JP2016144830A - 製造設備列および熱電発電方法 - Google Patents
製造設備列および熱電発電方法 Download PDFInfo
- Publication number
- JP2016144830A JP2016144830A JP2016049830A JP2016049830A JP2016144830A JP 2016144830 A JP2016144830 A JP 2016144830A JP 2016049830 A JP2016049830 A JP 2016049830A JP 2016049830 A JP2016049830 A JP 2016049830A JP 2016144830 A JP2016144830 A JP 2016144830A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- thermoelectric power
- slab
- generation unit
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 87
- 239000010959 steel Substances 0.000 claims abstract description 87
- 238000005096 rolling process Methods 0.000 claims abstract description 64
- 238000005266 casting Methods 0.000 claims abstract description 32
- 238000005098 hot rolling Methods 0.000 claims abstract description 20
- 238000010248 power generation Methods 0.000 claims description 475
- 239000000463 material Substances 0.000 claims description 55
- 238000001816 cooling Methods 0.000 claims description 26
- 230000006698 induction Effects 0.000 claims description 20
- 238000005520 cutting process Methods 0.000 claims description 18
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 33
- 238000009434 installation Methods 0.000 description 32
- 230000008859 change Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Hybrid Cells (AREA)
Abstract
Description
また、上記製造設備列が、鋳造および圧延を連続して施す鋼板製造工程における熱間スラブ或いは熱延板の熱エネルギーを電気エネルギーに変換して回収する熱電発電装置を備えた鋳造および圧延を行う鋼板製造設備列であり、さらにそれを用いた熱電発電方法に関するものである。
近年、製鉄工場等の製造設備では、例えば、上記のような熱電発電素子を用いた発電により、これまで廃熱として棄ててきたエネルギー、例えば、スラブ、粗バーおよび熱延鋼帯などの鋼材の輻射による熱エネルギーを利用する取組みが推進されている。
特許文献2には、廃熱として処理されている熱エネルギーに、熱電素子モジュールを接触させて電気エネルギーに変換し、回収する方法が記載されている。
特許文献3には、冷却床において冷却材料から大気中に放散される熱量を電力として回収する方法について記載されている。
特許文献4には、レイクの熱伝導によって高温材料の熱エネルギーを効率的に電気エネルギーに変換することができる熱回収方法及び冷却床について記載されている。
特許文献5には、熱間圧延ラインにおける金属材料の処理により発生する熱を回収して、電力として貯蔵する熱回収装置について記載されている。
また、特許文献2では、モジュールを、熱源に対して固定する必要があるため、熱間圧延設備などのように、移動する熱源に対しては、当該技術を適用できないという問題がある。
特許文献3には、中・高温部の材料温度が300℃以上あり、その輻射熱と材料を冷却した後の対流熱を用いるという記載はあるものの、実操業における高温材料の温度変化や、高温材料の変動による放出熱量(熱エネルギー)の変動など、操業条件の変動による熱源温度の変化については記載されていない。
特許文献4に記載の技術は、熱伝導による熱回収のみに特化したものであり、実操業における高温材料の温度変化や、高温材料の変動による放出熱量(熱エネルギー)の変動など、操業条件の変動による熱源温度の変化については考慮されていない。
特許文献5に記載の技術は、上記実操業上の考慮がないことに加え、同文献中に記載されている電力貯蔵手段は必ずしも必要ではない。
本発明は上記知見に立脚するものである
1.移動する熱源を有する製鉄所の製造設備列において、
上記製造設備列は、熱電発電ユニットを有する熱電発電装置を備えると共に、該熱電発電ユニットは、上記熱源に対峙し、さらに該熱源のうち少なくとも一の温度、および/または該熱電発電ユニットの出力に応じて設置された製造設備列。
前記熱電発電ユニットは、粗圧延機前から熱延鋼帯搬送路に至るまでのいずれかの位置で、スラブ、粗バーおよび熱延鋼帯に対峙し、さらに該スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された前記1に記載の製造設備列。
前記熱電発電ユニットは、上記スラブ鋳造機のスラブ冷却装置およびスラブ切断装置における、スラブ冷却装置出側、スラブ切断装置内およびスラブ切断装置出側、並びに、上記圧延ラインの保持炉、誘導炉、圧延機およびローラーテーブルにおける保持炉の前、保持炉の後、誘導炉の前、誘導炉の後、圧延機の前、圧延機の後、ローラーテーブル上およびローラーテーブル間のうちから選ばれる少なくとも一の位置で、スラブおよび/または熱延板に対峙し、さらにスラブおよび熱延板のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された前記1に記載の製造設備列。
図1は、本発明の熱電発電装置の一実施形態を説明する模式図である。図中、1は熱電発電ユニットおよび2は熱源である。
本発明において、熱電発電装置は、熱源2に対峙して、熱源2の温度および/または熱電発電ユニットの出力に応じて配置された熱電発電ユニット1を具備している。
また、本発明の熱電発電装置は、スラブ等の幅方向および長手方向に少なくとも一つの、熱電発電ユニットを具備している。そして、その熱電発電ユニットは、スラブ等に対峙する受熱手段と、少なくとも一つの熱電発電モジュールと、放熱手段とを有する。
なお、アルミニウムは融点が低いため、熱源に応じた熱設計を行い、熱に耐えられる場合に使用することができる。また、セラミックスは、熱伝導率が小さいため、受熱手段の中で温度差がついてしまうが、スラブ等とスラブ等の間に熱源が無い状態が発生する箇所においては、蓄熱効果も期待できるので使用することが可能である。
