JP2016138641A - 流体制御弁の弁座部シール構造 - Google Patents

流体制御弁の弁座部シール構造 Download PDF

Info

Publication number
JP2016138641A
JP2016138641A JP2015015381A JP2015015381A JP2016138641A JP 2016138641 A JP2016138641 A JP 2016138641A JP 2015015381 A JP2015015381 A JP 2015015381A JP 2015015381 A JP2015015381 A JP 2015015381A JP 2016138641 A JP2016138641 A JP 2016138641A
Authority
JP
Japan
Prior art keywords
valve
valve seat
seal
fluid control
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015015381A
Other languages
English (en)
Inventor
坂井 孝浩
Takahiro Sakai
孝浩 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2015015381A priority Critical patent/JP2016138641A/ja
Publication of JP2016138641A publication Critical patent/JP2016138641A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】着座部材質の改良により材料組織の剥離に伴うパーティクルの被制御流体への混入を抑制し、被制御流体の高度な清浄度を維持することができる流体制御弁のための弁座部シール構造を提供する。【解決手段】被制御流体の流入部21と、被制御流体の流出部22と、弁座部23を形成した弁室20を有する弁室ボディ部11と、弁座部をシールするシール部33を有する弁部と、シール部側と逆側に形成されたダイヤフラム部40とを備える弁機構部30と、弁機構部を進退させることにより弁座の開閉を制御する進退部90とを備え、弁座部及びシール部にフッ素樹脂を使用するとともに、弁座部にPFAを使用し、弁座部及び前記シール部におけるJIS B 0601(2001)に準拠して測定した算術表面粗さ(Ra)が0.1以下を満たす。【選択図】図1

