤差と第2制御位置誤差生成器71により生成される第2制御位置誤差との位置誤差の差分(同期誤差)を示す第1同期位置誤差を生成し、第1位置同期誤差補償量を生成する。また、第1制御位置誤差と第1位置同期誤差補償量とから同期補償処理後の第1制御位置誤差を生成し、第1制御速度を生成する。
また、第1フィードバック制御系30は、第1制御速度、第1検出速度、および第1モデル速度指令から第1制御速度誤差を生成し、第1制御トルクを生成する。
また、第1フィードバック制御系30は、第1制御トルクおよび第1モデルトルク指令から第1合計制御トルクを生成する。そして、第1トルク制御器41は、第1合計制御トルクに基づいて第1モータ2を制御する。第1センサ42は、第1モータ2の回転位置を検出する。また、第1検出速度生成器36は、第1センサ42が検出した回転位置から第1検出速度を生成する。
また、第1モデル制御系10と同時に同じ外部位置指令が供給される第2モデル制御系50は、上述した第1モデル制御系10と同じフィードバック制御を実行する。第2モデル制御系50から第2モデル指令が供給される第2フィードバック制御系70も、上述した第1フィードバック制御系30と同じフィードバック制御を実行する。
そして、本実施形態では、2個のフィードバック制御系の各々は、外部位置指令ではなく、モデル指令に基づいて各々のモータをフィードバック制御する。しかも、外部位置指令からモデル指令を生成する2個のモデル制御系は、2個のモータで可動部を駆動する際のモータから可動部までの機械系の動きに対応している二慣性モデルを含むとともに、二慣性モデルの状態をフィードバックしてモータから可動部までの機械系の振動に起因したテーブル4の振動を抑制することにより、テーブル4の振動を抑制して安定化させる。これにより、2個のフィードバック制御系はモデルに追従してテーブル4の振動を生じないように安定化させたフィードバック制御を互いに独立して実行し、2個のモータは外部位置指令に対して同様に追従するように制御され得る。2個のフィードバック制御系は、同時に入力される共通の外部位置指令に基づいて2個のモータを互いに同期させるように制御することができる。そして、モータから可動部までの機械系において振動を生ずるような場合においてもテーブル4の振動を抑制して、2個のモータを互いに同期させることができる。
しかも、本実施形態では、第1フィードバック制御系30は、第2フィードバック制御系70の制御誤差との差分により、自身の制御誤差を補償する。第1フィードバック制御系30は、その制御誤差が第2フィードバック制御系70の制御誤差に対してずれが生じないように同期させながら、自身のフィードバック制御を実行する。すなわち、2個のモータを互いに独立したフィードバック制御系により互いに独立して制御しながらも、第1フィードバック制御系30と第2フィードバック制御系70との間で生じ得る制御誤差のずれを補償することができる。これら2個のフィードバック制御系の間で生じ得る制御誤差のずれを2個のフィードバック制御系の間で補償することができる。
このように、本実施形態では、1個の可動部を共同して可動させる2個のモータを共通の外部位置指令で、かつ、モータからテーブル4までの機械系の振動を補償するように状態をフィードバックする同じ二慣性モデルでモデル追従制御を行うことにより、2個のフィードバック制御系に与えるトルク指令を全軸で同一にする事ができる。これにより、モータからテーブル4までの機械系に振動が生ずる場合であってもテーブル4の振動を抑えて2個のフィードバック制御系の制御誤差の間でずれが発生し難いように制御を実行することができる。
しかも、それでも他の原因により2個のフィードバック制御系の間で生じ得る微小な制御誤差のずれを2個のフィードバック制御系の間で補償している。よって、2個のモータの制御系は、振動に起因する同期ずれが発生し難い制御と同期ずれを抑える制御とが二重化された制御により1個の可動部を2個のモータで制御する場合での2個のモータの同期精度を高めることができる。