また、熱電発電ユニットの低温側をスプレー冷却などで水冷しても、低温側は効率よく冷却される。特に、熱電発電ユニットを熱源より下方に設置する場合には、スプレー冷却を適用しても、スプレーを適切に配置すれば、残水はテーブル下に落下して、熱電発電ユニットの高温側を冷却することなく、熱電発電ユニットの低温側は効率よく冷却される。スプレー冷却を行う場合には、スプレー冷媒が接触して冷却される側が放熱手段となる。
受熱手段7および/または放熱手段8である冷却板自体が絶縁材であったり、表面に絶縁材が被覆されたりしている場合は、絶縁材の代替としても良い。図中、1は熱電発電ユニット、3は熱電素子、4は電極、6は絶縁材、5は熱電発電モジュール、7は受熱手段および8は放熱手段である。
なお、本発明に従う熱電発電モジュールの大きさは、1×10-2m2以下とすることが好ましい。モジュールの大きさを上述程度とすることで熱電発電モジュールの変形を抑制することができるからである。より好ましくは、2.5×10-3m2以下である。
また、熱電発電ユニットの大きさは、1m2以下とすることが好ましい。ユニットを1m2以下とすることで熱電発電モジュールの相互間や、熱電発電ユニット自体の変形を抑制することができるからである。より好ましくは、2.5×10-1m2以下である。なお、本発明では、上記した熱電発電ユニットを複数個同時に用いることができる。
なお、本発明における熱電発電装置(熱電発電ユニット)の設置は、スラブ等の上方に限らず下方にも設置することができ、設置箇所も1箇所に限らず、複数箇所でも良い。
鋳造機の後に配置された保持炉は、通常のガスバーナー炉とすることができる。保持炉と誘導炉の配置は順序が入れ替わっていても良い。また、バッチ圧延の場合に使用する加熱炉を用いても良い。
また、鋳造機11と保持炉12の間にはシャー18が、そして粗圧延機14の後にはシャー19が配置され、仕上げ圧延機15の後ろにはストリップシャー20が配置されている。
例えば、加熱炉から出たスラブが粗圧延機に到達するまでの搬送テーブル上(図3A)で、加熱時などに表面に生成した酸化スケールを取り除くデスケーリング装置の入側あるいは出側や、スラブの幅調整を行うサイジングプレス付近、粗圧延機付近(図3B)、または仕上げ圧延機前で粗バーが比較的長時間滞留する仕上げ圧延前のデスケーリング装置より上流側(図3C)、仕上げ圧延機内(図3D)、熱延鋼帯搬送路上(図3E)などが挙げられる。
上記のカバーに、本発明に従う熱電発電ユニットを取り付けることができる。
ここでの粗バーの温度は、おおよそ1100℃前後であるが、片側を冷却して発電に必要な温度差を確保するために、放熱手段を設けることで熱電ユニットの発電効率は効果的に向上する。
そして、スラブ等の温度と最も熱電発電の効率のよい距離との関係をあらかじめ求めておけば、上記の温度計の測定値に応じて、上記した熱電発電ユニットとスラブ等との距離を、その温度変動に応じて適切に変更することができるからである。
また、上記熱電発電モジュール間隔で、熱延鋼帯や熱延板の温度が1000℃の場合は、熱電発電ユニットと熱延鋼帯との距離を280mmに、また熱延鋼帯の温度が950℃の場合は、上記距離を90mmに制御すると、最も効率の良い熱電発電を行うことができる。
上掲図5に示したような関係を求めることで、熱電発電ユニットの出力に応じて、鋼材と熱電発電ユニットの距離を調節することが可能である。本発明では、上記した鋼材の代わりに熱源をスラブ等とし、熱電発電ユニットの出力が大きくなるように熱電発電ユニットとスラブ等との距離を調整する。その際、実測出力を用いても良いし、スラブ等の温度などから予測される出力値を用いても良い。
上述したように熱電発電ユニットの出力は、定格出力となるように設定するのが好ましいが、熱電素子が壊れないように、熱電発電ユニットの耐熱温度上限を考慮して設定する必要がある。耐熱上限を考慮した場合は、発電出力比の目標を適宜下げることができるが、0.7程度までとすることが好ましい。
ここに、幅方向の温度分布は、スラブ等の板端から板厚の2倍程度の位置で急激に低下する場合が多いので、上記したように距離を制御することが好ましい。というのは、スラブ等の端部であって、上記の位置に相当する部分は、当該部分を移動させる電力に対して、得られる電力が少ないという結果になる可能性が大きいためである。
なお、この実施形態に対し、熱電発電ユニットとスラブ等との距離を制御する手段をさらに付加すれば、実操業における熱源の温度変動等があった場合でも、適切に熱電発電ユニットとスラブ等との距離を制御して、一層効率良く発電できる熱電発電装置とすることができる。
かかる装置もまた、温度の変更があまりない連続ラインに向いている。というのは、スラブ等の幅方向(スラブ等の進行方向に直角な方向)の温度分布および/または熱電発電ユニットの出力を、あらかじめ測定して、上記した配置密度に反映することで、単に一定間隔で熱電発電ユニットを設置した場合に比べて、熱電発電ユニットの発電効率を最適化することができるからである。
例えば、図6において、熱源が温度:1200℃のスラブや粗バーの場合、熱電発電ユニットとスラブや粗バーとの距離を640mmとし、ユニット中央部分の熱電発電モジュールの配置を55mm間隔で、端部分は60mm間隔とし、また、熱源が温度:1000℃の熱延鋼帯の場合、熱電発電ユニットと熱延鋼帯との距離を280mmとし、ユニット中央部分の熱電発電モジュールの配置を60mm間隔で、端部分は63mm間隔とすると、効率良く熱電発電が行える。また、前掲図5に示した熱電発電ユニット中の熱電発電モジュール間隔をパラメータとして、熱電発電ユニットの出力を調査し、調査した結果を、本発明の熱電発電モジュール間隔設定データとして用いても良い。
なお、上記の実施形態は、ユニット中の熱電発電モジュールの配置を粗密にしても良いし、ユニット自体を粗密に設置しても良い。
なお、熱反射材は、図7(A)に示したように、スラブ等(熱源2)の両脇(図中、スラブ等の進行方向は、図面奥から手前である。)に、設置するのが集熱効率の点で好ましい。
この実施形態は、図7に示したように、熱電発電ユニットの任意の箇所に集熱をさせることができるので、以下に述べるように、熱電発電装置の設置裕度が一層向上するという利点がある。
なお、本発明における熱反射材としては、熱エネルギー(赤外線)を反射できるものであれば特に定めはなく、鏡面仕上げをした鉄などの金属や耐熱タイル等に錫メッキを施したものなど、設置場所、物品の調達コスト等を考慮して、適宜選択することができる。
本発明における熱電発電ユニットは、図8(A)および(B)に示したように、スラブ等(熱源2)の外周部を囲む形状とすることもできる。
また、図8(A)にしたように、本発明にかかる熱電発電装置は、少なくとも1箇所の開口部を設けることができる。
従って、図中例示した、距離:aおよびcは、上述した距離:duに相当するものとすれば、距離:bおよびdは、上述した距離:dsに相当するものとなる。なお、図中同一の記号で表したbは、それぞれが異なる距離であっても良いが、それぞれの距離が上記duおよびdsの関係を満足していることが重要である。
このように、本発明では、熱源と熱電発電ユニットとの距離を、同一装置内であっても、適宜変えることができる。