Description

本発明は流体制御弁の弁座部シール構造に関し、特に着座部分の平滑性を高めてパーティクルの発生を抑制する流体制御弁の弁座部シール構造に関する。
半導体の製造等において、シリコンウエハの洗浄用の純水やエッチング処理用の薬液等の流体には極めて高い清浄度が求められる。具体的には、半導体製造における大規模集積化、加工の微細化が進み、国際半導体技術ロードマップ(ITRS)において、2015年に32nmプロセスとなることが定められている。プロセスで表される数字(32nm)は、MPUにおける最下層の最も狭い配線のピッチ(線幅+線間隔)の半分(ハーフピッチ)として定義されている。このように配線幅が定められる中にあっては、半導体製造工程内における流体の流通経路に微細なゴミ(パーティクル)の混入は、製品の歩留まりに大きな影響を与える。パーティクルは、配線ピッチの4分の1(2015年のプロセスの場合、8nm)以下とする必要があることから、流体の清浄度を維持しながら流通させる部材は大きな意味を持つ。
例えば、従前構造の流体制御弁は図10に開示される(特許文献1等参照)。同流体制御弁100は、被制御流体の流入部121及び流出部122と、流入部及び流出部の間に弁座部123を形成した弁室120を有する弁室ボディ部111、弁座部123を進退自在にシールする弁部131と弁室120内に装着されたダイヤフラム部140とを備える弁機構部130を備える。エアポート191から流出入する作動エアにより弁機構部130を進退させて弁座部123の開閉を駆動制御する駆動機構体190を弁室ボディ部111上のハウジングボディ部112内に収容している。駆動機構体190は、弁機構部130に接続されエアポート191から流入する作動エアを受ける受圧部156を有するピストン部150と、ピストン部150を弁座部123側に付勢するばね180を備える。図中、符号114は呼吸穴、116はピストン空間部である。
図10の流体制御弁は、弁部が弁座部から離れて被制御流体が流通している状態である。ここで、エアポート191からの作動エアの供給圧力を低下することにより、ピストン部150の受圧部156に加わる圧力が低下する。結果、ばね180の付勢力が流入する作動エアの圧力に勝り、ピストン部150は降下する。こうして、弁機構部130を通じて弁部131は弁座部123に着座する。
図示の流体制御弁100において、弁部131及び弁座部123を含む各部材は、一般にPTFE等のフッ素樹脂製であり、切削により所定形状に形成される。PTFEは耐薬品性が高く、また、清浄度も高く、半導体製造設備に多く用いられている。ところが、流体制御弁100の構造から理解されるように、被制御流体の流通を完全に停止する場合、弁部131は弁座部123に着座する。つまり双方は衝突することになる。当該流体制御弁を長時間使用し続ける間に、弁座部及び弁部の双方に磨耗が生じる。弁の構造上、磨耗部分から剥離するパーティクルの発生を回避することは困難である。
しかしながら、前述のロードマップ等にもあるように、従来の基準よりもさらに微細なパーティクルが問題視され、その対応がより求められるようになった。従来構造の流体制御弁のままでは、新しい基準に対応したパーティクルの発生抑制に対応することには不十分である。そこでパーティクル発生の抑制に対応した新しい構造の流体制御弁が求められるに至った。
特許3590572号公報
本発明は、前記の点に鑑みなされたものであり、着座部材質の改良により材料組織の剥離に伴うパーティクルの被制御流体への混入を抑制し、被制御流体の高度な清浄度を維持することができる流体制御弁のための弁座部シール構造を提供する。
すなわち、請求項1の発明は、被制御流体の流入部と、前記被制御流体の流出部と、前記流入部と前記流出部の間に弁座部を形成した弁室を有する弁室ボディ部と、前記弁座部を進退自在にシールするシール部を有する弁部と、前記シール部側と逆側に形成され前記弁室内に装着されたダイヤフラム部とを備える弁機構部と、前記弁機構部を進退させることにより前記弁座の開閉を制御する進退部とを備え、前記弁座部及び前記シール部にフッ素樹脂を使用するとともに、前記弁座部にPFAを使用し、前記弁座部及び前記シール部におけるJIS B 0601(2001)に準拠して測定した算術表面粗さ(Ra)が0.1以下を満たすことを特徴とする流体制御弁の弁座部シール構造に係る。
請求項2の発明は、前記弁座部を環状弁座部として前記弁室ボディ部に装着してなる請求項1に記載の流体制御弁の弁座部シール構造に係る。
請求項3の発明は、前記弁座部を環状弁座部として前記弁室ボディ部に装着するとともに、前記シール部を環状シール部として前記弁部に装着してなる請求項1に記載の流体制御弁の弁座部シール構造に係る。
請求項4の発明は、前記環状弁座部及び前記環状シール部の両方がPFAにより形成される請求項3に記載の流体制御弁の弁座部シール構造に係る。
請求項5の発明は、前記弁座部及び前記シール部はともに平坦面である請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造に係る。
請求項6の発明は、前記弁座部側に突状環部が形成され、前記シール部側が平坦面である請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造に係る。
