JP2016143447A - リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池 Download PDF

Info

Publication number
JP2016143447A
JP2016143447A JP2015015849A JP2015015849A JP2016143447A JP 2016143447 A JP2016143447 A JP 2016143447A JP 2015015849 A JP2015015849 A JP 2015015849A JP 2015015849 A JP2015015849 A JP 2015015849A JP 2016143447 A JP2016143447 A JP 2016143447A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lithium
transition metal
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015015849A
Other languages
English (en)
Other versions
JP6474033B2 (ja
Inventor
遠藤 大輔
Daisuke Endo
大輔 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015015849A priority Critical patent/JP6474033B2/ja
Publication of JP2016143447A publication Critical patent/JP2016143447A/ja
Application granted granted Critical
Publication of JP6474033B2 publication Critical patent/JP6474033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リチウム過剰型のリチウム遷移金属複合酸化物を正極活物質とする正極を備えたリチウム二次電池において、エネルギー効率が高く、充放電サイクルの進展に伴う開回路電圧(OCV)の低下が抑制されたリチウム二次電池用電極に用いる正極活物質の提供。
【解決手段】α−NaFeO構造を有するリチウム遷移金属複合酸化物であって、Liと遷移金属(Me)とのモル比(Li/Me)が1.15≦Li/Me≦1.24であり、前記遷移金属中のMnのモル比(Mn/Me)が0.52≦Mn/Me≦0.66であり、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅(FWHM(104))が0.285≦FWHM(104)≦0.335である結晶構造を有する、リチウム二次電池用正極活物質。
【選択図】なし