上記の移動する手段としては、熱電発電ユニットを一体で上下に昇降移動できるものが挙げられる。また、前後左右に移動できるものであっても、特に問題はなく使用できる。
なお、温度変動が少ないところでは、距離を制御する手段として、例えば、熱電発電ユニットなどを、鉄板にボルトで固定し、熱電発電ユニットの移動時には、当該ボルトを緩めて適宜移動させ、再び、当該ボルトで固定するなどの手段を採用しても構わない。また、本発明では、複数の熱電発電ユニットを有する熱電発電装置としても良く、このように複数の熱電発電ユニット有する場合は、少なくとも一つの熱電発電ユニットに移動手段を有していれば良い。
なお、製造開始もしくは終了時などの非定常状態においては、スラブ等の高さ変動などに起因する装置の破損を防ぐため、発電領域から非発電領域の退避位置に移動させたり、再度発電領域に移動させたりすることができる。
すなわち、生成される電力予測により、熱電発電ユニットを稼動させる電力が、発電電力より小さいと予測される場合は、熱電発電ユニットを動作させなくてよい。さらに、熱電素子の耐熱温度を超えることが予測される場合は、熱電発電ユニットを、少なくとも耐熱温度以下となるまで退避させるのが好ましい。
また、上記稼働判断手段は、熱電発電ユニットの出力に応じ、発電領域から非発電領域への移動の可否を判断することができる。
もちろん、本発明は、全ての実施形態の機能を同時に備えていても良いことは言うまでもない。
また、本発明に従う熱電発電方法は、図1および6乃至8に示したように、熱電発電ユニットの設置形態を変更したり、熱反射材を備えたりした熱電発電装置を用いることもでき、その際、前述した複数の実施形態にかかる熱電発電装置を併せて用いることができる。特に、稼働判断手段を用いることは、安定的なライン操業に効果的に作用する。
図2に記載した構成の熱電発電ユニットであって、1m2の面積を有する熱電発電ユニットを用い、発明例1として、熱間スラブ温度が1200℃の場合、熱電発電ユニットと熱間スラブとの距離を720mmに、熱間スラブ温度が1100℃の場合、上記距離を530mmに、それぞれ制御した。一方、比較例1は、発明例1と同じ熱電発電ユニットを用い、上記距離を720mmに固定した。なお、熱間スラブ(以下、単にスラブという)は幅:900mm、厚み:250mmとした。
それぞれ、スラブ温度が1200℃で0.5時間、スラブ温度が1100℃(本実施例では、単にスラブ温度といった場合は、鋼板の中央部分の温度を意味する。)で0.5時間の熱電発電を行った。なお、本実施例は、図3に記載の装置の設置場所Aにおいて実施した。
その結果、発明例1では、5kWの発電することができたのに対し、比較例1では、スラブ温度が変化した際に発電量が低下して、2kWの発電量となった。
発明例2は、実施例1と同じ大きさの熱電発電ユニットを用いて図1に示した構成とし、中央部分は、熱電発電ユニットとスラブとの距離を720mmに、その他、幅端部(スラブの幅端面から幅方向におよそ80mm以内の部分を示す。以下、単に幅端部と言った場合は、その範囲を意味する。)はその距離を640mmに制御した。一方、比較例2は、実施例1と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例2では、5kWの発電量を達成したのに対し、比較例2では、2kWの発電量にとどまった。
発明例3は、実施例1と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニットとスラブとの距離を640mmとし、熱電発電ユニット中の熱電発電モジュールの配置を、図6の中央部分で55mm間隔とし、その他、幅端部で60mm間隔とした。一方、比較例3は、実施例1と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例3では、5kWの発電量を達成したのに対し、比較例3では、2kWの発電量にとどまった。
発明例4は、実施例1と同じ大きさの熱電発電ユニットを用いて図7(A)に示した構成とし、熱電発電ユニットを平面的に設置して、さらに熱を集約する熱反射材を設置した。一方、比較例4は、実施例1と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例4では、5kWの発電量を達成したのに対し、比較例4では、2kWの発電量にとどまった。
発明例5は、実施例1と同じ大きさの熱電発電ユニットを用い、スラブの直上における温度が1200℃の場合、熱電発電ユニットとスラブとの距離を720mmとし、上記温度が1100℃の場合、その距離を530mmとした。さらに、熱電発電ユニットの端においては、上記距離を、それぞれ、640mm、430mmに制御した。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
上記温度が1200℃で0.5時間、上記温度が1100℃で0.5時間の熱電発電を行ったところ、発明例5では、6kWの発電量を実現した。
発明例6は、実施例1と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールを中央部分では55mm間隔に配置し、その他、幅端部で60mm間隔とした。さらに、スラブ温度が1200℃の場合、ユニットとスラブとの距離を640mmに、またスラブ温度が1100℃の場合は、その距離を430mmに制御した。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
スラブ温度が1200℃で0.5時間、スラブ温度が1100℃で0.5時間の熱電発電を行ったところ、発明例6では、6kWの発電量を実現した。
発明例7は、実施例1と同じ大きさの熱電発電ユニットを用いて、スラブ温度が1200℃の場合、熱電発電ユニットとスラブとの距離を580mmに、スラブ温度が1100℃の場合、その距離を350mmに制御した。さらに、熱電発電ユニットの端部における上記距離を、それぞれ、540mm、300mmに制御した。加えて、熱電発電ユニット中の熱電発電モジュールを中央部分は52mm間隔に配置し、その他、幅端部で55mm間隔とした。なお、本実施例は、実施例1と同じ大きさのスラブを用い、同一の場所で実施した。
スラブ温度が1200℃で0.5時間、スラブ温度が1100℃で0.5時間の熱電発電を行ったところ、発明例7では、7kWの発電量を実現した。
発明例8は、実施例1と同じ大きさの熱電発電ユニットを用いて、粗バー温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を280mmに、粗バー温度が950℃の場合、上記距離を90mmに、それぞれ制御した。一方、比較例5は、実施例1と同じ大きさの熱電発電ユニットを用い、上記距離を280mmに固定した。
それぞれ、粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行った。なお、本実施例は、図3に記載の装置の設置場所Cにおいて実施した。また、粗バーは、幅:900mm、厚み:40mmとした。
その結果、発明例8では、5kWの発電することができたのに対し、比較例5では、粗バー温度が変化した際に発電量が低下して、2kWの発電量となった。