その結果、本実施形態では、1個の可動部を2個のモータで駆動する機械において、モータとテーブル4との間で振動が生じ得るような場合であっても、テーブル4の振動を抑制して指令に対する追従性を向上させることができ、さらに2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
なお、上記実施形態は、可動部を2個のモータで駆動するために、2組のモデル制御系およびフィードバック制御系を用いる例である。また、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器を、1個目のフィードバック制御系に適用した例である。
この他にも、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、2個目のフィードバック制御系に適用してもよい。
さらに他にも、可動部を3個以上のモータで駆動してもよい。この場合、モデル制御系およびフィードバック制御系は、基本的にモータと同数組で設ければよい。また、N(Nは2以上の自然数)個のモータを使用する場合、同期位置誤差生成器、位置同期補償器、および同期補償位置誤差生成器は、(N−1)個のフィードバック制御系に設ければよい。この(N−1)個のフィードバック制御系において(N−1)個の同期位置誤差生成器は、残りの1個のフィードバック制御系の制御位置誤差との間で位置同期誤差を生成すればよい。
[第4実施形態]
図4は、本発明の第4施形態に係るモータ制御装置1のブロック図である。
図4のモータ制御装置1は、図3のものと比べて、第2フィードバック制御系70が第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74を有する点で異なる。
第2同期位置誤差生成器72、第2位置同期補償器73、および第2同期補償位置誤差生成器74は、第1同期位置誤差生成器32、第1位置同期補償器33、および第1同期補償位置誤差生成器34と対応する。
第2同期位置誤差生成器72は、自身の第2制御位置誤差と第1制御位置誤差生成器31により生成される第1制御位置誤差とに基づいて、これらの制御位置誤差の差分(同期誤差)を示す第2同期位置誤差を生成する。第2同期位置誤差は、たとえば自身の第2制御位置誤差から他の第1制御位置誤差を減算したものでよい。この場合、第1フィードバック制御系30に対する第2フィードバック制御系70の同期誤差が得られる。
第2位置同期補償器73は、第2同期位置誤差から、第2位置同期誤差補償量を生成する。本実施形態では、第1フィードバック制御系30と第2フィードバック制御系70との間で相互に補償をかけているので、第1位置同期補償器33および第2位置同期補償器73には比例制御器を用いるとよい。
第2同期補償位置誤差生成器74は、第2フィードバック制御系70での制御位置誤差である第2制御位置誤差と、2個のフィードバック制御系間の同期位置誤差である第2位置同期誤差補償量とに基づいて、同期補償処理後の第2制御位置誤差を生成する。同期補償処理後の第2制御位置誤差は、たとえば第2制御位置誤差と第2位置同期誤差補償量とを加算した合計値でよい。
第2位置制御器75は、同期補償処理後の第2制御位置誤差から、第2制御速度を生成する。第2位置制御器75は、第2フィードバック制御系70での制御位置誤差と、第1フィードバック制御系30を基準とした第2フィードバック制御系70の同期位置誤差とに応じた第2制御速度を生成する。そして、第1フィードバック制御系30の制御位置と比較して第2フィードバック制御系70の制御位置が遅れると、第2制御速度は大きくなる。
これ以外の図4のモータ制御装置1の構成および動作は、図3のもの同様であり、説明を省略する。
そして、本実施形態では、第1フィードバック制御系30および第2フィードバック制御系70は、2軸間の位置誤差をそれらの間で互いに補償できる。その結果、個々のフィードバック制御系の制御応答が高くなくても、軸間の位置誤差を小さくして同期精度を高めることができる。第3実施形態よりも更に高い同期精度を期待し得る。