Description

本発明は、リチウム遷移金属複合酸化物を含む正極活物質を有するリチウム二次電池に関する。
従来、リチウム二次電池には、正極活物質に用いるリチウム遷移金属複合酸化物として、α−NaFeO型結晶構造を有する「LiMeO型」活物質(Meは遷移金属)が検討され、LiCoOが広く実用化されていた。LiCoOを正極活物質として用いたリチウム二次電池は、放電容量が120〜130mAh/g程度であった。
充放電サイクル性能の点でも優れる「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、LiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3は、150〜180mAh/gの放電容量を有する。
前記Meとして、地球資源として豊富なMnを用いることが望まれていた。しかし、Meに対するMnのモル比Mn/Meが0.5を超える「LiMeO型」活物質は、充電に伴いα−NaFeO型からスピネル型へと構造変化が起こり、結晶構造が維持できず、充放電サイクル性能が著しく劣るという問題があった。
そこで、近年、上記のような「LiMeO型」活物質に対し、遷移金属(Me)に対するリチウムのモル比Li/Meが1を超え、マンガン(Mn)のモル比Mn/Meが0.5を超え、充電をしてもα−NaFeO構造を維持できる「リチウム過剰型」の活物質が提案された。
特許文献1には、「α−NaFeO型結晶構造を有し、組成式Li1+αMe1−α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表され、前記遷移金属元素Meに対するLiのモル比Li/Meが1.2〜1.6であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記遷移金属元素Me中のCoのモル比Co/Meが0.02〜0.23であり、前記遷移金属元素Me中のMnのモル比Mn/Meが0.62〜0.72であり、電位5.0V(vs.Li/Li)まで電気化学的に酸化したとき、エックス線回折図上空間群R3−mに帰属される単一相として観察されるものであることを特徴とする非水電解質二次電池用正極活物質。」(請求項1)の発明が記載され、この正極活物質を使用することにより、放電容量が大きく、充放電サイクル性能が優れた非水電解質二次電池、さらには、これらの効果に加えて、初期効率、高率放電性能が優れた非水電解質二次電池を提供できることが示されている。
特許文献2には、「Li硝酸塩、並びに水に可溶なM及びM’の金属塩を原料として調製された複合酸化物であって、X(LiMO)・(1−X)LiM’O(ここで、0<X<1、Mは、少なくともNiを含む1種以上の平均原子価3価の金属を示し、M’は、少なくともMnを含む1種以上の平均原子価4価の金属を示す。)で表される組成を有し、X線回折測定における21°付近の超格子に由来する回折ピーク強度をI(21°)、(003)面、(101)面、及び(104)面の結晶面回折強度をそれぞれI(003)、I(101)、I(104)とした時、0<I(21°)/I(003)≦0.06、2.0≦I(003)/I(104)≦5.0、及び0.4≦I(101)/I(104)≦0.5を同時に満たす、複合酸化物。」(請求項1)、「前記(003)面及び(104)面の半価幅をそれぞれH(003)、H(104)とした時、0.05°≦H(003)≦0.2°、0.25°≦H(104)≦0.4°を同時に満たす、請求項1記載の複合酸化物。」(請求項2)の発明が記載されており、この複合酸化物を正極活物質に用いることにより、高い電気容量を有する電池を提供することが記載されている。また、正極活物質として、モル比Li/(M+M’)が1.5(1.2/0.8)、Mn/(M+M’)が0.656(0.525/0.8)の実施例1〜3、及びモル比Li/(M+M’)が1.3(1.3/1.0)、Mn/(M+M’)が0.727(0.509/0.7)の実施例4が記載されている。
特許文献3には、「組成式Li1+αMe1−α(MeはCo、Ni及びMnを含む遷移金属元素、1.2<(1+α)/(1−α)<1.6)で表されるリチウム遷移金属複合酸化物を含有するリチウム二次電池用正極活物質であって、前記Me中のCoのモル比Co/Meが0.24〜0.36であり、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(003)面に帰属される回折ピークの半値幅が0.204°〜0.303°の範囲であるか、又は、(104)面に帰属される回折ピークの半値幅が0.278°〜0.424°の範囲であることを特徴とするリチウム二次電池用正極活物質」(請求項1)の発明が記載されており、放電容量が大きいだけでなく、高率放電性能が優れた活物質を提供することが記載されている。また、Li/Me比が1.25〜1.5、Mn/Me比が0.44〜0.59の実施例1〜13が記載されている。
特許文献4には、「α−NaFeO型結晶構造を有し、組成式Li1+αMe1−α(MeはMn、Ni及びCoを含む遷移金属元素、0<α<1)で表され、1.250≦(1+α)/(1−α)≦1.425であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.20°〜0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°〜0.39°であり、電位5.0V(vs.Li/Li+)まで電気化学的に酸化したときに、エックス線回折図上、六方晶(空間群R3−m)に帰属される単一相として観察されるものであることを特徴とする非水電解質二次電池用活物質。」(請求項1)、「前記非水電解質二次電池用活物質は、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.208°〜0.247°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.266°〜0.335°であることを特徴とする請求項1に記載の非水電解質二次電池用活物質。」(請求項2)について、「エックス線回折図上2θ=18.6°±1°の回折ピークの半値幅が0.208°〜0.247°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.266°〜0.335°の範囲にある実施例3〜5、8〜33に係るリチウム遷移金属複合酸化物を用いることにより、低温における放電容量を優れたものとすることができることがわかった。」([0128])と記載され、Li/Me比が1.25〜1.425、Mn/Meが0.63〜0.72の実施例が示されている。
WO2012/091015 特開2014−10909号公報 特開2014−44928号公報 WO2013/121654
「リチウム過剰型」活物質の放電容量は、概して、「LiMeO型」活物質よりも大きなエネルギー密度を有するから、この活物質を正極に用いたリチウム二次電池は、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車といった自動車分野への適用が検討されている。