発明例9は、実施例1と同じ大きさの熱電発電ユニットを用いて図1に示した構成とし、中央部分は、熱電発電ユニットと粗バーとの距離を280mmに、その他、鋼材幅端部(粗バーの幅端面から幅方向におよそ80mm以内の範囲を示す。以下、単に鋼材幅端部と言った場合は、同じ範囲を意味する。)はその距離を200mmに制御した一方、比較例6は実施例1と同じ大きさの熱電発電ユニットを用いて、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例9では、5kWの発電量を達成したのに対し、比較例6では、2kWの発電量にとどまった。
発明例10は、実施例1と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニットと粗バーとの距離を200mmに、熱電発電ユニット中の熱電発電モジュールの配置を、図6の中央部分で58mm間隔とし、その他、鋼材幅端部で60mm間隔とした。一方、比較例7は、実施例1と同じ大きさの熱電発電ユニットを用い、熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例10では、5kWの発電量を達成したのに対し、比較例7では、2kWの発電量にとどまった。
発明例11は、実施例1と同じ大きさの熱電発電ユニットを用いて図7(A)に示した構成とし、熱電発電ユニットを平面的に設置し、さらに熱を集約する熱反射材を設置した。一方、比較例8は、実施例1と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例11では、5kWの発電量を達成したのに対し、比較例8では、2kWの発電量にとどまった。
発明例12は、実施例1と同じ大きさの熱電発電ユニットを用い、粗バーの直上における温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を280mmに、上記温度が950℃の場合、その距離を90mmに制御した。さらに、熱電発電ユニットの端においては、上記距離を、それぞれ、200mm、40mmに制御した。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行ったところ、発明例12では、6kWの発電量を実現した。
発明例13は、実施例1と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールを中央部分では58mm間隔に配置し、その他、鋼材幅端部では60mm間隔配置とし、さらに、粗バー温度が1000℃の場合、ユニットと粗バーとの距離を200mmに、また粗バー温度が950℃の場合は、その距離を40mmに制御した。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行ったところ、発明例13では、6kWの発電量を実現した。
発明例14は、実施例1と同じ大きさの熱電発電ユニットを用いて、粗バー温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を100mmに、粗バー温度が1050℃の場合、その距離を90mmに制御した。さらに、熱電発電ユニットの端部における上記距離を、それぞれ、90mm、80mmに制御した。加えて、熱電発電ユニット中の熱電発電モジュールを、粗バー温度が1000℃の場合、中央部分は55mm間隔に配置し、鋼材幅端部は58mm間隔に配置し、粗バー温度が1050℃の場合、中央部分は50mm間隔に配置し、鋼材幅端部は52mm間隔に配置した。なお、本実施例は、実施例8と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が1050℃で0.5時間の熱電発電を行ったところ、発明例14では、7kWの発電量を実現した。
図2に記載した構成の熱電発電ユニットであって、1m2の面積を有する熱電発電ユニットを用い、発明例15として、熱間スラブ(以下、単にスラブという)温度が1200℃の場合、熱電発電ユニットとスラブとの距離を720mmに、スラブ温度が1100℃の場合、上記距離を530mmに、それぞれ制御した。一方、比較例9は、発明例15と同じ熱電発電ユニットを用い、上記距離を720mmに固定した。なお、なお、スラブは幅:900mm、厚み:250mmとした。
それぞれ、スラブ温度が1200℃で0.5時間、スラブ温度が1100℃(本実施例では、単にスラブ温度といった場合は、スラブの中央部分の温度を意味する。)で0.5時間の熱電発電を行った。なお、本実施例は、図4に記載の装置の設置場所Fにおいて実施した。
その結果、発明例15では、5kWの発電することができたのに対し、比較例9では、スラブ温度が変化した際に発電量が低下して、2kWの発電量となった。
発明例16は、実施例15と同じ大きさの熱電発電ユニットを用いて図1に示した構成とし、中央部分は、熱電発電ユニットとスラブとの距離を720mmに、その他、幅端部(スラブの幅端面から幅方向におよそ80mm以内の部分を示す。以下、単に幅端部と言った場合は、その範囲を意味する。)はその距離を640mmに制御した。一方、比較例10は、実施例15と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例16では、5kWの発電量を達成したのに対し、比較例10では、2kWの発電量にとどまった。
発明例17は、実施例1と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールの配置を、図6の中央部分で55mm間隔とし、その他、幅端部で60mm間隔とした。一方、比較例11は、実施例15と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例17では、5kWの発電量を達成したのに対し、比較例11では、2kWの発電量にとどまった。
発明例18は、実施例15と同じ大きさの熱電発電ユニットを用いて図7(A)に示した構成とし、熱電発電ユニットを平面的に設置して、さらに熱を集約する熱反射材を設置した。一方、比較例12は、実施例15と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、スラブ温度が1200℃で1時間の熱電発電を行った。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
その結果、発明例18では、5kWの発電量を達成したのに対し、比較例12では、2kWの発電量にとどまった。
発明例19は、実施例15と同じ大きさの熱電発電ユニットを用い、スラブの直上における温度が1200℃の場合、熱電発電ユニットとスラブとの距離を720mmとし、上記温度が1100℃の場合、その距離を530mmとした。さらに、熱電発電ユニットの端においては、上記距離を、それぞれ、640mm、430mmに制御した。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
上記温度が1200℃で0.5時間、上記温度が1100℃で0.5時間の熱電発電を行ったところ、発明例19では、6kWの発電量を実現した。