このため、たとえば第1フィードバック制御系30および第2フィードバック制御系70を同じ振動モデルに追従させることにより同期誤差が発生し難いようにしつつも、さらにそれでも他の原因により発生する軸間の同期誤差を第3実施形態より効果的に抑制することができる。
このように本実施形態では、1個の可動部を複数個(ここでは2個)のモータで駆動する機械において同じ二慣性モデルを用いて個々のモデル制御系を構成するとともに該モデルに追従させて実際のフィードバック制御系に制御を実行させることにより、モータとテーブル4との間で振動が生じ得るような場合であってもテーブル4の間の振動を抑制して2個のモータの間での同期精度を確保でき、その結果として高速高精度な位置決めを実現できる。
1 モータ制御装置
2 第1モータ
3 第2モータ
4 テーブル
5 第1ボールネジ
6 第2ボールネジ
10 第1モデル制御系
11 第1モデル位置誤差演算器
12 第1モデル位置制御器
13 第1モデル速度演算器
14 第1モデル速度誤差演算器
15 第1モデル速度制御器
16 第1モデルトルク誤差演算器
17 第1モデルトルク指令ローパスフィルタ(モデルローパスフィルタ)
18 第1可動部モデル
19 第1機台モデル
20 第1モデル位置加算器
21 第1状態帰還量演算器
22 第1機台帰還量演算器
23 第1フィルタ帰還量演算器
24 第1合計帰還量演算器
30 第1フィードバック制御系
31 第1制御位置誤差生成器
32 第1同期位置誤差生成器
33 第1位置同期補償器
34 第1同期補償位置誤差生成器
35 第1位置制御器
36 第1検出速度生成器
37 第1制御速度誤差生成器
38 第1速度制御器
39 第1制御トルク生成器
40 第1トルク指令ローパスフィルタ(制御ローパスフィルタ)
41 第1トルク制御器
42 第1センサ
50 第2モデル制御系
51 第2モデル位置誤差演算器
52 第2モデル位置制御器
53 第2モデル速度演算器
54 第2モデル速度誤差演算器
55 第2モデル速度制御器
56 第2モデルトルク誤差演算器
57 第2モデルトルク指令ローパスフィルタ(モデルローパスフィルタ)
58 第2可動部モデル
59 第2機台モデル
60 第2モデル位置加算器
61 第2状態帰還量演算器
62 第2機台帰還量演算器
63 第2フィルタ帰還量演算器
64 第2合計帰還量演算器
70 第2フィードバック制御系
71 第2制御位置誤差生成器
72 第2同期位置誤差生成器
73 第2位置同期補償器
74 第2同期補償位置誤差生成器
75 第2位置制御器
76 第2検出速度生成器
77 第2制御速度誤差生成器
78 第2速度制御器
79 第2制御トルク生成器
80 第2トルク指令ローパスフィルタ(制御ローパスフィルタ)
81 第2トルク制御器
82 第2センサ
91 第1前段状態補償モデル速度誤差演算器
92 第1後段状態補償モデル速度誤差演算器
93 第1前段状態補償モデルトルク誤差演算器
94 第1後段状態補償モデルトルク誤差演算器
95 第1二慣性モデル(多慣性モデル)
96 第1モータ側モデル
97 第1前段モータ側積分器
98 第1後段モータ側積分器
99 第1ねじりトルク演算器
100 第1負荷側モデル
101 第1前段負荷側積分器
102 第1後段負荷側積分器
103 第1モデル内加速度誤差演算器
104 第1モデル内速度誤差演算器
105 第1モデル内位置誤差演算器
106 第1トルク帰還量演算器
107 第1速度帰還量演算器
111 第2前段状態補償モデル速度誤差演算器
112 第2後段状態補償モデル速度誤差演算器
113 第2前段状態補償モデルトルク誤差演算器
114 第2後段状態補償モデルトルク誤差演算器
115 第2二慣性モデル(多慣性モデル)
116 第2モータ側モデル
117 第2前段モータ側積分器
118 第2後段モータ側積分器
119 第2ねじりトルク演算器
120 第2負荷側モデル
121 第2前段負荷側積分器
122 第2後段負荷側積分器
123 第2モデル内加速度誤差演算器
124 第2モデル内速度誤差演算器
125 第2モデル内位置誤差演算器
126 第2トルク帰還量演算器
127 第2速度帰還量演算器