請求項7の発明は、前記弁座部側が平坦面であり、前記シール部側に突状環部が形成されている請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造に係る。
請求項1の発明に係る流体制御弁の弁座部シール構造によると、被制御流体の流入部と、前記被制御流体の流出部と、前記流入部と前記流出部の間に弁座部を形成した弁室を有する弁室ボディ部と、前記弁座部を進退自在にシールするシール部を有する弁部と、前記シール部側と逆側に形成され前記弁室内に装着されたダイヤフラム部とを備える弁機構部と、前記弁機構部を進退させることにより前記弁座の開閉を制御する進退部とを備え、前記弁座部及び前記シール部にフッ素樹脂を使用するとともに、前記弁座部にPFAを使用し、前記弁座部及び前記シール部におけるJIS B 0601(2001)に準拠して測定した算術表面粗さ(Ra)が0.1以下を満たすため、着座部材質の改良により材料組織の剥離に伴うパーティクルの被制御流体への混入を抑制し、被制御流体の高度な清浄度を維持することができる。
請求項2の発明に係る流体制御弁の弁座部シール構造によると、請求項1の発明において、前記弁座部を環状弁座部として前記弁室ボディ部に装着してなるため、簡易な構造によりパーティクルの発生抑制が可能となる。
請求項3の発明に係る流体制御弁の弁座部シール構造によると、請求項1の発明において、前記弁座部を環状弁座部として前記弁室ボディ部に装着するとともに、前記シール部を環状シール部として前記弁部に装着してなるため、着座部位のみを別部材により形成することによって、必要箇所のみの変更で済む。
請求項4の発明に係る流体制御弁の弁座部シール構造によると、請求項3の発明において、前記環状弁座部及び前記環状シール部の両方がPFAにより形成されるため、当該部位をパーティクルの発生しにくい材料を使用することにより、必要箇所のみの樹脂の改良で足りる。
請求項5の発明に係る流体制御弁の弁座部シール構造によると、請求項1ないし4のいずれかの発明において、前記弁座部及び前記シール部はともに平坦面であるため、大きく寸法を変更することなく容易に当該構造を適用することができる。また、面接触箇所への適用も容易である。
請求項6の発明に係る流体制御弁の弁座部シール構造によると、請求項1ないし4のいずれかの発明において、前記弁座部側に突状環部が形成され、前記シール部側が平坦面であるため、線接触によるシールの構造がより気密性に優れる。
請求項7の発明に係る流体制御弁の弁座部シール構造によると、請求項1ないし4のいずれかの発明において、前記弁座部側が平坦面であり、前記シール部側に突状環部が形成されているため、線接触によるシールの構造がより気密性に優れる。
本発明の第1実施形態に係る流体制御弁の第1縦断面図である。 本発明の第1実施形態に係る流体制御弁の第2縦断面図である。 第1実施形態に係る流体制御弁の主要部拡大断面図である。 第1実施形態に係る流体制御弁の主要部斜視図である。 第2実施形態に係る流体制御弁の主要部拡大断面図である。 第3実施形態に係る流体制御弁の主要部拡大断面図である。 第4実施形態に係る流体制御弁の主要部拡大断面図である。 電子顕微鏡により撮影したPFAの着座部の写真である。 電子顕微鏡により撮影したPTFAの着座部の写真である。 従来の流体制御弁の縦断面図である。
本発明として図示する流体制御弁10は、主に半導体製造工場や半導体製造装置等の流体管路に配設される。流体制御弁10は流体管路を流れる純水や薬液等の被制御流体の流れを制御し、作動エアの供給制御に応じて被制御流体の流通を停止し、また再開する操作弁である。開示の流体制御弁10においては、図1のとおり紙面左側(符号21)から右側(符号22)へ(上流側から下流側へ)被制御流体を流通させる配置である。これとは逆に、紙面右側から左側へ被制御流体を流通させる配置とすることも可能である(図示せず)。流体制御弁10の接続の仕方は、配置場所の管路設計により適宜変更可能である。被制御流体の配管において、流体制御弁10は上流側と下流側の間に配置される。被制御流体が流体制御弁10内を通過(流通)する際に被制御流体の圧力は低下する。こうして、被制御流体の流体圧力の制御を通じて、被制御流体の流通流量は制御される。そこで、圧力及び流量の制御全般に使用される弁の意味から、流体制御弁とした。
図1及び図2の全体断面図を用い、第1実施形態の流体制御弁10と、これに含まれる弁座部シール構造Sv1(図3,4参照)を説明する。図1は被制御流体の流通状態であり、図2は被制御流体の流通停止状態である。実施例の流体制御弁10は、被制御流体を流通させる弁室ボディ部11と、被制御流体の流通を停止可能とする弁機構部30と、弁機構部30の進退動作を行う進退部90と、進退部90を収容するハウジングボディ部12を備える。
弁室ボディ部11は被制御流体の流入部21及びその流出部22を備える。弁室ボディ部11の流入部21と流出部22の間に、弁座部23を形成した弁室20が配される。