従来から、「リチウム過剰型」正極活物質について、放電容量や高率放電性能、低温特性等についての検討が行われており、X線回折測定において現れるピークの半値幅と、これらの諸特性との関係にも着目されている。
ところで、自動車分野に使用される電池においては、エネルギー密度が大きいだけでなく、電池の充電率(SOC)を正確に把握する必要がある。SOCは、通常、開回路電圧(OCV)を基準として判断される。しかし、上記の活物質を用いた電池には、充放電サイクルを重ねるごとにOCVが低下するという現象が見られる。これに対して、「LiMeO型」は、OCVに顕著な変動が見られない。したがって、「LiMeO型」であるLiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3から、より高エネルギー密度の「リチウム過剰型」の活物質に置き換えていくためには、OCVの低下という課題を解決しなければならない。
なお、上記の活物質を用いた電池が充放電サイクルを重ねるごとにOCVが低下する理由は、明らかでない。本発明者は、未確認ではあるが、正極活物質が、充放電の繰り返しに伴って、層状型結晶構造からスピネル型結晶構造へと徐々にごくわずか変化することが原因ではないかと推察している。
本発明は、上記課題に鑑みなされたものであって、エネルギー密度が高く、充放電サイクルを重ねてもOCVの低下が抑制された(以下、「OCVが安定化した」ともいう。)リチウム二次電池用正極活物質、その正極活物質を含む電極、及びその電極を用いたリチウム二次電池を提供することを課題とする。
本発明者らは、上記目的を達成するために、「リチウム過剰型」活物質について、Li/Me比、Mn/Me比、及び結晶性について種々検討したところ、以下の条件を満たす複合酸化物が、高エネルギー密度を保ちつつ、充放電サイクルの繰り返しに伴うOCV低下を抑制するリチウム二次電池用正極活物質活物質となり得ることを見出した。
すなわち、本発明は、以下の構成を有する。
(1)α−NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、
前記リチウム遷移金属複合酸化物は、リチウム(Li)と遷移金属(Me)のモル比(Li/Me)が1.15≦Li/Me≦1.24であり、前記遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属中のMnのモル比(Mn/Me)が0.52≦Mn/Me≦0.66であり、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅(FWHM(104))が0.285≦FWHM(104)≦0.335であるリチウム二次電池用正極活物質。
(2)前記(1)の正極活物質を含むリチウム二次電池用電極。
(3)前記(2)の電極を有するリチウム二次電池。
本発明は、エネルギー密度が高く、充放電を繰り返した場合のOCVが安定化したリチウム二次電池用電極に用いる正極活物質を提供することができる。
本発明に係るリチウム二次電池の一実施形態を示す外観斜視図 本発明に係るリチウム二次電池を複数個集合した蓄電装置を示す概略図
従来、正極活物質に用いるリチウム過剰型の遷移金属複合酸化物において、高容量化の観点から、Li/Meが1.2〜1.6程度のものが検討されていた。
しかし、本発明者は、Li/Meの値が大きくなると、Me層に含まれるLi量が相対的に大きくなるため、充放電サイクルが進むにしたがって、層状型結晶構造からスピネル型結晶構造への構造変化が進行し、OCVが低下する原因になると考えた。そこで、高エネルギー密度を活かしつつ、OCVの安定性に優れる組成比率を探求したところ、1.15≦Li/Me≦1.24の範囲が好ましく、1.15≦Li/Me≦1.20がより好ましいことを知見した。
次に、Mn/Meについて、高エネルギー密度とOCVの安定性を両立し得る範囲を検討した結果、0.52≦Mn/Me≦0.66が好適であることを見出した。Li/Meが比較的1に近い上記の範囲である場合、Mn/Meが0.66を超えると、充電による結晶構造の変化を抑制することが難しく、初期効率が低下し、充放電サイクル性能の低下にもつながる。Mn/Meが0.52を下回ると、「リチウム過剰型」の特徴である高い放電容量の長所を生かすことができない。
さらに、上記の組成を満たすリチウム遷移金属複合酸化物であっても、調製工程における焼成温度による結晶構造の差異により、活物質性能が異なってくることが知られている。本発明者らは、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(104)面に帰属される回折ピークの半値幅(FWHM(104))が、0.285≦FWHM(104)≦0.335である場合に、高エネルギー密度とOCVの安定性がともに優れることを見出した。これは、結晶性が特定の範囲であることで、層状型結晶構造からスピネル型結晶構造への構造変化が抑制されるものと本発明者は推察している。
(正極活物質の組成)
本発明において、リチウム遷移金属複合酸化物は、典型的には、Li1+α(CoNiMn1−α、但し、1.15≦(1+α)/(1−α) ≦1.24(0.07≦α≦0.11)、a+b+c=1、a>0、b>0、0.52≦c≦0.66で表わされるものであり、Li、Co、Ni及びMnからなる複合酸化物である。リチウム二次電池の初期効率及び高率放電性能を向上させるために、遷移金属元素Meに対するCoのモル比Co/Meは、0.05以上0.40以下とすることが好ましく、コストを勘案すると、0.05以上0.24未満とすることがより好ましい。
リチウム遷移金属複合酸化物は、放電容量を向上させるために、Naを1000ppm以上含ませることが好ましい。Naの含有量は、2000〜10000ppmがより好ましい。
Naを含有させるために、水酸化物前駆体又は炭酸塩前駆体を作製する工程において、水酸化ナトリウム、炭酸ナトリウム等のナトリウム化合物を中和剤として使用し、洗浄工程でNaを残存させるか、及び、その後の焼成工程において炭酸ナトリウム等のナトリウム化合物を添加する方法を採用することができる。
また、リチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na以外のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe,Zn等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することができる。
(正極活物質の結晶構造)
本発明に係るリチウム遷移金属複合酸化物は、α−NaFeO構造を有しており、合成後(充放電を行う前)の上記リチウム遷移金属複合酸化物は、空間群P312あるいはR3−mに帰属される。このうち、空間群P312に帰属されるものには、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも充電を行い、結晶中のLiが脱離すると結晶の対称性が変化することにより、上記超格子ピークが消滅して、上記リチウム遷移金属複合酸化物は空間群R3−mに帰属されるようになる。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記すべきものである。