Claims (13)

  1. 共通の外部位置指令に基づいて駆動されるN個(N:2以上の自然数)のモータにより共同して1個の可動部を可動させるモータ制御装置であって、
    前記可動部に対する振動の影響を抑制するように状態をフィードバックするモデル制御系であって前記外部位置指令からモデル位置指令を含むモデル指令を生成するモデル制御系と、
    N個の前記モータと1対1対応で設けられて前記モデル指令に基づいて各々の前記モータをフィードバック制御するN個のフィードバック制御系と、
    を有し、
    (N−1)個の前記フィードバック制御系は、各々の前記モータを制御する際の制御誤差を、残りの1個の前記フィードバック制御系での制御誤差との差分により補償する、
    モータ制御装置。
  2. 前記モデル制御系は、
    前記モータで駆動される前記可動部の動きに対応している可動部モデルおよび前記モータおよび前記可動部が取り付けられる機台の動きに対応している機台モデルを含むとともに前記機台モデルの状態をフィードバックして前記機台の振動に起因する前記機台と前記可動部との間の振動を抑制するものであり、
    前記可動部モデルの位置と前記機台モデルの位置とを加算した位置を、前記モデル位置指令として出力されるモデル位置として演算するモデル位置加算器を有する、
    請求項1記載のモータ制御装置。
  3. 前記モデル制御系は、
    前記外部位置指令から、前記モデル位置加算器から出力されるモデル位置を減算してモデル位置誤差を演算するモデル位置誤差演算器を有し、
    N個の前記フィードバック制御系の各々は、
    前記モデル位置指令および各々の前記モータの位置を検出するセンサが検出した位置に基づいてこれらの位置誤差を示す制御位置誤差を生成する制御位置誤差生成器を有する、
    請求項2記載のモータ制御装置。
  4. (N−1)個の前記フィードバック制御系の各々は、
    各々の前記制御位置誤差と残りの1個の前記フィードバック制御系での前記制御位置誤差との差分を生成する同期位置誤差生成器を有し、
    各々の前記モータを制御する際の前記制御位置誤差を、残りの1個の前記フィードバック制御系での前記制御位置誤差との差分により補償する、
    請求項3記載のモータ制御装置。
  5. 前記モデル制御系は、
    前記モデル位置誤差からモデル速度を演算するモデル位置制御器と、
    前記モデル位置加算器から出力される前記モデル位置から前記モデル指令の一つであるモデル速度指令としてのモデル検出速度を演算するモデル速度演算器と、
    前記モデル速度から前記モデル検出速度を減算してモデル速度誤差を演算するモデル速度誤差演算器と、
    前記モデル速度誤差からモデルトルクを演算するモデル速度制御器と、
    前記モデルトルクから状態帰還量を減算して前記モデル指令の一つであるモデルトルク指令としての状態補償後の前記モデルトルクを演算するモデルトルク誤差演算器と、
    状態補償後の前記モデルトルクをローパスフィルタ処理して前記可動部モデルおよび前記機台モデルへ出力するモデルローパスフィルタと、
    前記機台モデルの状態に応じた前記状態帰還量を演算する状態帰還量演算器と、を有し、
    N個の前記フィードバック制御系の各々は、
    補償処理後の前記制御位置誤差から制御速度を生成する位置制御器と
    各々の前記モータの位置を検出する前記センサが検出した位置から検出速度を生成する検出速度生成器と、
    前記制御速度、前記検出速度、および前記モデル速度指令に基づいて前記制御速度と前記検出速度との速度誤差に対して前記モデル速度指令を加えた制御速度誤差を生成する制御速度誤差生成器と、
    前記制御速度誤差から制御トルクを生成する速度制御器と、
    前記制御トルクと前記モデルトルク指令とに基づいてこれらの合計を示す合計制御トルクを生成する制御トルク生成器と、
    前記合計制御トルクをローパスフィルタ処理する制御ローパスフィルタと、
    ローパスフィルタ処理後の前記合計制御トルクに基づいて各々の前記モータを制御するトルク制御器と、を有する、
    請求項4記載のモータ制御装置。
  6. 前記モデル制御系は、
    前記モータから前記可動部までの機械系の動きに対応している多慣性モデルを含むとともに前記多慣性モデルの状態をフィードバックして前記機械系の振動に起因する前記可動部の振動を抑制するものであり、
    前記多慣性モデルは、前記モデル位置指令として出力されるモデル位置を演算する、
    請求項1記載のモータ制御装置。
  7. 前記モデル制御系は、
    前記外部位置指令から、前記多慣性モデルから出力される前記モデル位置を減算してモデル位置誤差を演算するモデル位置誤差演算器を有し、