弁機構部30は弁部31(弁体)とダイヤフラム部40を備える。図示の弁部31は台形錐形状であり、その下部に弁座部23を進退自在にシール(密着)するシール部33が形成される。そして、弁部31には、弁機構部30の前進方向(図2の下向き)に被制御流体の流体圧力を受ける受圧部32が備えられる。受圧部32が設けられていることにより、弁機構部30(ダイヤフラム部40の可動膜部41)に生じる上向きの力とは逆の下向きの力が発生する。そのため、被制御流体の流体圧力を通じて弁機構部30を下向きに作用させやすくなる。弁部31の中心には後出のピストン軸部52の接続軸部53に接続される接続穴34が設けられる。
ダイヤフラム部40は、ダイヤフラム面となる薄肉の可動膜部41と、可動膜部41の外周に配置される外周部42を有する。図示の例では、弁機構部30は弁部31とダイヤフラム部40を一体物として形成される。むろん、双方を別々に形成して事後的に接続する構成でもよい。外周部42は、弁室ボディ部11と弁室ボディ部の直上に配置される中間ボディ部13との間に挟着されて固定される。中間ボディ部13の上部にハウジングボディ部12が重ねられる。ハウジングボディ部12は内部にピストン空間部16を有し、エアポートにより作動エアの流出及び流入が可能となる。実施例では、流体制御弁10の外部とピストン空間部16は、作動エアの第1エアポート91と第2エアポート92により接続される。ダイヤフラム部40の可動膜部41上部の空気流通のため、中間ボディ部13に呼吸路14が形成される。
エアポート(第1エアポート91)から流入する作動エアの供給圧力が制御されることにより、弁座部23の開閉を駆動制御する進退部90は弁機構部30を進退させる。進退部90はハウジングボディ部12のピストン空間部16内に進退自在に収容される。細管路17は第1エアポート91とハウジングボディ部12内のピストン空間部16との間に形成される。細管路17(絞り部)とすることにより、作動エアの流入量及び流出量を減少させることができる。そこで、作動エア量の変化に伴う進退部90の急な動作を抑制することができる。第2エアポート92は通気路18を経由して、ピストン空間部16の上部に形成されたばね収容部15と通じている。第2エアポート92と通気路18はピストン空間部の上部の空気の抜け道となる。
進退部90は、ピストン頭部51、ピストン軸部52、接続軸部53を備え、弁機構部30の弁部31と螺着等により接続される。従って、進退部90の上下動作と弁機構部30の進退動作は連動する。図示では、付勢ばね50がピストン頭部51を弁座部23側に付勢する部材として使用される。付勢ばね50はコイルばねであり、ハウジングボディ部12のばね支持部19に装着される。常時ばね接触部54を通じてピストン頭部51は図示下向きに付勢される。むろん、弁機構部を進退させる手法は図示の実施形態のとおり、作動エアの供給圧力の制御に加えて、電磁石による制御、サーボモータ、ステッピングモータ等の回転駆動による制御等を採用することができる。
図示の実施形態の場合、ピストン空間部16内の作動エアの気密性確保の観点から、パッキン61,62,63が必要箇所に装着される。これらのパッキンはウレタンゴム、NBR、HNBR、シリコーンゴム、フッ素樹脂ゴム等の公知の耐久性素材から形成されるOリング等である。
流体制御弁10は、超純水の他、フッ酸、過酸化水素水等の被制御流体に曝露される。そのため、耐蝕性及び耐薬品性の高いフッ素樹脂から形成される。特に、流体制御弁10において、弁座部23及びシール部33にフッ素樹脂が使用され、弁座部23側にはPFAが使用される。PFAは一般に四フッ化エチレン・パーフルオロアルコキシエチレン共重合体、パーフルオロアルコキシアルカン等と称されるフッ素樹脂の一種である。後述の実施例にて開示するように、PFAを使用することにより、部材表面は相対的に平滑となる。図示の第1実施形態の流体制御弁10では、弁室ボディ部11、ダイヤフラム部40、中間ボディ部13、及びハウジングボディ部12は、フッ素樹脂においてPTFE(ポリテトラフルオロエチレン)から形成される。前記の各種PTFE製の部材は切削により所望の形状に加工される。これに対して、PFAは切削加工に加えて溶融加工、成形も可能である。なお、弁室ボディ部11全体をPFAから形成しても良い。
本発明の目的であるパーティクル発生抑制に有効に作用するためには、弁座部23及びシール部33の平滑性(より平らであること)が高いことが望まれる。従って、弁座部23及びシール部33において、JIS B 0601(2001)に準拠して測定した算術表面粗さ(Ra)が平滑性の評価の指標として用いられる。そこで、算術表面粗さ(Ra)は0.1以下を満たすこと、好ましくは0.08以下、さらに好ましくは0.05以下を満たすことである。算術表面粗さ(Ra)の数値は小さいほど平滑になる。算術表面粗さ(Ra)の数値が0.1よりも大きくなる場合、部材表面の粗さの影響からパーティクルは生じやすくなる。そこで、効果的にパーティクル発生を抑制可能な範囲を検討すると、算術表面粗さ(Ra)の数値は0.1以下となる。
次に図3の部分拡大断面図(端面図)及び図4の部分斜視図を用い、第1実施形態の流体制御弁10における弁座部シール構造Sv1を構成する弁座部23及びシール部33について説明する。図3(a)は図1の被制御流体の流通状態に対応し、図3(b)は被制御流体の流通停止状態に対応する。