本発明に係るリチウム遷移金属複合酸化物は、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(104)面に帰属される回折ピークの半値幅FWHM(104)は、0.285°〜0.335°の範囲である。また、(003)面に帰属される回折ピークの半値幅が0.204°〜0.303°の範囲であることが好ましい。こうすることにより、正極活物質の放電容量を大きくし、高率放電性能を向上させることが可能になるとともにOCVを安定化させることができる。なお、2θ=18.6°±1°の回折ピークは、空間群P312及びR3−mではミラー指数hklにおける(003)面に、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3−mでは(104)面にそれぞれ指数付けされる。
リチウム遷移金属複合酸化物は、エックス線回折パターンを基にリートベルト法による結晶構造解析から求められる酸素位置パラメータが、放電末において0.262以下、充電末において0.267以上であることが好ましい。これにより、高率放電性能が優れたリチウム二次電池を得ることができる。なお、酸素位置パラメータとは、空間群R3−mに帰属されるリチウム遷移金属複合酸化物のα―NaFeO型結晶構造について、Me(遷移金属)の空間座標を(0,0,0)、Li(リチウム)の空間座標を(0,0,1/2)、O(酸素)の空間座標を(0,0,z)と定義したときの、zの値をいう。即ち、酸素位置パラメータは、O(酸素)位置がMe(遷移金属)位置からどれだけ離れているかを示す相対的な指標となる(特許文献1参照)。
(正極活物質の性状)
本発明に係るリチウム遷移金属複合酸化物は、炭酸塩前駆体から作成する場合は、粒度分布測定における50%粒子径(D50)が5〜18μmであることが好ましい。リチウム遷移金属複合酸化物を水酸化物前駆体から作製する場合はもっと小粒径に制御しないと優れた性能が得られないが、炭酸塩前駆体から作製することにより、粒度分布測定における50%粒子径(D50)が5〜18μm程度であっても、放電容量が大きい正極活物質が得られる。
本発明に係る正極活物質のBET比表面積は、初期効率、高率放電性能が優れたリチウム二次電池を得るために、1m/g以上が好ましく、2〜7m/gがより好ましい。
また、タップ密度は、高率放電性能が優れたリチウム二次電池を得るために、1.25g/cc以上が好ましく、1.7g/cc以上がより好ましい。
本発明に係るリチウム遷移金属複合酸化物は、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積の最大値を示す細孔径が60nmまでの範囲内の細孔領域(60nmまでの細孔領域)にて0.055cc/g以上の細孔容積とすることが好ましい。これにより、初期効率及び高率放電性能が優れたリチウム二次電池を得ることができる。また、上記細孔容積を0.08cc/g以下とすることにより、高率放電性能が特に優れたリチウム二次電池を得ることができるから、上記細孔容積は0.055〜0.08cc/gであることが好ましい。
(正極活物質の製造方法)
次に、本発明のリチウム二次電池用活物質を製造する方法について説明する。
本発明のリチウム二次電池用活物質は、基本的に、活物質を構成する金属元素(Li,Mn,Co,Ni)を目的とする活物質(酸化物)の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
目的とする組成の酸化物を作製するにあたり、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本発明の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが特に重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。なかでも、後述する実施例のように、共沈炭酸塩前駆体を作製する場合には、酸素を含まないガスとして二酸化炭素を採用すると、炭酸塩がより生成しやすい環境が与えられるため、好ましい。
溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5〜11とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
前記共沈前駆体は、MnとNiとCoとが均一に混合された化合物であることが好ましい。本発明においては、放電容量が大きいリチウム二次電池用活物質を得るために、共沈前駆体を炭酸塩とすることが好ましい。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。その際、Li源と混合・焼成することでより高密度の活物質を得ることができるので電極面積あたりのエネルギー密度を向上させることができる。
前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。
本発明においては、アルカリ性を保った反応槽に前記共沈前駆体の原料水溶液を滴下供給して共沈炭酸塩前駆体を得る反応晶析法を採用する。ここで、中和剤として、リチウム化合物、ナトリウム化合物、カリウム化合物等を使用することができるが、炭酸ナトリウム、炭酸ナトリウムと炭酸リチウム、又は、炭酸ナトリウムと炭酸カリウムの混合物を使用することが好ましい。Naを1000ppm以上残存させるために、炭酸ナトリウムと炭酸リチウムのモル比であるNa/Li、又は、炭酸ナトリウムと炭酸カリウムのモル比であるNa/Kは、1/1[M]以上とすることが好ましい。Na/Li又はNa/Kを1/1[M]以上とすることにより、引き続く洗浄工程でNaが除去されすぎて1000ppm未満となってしまう虞を低減できる。
前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、CoやNiと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30ml/min以下が好ましい。放電容量を向上させるためには、滴下速度は10ml/min以下がより好ましく、5ml/min以下が最も好ましい。
また、反応槽内に錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。
原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30h以下が好ましく、25h以下がより好ましく、20h以下が最も好ましい。
また、炭酸塩前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒度分布における累積体積が50%となる粒子径であるD50を5〜18μmとするための好ましい攪拌継続時間は、制御するpHによって異なる。例えば、pHを7.5〜8.2に制御した場合には、撹拌継続時間は1〜15hが好ましく、pHを8.3〜9.4に制御した場合には、撹拌継続時間は3〜20hが好ましい。