    N個の前記フィードバック制御系の各々は、
    前記モデル位置指令および各々の前記モータの位置を検出するセンサが検出した位置に基づいてこれらの位置誤差を示す制御位置誤差を生成する制御位置誤差生成器を有する、
    請求項6記載のモータ制御装置。
  8. (N−1)個の前記フィードバック制御系の各々は、
    各々の前記制御位置誤差と残りの1個の前記フィードバック制御系での前記制御位置誤差との差分を生成する同期位置誤差生成器を有し、
    各々の前記モータを制御する際の前記制御位置誤差を、残りの1個の前記フィードバック制御系での前記制御位置誤差との差分により補償する、
    請求項7記載のモータ制御装置。
  9. 前記モデル制御系は、
    前記モデル位置誤差からモデル速度を演算するモデル位置制御器と、
    前記モデル速度から、前記多慣性モデルで演算される速度に関する状態帰還量およびモデル速度を減算して状態補償後のモデル速度誤差を演算する状態補償モデル速度誤差演算器と、
    状態補償後の前記モデル速度誤差からモデルトルクを演算するモデル速度制御器と、
    前記モデルトルクから、前記多慣性モデルで演算される加速度に関する状態帰還量およびねじりトルクを減算して状態補償後のモデルトルク誤差を演算して前記多慣性モデルへ出力する状態補償モデルトルク誤差演算器と、を有し、
    N個の前記フィードバック制御系の各々は、
    補償処理後の前記制御位置誤差から制御速度を生成する位置制御器と
    各々の前記モータの位置を検出する前記センサが検出した位置から検出速度を生成する検出速度生成器と、
    前記制御速度、前記検出速度、および前記多慣性モデルにおいて前記モデル指令の一つとして演算されるモデル速度指令に基づいて前記制御速度と前記検出速度との速度誤差に対して前記モデル速度指令を加えた制御速度誤差を生成する制御速度誤差生成器と、
    前記制御速度誤差から制御トルクを生成する速度制御器と、
    前記制御トルクおよび前記多慣性モデルにおいて前記モデル指令の一つとして演算されるモデルトルク指令に基づいてこれらの合計を示す合計制御トルクを生成する制御トルク生成器と、
    前記合計制御トルクに基づいて各々の前記モータを制御するトルク制御器と、を有する、
    請求項8記載のモータ制御装置。
  10. N個の前記フィードバック制御系には、前記モデル制御系から同じ前記モデル指令が同時に入力される、
    請求項1から9のいずれか一項記載のモータ制御装置。
  11. 前記モデル制御系は、N個の前記フィードバック制御系と1対1に対応するN個で設けられ、
    N個の前記モデル制御系は、同じフィードバックループの構成により共通の前記外部位置指令から同じ前記モデル指令を生成する、
    請求項1から10のいずれか一項記載のモータ制御装置。
  12. 前記フィードバック制御系は、2個であり、
    2個の前記フィードバック制御系は、各々での前記モータを制御するための制御誤差を、他方の前記フィードバック制御系での制御誤差との差分により互いに補償する、
    請求項1から11のいずれか一項記載のモータ制御装置。
  13. 前記モデル制御系の状態方程式に対する特性方程式は重根を持つ、
    請求項1から12のいずれか一項記載のモータ制御装置。
JP2015026869A 2015-02-13 2015-02-13 モータ制御装置 Active JP7049754B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015026869A JP7049754B2 (ja) 2015-02-13 2015-02-13 モータ制御装置
CN201610076504.0A CN105897069B (zh) 2015-02-13 2016-02-03 电动机控制装置
TW105104121A TWI683196B (zh) 2015-02-13 2016-02-05 馬達控制裝置
PH12016000059A PH12016000059A1 (en) 2015-02-13 2016-02-09 Motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026869A JP7049754B2 (ja) 2015-02-13 2015-02-13 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2016149918A true JP2016149918A (ja) 2016-08-18
JP7049754B2 JP7049754B2 (ja) 2022-04-07