弁座部23は環状弁座部70として弁室ボディ部11に装着され、シール部33は環状シール部80として弁部31に装着される。弁座部23側の環状弁座部70に突状環状部71が形成され、シール部33側の環状シール部80は平坦面82として形成される。当該実施形態において、弁室ボディ部11の全体はPTFEから形成される。PFAから形成された環状弁座部70は、熱融着等により弁座部23の弁座凹部26内に装着される。弁部31を含むダイヤフラム部40の全体もPTFEから形成される。PFAから形成された環状シール部80も、熱融着等により弁体31の弁体凹部36内に装着される。
すなわち、着座により当接する部位のみを別部材により形成することによって、必要箇所のみの変更で済む。さらに、当該部位をパーティクルの発生しにくい材料を使用することにより、必要箇所のみの改良で済む。図4中、符号25は弁座開口部である。
図示から理解されるように、弁部31(環状シール部80)が弁座部23(環状弁座部70)に着座した状態によると、突状環状部71の山状の頂上部分も環状となる。そこで、突状環状部71は平坦面82と線接触により当接する。発明者の知見によると、着座部分の構造については、線接触によるシールの構造がより気密性に優れる傾向にある。おそらく、樹脂弾性の影響から密着が強固になると考えられる。弁座部23と弁部31との着座に伴うシールに際し、相互に当接(衝突)する部材同士のみPFAから形成される。このようにすると、パーティクル発生の原因部位のみPFAとし、他の部位にはPTFE等のフッ素樹脂により形成することができる。それゆえ、既存の部材からの転用による製造も容易である。特に、PTFEは屈曲変形への耐性に優れている。そこで、ダイヤフラム部等の屈曲変形を伴う部位にはPTFEを使用し続けることができる。
ここで、図1及び図2を用い、弁機構部30の進退動作と弁座部23の開閉について説明する。なお、各所のパッキンや各部材間に生じる摩擦抵抗の影響については、説明が複雑になるため省略する。図1の被制御流体の流通状態の流体制御弁10では、第1エアポート91からハウジングボディ部12のピストン空間部16内に作動エアが流入してピストン空間部16内の作動エアの供給圧力が維持されている。作動エアは、付勢ばね50に抗する供給圧力としている。ピストン頭部51の下面部55が作動エアの供給圧力を受けることにより、ピストン頭部51とピストン軸部52は持ち上げられる。そして、ピストン頭部51の上昇と同時にピストン軸部52に接続された弁機構部30(ダイヤフラム部40の弁部31)も上昇する。つまり弁部31は後退位置となる。弁部31のシール部33は弁座部23から離れるため、弁座部23のシールは解除され、弁室20内の被制御流体の流通は確保される。
図2の被制御流体の流通を停止した状態の流体制御弁10では、第1エアポート91からピストン空間部16に供給される作動エアの供給圧力が図1よりも低下している。作動エアの供給圧力が低下したことによって、付勢ばね50のばね荷重がピストン頭部51の下面部55における作動エアの上昇力よりも大きくなる。結果、ピストン頭部51とピストン軸部52が降下する。そして、ピストン頭部51の降下と同時にピストン軸部52に接続された弁機構部30(ダイヤフラム部40の弁部31)も降下する。つまり弁部31は前進位置となる。弁部31のシール部33は弁座部23に接近し、最終的に着座する。こうして弁座部23はシールされ、弁室20内の被制御流体の流通は停止される。
図1ないし図4の弁機構部30(弁部31)の進退動作の図示及び関連する説明から理解されるように、弁部31(環状シール部80)と弁座部23(環状弁座部70)は、常時相互に当接(衝突)する。それゆえ、当該箇所のパーティクル発生を抑制できれば、被制御流体の清浄度向上に大きく貢献できる。このことから、弁座部23と弁部31の着座に伴うシール部分のフッ素樹脂の材質にPFAを採用し、かつ、平滑性を向上したことに大きな意味がある。
図5は、第2実施形態の弁座部シール構造Sv2の部分拡大断面図(端面図)である。図5(a)は被制御流体の流通状態に対応し、図5(b)は被制御流体の流通停止状態に対応する。第2実施形態においては、弁座部23は環状弁座部70として弁室ボディ部11に装着され、シール部33は環状シール部80として弁部31に装着される。弁座部23側の環状弁座部70は平坦面73として形成され、シール部33側の環状シール部80に突状環状部84が形成される。当該第2実施形態においても、弁室ボディ部11の全体はPTFEから形成される。PFAから形成された環状弁座部70は、熱融着等により弁座部23の弁座凹部26内に装着される。弁部31を含むダイヤフラム部40の全体もPTFEから形成される。PFAから形成された環状シール部80も、熱融着等により弁体31の弁体凹部36内に装着される。
第2実施形態の弁座部シール構造Sv2が第1実施形態と相違する点は、突状環部と平坦面の配置を逆にしたことである。突状環部と平坦面の配置は比較的自由であり、流体制御弁の弁室、弁座部、または弁部の構造、さらには流体制御弁の大きさ、使用頻度等により適宜選択される。
図6は、第3実施形態の弁座部シール構造Sv3の部分拡大断面図(端面図)である。図6(a)は被制御流体の流通状態に対応し、図6(b)は被制御流体の流通停止状態に対応する。第3実施形態においては、弁座部23は環状弁座部70として弁室ボディ部11に装着され、シール部33は環状シール部80として弁部31に装着される。弁座部23側の環状弁座部70は平坦面75として形成され、同様に、シール部33側の環状シール部80も平坦面86として形成される。当該第3実施形態においても、弁室ボディ部11の全体はPTFEから形成される。PFAから形成された環状弁座部70は、熱融着等により弁座部23の弁座凹部26内に装着される。弁部31を含むダイヤフラム部40の全体もPTFEから形成される。PFAから形成された環状シール部80も、熱融着等により弁体31の弁体凹部36内に装着される。
第3実施形態の弁座部シール構造Sv3の特徴は、弁部31と弁座部23との着座部分を双方とも平坦面としたことである。第3実施形態の場合、既存の平坦面からなる弁部、弁座部の構造を備えた流体制御弁に対しても、大きく寸法を変更することなく容易に当該構造を適用することができる。また、着座時の密着量の大きい面接触箇所への適用も容易である。
図7は、第4実施形態の弁座部シール構造Sv4の部分拡大断面図(端面図)である。図7(a)は被制御流体の流通状態に対応し、図7(b)は被制御流体の流通停止状態に対応する。第4実施形態においては、弁座部23は環状弁座部70として弁室ボディ部11に装着され平坦面77として形成される。弁部31のシール部33には突状環部88が直接形成される。第4実施形態の場合、既存の構造の流体制御弁に対しても、大きく寸法を変更することなく容易に当該構造を適用することができる。また、パーティクルの発生抑制にはいずれか一方側をPFAとしても効果的である。そこで、より簡易な構造として採用される。
発明者は、2種類の流体制御弁(試作例1及び試作例2)を作製し、実際に被制御流体を流通し、流体制御弁を駆動した後、着座部分の表面を観察した。試作例1及び試作例2の流体制御弁は、ともに図1の部材構造として形成した。
試作例1は弁室ボディ部全体をPFAのブロックから切削して形成した。また、弁部を含むダイヤフラム部もPFAのブロックから切削して形成した。その他の流体制御弁を構成する部材はPTFEにより形成した。試作例1は本発明の流量制御弁に相当する。試作例2は弁室ボディ部全体をPTFEのブロックから切削して形成した。また、弁部を含むダイヤフラム部もPTFEのブロックから切削して形成した。その他の流体制御弁を構成する部材はPTFEにより形成した。試作例2は既存の流量制御弁に相当する。
試作例1及び試作例2において、双方とも弁座部を平坦面としシール部に突状環部を形成した。図5に開示の構造が参照される。実施例における両試作例の作製では、環状弁座部及び環状シール部を設けることなく、弁室ボディ部及び弁体自体を比較対象となる樹脂により形成した。試作例1及び試作例2の流体制御弁において、弁部が着座してシールする弁座の直径(開口径)を6mm、弁体の最大直径を9.5mmとした。突状環部の最大高さは0.8mmとした。付勢ばねは、ばね荷重55Nのつるまきばねとした。流通させる被制御流体を水とし、その流体圧力を200kPa、空気を作動エアとしてエアポートから供給した。
試作例1及び試作例2の流体制御弁のそれぞれに対し、作動エアを供給圧力450kPaで供給して進退部(ピストン頭部)を後退位置に押し上げ、弁機構部の弁部を弁座部から離座し、この流体制御弁に被制御流体を流通した。次に、作動エアの供給を停止して供給圧力を450kPaから0kPaに減少させて弁機構部の弁部を弁座部に着座した。当該弁機構部の進退動作(離座と着座)を10000回繰り返した。
試作例1及び試作例2の両流体制御弁の進退動作の後、分解して弁室ボディ部を取り出した。そして、弁部との着座を繰り返した弁座部を走査型電子顕微鏡により50000倍に拡大し、表面の状態を観察した。図8は試作例1の弁座部の写真であり、図9は試作例2の弁座部の写真である。図8から把握されるように、PFAから形成した試作例1の弁座部の表面は比較的平滑である。これに対してPTFEから形成した試作例2の弁座部の表面には繊維状や粒状の凹凸が存在する。原料となる樹脂の相違から繊維状構造が露出しやすくなったと考えられる。また、JIS B 0601(2001)に準拠して試作例1及び試作例2の弁座部表面を計測したところ、試作例1の算術表面粗さ(Ra)は0.04であり、試作例2の算術表面粗さ(Ra)は0.07であった。
この結果、PFAを使用した部材の方がPTFEの部材よりも平滑性が高く(より凹凸が少なく)、また、表面に露出する微小成分も少ない。従って、PFAを着座部分の部材に使用することは、相対的にパーティクルの抑制に効果的であると考える。
本発明の流体制御弁の弁座部シール構造において、当該部位に使用する樹脂種を改善することにより、パーティクルの発生抑制に有効に作用する。その結果、総じて被制御流体の清浄度向上に貢献する。
10 流体制御弁
11 弁室ボディ部
12 ハウジングボディ部
13 中間ボディ部
20 弁室
21 流入部
22 流出部
23 弁座部
25 弁座開口部
30 弁機構部
31 弁部
33 シール部
40 ダイヤフラム部
41 可動膜部
50 付勢ばね
51 ピストン頭部
52 ピストン軸部
70 環状弁座部
71,84,88 突状環部
80 環状シール部
73,75,77,82,86 平坦面
91 第1エアポート
92 第2エアポート
Sv1,Sv2,Sv3,Sv4 弁座部シール構造

Claims (7)

  1. 被制御流体の流入部と、前記被制御流体の流出部と、前記流入部と前記流出部の間に弁座部を形成した弁室を有する弁室ボディ部と、
    前記弁座部を進退自在にシールするシール部を有する弁部と、前記シール部側と逆側に形成され前記弁室内に装着されたダイヤフラム部とを備える弁機構部と、
    前記弁機構部を進退させることにより前記弁座の開閉を制御する進退部とを備え、
    前記弁座部及び前記シール部にフッ素樹脂を使用するとともに、前記弁座部にPFAを使用し、
    前記弁座部及び前記シール部におけるJIS B 0601(2001)に準拠して測定した算術表面粗さ(Ra)が0.1以下を満たす
    ことを特徴とする流体制御弁の弁座部シール構造。
  2. 前記弁座部を環状弁座部として前記弁室ボディ部に装着してなる請求項1に記載の流体制御弁の弁座部シール構造。
  3. 前記弁座部を環状弁座部として前記弁室ボディ部に装着するとともに、前記シール部を環状シール部として前記弁部に装着してなる請求項1に記載の流体制御弁の弁座部シール構造。
  4. 前記環状弁座部及び前記環状シール部の両方がPFAにより形成される請求項3に記載の流体制御弁の弁座部シール構造。
  5. 前記弁座部及び前記シール部はともに平坦面である請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造。
  6. 前記弁座部側に突状環部が形成され、前記シール部側が平坦面である請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造。
  7. 前記弁座部側が平坦面であり、前記シール部側に突状環部が形成されている請求項1ないし4のいずれか1項に記載の流体制御弁の弁座部シール構造。
JP2015015381A 2015-01-29 2015-01-29 流体制御弁の弁座部シール構造 Pending JP2016138641A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015381A JP2016138641A (ja) 2015-01-29 2015-01-29 流体制御弁の弁座部シール構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015381A JP2016138641A (ja) 2015-01-29 2015-01-29 流体制御弁の弁座部シール構造

Publications (1)

Publication Number Publication Date
JP2016138641A true JP2016138641A (ja) 2016-08-04

Family

ID=56559082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015381A Pending JP2016138641A (ja) 2015-01-29 2015-01-29 流体制御弁の弁座部シール構造

Country Status (1)

Country Link
JP (1) JP2016138641A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135840A (ja) * 2017-02-23 2018-08-30 株式会社豊田自動織機 流路切替弁
CN108621576A (zh) * 2017-03-24 2018-10-09 精工爱普生株式会社 阀单元、液体喷射头、液体喷射装置及它们的制造方法
CN110185804A (zh) * 2019-05-14 2019-08-30 佛山一精模具配件有限公司 一种抗压气顶阀
CN113167402A (zh) * 2018-12-18 2021-07-23 恩特格里斯公司 控制流体流的阀及阀部件
WO2022185451A1 (ja) * 2021-03-03 2022-09-09 タイム技研株式会社 比例弁
WO2023046935A1 (de) * 2021-09-23 2023-03-30 ElringKlinger Kunststofftechnik GmbH Dichtungselement und herstellungsverfahren
JP7423050B2 (ja) 2020-01-16 2024-01-29 株式会社タカギ 吐止水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162878A (ja) * 2002-11-15 2004-06-10 Honda Motor Co Ltd バルブのシート構造
JP2005321060A (ja) * 2004-05-11 2005-11-17 Kubota Corp 高温用弁
JP2009222189A (ja) * 2008-03-18 2009-10-01 Dainippon Screen Mfg Co Ltd ダイヤフラムバルブおよびこれを備えた基板処理装置
JP2012026476A (ja) * 2010-07-20 2012-02-09 Dainippon Screen Mfg Co Ltd ダイヤフラムバルブおよびこれを備えた基板処理装置
JP2014169725A (ja) * 2013-03-01 2014-09-18 Asahi Organic Chemicals Industry Co Ltd ダイヤフラム弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162878A (ja) * 2002-11-15 2004-06-10 Honda Motor Co Ltd バルブのシート構造
JP2005321060A (ja) * 2004-05-11 2005-11-17 Kubota Corp 高温用弁
JP2009222189A (ja) * 2008-03-18 2009-10-01 Dainippon Screen Mfg Co Ltd ダイヤフラムバルブおよびこれを備えた基板処理装置
JP2012026476A (ja) * 2010-07-20 2012-02-09 Dainippon Screen Mfg Co Ltd ダイヤフラムバルブおよびこれを備えた基板処理装置
JP2014169725A (ja) * 2013-03-01 2014-09-18 Asahi Organic Chemicals Industry Co Ltd ダイヤフラム弁

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135840A (ja) * 2017-02-23 2018-08-30 株式会社豊田自動織機 流路切替弁
CN108621576A (zh) * 2017-03-24 2018-10-09 精工爱普生株式会社 阀单元、液体喷射头、液体喷射装置及它们的制造方法
CN113167402A (zh) * 2018-12-18 2021-07-23 恩特格里斯公司 控制流体流的阀及阀部件
CN110185804A (zh) * 2019-05-14 2019-08-30 佛山一精模具配件有限公司 一种抗压气顶阀
JP7423050B2 (ja) 2020-01-16 2024-01-29 株式会社タカギ 吐止水装置
WO2022185451A1 (ja) * 2021-03-03 2022-09-09 タイム技研株式会社 比例弁
WO2023046935A1 (de) * 2021-09-23 2023-03-30 ElringKlinger Kunststofftechnik GmbH Dichtungselement und herstellungsverfahren

Similar Documents

Publication Publication Date Title
JP2016138641A (ja) 流体制御弁の弁座部シール構造
JP5226059B2 (ja) エア操作弁
JP4237781B2 (ja) 流量制御弁
TWI740968B (zh) 流體控制閥製造方法
JP3168588U (ja) 流体供給量調節装置
TWI644048B (zh) 流量控制閥及使用該控制閥之流量控制裝置
JP2006090386A (ja) ダイヤフラムバルブ
US20150323081A1 (en) Shut-off valve
JP2008025561A (ja) 薬液供給装置
JP2016156397A (ja) 流体制御弁の弁付勢構造
JP6681723B2 (ja) バルブ装置
JP2005106258A (ja) 薬液弁
WO2005073605A1 (ja) バルブ
JPWO2003106870A1 (ja) 可撓性チューブ、流量制御装置および流体給送装置
JP6737492B2 (ja) バルブ及びこれを用いたマニホールドバルブ
JP7217501B2 (ja) ダイヤフラム弁
JP2009243624A (ja) 三方弁
JP4237032B2 (ja) 開閉弁及びこれを用いた半導体製造設備用排気装置
JP2019184063A (ja) ダイヤフラムバルブ
JP3219317U (ja) ダイヤフラム式リリーフ弁
CN108884945B (zh) 能够完全关闭的薄膜阀
JP3219318U (ja) ダイヤフラム式背圧弁
JP2023083160A (ja) ダイヤフラム弁
JP5171533B2 (ja) インクジェット用インク製造用合流弁
JP4266618B2 (ja) バルブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528