炭酸塩前駆体の粒子を、中和剤として炭酸ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去するが、本発明においては、Naが1000ppm以上残存するような条件で洗浄除去することが好ましい。例えば、作製した炭酸塩前駆体を吸引ろ過して取り出す際に、イオン交換水200mlによる洗浄回数を5回とするような条件を採用することができる。
炭酸塩前駆体は、80℃〜100℃未満で、空気雰囲気中、常圧下で乾燥させることが好ましい。100℃以上にて乾燥を行うことで短時間でより多くの水分を除去できるが、80℃にて長時間かけて乾燥させることで、より優れた電極特性を示す活物質とすることができる。その理由は必ずしも明らかではないが、炭酸塩前駆体は比表面積が50〜100m/gの多孔体であるため、水分を吸着しやすい構造となっている。そこで、低い温度で乾燥させることによって、前駆体の状態において細孔にある程度の吸着水が残っている状態とした方が、Li塩と混合して焼成する焼成工程において、細孔から除去される吸着水と入れ替わるように、その細孔に溶融したLiが入り込むことができ、これによって、100℃で乾燥を行った場合と比べて、より均一な組成の活物質が得られるためではないかと発明者は推察している。なお、100℃にて乾燥を行って得られた炭酸塩前駆体は黒茶色を呈するが、80℃にて乾燥を行って得られた炭酸塩前駆体は肌色を呈するので、前駆体の色によって区別ができる。
そこで、上記知見された前駆体の差異を定量的に評価するため、それぞれの前駆体の色相を測定し、JIS Z 8721に準拠した日本塗料工業会が発行する塗料用標準色(JPMA Standard Paint Colors)2011年度F版と比較した。色相の測定には、コニカミノルタ社製カラーリーダーCR10を用いた。この測定方法によれば、明度を表すdL*の値は、白い方が大きくなり、黒い方が小さくなる。また、色相を表すda*の値は、赤色が強い方が大きくなり、緑色が強い方(赤色が弱い方)が小さくなる。また、色相を表すdb*の値は、黄色が強い方が大きくなり、青色が強い方(黄色が弱い方)が大きくなる。
100℃乾燥品の色相は、標準色F05−20Bと比べて、赤色方向に標準色F05−40Dに至る範囲内にあり、また、標準色FN−10と比べて、白色方向に標準色FN−25に至る範囲内にあることがわかった。中でも、標準色F05−20Bが呈する色相との色差が最も小さいものと認められた。
一方、80℃乾燥品の色相は、標準色F19−50Fと比べて、白色方向に標準色F19−70Fに至る範囲内にあり、また、標準色F09−80Dと比べて、黒色方向に標準色F09−60Hに至る範囲内にあることがわかった。中でも、標準色F19−50Fが呈する色相との色差が最も小さいものと認められた。
以上の知見から、炭酸塩前駆体の色相は、標準色F05−20Bに比べて、dL,da及びdbの全てにおいて+方向であるものが好ましく、dLが+5以上、daが+2以上、dbが+5以上であることがより好ましいといえる。
本発明のリチウム二次電池用活物質は、前記炭酸塩前駆体とLi化合物とを混合した後、熱処理することで好適に作製することができる。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。但し、Li化合物の量については、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
本発明においては、リチウム遷移金属複合酸化物中のNaの含有量を1000ppm以上とするために、炭酸塩前駆体に含まれるNaが1000ppm以下であっても、焼成工程においてLi化合物と共にNa化合物を、前記炭酸塩前駆体と混合することで活物質中に含まれるNa量を1000ppm以上とすることができる。Na化合物としては炭酸ナトリウムが好ましい。
焼成温度は、活物質の可逆容量及び充放電サイクルに伴うOCVの安定性に影響を与える。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導き、充放電サイクルに伴うOCVの安定性を損なうので好ましくない。このような材料では、エックス線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明においては、焼成温度は少なくとも780℃以上とすることが好ましい。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
また、発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することで750℃までの温度で合成した試料においては格子内にひずみが残存しており、それ以上の温度で合成することでほとんどひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として成型して充放電を行うことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。
上記のように、焼成温度は、活物質の酸素放出温度に関係するが、活物質から酸素が放出される焼成温度に至らずとも、870℃を超えると1次粒子が大きく成長することによる結晶化現象が見られる。これは、焼成後の活物質を走査型電子顕微鏡(SEM)で観察することにより確認できる。870℃を超える合成温度を経て合成した活物質は1次粒子が0.5μm以上に成長しており、充放電反応中における活物質中のLi移動に不利な状態となり、高率放電性能が低下する。1次粒子の大きさは0.5μm未満であることが好ましく、0.3μm以下であることがより好ましい。また、870℃を超える合成温度では、活物質の細孔容積が、60nmまでの細孔領域にて0.055cc/g未満となり、初期効率、高率放電性能が低下する。
したがって、初期効率、高率放電性能を向上させるために、1.15≦Li/Me≦1.24の本発明に係るリチウム遷移金属複合酸化物を正極活物質とする場合、焼成温度は780〜870℃とすることが好ましい。
(負極活物質)
負極活物質としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
(正極・負極)
正極活物質の粉体および負極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
正極及び負極には、前記活物質の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため好ましい。正極活物質に導電剤を十分に混合するために、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミル等の粉体混合機を乾式、あるいは湿式で用いることが可能である。
前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。
正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液をアルミニウム箔等の集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。
(非水電解質)
本発明に係るリチウム二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。
(セパレータ)