発明例20は、実施例15と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールを中央部分では55mm間隔に配置し、その他、幅端部で60mm間隔とした。さらに、スラブ温度が1200℃の場合、ユニットとスラブとの距離を640mmに、またスラブ温度が1100℃の場合は、その距離を430mmに制御した。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
スラブ温度が1200℃で0.5時間、スラブ温度が1100℃で0.5時間の熱電発電を行ったところ、発明例20では、6kWの発電量を実現した。
発明例21は、実施例15と同じ大きさの熱電発電ユニットを用いて、スラブ温度が1200℃の場合、熱電発電ユニットとスラブとの距離を580mmに、スラブ温度が1100℃の場合、その距離を350mmに制御した。さらに、熱電発電ユニットの端部における上記距離を、それぞれ、540mm、300mmに制御した。加えて、熱電発電ユニット中の熱電発電モジュールを中央部分は52mm間隔に配置し、その他、幅端部で55mm間隔とした。なお、本実施例は、実施例15と同じ大きさのスラブを用い、同一の場所で実施した。
スラブ温度が1200℃で0.5時間、スラブ温度が1100℃で0.5時間の熱電発電を行ったところ、発明例21では、7kWの発電量を実現した。
発明例22は、実施例15と同じ大きさの熱電発電ユニットを用いて、粗バー温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を280mmに、粗バー温度が950℃の場合、上記距離を90mmに、それぞれ制御した。一方、比較例13は、実施例15と同じ大きさの熱電発電ユニットを用い、上記距離を280mmに固定した。
それぞれ、粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行った。なお、本実施例は、図4に記載の装置の設置場所Hにおいて実施した。また、粗バーは、幅:900mm、厚み:40mmとした。
その結果、発明例22では、5kWの発電することができたのに対し、比較例13では、粗バー温度が変化した際に発電量が低下して、2kWの発電量となった。
発明例23は、実施例15と同じ大きさの熱電発電ユニットを用いて図1に示した構成とし、中央部分は、熱電発電ユニットと粗バーとの距離を280mmに、その他、鋼材幅端部(粗バーの幅端面から幅方向におよそ80mm以内の範囲を示す。以下、単に鋼材幅端部と言った場合は、同じ範囲を意味する。)はその距離を200mmに制御した一方、比較例14は実施例15と同じ大きさの熱電発電ユニットを用いて、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例23では、5kWの発電量を達成したのに対し、比較例14では、2kWの発電量にとどまった。
発明例24は、実施例15と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールの配置を、図6の中央部分で58mm間隔とし、その他、鋼材幅端部で60mm間隔とした。一方、比較例15は、実施例15と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例24では、5kWの発電量を達成したのに対し、比較例15では、2kWの発電量にとどまった。
発明例25は、実施例15と同じ大きさの熱電発電ユニットを用いて図7(A)に示した構成とし、熱電発電ユニットを平面的に設置し、さらに熱を集約する熱反射材を設置した。一方、比較例16は、実施例15と同じ大きさの熱電発電ユニットを用い、単純に熱電発電ユニットを平面的に設置した。
それぞれ、粗バー温度が1000℃で1時間の熱電発電を行った。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
その結果、発明例25では、5kWの発電量を達成したのに対し、比較例16では、2kWの発電量にとどまった。
発明例26は、実施例15と同じ大きさの熱電発電ユニットを用い、粗バーの直上における温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を280mmに、上記温度が950℃の場合、その距離を90mmに制御した。さらに、熱電発電ユニットの端においては、上記距離を、それぞれ、200mm、40mmに制御した。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行ったところ、発明例26では、6kWの発電量を実現した。
発明例27は、実施例15と同じ大きさの熱電発電ユニットを用いて図6に示した構成とし、熱電発電ユニット中の熱電発電モジュールを中央部分では58mm間隔に配置し、その他、鋼材幅端部では60mm間隔配置とし、さらに、粗バー温度が1000℃の場合、ユニットと粗バーとの距離を200mmに、また粗バー温度が950℃の場合は、その距離を40mmに制御した。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が950℃で0.5時間の熱電発電を行ったところ、発明例27では、6kWの発電量を実現した。
発明例28は、実施例15と同じ大きさの熱電発電ユニットを用いて、粗バー温度が1000℃の場合、熱電発電ユニットと粗バーとの距離を100mmに、粗バー温度が1050℃の場合、その距離を90mmに制御した。さらに、熱電発電ユニットの端部における上記距離を、それぞれ、90mm、80mmに制御した。加えて、熱電発電ユニット中の熱電発電モジュールを、粗バー温度が1000℃の場合、中央部分は55mm間隔に配置し、鋼材幅端部は58mm間隔に配置し、粗バー温度が1050℃の場合、中央部分は50mm間隔に配置し、鋼材幅端部は52mm間隔に配置した。なお、本実施例は、実施例22と同じ大きさの粗バーを用い、同一の場所で実施した。
粗バー温度が1000℃で0.5時間、粗バー温度が1050℃で0.5時間の熱電発電を行ったところ、発明例28では、7kWの発電量を実現した。
2 熱源
3 熱電素子
4 電極
5 熱電発電モジュール
6 絶縁材
7 受熱手段
8 放熱手段
9 タンディッシュ
10 鋳型
11 鋳造機
12 保持炉
13 誘導炉
14 粗圧延機
15 仕上げ圧延機
16 水冷装置
17 コイラー
18,19 シャー
20 ストリップシャー
21 熱反射材
1. 移動する熱源を有する製鉄所の製造設備列において、
上記製造設備列は、熱電発電ユニットを有する熱電発電装置を備えると共に、該熱電発電ユニットは、上記熱源に対峙し、さらに該熱源のうち少なくとも一の温度、および/または該熱電発電ユニットの出力に応じて設置されており、
さらに、前記熱電発電ユニットと前記熱源との距離を制御する移動手段を有し、
前記移動手段が、
予め求めた熱電発電効率のよい距離と熱源温度との関係に基づいて、前記熱源の温度に応じて前記熱電発電ユニットと前記熱源との距離を制御するか、または
予め求めた前記熱源から前記熱電発電ユニットまでの距離と該熱電発電ユニットの出力との関係に基づいて、前記熱電発電ユニットの出力に応じて前記熱電発電ユニットと前記熱源との距離を制御する、製造設備列。