Family

ID=56688082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026869A Active JP7049754B2 (ja) 2015-02-13 2015-02-13 モータ制御装置

Country Status (4)

Country Link
JP (1) JP7049754B2 (ja)
CN (1) CN105897069B (ja)
PH (1) PH12016000059A1 (ja)
TW (1) TWI683196B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151889A (ja) * 2017-03-14 2018-09-27 オムロン株式会社 処理装置、パラメータ調整方法、及びパラメータ調整プログラム
CN110703687A (zh) * 2019-09-27 2020-01-17 上海畲贡自动化科技有限公司 一种误差补偿系统及方法
EP4340207A1 (en) * 2022-09-15 2024-03-20 Ningbo Gauss Robot Co., Ltd Force control method and system for multi-motor synchronization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417305B (zh) * 2019-07-10 2021-08-27 北京建筑大学 一种多电机自适应控制同步的系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153894U (ja) * 1979-04-18 1980-11-06
JPH03252704A (ja) * 1990-03-02 1991-11-12 Mitsubishi Heavy Ind Ltd 回転同期補正制御方式
JPH04197095A (ja) * 1990-11-27 1992-07-16 Matsushita Electric Ind Co Ltd 直交型ロボットの駆動制御装置
JP2001273037A (ja) * 2000-03-27 2001-10-05 Fanuc Ltd サーボ制御装置
JP2003345442A (ja) * 2002-05-27 2003-12-05 Yaskawa Electric Corp 同期制御装置
WO2004092859A1 (ja) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha サーボ制御器
JP2007042068A (ja) * 2005-07-08 2007-02-15 Fanuc Ltd サーボ制御装置
JP2007272367A (ja) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp 複数軸同期システム及びその制御方法
JP2010178510A (ja) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp モータ同期制御装置
JP2011172317A (ja) * 2010-02-16 2011-09-01 Sanyo Denki Co Ltd モータ制御装置
JP2013121287A (ja) * 2011-12-08 2013-06-17 Sanyo Denki Co Ltd モータ制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3252704B2 (ja) 1996-05-08 2002-02-04 日本鋼管株式会社 酸洗性および表面性状に優れた熱延鋼板の製造方法
US5923132A (en) * 1998-04-23 1999-07-13 Allen-Bradley Company, Llc Method and apparatus for synchrononous multi-axis servo path planning
DE69939393D1 (de) * 1998-09-28 2008-10-02 Yaskawa Denki Kitakyushu Kk Positionssteuerung
WO2000057271A1 (fr) 1999-03-24 2000-09-28 Fujitsu Limited Appareil d'assistance a l'ecriture d'un programme d'interface utilisateur graphique, procede d'assistance associe et support d'enregistrement pour programme d'assistance a l'ecriture
JP2006011631A (ja) * 2004-06-23 2006-01-12 Yaskawa Electric Corp サーボ制御システムおよびサーボ制御方法
CN100539388C (zh) * 2007-12-29 2009-09-09 浙江工业大学 多电机协调控制系统
FI121130B (fi) * 2008-02-29 2010-07-15 Vacon Oyj Sähkömoottorin kytkeminen syöttöverkkoon
JP4540727B2 (ja) * 2008-07-31 2010-09-08 山洋電気株式会社 モータ制御装置
TWI403871B (zh) * 2010-10-25 2013-08-01 Ind Tech Res Inst 伺服馬達驅動之回授切換裝置及方法
US9054608B2 (en) * 2011-02-21 2015-06-09 Mitsubishi Electric Corporation Electric motor control system and communication method
CN203504458U (zh) * 2013-10-28 2014-03-26 扬州曙光光电自控有限责任公司 一种带消隙控制和主从控制的交流伺服驱动器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153894U (ja) * 1979-04-18 1980-11-06
JPH03252704A (ja) * 1990-03-02 1991-11-12 Mitsubishi Heavy Ind Ltd 回転同期補正制御方式
JPH04197095A (ja) * 1990-11-27 1992-07-16 Matsushita Electric Ind Co Ltd 直交型ロボットの駆動制御装置
JP2001273037A (ja) * 2000-03-27 2001-10-05 Fanuc Ltd サーボ制御装置
JP2003345442A (ja) * 2002-05-27 2003-12-05 Yaskawa Electric Corp 同期制御装置
WO2004092859A1 (ja) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha サーボ制御器
JP2007042068A (ja) * 2005-07-08 2007-02-15 Fanuc Ltd サーボ制御装置
JP2007272367A (ja) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp 複数軸同期システム及びその制御方法
JP2010178510A (ja) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp モータ同期制御装置
JP2011172317A (ja) * 2010-02-16 2011-09-01 Sanyo Denki Co Ltd モータ制御装置
JP2013121287A (ja) * 2011-12-08 2013-06-17 Sanyo Denki Co Ltd モータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151889A (ja) * 2017-03-14 2018-09-27 オムロン株式会社 処理装置、パラメータ調整方法、及びパラメータ調整プログラム
CN110703687A (zh) * 2019-09-27 2020-01-17 上海畲贡自动化科技有限公司 一种误差补偿系统及方法
EP4340207A1 (en) * 2022-09-15 2024-03-20 Ningbo Gauss Robot Co., Ltd Force control method and system for multi-motor synchronization

Also Published As

Publication number Publication date
TWI683196B (zh) 2020-01-21
CN105897069B (zh) 2021-09-14
JP7049754B2 (ja) 2022-04-07
TW201633029A (zh) 2016-09-16
CN105897069A (zh) 2016-08-24
PH12016000059B1 (en) 2017-09-11
PH12016000059A1 (en) 2017-09-11

Similar Documents

Publication Publication Date Title
US7671553B2 (en) Servo controller
JP4944806B2 (ja) 位置制御装置
JP6653542B2 (ja) モータ制御装置
JP7049754B2 (ja) モータ制御装置
JP5919346B2 (ja) 軸間干渉を補正するモータ制御装置
CN103167737B (zh) 电动机控制装置
JP6899099B2 (ja) 機械制御システム、機械制御装置、及び制振指令生成方法
JP4867105B2 (ja) 数値制御装置
JP4226420B2 (ja) 位置制御装置
JP2016163370A (ja) モータ制御装置
JP2006190074A (ja) 同期制御装置
JP5441944B2 (ja) モータ制御装置
JP6391489B2 (ja) モータ制御装置
JP6725748B2 (ja) 位置決め制御装置の外乱非干渉化補償システム及び部品実装機
JP4134599B2 (ja) 同期制御装置
JP5662836B2 (ja) 同期制御装置と同期制御方法
JP2005269758A (ja) モータ制御装置
JP5063981B2 (ja) 電動機の位置制御装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200108

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200519

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200929

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210421

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211102

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211109

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220201

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220308

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7049754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150