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。
(その他の構成要素)
その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。
(リチウム二次電池の構成)
図1に、本発明に係るリチウム二次電池の一実施形態である矩形状のリチウム二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図1に示すリチウム二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本発明に係るリチウム二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
(蓄電装置の構成)
本発明は、上記のリチウム二次電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数のリチウム二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
(実施例1)
<試料の合成>
硫酸コバルト7水和物7.04g、硫酸ニッケル6水和物16.59g及び硫酸マンガン5水和物27.05gを秤量し、これらの全量をイオン交換水200mlに溶解させ、Co:Ni:Mnのモル比が12.5:31.5:56.0となる1.0Mの硫酸塩水溶液を作製した。一方、2Lの反応槽に750mlのイオン交換水を注ぎ、COガスを30minバブリングさせることにより、イオン交換水中にCOを溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を700rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を3ml/minの速度で滴下した。ここで、滴下の開始から終了までの間、1.0Mの炭酸ナトリウム及び0.2Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽中のpHが常に8.0(±0.05)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、12h以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体を作製した。
前記共沈炭酸塩前駆体2.356gに、炭酸リチウム0.884gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が115:100(Li/Me=1.15)である混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から850℃まで10時間かけて昇温し、850℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物Li1.07Co0.12Ni0.29Mn0.52を作製した。
<実施例2>
共沈炭酸塩前駆体と炭酸リチウムとを、Li/Me=1.20となるように混合した以外は、実施例1と同様の方法で、実施例2に係るリチウム遷移金属酸化物を作製した。
<実施例3>
共沈炭酸塩前駆体と炭酸リチウムとを、Li/Me=1.24となるように混合した以外は、実施例1と同様の方法で、実施例3に係るリチウム遷移金属酸化物を作製した。
<比較例1〜6>
共沈炭酸塩前駆体と炭酸リチウムとを、Li/Meがそれぞれ1.00、1.05、1.10、1.30、1.35、1.40となるように混合し、焼成温度を800℃に代えた以外は、実施例1と同様の方法で、比較例1〜6に係るリチウム遷移金属複合酸化物を作製した。
<実施例4〜10、比較例7〜15>
遷移金属中のMn比であるMn/Meを0.44〜0.72の範囲で変化させた以外は、実施例2と同様の方法で、実施例4〜10、比較例7〜13のリチウム遷移金属複合酸化物を作製した。さらにLi/Meを1.30、Mn/Meをそれぞれ0.68、0.70とした以外は、実施例1と同様の方法で、比較例14,15に係るリチウム遷移金属複合酸化物を作製した。
<実施例11〜15、比較例16〜19>
原料の焼成温度を720〜870℃の範囲で変化させた以外は、実施例2と同様の方法で、実施例11〜15、比較例16〜19に係るリチウム遷移金属複合酸化物を作製した。
<比較例20,21>
比較例20として、800℃で焼成されたLiNi0.5Mn0.5、比較例21として、920℃で焼成されたLiCo0.1Ni0.38Mn0.52を用いた。
<半値幅の測定>
全ての実施例および比較例に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿ってエックス線回折測定を行い、半値幅を決定した。エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとした。サンプリング幅は0.01deg、走査時間は14分(スキャンスピードは5.0)、発散スリット幅は0.625deg、受光スリット幅は開放、散乱スリットは8.0mmとする。得られたエックス線回折データについて、Kα2に由来するピークを除去せず、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、エックス線回折図上2θ=44±1°に存在する回折ピークについて半値幅を決定した。
また、全てのリチウム遷移金属複合酸化物がα−NaFeO構造を有することをエックス線回折測定により確認した。
<試験電池の作製>
全ての実施例および比較例に係るリチウム遷移金属複合酸化物をそれぞれ正極活物質として用いて、以下の手順で試験電池を作製し、電池特性を評価した。
N−メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:4:6の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極板を作製した。なお、全ての実施例及び比較例に係る試験電池同士で試験条件が同一になるように、一定面積当たりに塗布されている活物質の質量及び塗布厚みを統一した。
正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、試験電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/lとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。以上の手順にて試験電池を作製した。
<エネルギー密度測定>
試験電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1CA、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が1/6に減衰した時点とした。放電は、電流0.1CA、終止電圧2.0Vの定電流放電とした。この充放電を2サイクル行った。ここで、充電後及び放電後にそれぞれ10分の休止過程を設けた。
次に、充電電圧4.45Vに変更したことを除いては上記初期充放電工程と同一の条件にて、3サイクル目の充放電を行った。