前記熱電発電ユニットは、上記スラブ鋳造機のスラブ冷却装置およびスラブ切断装置における、スラブ冷却装置出側、スラブ切断装置内およびスラブ切断装置出側、並びに、上記圧延ラインの保持炉、誘導炉、圧延機およびローラーテーブルにおける保持炉の前、保持炉の後、誘導炉の前、誘導炉の後、圧延機の前、圧延機の後、ローラーテーブル上およびローラーテーブル間のうちから選ばれる少なくとも一の位置で、スラブおよび/または熱延板に対峙し、さらにスラブおよび熱延板のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された前記1に記載の製造設備列。
1. 移動する熱源を有する製鉄所の製造設備列において、
上記製造設備列は、熱電発電ユニットを有する熱電発電装置を備えると共に、該熱電発電ユニットは、上記熱源に対峙し、さらに該熱源のうち少なくとも一の温度、および/または該熱電発電ユニットの出力に応じて設置されており、
さらに、前記熱電発電ユニットと前記熱源との距離を制御する移動手段を有し、
前記移動手段が、
予め求めた熱電発電効率のよい距離と熱源温度との関係に基づいて、前記熱源の温度に応じて前記熱電発電ユニットと前記熱源との距離を制御するか、または
予め求めた前記熱源から前記熱電発電ユニットまでの距離と該熱電発電ユニットの出力との関係に基づいて、前記熱電発電ユニットの出力に応じて前記熱電発電ユニットと前記熱源との距離を制御する、製造設備列。
前記熱電発電ユニットは、上記スラブ鋳造機のスラブ冷却装置およびスラブ切断装置における、スラブ冷却装置出側、スラブ切断装置内およびスラブ切断装置出側、並びに、上記圧延ラインの保持炉、誘導炉、圧延機およびローラーテーブルにおける保持炉の前、保持炉の後、誘導炉の前、誘導炉の後、圧延機の前、圧延機の後、ローラーテーブル上およびローラーテーブル間のうちから選ばれる少なくとも一の位置で、スラブおよび/または熱延板に対峙し、さらにスラブおよび熱延板のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された前記1に記載の製造設備列。
Claims (23)
- 移動する熱源を有する製鉄所の製造設備列において、
上記製造設備列は、熱電発電ユニットを有する熱電発電装置を備えると共に、該熱電発電ユニットは、上記熱源に対峙し、さらに該熱源のうち少なくとも一の温度、および/または該熱電発電ユニットの出力に応じて設置された製造設備列。 - 前記製造設備列が、加熱されたスラブを粗圧延して粗バーとする粗圧延機と、粗バーを仕上げ圧延して熱延鋼帯とする仕上げ圧延機とを備えた熱間圧延設備列であって、
前記熱電発電ユニットは、粗圧延機前から熱延鋼帯搬送路に至るまでのいずれかの位置で、スラブ、粗バーおよび熱延鋼帯に対峙し、さらに該スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された請求項1に記載の製造設備列。 - 前記熱電発電ユニットを、スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の温度および/または熱電発電ユニットの出力に応じ、高温部に対して低温部では近接して設置する請求項2に記載の製造設備列。
- 前記熱電発電ユニット中の熱電発電モジュールを、スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の温度および/または熱電発電ユニットの出力に応じ、低温部に対して高温部を密に配置する請求項2または3に記載の製造設備列。
- 前記熱電発電装置が、スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の温度および/または熱電発電ユニットの出力を測定して求めた温度および/または出力に応じて、該熱電発電ユニットと該スラブ、粗バーおよび熱延鋼帯のうち少なくとも一との距離を制御する移動手段を有する請求項2乃至4のいずれかに記載の製造設備列。
- 前記熱電発電装置が、さらに熱反射材を備える請求項2乃至5のいずれかに記載の製造設備列。
- 前記熱電発電装置が、スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の外周部を囲む形状になる請求項2乃至6のいずれかに記載の製造設備列。
- 前記熱電発電装置は、少なくとも1箇所の開口部が設けられた請求項2乃至7のいずれかに記載の製造設備列。
- 前記移動手段が、熱電発電ユニットの一体移動を行う請求項2乃至8のいずれかに記載の製造設備列。
- 前記熱電発電装置が、さらに、記熱電発電ユニットの出力に応じて、該熱電発電ユニットの稼働非稼働を判断する稼動判断手段を具える請求項2乃至9のいずれかに記載の製造設備列。
- 請求項2乃至10のいずれかに記載の製造設備列を用い、スラブ、粗バーおよび熱延鋼帯のうち少なくとも一の熱を受熱して熱電発電を行う熱電発電方法。
- 前記製造設備列の稼動判断手段を用いて、熱電発電ユニットの稼働を制御する請求項11に記載の熱電発電方法。
- 前記製造設備列が、スラブ鋳造機、および圧延ラインを備える鋳造および圧延を行う鋼板製造設備列であって、
前記熱電発電ユニットは、上記スラブ鋳造機のスラブ冷却装置およびスラブ切断装置における、スラブ冷却装置出側、スラブ切断装置内およびスラブ切断装置出側、並びに、上記圧延ラインの保持炉、誘導炉、圧延機およびローラーテーブルにおける保持炉の前、保持炉の後、誘導炉の前、誘導炉の後、圧延機の前、圧延機の後、ローラーテーブル上およびローラーテーブル間のうちから選ばれる少なくとも一の位置で、スラブおよび/または熱延板に対峙し、さらにスラブおよび熱延板のうち少なくとも一の温度、および/または上記熱電発電ユニットの出力に応じて設置された請求項1に記載の製造設備列。 - 前記熱電発電ユニットを、スラブおよび熱延板のうち少なくとも一の温度および/または熱電発電ユニットの出力に応じ、高温部に対して低温部では近接して設置する請求項13に記載の製造設備列。
- 前記熱電発電ユニット中の熱電発電モジュールを、スラブおよび熱延板のうち少なくとも一の温度および/または熱電発電ユニットの出力に応じ、低温部に対して高温部を密に配置する請求項13または14に記載の製造設備列。
- 前記熱電発電装置が、スラブおよび熱延板のうち少なくとも一の温度および/または熱電発電ユニットの出力を測定して求めた温度および/または出力に応じて、該熱電発電ユニットと該スラブおよび熱延板のうち少なくとも一との距離を制御する移動手段を有する請求項13乃至15のいずれかに記載の製造設備列。
- 前記熱電発電装置が、さらに熱反射材を備える請求項13乃至16のいずれかに記載の製造設備列。
- 前記熱電発電装置が、スラブおよび熱延板のうち少なくとも一の外周部を囲む形状になる請求項13乃至17のいずれかに記載の製造設備列。
- 前記熱電発電装置は、少なくとも1箇所の開口部が設けられた請求項13乃至18のいずれかに記載の製造設備列。
- 前記移動手段が、熱電発電ユニットの一体移動を行う請求項13乃至19のいずれかに記載の製造設備列。
- 前記熱電発電装置が、さらに、記熱電発電ユニットの出力に応じて、熱電発電ユニットの稼働非稼働を判断する稼動判断手段を具える請求項13乃至20のいずれかに記載の製造設備列。
- 請求項13乃至21のいずれかに記載の製造設備列を用い、スラブおよび熱延板のうち少なくとも一の熱を受熱して熱電発電を行う熱電発電方法。