次に、放電電流を1.0CAに変更したことを除いては上記3サイクル目の充放電と同一の条件にて、4サイクル目の充放電を行った。4サイクル目の放電後、10分の休止過程の後に、放電電流を0.1CAに変更して、残放電を行った。
放電電流として1.0CAを採用した上記4サイクル目の放電時の放電容量(mAh/g)及び平均放電電圧(V)からエネルギー密度(mWh/g)を求め、「1Cエネルギー密度」として記録した。
<OCV測定>
上記エネルギー密度測定を行った電池において、引き続きOCV測定を行った。まず、上記3サイクル目の充電と同一の条件にて定電流定電圧充電を行った後、放電終止電圧は設定せず、放電電流を0.05CAとして、1時間放電後12時間休止する工程を20回繰り返す間欠放電を行い、放電容量(mAh/g)を表す横軸に対して開回路電圧(V)をプロットすることにより、第一のOCV曲線を得た。
続いて、45℃環境下において、充電電流及び放電電流を共に1.0CAとして充放電サイクルを20回行った。その後、25℃環境下において、上記と同一の電流値を用い、同一の手順でOCV測定を行い、第二のOCV曲線を得た。
第一のOCV曲線から求められる平均放電電圧に対する、第二のOCV曲線から求められる平均放電電圧の百分率を「OCV維持率(%)」とした。
なお、前記平均放電電圧(V)は、上記の手順で得られるOCV曲線と前記横軸とで囲まれる部分の面積からエネルギー密度(mWh/g)を算出し、これを全放電容量(mAh/g)で除することによって求める。
<Li/Meの確認試験>
Li/Meの確認は、放電末状態の正極活物質で行う必要がある。合成後のリチウム遷移金属複合酸化物、すなわち、電池用電極に用いる前の活物質材料は放電末状態であるから、原料の仕込み量によってLi/Meが定まっている。
充放電サイクル後の試験電池の正極活物質中のモル比Li/Meは、次の手順によって確認した。
充電電圧を4.45Vとして電流0.1CmAでの定電流充電を行った後、30分の休止をはさんで0.1CmAにて2.0Vに至るまで定電流放電を行い、放電末状態とした。再び取り出した正極板をジメチルカーボネート(DMC)で洗浄し、室温で30分真空乾燥した。乾燥後の正極から、正極活物質とABとPVdFとが混合している正極合剤50mgを剥がし取り、35wt%塩酸中に加え、150℃で10分間煮沸することによって正極活物質のみを溶解した。この溶液をろ過することによってABとPVdFを取り除いた。得られたろ液についてICP発光分光分析を行った。その結果、モル比Li/Meは、合成後(充放電を行う前)のリチウム遷移金属複合酸化物のモル比Li/Meに対して97%であった。
なお、一般のリチウム二次電池を解体して得た正極が含有する活物質について、Li/Meを確認する場合には、正極から正極活物質を採取する前に、正極をあらかじめ放電末状態にしておくことが必要である。正極をあらかじめ放電末状態にしておく方法は、解体して得た正極と、前記正極を十分に放電末状態にするために必要な量のリチウムイオンを放出し得る負極、例えば金属リチウムを用いる負極との間でセルを構成し、正極を放電させる操作を行う。上記セルを用いて正極を放電させる操作としては、0.1CmA以下の電流で放電終止電位を2.0V(vs.Li/Li+)として連続放電又は間欠放電を行う。このようにして放電末状態にした正極から、上記と同様の操作により正極活物質を取り出し、Li/Meを求めたところ、仕込み量から定まるLi/Meの97%(95〜98%)のLi/Meが得られた。
したがって、原料の仕込み量によって定まるリチウム遷移金属複合酸化物のLi/Meは、活物質として電池電極に用いると、充放電状態によってLi量が変化してしまうが、電池を解体して上記の処理を経て測定されるLi量に、3%(2〜5%)分加味することにより、正極活物質の合成後(充放電を行う前)のLi/Me量を推定することができる。
全ての実施例および比較例に係るリチウム遷移金属複合酸化物のFWHM(104)、及びそれぞれをリチウム二次電池用正極活物質として用いたリチウム二次電池の試験結果を表1に示す。
Figure 2016143447
Mn/Meが0.56である実施例1〜3、比較例1〜6の電池において、Li/Meが小さく、FWHM(104)が大きい比較例1〜3の電池は、OCV維持率は高いが、高エネルギー密度が得られていない。また、Li/Meが、1.24を超え、FWHM(104)が小さい比較例4〜6の電池では、エネルギー密度は高いものの、OCV維持率が急激に低下している。
これに対して、Li/Meの範囲が1.15〜1.24であり、FWHM(104)が0.302〜0.320である実施例1〜3の電池は、「リチウム過剰型」活物質の特徴である高エネルギー密度を維持しつつ、高いOCV維持率を有している。
Li/Meが1.20であり、Mn/Meが0.44〜0.72であり、焼成温度が850℃である実施例2、4〜10、比較例7〜13の電池の結果をみると、OCV維持率は、Mn/Meが小さいほど高いが、Mn/Meが0.52未満である比較例7〜10の電池、及び、Mn/Meが0.66を超える比較例11〜13の電池では、いずれも高いエネルギー密度が得られないことがわかる。
また、この条件下において、Mn/MeとFWHM(104)には、正の相関がみられ、0.52≦Mn/Me≦0.66に対応するFWHM(104)は、0.285≦FWHM(104)≦0.335である。
したがって、高エネルギー密度を有し、かつOCV維持率が高い活物質は、0.52≦Mn/Me≦0.66及び0.285≦FWHM(104)≦0.335を満たす実施例2、4〜10の電池である。
Li/Meが1.30と大きく、Mn/Meが0.68、0.70と大きい比較例14、15の電池は、Li/Meが1.30以上である比較例4〜6の電池と同様に、エネルギー密度は高いが、OCV維持率が大きく低下している。
実施例2、11〜15、比較例16〜19の電池は、Li/Meが1.20であり、Mn/Meが0.56であるように、リチウム遷移金属複合酸化物の組成を固定した場合の、焼成温度の影響を示している。
焼成温度が720〜920°の範囲であれば、OCV維持率は、いずれでも良好である。しかし、高エネルギー密度の発現に好適なのは、実施例11〜15における焼成温度が780〜870°の範囲であり、この温度範囲の焼成によって得られた結晶構造におけるFWHM(104)が、0.285〜0.335に含まれることが確認できる。
比較例20、21の電池は、従来の「LiMeO型」であるLiNi0.5Mn0.5、及びMn過剰であるがLi/Me=1であるLiCo0.1Ni0.38Mn0.52を正極活物質に用いた場合の結果を示す。比較例20の電池は、OCV維持率は良好であるが、エネルギー密度が低い。比較例21の電池は、エネルギー密度、OCV維持率がともに低下している。
以上のとおり、本発明は、エネルギー効率が高く、充放電サイクルの進展にともなうOCVの低下が抑制されたリチウム二次電池用電極に用いる正極活物質を提供することができるから、ハイブリッド自動車用、電気自動車用電池としての利用が期待できる。
(符号の説明)
1 リチウム二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (3)

  1. α−NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、
    前記リチウム遷移金属複合酸化物は、遷移金属(Me)がCo、Ni及びMnを含み、
    Liと遷移金属(Me)のモル比(Li/Me)が1.15≦Li/Me≦1.24であり、
    前記遷移金属中のMnのモル比(Mn/Me)が0.52≦Mn/Me≦0.66であり、
    エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅(FWHM(104))が0.285≦FWHM(104)≦0.335であることを特徴とするリチウム二次電池用正極活物質。
  2. 請求項1に記載の正極活物質を含むことを特徴とするリチウム二次電池用電極。
  3. 請求項2に記載の電極を有することを特徴とするリチウム二次電池。
JP2015015849A 2015-01-29 2015-01-29 リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池 Active JP6474033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015849A JP6474033B2 (ja) 2015-01-29 2015-01-29 リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015849A JP6474033B2 (ja) 2015-01-29 2015-01-29 リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池

Publications (2)

Publication Number Publication Date
JP2016143447A true JP2016143447A (ja) 2016-08-08
JP6474033B2 JP6474033B2 (ja) 2019-02-27

Family

ID=56570648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015849A Active JP6474033B2 (ja) 2015-01-29 2015-01-29 リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池

Country Status (1)

Country Link
JP (1) JP6474033B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188864A1 (ja) 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039413A1 (ja) * 2010-09-22 2012-03-29 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極及びリチウム二次電池
JP2014044945A (ja) * 2012-08-03 2014-03-13 Gs Yuasa Corp リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039413A1 (ja) * 2010-09-22 2012-03-29 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極及びリチウム二次電池
JP2014044945A (ja) * 2012-08-03 2014-03-13 Gs Yuasa Corp リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2020188864A1 (ja) 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
KR20210107851A (ko) 2019-03-15 2021-09-01 가부시키가이샤 지에스 유아사 비수전해질 이차전지용 양극 활물질, 비수전해질 이차전지용 양극, 및 비수전해질 이차전지

Also Published As

Publication number Publication date
JP6474033B2 (ja) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6094797B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP6428996B2 (ja) リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6066306B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2016190419A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6497537B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池
JP6315404B2 (ja) 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、及び非水電解質二次電池
JP6471693B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JP6175763B2 (ja) リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP6090661B2 (ja) リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池
JP6083505B2 (ja) リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP5946011B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP2015118892A (ja) リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池及びバッテリーモジュール
JP5846446B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池
JP6583662B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP5757139B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP6274536B2 (ja) リチウム二次電池用混合活物質の製造方法、リチウム二次電池用電極の製造方法及びリチウム二次電池の製造方法
JP2012151083A (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP6611074B2 (ja) リチウム二次電池用混合活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6131760B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP2016015298A (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP6460575B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP5757140B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、その正極活物質等の製造方法、及び非水電解質二次電池
JP2018073751A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6474033B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6394956B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190120

R150 Certificate of patent or registration of utility model

Ref document number: 6474033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150