- 前記製造設備列の稼動判断手段を用いて、熱電発電ユニットの稼働を制御する請求項22に記載の熱電発電方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012214934 | 2012-09-27 | ||
JP2012214934 | 2012-09-27 | ||
JP2012227418 | 2012-10-12 | ||
JP2012227418 | 2012-10-12 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014538197A Division JP5958547B2 (ja) | 2012-09-27 | 2013-09-26 | 製造設備列および熱電発電方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016144830A true JP2016144830A (ja) | 2016-08-12 |
JP6217776B2 JP6217776B2 (ja) | 2017-10-25 |
Family
ID=50387558
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014538197A Active JP5958547B2 (ja) | 2012-09-27 | 2013-09-26 | 製造設備列および熱電発電方法 |
JP2016049830A Active JP6217776B2 (ja) | 2012-09-27 | 2016-03-14 | 製造設備列および熱電発電方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014538197A Active JP5958547B2 (ja) | 2012-09-27 | 2013-09-26 | 製造設備列および熱電発電方法 |
Country Status (6)
Country | Link |
---|---|
JP (2) | JP5958547B2 (ja) |
KR (1) | KR101686038B1 (ja) |
CN (2) | CN104703720B (ja) |
IN (1) | IN2015DN01327A (ja) |
TW (2) | TWI629443B (ja) |
WO (1) | WO2014050126A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112019006656A2 (pt) * | 2016-10-04 | 2019-07-02 | Jfe Steel Corp | máquina de corte e método de geração de potência termoelétrica |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198883A (ja) * | 1983-04-21 | 1984-11-10 | Nippon Steel Corp | 高温物体表面放射熱の回収方法 |
JPH10296319A (ja) * | 1997-04-25 | 1998-11-10 | Nippon Steel Corp | 冷却床での廃熱の利用方法 |
WO2000050189A1 (en) * | 1999-02-26 | 2000-08-31 | Giovanni Arvedi | In-line continuous cast-rolling process for thin slabs |
JP2004343898A (ja) * | 2003-05-15 | 2004-12-02 | Komatsu Ltd | 熱電発電装置 |
JP2010200520A (ja) * | 2009-02-26 | 2010-09-09 | Toshiba Corp | 熱電発電装置 |
JP2011062727A (ja) * | 2009-09-17 | 2011-03-31 | Toshiba Mitsubishi-Electric Industrial System Corp | 熱回収装置 |
JP2011176131A (ja) * | 2010-02-24 | 2011-09-08 | Toshiba Corp | 熱電発電装置および熱電発電システム |
JP2012039756A (ja) * | 2010-08-06 | 2012-02-23 | Sintokogio Ltd | 熱電発電ユニット |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6034084A (ja) | 1983-08-05 | 1985-02-21 | Nippon Steel Corp | 熱電素子モジュ−ル |
CN2094850U (zh) * | 1991-07-12 | 1992-01-29 | 李亚平 | 热电耦合继电保护电子镇流器 |
US6297441B1 (en) * | 2000-03-24 | 2001-10-02 | Chris Macris | Thermoelectric device and method of manufacture |
US6959555B2 (en) * | 2001-02-09 | 2005-11-01 | Bsst Llc | High power density thermoelectric systems |
JP3704557B2 (ja) * | 2001-10-29 | 2005-10-12 | 独立行政法人産業技術総合研究所 | 亜鉛、アンチモン及びカドミウムからなる化合物の焼結体及びその製造方法 |
US6914343B2 (en) * | 2001-12-12 | 2005-07-05 | Hi-Z Technology, Inc. | Thermoelectric power from environmental temperature cycles |
GB2437996B (en) * | 2004-05-19 | 2009-02-11 | Central Res Inst Elect | Thermoelectric conversion system and efficiency improving method of thermoelectric conversion system |
CN1773190B (zh) * | 2004-11-12 | 2010-05-05 | 中国科学院电工研究所 | 一种太阳能热电联供系统 |
JP4367362B2 (ja) | 2005-03-24 | 2009-11-18 | 住友金属工業株式会社 | 廃熱回収方法及び冷却床 |
JP4887961B2 (ja) * | 2006-07-31 | 2012-02-29 | 株式会社Ihi | 熱処理装置 |
DE102006040576B4 (de) * | 2006-08-30 | 2009-10-08 | Angaris Gmbh | Verfahren zur Herstellung eines Dünnschicht-Thermogenerators |
JP5198455B2 (ja) * | 2006-09-28 | 2013-05-15 | ローズマウント インコーポレイテッド | 改良された工業用熱電式発電機 |
EP2131406A1 (en) * | 2008-06-02 | 2009-12-09 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same |
CN101576244B (zh) * | 2009-06-16 | 2010-12-01 | 张戈 | 热轧钢材余热回收工艺和余热回收装置 |
JP5523769B2 (ja) * | 2009-08-28 | 2014-06-18 | 株式会社Kelk | 熱電モジュール |
CN201680735U (zh) * | 2010-04-08 | 2010-12-22 | 张淑强 | 炼钢和轧钢过程中钢材冷却和余热回收的发电锅炉 |
CN102647117A (zh) * | 2011-02-22 | 2012-08-22 | 大连创达技术交易市场有限公司 | 一种复合发电方法 |
-
2013
- 2013-09-26 CN CN201380049642.4A patent/CN104703720B/zh active Active
- 2013-09-26 KR KR1020157008446A patent/KR101686038B1/ko active IP Right Grant
- 2013-09-26 WO PCT/JP2013/005747 patent/WO2014050126A1/ja active Application Filing
- 2013-09-26 CN CN201611198433.8A patent/CN106925611A/zh active Pending
- 2013-09-26 JP JP2014538197A patent/JP5958547B2/ja active Active
- 2013-09-26 IN IN1327DEN2015 patent/IN2015DN01327A/en unknown
- 2013-09-27 TW TW105135235A patent/TWI629443B/zh active
- 2013-09-27 TW TW102135269A patent/TWI600869B/zh active
-
2016
- 2016-03-14 JP JP2016049830A patent/JP6217776B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198883A (ja) * | 1983-04-21 | 1984-11-10 | Nippon Steel Corp | 高温物体表面放射熱の回収方法 |
JPH10296319A (ja) * | 1997-04-25 | 1998-11-10 | Nippon Steel Corp | 冷却床での廃熱の利用方法 |
WO2000050189A1 (en) * | 1999-02-26 | 2000-08-31 | Giovanni Arvedi | In-line continuous cast-rolling process for thin slabs |
JP2004343898A (ja) * | 2003-05-15 | 2004-12-02 | Komatsu Ltd | 熱電発電装置 |
JP2010200520A (ja) * | 2009-02-26 | 2010-09-09 | Toshiba Corp | 熱電発電装置 |
JP2011062727A (ja) * | 2009-09-17 | 2011-03-31 | Toshiba Mitsubishi-Electric Industrial System Corp | 熱回収装置 |
JP2011176131A (ja) * | 2010-02-24 | 2011-09-08 | Toshiba Corp | 熱電発電装置および熱電発電システム |
JP2012039756A (ja) * | 2010-08-06 | 2012-02-23 | Sintokogio Ltd | 熱電発電ユニット |
Also Published As
Publication number | Publication date |
---|---|
TW201423013A (zh) | 2014-06-16 |
IN2015DN01327A (ja) | 2015-07-03 |
TWI629443B (zh) | 2018-07-11 |
WO2014050126A1 (ja) | 2014-04-03 |
JP5958547B2 (ja) | 2016-08-02 |
CN104703720A (zh) | 2015-06-10 |
TWI600869B (zh) | 2017-10-01 |
WO2014050126A8 (ja) | 2015-01-22 |
JPWO2014050126A1 (ja) | 2016-08-22 |
CN106925611A (zh) | 2017-07-07 |
TW201706551A (zh) | 2017-02-16 |
JP6217776B2 (ja) | 2017-10-25 |
KR101686038B1 (ko) | 2016-12-13 |
CN104703720B (zh) | 2017-05-24 |
KR20150053269A (ko) | 2015-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5832698B2 (ja) | 熱電発電装置および熱電発電方法 | |
JP5920208B2 (ja) | 連続鋳造設備列およびそれを用いた熱電発電方法 | |
JP5832697B2 (ja) | 熱電発電装置およびそれを用いた熱電発電方法 | |
JP5991131B2 (ja) | 鍛接管設備列およびそれを用いた熱電発電方法 | |
JP6217776B2 (ja) | 製造設備列および熱電発電方法 | |
WO2014050127A1 (ja) | 製造設備列および熱電発電方法 | |
JP5958433B2 (ja) | 鋳造および圧延を行う鋼板製造設備列およびそれを用いた熱電発電方法 | |
JP5998983B2 (ja) | 連続鋳造設備列およびそれを用いた熱電発電方法 | |
JP6011208B2 (ja) | 熱間圧延設備列およびそれを用いた熱電発電方法 | |
JP6311805B2 (ja) | 製鉄所の製造設備列及び熱電発電方法 | |
JP6112154B2 (ja) | 製鉄所の製造設備列及び熱電発電方法 | |
JP5957843B2 (ja) | 熱電発電装置 | |
JP6011221B2 (ja) | 鍛接管設備列およびそれを用いた熱電発電方法 | |
KR20150053270A (ko) | 제조 설비열 및 열전 발전 방법 | |
JP6127655B2 (ja) | 熱電発電装置および熱電発電制御方法 | |
JP6107989B2 (ja) | 熱電発電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6217776 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |