JP2016119397A - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
JP2016119397A
JP2016119397A JP2014258489A JP2014258489A JP2016119397A JP 2016119397 A JP2016119397 A JP 2016119397A JP 2014258489 A JP2014258489 A JP 2014258489A JP 2014258489 A JP2014258489 A JP 2014258489A JP 2016119397 A JP2016119397 A JP 2016119397A
Authority
JP
Japan
Prior art keywords
semiconductor
light emitting
layer
light
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014258489A
Other languages
English (en)
Other versions
JP6527695B2 (ja
Inventor
竜舞 斎藤
Tatsuma Saito
竜舞 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2014258489A priority Critical patent/JP6527695B2/ja
Priority to US14/977,447 priority patent/US9577167B2/en
Publication of JP2016119397A publication Critical patent/JP2016119397A/ja
Application granted granted Critical
Publication of JP6527695B2 publication Critical patent/JP6527695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Abstract

【課題】複数の発光素子を有し、コンパクトかつ高輝度の半導体発光装置を提供する。【解決手段】搭載基板11と、搭載基板上11に並置され、その各々が第1の導電型を有する第1の半導体層23、活性層22及び第1の半導体層23とは反対の導電型の第2の導電型を有する第2の半導体層21が搭載基板11上に順次積層された半導体構造層を有する複数の半導体発光素子と、を有し、複数の半導体発光素子の各々は、半導体構造層の互いに対向する端面ES1、ES2によって構成された共振器を有し、複数の半導体発光素子の各々は、第1の半導体層の表面から活性層に向けて窪んだ凹部21Aを有する。【選択図】図3

Description

本発明は、半導体発光素子を複数個用いた半導体発光装置に関する。
半導体発光素子は、通常、成長用基板上に、n型半導体層、活性層及びp型半導体層からなる半導体構造層を成長し、それぞれn型半導体層及びp型半導体層に電圧を印加するn電極及びp電極を形成して作製される。さらに、放熱性能の向上を図る半導体発光素子として、半導体構造層を成長用基板とは別の支持基板に接合した後、成長用基板を除去した半導体発光素子が知られている。また、複数の半導体発光素子を実装基板上に固定し、さらに波長変換用の蛍光体層を形成した後、樹脂などで封止することによって、半導体発光装置が作製される。特許文献1には、パッケージ構造体に複数のチップを有し、チップの一部が並列に接続された半導体発光装置が開示されている。
特開2013-065726号公報
自動車用ヘッドライトや投光器のような大光量照明の光源として、半導体発光素子が用いられることが増えてきている。このような半導体発光素子の多くは、複数の発光素子を配列させた構造をとっている。
さらに、近年、自動車用ヘッドライトにおいて、前方の状況、すなわち対向車や前走車などの有無及びその位置に応じて配光形状をリアルタイムで制御する技術が注目されている。この技術によって、例えば走行用の配光形状すなわちハイビームでの走行中に対向車を検知した際には、ヘッドライトに照射される領域のうち、当該対向車の領域のみをリアルタイムで遮光することが可能となる。従って、ドライバに対して常にハイビームに近い視界を与えることができ、その一方で対向車に眩惑光(グレア)を与えることが防止される。このような配光可変型のヘッドライトシステムは、例えば、複数の半導体発光素子をアレイ状に配置した半導体発光装置を作製し、当該半導体発光素子の各々への導通及び非導通をリアルタイムで制御することによって実現することができる。
しかし、一般に、複数の発光素子が並置された発光装置を作製する場合、その発光素子の個数分だけ装置のサイズが大きくなる。また、装置のサイズを考慮して素子のサイズを小さくした場合、素子毎の発光輝度が小さくなり、所望の光量を得られない場合がある。これらは、特に上記のような自動車用ヘッドライトの配光パターンを高精細化する際には大きなネックとなる。
本発明は上記した点に鑑みてなされたものであり、複数の発光素子を有し、コンパクトかつ高輝度の半導体発光装置を提供することを目的としている。
本発明による半導体発光装置は、搭載基板と、搭載基板上に並置され、その各々が第1の導電型を有する第1の半導体層、活性層及び第1の半導体層とは反対の導電型の第2の導電型を有する第2の半導体層が搭載基板上に順次積層された半導体構造層を有する複数の半導体発光素子と、を有し、複数の半導体発光素子の各々は、半導体構造層の互いに対向する端面によって構成された共振器を有し、複数の半導体発光素子の各々は、第2の半導体層の表面から活性層に向けて窪んだ凹部を有することを特徴としている。
実施例1の半導体発光装置を模式的に示す斜視図である。 (a)は、実施例1の半導体発光装置における発光素子の構造を示す斜視図であり、(b)はその上面図である。 (a)及び(b)は実施例1に係る半導体発光装置の断面図であり、(c)は素子からの取出された光を模式的に示す図である。 (a)及び(b)は実施例1に係る半導体発光装置の配線構造を示す図である。 (a)〜(c)は、実施例1に係る半導体発光装置の製造方法を示す断面図である。 (a)〜(c)は、実施例1に係る半導体発光装置の製造方法を示す断面図である。 実施例1の変形例に係る半導体発光装置の断面図である。 (a)及び(b)は、実施例1に係る半導体発光装置における発光素子の他の構造例を示す上面図である。
以下に本発明の実施例について詳細に説明する。
図1は、実施例1の半導体発光装置(以下、単に装置と称する場合がある)10の上面を模式的に示す図である。半導体発光装置10は、搭載基板11上に複数の半導体発光素子20(以下、単に素子と称する場合がある)がマトリクス状(アレイ状)に並置された構造を有している。本実施例においては、搭載基板11に垂直な方向から見たとき、半導体発光素子20の各々が矩形形状を有する場合について説明する。また、発光素子20が3行3列でマトリクス状に配列されている場合について説明する。
基板11上には、素子20の各々に電圧を印可する給電端子として、n側パッドNP及びp側パッドPPが形成されている。p側パッドPPは、p側配線(第1の配線)PWを介して素子20の各々に接続され、n側パッドNPは、n側配線(第2の配線)NWを介して素子20の各々に接続されている。
図2(a)は、半導体発光素子20の構造を示す斜視図である。半導体発光素子20は、n型半導体層(第2の半導体層、第1の半導体層とは反対の導電型を有する半導体層)21、活性層22及びp型半導体層(第1の半導体層)23を含む半導体構造層SLを有している。n型半導体層21、活性層22及びp型半導体層23は、例えばAlxInyGa1-x-yN(0≦x≦1、0≦y≦1)の組成を有している。半導体構造層SLは、p型半導体層23、活性層22及びn型半導体層21がこの順で搭載基板11上に順次積層された構造を有している。なお、本実施例においては、半導体構造層SLに垂直な方向から見たとき、半導体構造層SLが矩形形状を有する場合について説明する。
半導体構造層SLは、その互いに対向する端面ES(第1の端面ES1及び第2の端面ES2)によって共振器を構成している。以下においては、互いに対向する端面ESを端面対と称する場合がある。本実施例においては、半導体構造層SLは、ファブリペロー(FP)型の共振器構造を有する場合について説明する。活性層22から放出された光は、第1の端面ES1及び第2の端面ES2によって反射を繰り返し、共振方向RDに沿って共振し、増幅される。
半導体構造層SLは、n型半導体層21の表面から活性層22に向かって窪んだ凹部21Aを有している。凹部21Aは、活性層22に達しない深さを有する底部を備えている。凹部21Aは、半導体発光素子20の光取出し部として機能する。すなわち、半導体発光素子20は、凹部21Aから半導体構造層SLに垂直な方向に光を放出する。また、凹部21Aは、半導体構造層SLの上面又は下面に平行な底面を有する。
半導体構造層SLのp型半導体層23の表面には、半導体構造層SLの共振方向RDに沿って、第1の溝23A1及び第2の溝23A2からなる一対の溝13Aが形成されている。半導体構造層SLは、この溝対23Aによって形成されたリッジ部23Bを有している。半導体構造層SLの共振器構造の幅は、リッジ部23Bのリッジ幅RWによって画定される。なお、凹部21A及び溝対23Aは、それぞれn型半導体層21及びp型半導体層23に反応性イオンエッチングなどのドライエッチングを行うことによって形成することができる。
図2(b)は、半導体発光素子20の半導体構造層SLの上面図である。半導体発光素子20の各々は、上記したように、半導体構造層SLのn型半導体層21上に、光取出し部として凹部21Aが形成されている。本実施例においては、凹部21Aは、第1及び第2の端面ES1及びES2間の距離よりも小さい長さを有し、リッジ幅RWよりも小さい幅を有している。
図3(a)及び(b)は、半導体発光素子20の構造を示す断面図である。図3(a)は、図2(b)におけるV−V線に沿った断面図に対応し、半導体発光素子20の共振方向RDに沿った断面を示している。半導体構造層SLの端面対ESにおける第1の端面ES1及び第2の端面ES2には、それぞれ第1の反射ミラーML1及び第2の反射ミラーML2が設けられている。第1及び第2の反射ミラーML1及びML2は互いに対向する一対の反射ミラーMLを構成している。半導体発光素子20は、半導体構造層SLの端面対ESと端面対ESに設けられた反射ミラー対MLとによって構成された共振器を有している。
n型半導体層21上及びp型半導体層23上には、それぞれn電極(第2の電極)NE及びp電極(第1の電極)PEが形成されている。本実施例においては、n電極NEはn型半導体層21上において凹部21Aを囲むように形成されている。また、p電極PEは、p型半導体層23上において共振方向RDの全域に亘って形成されている。p電極PEは、Ag、Pt、Ni、Al、Pdやこれらの合金などの反射金属を用いて形成されていることが望ましい。また、オーミックコンタクト材料として、ITOやIZOなど、Inを含む透明導電性酸化物を用いてもよい。なお、図2(a)及び(b)においては、説明上、反射ミラー対ML、n電極NE及びp電極PEの図示を省略してある。
半導体発光素子20の各々は、基板11上に並置されている。より具体的には、基板11上には、絶縁層12が形成されている。絶縁層12上には、p側配線PEが形成されたp側配線層13が形成されている。p側配線層13上には、素子20を基板11上に接合する接合部BPが形成された接合層14が形成されている。p側配線PWは、接合部BPを介して、素子20の各々のp電極PE(p型半導体層23)に接続されている。素子20は、基板11上に、p型半導体層23、活性層22及びn型半導体層21がこの順で順次積層された構造を有している。
なお、p側配線層13におけるp側配線PWの形成領域を除く領域、及び接合層14における接合部BPの形成領域を除く領域には、絶縁部IPが形成されている。また、隣接する素子20間における接合層14の絶縁部IP上には、n側配線NWが形成されている。
図3(b)は、図2(b)におけるW−W線に沿った断面図である。本実施例においては、図3(b)は、半導体構造層SLの面内方向において共振方向RDに垂直な方向における半導体発光素子20の断面図である。本実施例においては、p電極PEは、p型半導体層23のリッジ部23B上、すなわち第1及び第2の溝23A1及び23A2間に形成されている。すなわち、p電極PEはリッジ幅RWと同程度の幅を有している。また、図3(b)に示すように、半導体構造層SLの共振方向RDに平行な側面には、絶縁膜IFが形成されている。また、絶縁膜IF上には、n側配線NWが形成されている。n側敗戦NWは、半導体構造層SL(素子20)の側面を介して、n側パッドNPからn電極NEに配線されている。なお、第1及び第2の溝23A1及び23A2の内壁面上には絶縁膜IFが形成されている。
搭載基板11は、例えばSi、AlN、Mo、W、CuWなどの放熱性の高い材料からなる。絶縁層12、絶縁部IP及び絶縁膜IFは、例えばSiO2及びSi34などの絶縁材料からなる。n側配線NW及びp側配線PWは、例えばTi、Auなどの金属材料からなる。接合部BP及びp電極PEは、その互いに接することとなる表面の材料が、Au及びSn、Au及びIn、Pd及びIn、Cu及びSn、Ag及びSn、Ag及びIn並びにNi及びSnなど、互いに融着して接合される材料の組み合わせか、又はAuなどの互いに拡散して接合される材料を用いて形成される。また、反射ミラーMLは、例えばTaO2及びSiO2等を用いた光学多層膜からなる。
図3(c)は、半導体発光素子20において凹部21Aから光が取出される仕組みを模式的に示す図である。図3(c)は、図3(a)と同様の断面図であるが、一部のハッチング、構成要素及び参照符号を省略してある。図3(c)に示すように、活性層22から放出された光は、定常状態においては、共振方向RDに沿って、半導体構造層SLの両端面、すなわち反射ミラーML1及びML2間で共振(レーザ発振)している。共振状態における半導体構造層SL内の光フィールドは、活性層22の近傍において高い強度を有し、活性層22から離れると減衰する。すなわち、発振状態においては活性層22の近傍に光が集中する。
本実施例においては、n型半導体層21の表面には、活性層22に向けて窪んだ凹部21Aが形成されている。凹部21Aは、共振器構造の活性層22に向けて、n型半導体層21内に至るように形成されている。凹部21Aは、その底部がn型半導体層21内に(活性層22に達しない深さで)形成されている。この凹部21Aの活性層22までの形成深さを適切に設定することによって、活性層22の近傍の光フィールドの裾野の部分の光が取出される。これは、凹部21Aの底面が活性層22に近づくにつれて、光電場のエバネッセント場がこの凹部底面に染み出るようになることに起因する。従って、凹部21Aの底部から、散乱光SLTとして光を外部に取出すことができる。
具体的には、ドライエッチング等によって、凹部21Aの底面は、厳密には理想的な平坦ではなく粗面として形成されている。この凹部21Aの底面は、光フィールドに屈折率変化をもたらす。従って、凹部21Aの底面にて全反射する導波光の一部が、凹部21Aの底面の表面粗さに応じて散乱する。この散乱した光SLTは凹部21Aの底面から外部に取出される。このようにして、凹部21Aによって、散乱光SLTとして、半導体構造層SLに垂直な方向に光を取出すことが可能となる。
なお、一般的な半導体レーザの場合、共振器端面の一方の反射率をわずかに小さくし、その端面から共振して増幅された光を取り出す。その場合、その駆動電流を大きくするにつれて光出射端面が損傷することが知られている。このいわゆる光学損傷(COD:Catastrophic Optical Damage)により、半導体レーザの光取出し効率には限界がある。しかし、本実施例においては、端面ES1及びES2の両方をほぼ完全な反射面として(反射率を100%に近くなるように)構成し、共振器端面からは光を取り出さない。従って、CODによる端面破壊を考慮する必要がない。従って、安定して所望の光量を得ることができる。
また、取出される散乱光SLTは、一定のコヒーレンス性を有している(残存している)。従って、指向性に優れた光が取出されるため、凹部21Aから取り出された光が他の素子領域に向かって進むことが抑制される。従って、他の素子領域に光が伝播すること、すなわち光のクロストークが抑制される。また、共振器端面から光を取り出さないことによって、素子側面(例えば端面対ES)隣接する素子20への光のクロストークが大幅に抑制される。
また、一般的な半導体レーザの場合、光を取り出す方向は共振方向と同じ方向であるが、本実施例においては共振方向RDに垂直な方向、すなわち半導体構造層SLに垂直な方向に光を取り出す。従って、面発光が可能となり、その発光形状を素子自体で自由に設計することが可能となる。また、凹部21Aから取出される散乱光SLTは、高い強度を有しているため、高輝度の光源として使用することが可能となる。従って、並置された複数の素子20の各々は、そのサイズを小さくしても所望の輝度を得ることが可能となり、装置10のサイズを大幅に小さくすることが可能となる。また、装置サイズを犠牲にすることなく並置する素子20の個数を増加すること、すなわち配光パターンの高精細化が可能となる。
また、一般的な半導体レーザにおいては、所定の閾値以上の駆動電流を印加しなければレーザ発振させることができないため、レーザ光を取出すには一定の閾値電流以上の電流を印加する必要がある。しかし、素子20のサイズは非常に小さくすることが可能となるため、その閾値電圧は小さいものとなる。従って、例えば同程度の光量を得るための素子20と他の構造の素子(例えば発光ダイオード)との駆動電圧を比べると、素子20の方が小さい駆動電流で済む場合がある。従って、駆動電流の低下、すなわち省電力化を図ることが可能となる。
また、本実施例においては、光取出し部が半導体構造層SLの主面上に形成されているため、ヒートシンクを半導体構造層SLの主面に近い基板11上の領域に形成するなど、放熱が容易となる。従って、高い放熱性を実現することが可能となる。
なお、発光ダイオード(LED)や表面発光型の半導体レーザを用いることで、素子をアレイ化することが可能である。しかし、LEDや表面発光型の半導体レーザの場合、高輝度光源に求められる出力を得られない場合が多い。また、本願の発明者らは、高い出力を得ることが可能な端面発光型の半導体レーザをアレイ化することを検討したが、光ファイバなどの導光部材など、光学系が複雑になる場合が多かった。従って、装置の小型化を考慮した場合、端面発光型の半導体レーザを単純に用いるだけではコンパクトなアレイ光源を作製することが難しい。本発明による発光装置10によれば、端面発光型のレーザにおいて端面でない部分から光を取り出すことが可能である。従って、小型化とアレイ化された素子の高輝度化との両立が可能である。
なお、本実施例においては、半導体構造層の端面に反射ミラーML1及びML2が設けられている場合について説明したが、反射ミラー対MLは必ずしも端面対ESに設けられる必要は無い。
次に、図4(a)及び図4(b)を用いて、装置10の配線構成の一例について説明する。図4(a)は、n側配線NWの構成を模式的に示す上面図である。図の明確さのため、n電極NE及びn側配線NWの形成領域にハッチングを施してある。n側配線NWの各々は、マトリクス状に並置された素子20のうち、同一行の素子20の各々に接続されている。n側配線NWは、複数のn電極NEの各々に接続された共通配線として機能する。図4(b)は、p側配線PWの構成を模式的に示す上面図である。p側配線PWは、素子20の各々に設けられ、素子20と基板11の間において素子20のp電極PEに接続されている。p側配線PWは、素子20の各々におけるp型半導体層23の各々に接続された個別配線として機能する。
半導体発光装置10においては、素子20の各々が互いに独立して発光する。より具体的には、n側パッドNP及びp側パッドPPの各々への電源の接続及び非接続を切替えることによって、素子20の発光及び非発光は、互いに無関係に切替る。
次に、図5(a)〜(c)及び図6(a)〜(c)を参照して、半導体発光装置10の製造方法について説明する。なお、図5(a)〜(c)は、各製造過程における素子20の共振方向RDに沿った断面を示している。図6(a)〜(c)は、各製造過程における素子20の共振方向RDに垂直な方向に沿った断面を示している。
まず、成長用基板19上に、半導体構造層SLとなるn型半導体層21、活性層22及びp型半導体層23を成長した。成長用基板19として、サファイア基板を準備した。次に、p型半導体層23の表面に第1及び第2の溝23A1及び23A2を形成し、リッジ部23Bを形成した(図6(a))。続いて、第1及び第2の溝23A1及び23A2の内壁面全体を覆うように絶縁膜IFを形成し、他のp型半導体層23の表面にp電極PEを形成した(図6(a))。
また、p型半導体層23の表面に、p型半導体層23及び活性層22を貫通してn型半導体層21に至り、各層に垂直な貫通溝TRを形成し、素子20の端面対ES(第1及び第2の端面ES1及びES2)を形成した。また、貫通溝TRの内壁面に、反射ミラー対MLとなる反射層RFを形成した。本実施例においては、反射層RF(反射ミラー対ML)として、TaO2及びSiO2を3ペア積層した膜を形成した(図5(a))。次に、搭載基板11を準備し、搭載基板11上に絶縁層12を形成し、絶縁層12上に、p側配線PWを含むp側配線層13を形成した。続いて、接合部BPを含む接合層14を形成した(図5(b)及び図6(b))。
続いて、接合部BP及びp電極PEが互いに接するように密着させ、加熱及び圧着によって基板11に半導体構造層SLを接合した。次に、成長用基板19を研削及び研磨によって除去した。続いて、露出したn型半導体層21の表面に、光取出し部となる凹部21Aを形成した。また、凹部21Aが形成されていないn型半導体層21の表面にn電極NEを形成した。続いて、半導体構造層SLを素子20毎に分割(切断)した。
次に、半導体構造層SLの側面に絶縁膜IFを形成し、n側配線NWを形成した(図5(c)及び図6(c))。また、n側パッドNP及びp側パッドPPを形成し、半導体発光装置10を作製した。なお、装置10は実装基板に固定され、n側及びp側パッドNP及びPPがワイヤボンディングによって電源に接続される。このようにして、半導体発光装置10を作製することができる。
なお、本実施例においては、装置10が同一の構造を有する素子20からなる場合について説明したが、素子20とは異なる構造を有する発光素子を基板11上に実装してもよい。また、素子20の共振方向RDは全て同一方向となるように基板11上に並置する場合について説明及び図示したが、素子20の形成位置及びその向きはそれぞれ整列していなくてもよい。また、素子20のサイズ、凹部21Aの形状及びサイズは互いに異なっていてもよい。
図7は、実施例1の変形例1に係る半導体発光装置10Aの構造を示す断面図である。半導体発光装置10Aは、半導体発光素子20Aの構造を除いては、半導体発光装置10と同様の構造を有している。図7は、半導体発光素子20Aの共振方向RDの断面図である。半導体発光素子20Aは、凹部21Aは、その底部に複数の光散乱体24が設けられている。光散乱体24は、例えば蛍光体粒子からなり、凹部21Aの底部には複数の蛍光体粒子が充填されている。凹部21Aの底部に光散乱体24が設けられていることによって、凹部21Aの底部において光フィールドに対する屈折率がランダムに変化する。従って、凹部21Aの底部における共振光の散乱が促進され、より多くの散乱光SLT(図3(c))を凹部21Aから取り出すことが可能となる。
また、凹部21Aの底面から取出された散乱光は、その一部が蛍光体粒子に吸収される。蛍光体粒子に吸収された光は、散乱光とは異なる波長を有する蛍光となり、蛍光体粒子から放出される。一方、散乱光の一部は蛍光体粒子に吸収されることなく凹部21Aから放出される。この結果、凹部21Aからは、全体として蛍光体粒子からの蛍光と散乱光とが混在した光が放出される。例えば、散乱光が青色光であり、蛍光が黄色光である場合、この交じり合った光は白色光として観察されることとなる。
なお、散乱光の波長(すなわち色)は、発光装置を作製する際の半導体材料を選択することによって適宜決定、変更することができる。また、蛍光の波長は、蛍光体粒子の材料を選択することによって決定又は変更することができる。例えば、外部に放出される光の色度を所望のものとすることを目的として半導体材料及び蛍光体材料が選択される。蛍光体材料としては、例えばYAG:Ce、(Ca、Sr、Ba)−SiAlON:Eu等酸窒化物蛍光体、(La、Y)3Si611:Ce等窒化物系蛍光体を用いることができる。
なお、光散乱体24としては、蛍光体粒子ではなく、例えばSiO2やAl23などを光散乱体として用いることもできる。また、光散乱体24は、蛍光体粒子を含む異なる種類の散乱体を含んでいてもよい。また、本変形例においては凹部21Aの底部に光散乱体24が設けられている場合について説明したが、凹部21Aの底部の構成はこれに限定されない。凹部21Aの底部に光散乱構造が設けられていれば、光散乱体24が設けられる必要は無い。
また、半導体構造層SLの端面対ESにおける第1の端面ES1及び第2の端面ES2には、それぞれ第1の反射ミラーML1及び第2の反射ミラーML2が設けられている。第1及び第2の反射ミラーML1及びML2は互いに対向する一対の反射ミラーMLを構成しており、反射ミラー対MLによって共振器を構成している。本変形例においては、第1及び第2のミラーML1及びML2は、第1及び第2の端面ES1及びES2上に形成された光学多層膜ML11及びML21と、光学多層膜ML11及びML21上に形成された反射金属膜ML12及びML22と、からなる。反射金属膜ML12及びML22は、Ag及びPtなどの高い反射率を有する金属材料からなる。
本変形例においては、端面対ESにおける反射率をほぼ100%とすることが可能となる。従って、凹部21Aから取出される光(散乱光SLT)の出力低下を抑制することが可能となる。また、端面対ESから隣接する他の素子20(又は20A)に向かって進む光をほぼ無くすことが可能となる。従って、光のクロストークが抑制される。
なお、上記においては、第1の導電型がp型の導電型であり、第2の導電型がp型とは反対の導電型のn型である場合について説明したが、第1の導電型がn型であり、第2の導電型がp型であっていてもよい。また、第1の導電型及び第2の導電型のいずれかが真性導電型であってもよい。すなわち、第1の半導体層及び第2の半導体層のいずれかが真性半導体層であってもよい。また、各発光素子が並列に接続された場合について説明したが、各発光素子は、互いに直列に接続されていてもよく、また、互いに電気的に分離されていてもよい。
また、上記においては、発光素子が上面視において矩形形状を有する場合について説明したが、発光素子の上面視における形状はこれに限定されない。例えば、半導体発光素子は、三角形や六角形の形状を有していてもよい。例えば、発光素子の他の構成例として、図8(a)に実施例1の変形例2に係る半導体発光装置10Bにおける発光素子20Bを、図8(b)に実施例1の変形例3に係る半導体発光装置10Cにおける発光素子20Cの構造を示す。図8(a)及び図8(b)は、基板11に垂直な方向から見た半導体発光素子20B及び20Cの構造をそれぞれ模式的に示す上面図である。発光装置10B及び10Cは、発光素子20B及び20Cの構造を除いては、それぞれ発光装置10と同様の構造を有している。
図8(a)に示すように、発光素子20Bは、上面視において六角形の形状を有する。より具体的には、発光素子20Bは、正六角形の上面形状を有する半導体構造層SL2を有している。また、半導体構造層SL2は、その側面全体に形成された反射ミラーML3を有している。また、発光素子20Bは、当該正六角形の3つの互いに対向する辺部分に対応する半導体構造層SL2の側面の各々に形成された3つの端面対(端面ES31及びES32、端面ES41及びES42、並びに端面ES51及びES52)を有している。また、発光素子20Bは、各端面に垂直な方向に沿って形成された3つのリッジ部23B1、23B2及び23B3を有している。
本変形例においては、発光素子20Bは、3つの端面対及び反射ミラーML2によって構成された共振器を有している。また、発光素子20B(半導体構造層SL2)は、正六角形の上面形状を有する凹部21Bを有している。本変形例においては、凹部21Bが発光素子20Bの光取出し部として機能する。なお、凹部21Bは他の上面形状を有していても良い。
また、図8(b)に示すように、発光素子20Cは、矩形の上面形状(矩形の上面形状を有する半導体構造層SL3)を有している。また、半導体構造層SL3は、その側面全体に形成された反射ミラーML4を有している。また、発光素子20Cは、当該矩形の2つの互いに対向する辺部分に対応する半導体構造層SL3の側面の各々に形成された2つの端面対(端面ES61及びES62、並びに端面ES71及びES72)を有している。また、発光素子20Cは、各端面に垂直な方向に沿って形成された2つのリッジ部23B4及び23B5を有している。
本変形例においては、発光素子20Bは、2つの端面対及び反射ミラーML3によって構成された共振器を有している。また、発光素子20C(半導体構造層SL3)は、十字形の上面形状を有する凹部21Cを有している。本変形例においては、凹部21Cが発光素子20Cの光取出し部として機能する。なお、凹部21Cは他の上面形状を有していても良い。
上記したように、発光素子が複数のリッジ部を有していてもよく、光取出し部として機能する凹部は多角形や円形状など、様々な形状を有していても良い。また、上記した変形例は互いに組み合わせることが可能である。例えば、基板11上に素子20、素子20A、20B及び20Cが全て形成(実装)されていてもよい。従って、上記した実施例及び変形例によれば、光を取出す形状やその強度分布、指向性などを考慮することによって、高い自由度で光学設計を行うことが可能となる。従って、様々な用途(要求)に対応することが可能である。なお、半導体発光素子の各々は、発光領域の暗部形成の抑制を考慮すると、平面充填形にて配列されていることが好ましい。
本実施例においては、共振器を構成する半導体発光素子が複数個並置された構成を有し、その各々のn型半導体層21の表面に光取出し部として機能する凹部21Aを有している。従って、配光パターンを種々変更可能な発光装置をコンパクトに構成することが可能となる。また、素子間での光のクロストークを抑制することができる。
10 半導体発光装置
11 搭載基板
NW n側配線(第2の配線)
PW p側配線(第1の配線、個別配線)
20、20A 半導体発光素子
SL 半導体構造層
21 n型半導体層(第2の半導体層)
22 活性層
23 p型半導体層(第1の半導体層)
NE n電極(第2の電極)
PE p電極(第1の電極)
ES1、ES2 端面
ML1、ML2 反射ミラー
24 光散乱体

Claims (6)

  1. 搭載基板と、
    前記搭載基板上に並置され、その各々が第1の導電型を有する第1の半導体層、活性層及び前記第1の半導体層とは反対の導電型の第2の導電型を有する第2の半導体層が前記搭載基板上に順次積層された半導体構造層を有する複数の半導体発光素子と、を有し、
    前記複数の半導体発光素子の各々は、前記半導体構造層の互いに対向する端面によって構成された共振器を有し、
    前記複数の半導体発光素子の各々は、前記第2の半導体層の表面から前記活性層に向けて窪んだ凹部を有することを特徴とする半導体発光装置。
  2. 前記複数の前記半導体発光素子の各々における前記第1の半導体層の各々に接続された個別配線を有することを特徴とする請求項1に記載の半導体発光装置。
  3. 前記凹部は、その底部に光散乱構造が設けられていることを特徴とする請求項1又は2に記載の半導体発光装置。
  4. 前記互いに対向する端面には反射ミラーが設けられており、
    前記反射ミラーは光学多層膜からなることを特徴とする請求項1乃至3のいずれか1つに記載の半導体発光装置。
  5. 前記互いに対向する端面には反射ミラーが設けられており、
    前記反射ミラーは、前記互いに対向する端面上に形成された光学多層膜と、前記光学多層膜上に形成された反射金属膜とからなることを特徴とする請求項1乃至3のいずれか1つに記載の半導体発光装置。
  6. 前記光散乱構造は前記凹部の前記底部に設けられた蛍光体粒子を含むことを特徴とする請求項3乃至5のいずれか1つに記載の半導体発光装置。
JP2014258489A 2014-12-22 2014-12-22 半導体発光装置 Active JP6527695B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014258489A JP6527695B2 (ja) 2014-12-22 2014-12-22 半導体発光装置
US14/977,447 US9577167B2 (en) 2014-12-22 2015-12-21 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258489A JP6527695B2 (ja) 2014-12-22 2014-12-22 半導体発光装置

Publications (2)

Publication Number Publication Date
JP2016119397A true JP2016119397A (ja) 2016-06-30
JP6527695B2 JP6527695B2 (ja) 2019-06-05

Family

ID=56130457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258489A Active JP6527695B2 (ja) 2014-12-22 2014-12-22 半導体発光装置

Country Status (2)

Country Link
US (1) US9577167B2 (ja)
JP (1) JP6527695B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094530B2 (en) 2019-05-14 2021-08-17 Applied Materials, Inc. In-situ curing of color conversion layer
US11239213B2 (en) * 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104555U (ja) * 1980-12-17 1982-06-28
JPS62248283A (ja) * 1986-04-22 1987-10-29 Matsushita Electric Ind Co Ltd 半導体レ−ザ装置
JPS63147388A (ja) * 1986-12-10 1988-06-20 Nec Corp 半導体レ−ザ
JPH01120881A (ja) * 1987-11-04 1989-05-12 Mitsubishi Electric Corp 半導体レーザ装置
JPH02119196A (ja) * 1988-08-09 1990-05-07 General Electric Co (Ge) 出力が結合された表面出射型半導体レーザ装置
JPH06237043A (ja) * 1993-02-08 1994-08-23 Sony Corp 半導体レーザー
JP2004140113A (ja) * 2002-10-16 2004-05-13 Sharp Corp 光学素子および光学センサ
JP2004341128A (ja) * 2003-05-14 2004-12-02 Sharp Corp 発光体とそれを含む照明装置および表示装置
US20090268770A1 (en) * 2008-04-28 2009-10-29 Shih-Yuan Wang Gain Clamped Optical Device For Emitting LED Mode Light
JP2010074008A (ja) * 2008-09-19 2010-04-02 Nichia Corp 半導体発光素子
JP2010087292A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd 発光素子
JP2010093127A (ja) * 2008-10-09 2010-04-22 Sumitomo Electric Ind Ltd 半導体発光装置
US20110294240A1 (en) * 2010-05-28 2011-12-01 Yu-Sik Kim Light-emitting device, light-emitting system including the same, and fabricating method thereof
US20120050694A1 (en) * 2010-08-27 2012-03-01 Industrial Technology Research Institute Light emitting unit array and projection system
JP2013021213A (ja) * 2011-07-13 2013-01-31 Mitsubishi Electric Corp レーザ素子
JP2013030642A (ja) * 2011-07-29 2013-02-07 Mitsubishi Electric Corp レーザ素子
JP2013084881A (ja) * 2011-10-10 2013-05-09 Lg Innotek Co Ltd 発光素子
JP2014515554A (ja) * 2011-05-19 2014-06-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクス半導体モジュール、および複数のそのようなモジュールを有するディスプレイ
JP6282485B2 (ja) * 2014-02-24 2018-02-21 スタンレー電気株式会社 半導体発光素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176224A (ja) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd レーザー光源
US6797990B2 (en) * 2001-06-29 2004-09-28 Showa Denko Kabushiki Kaisha Boron phosphide-based semiconductor device and production method thereof
US7407421B2 (en) * 2003-11-20 2008-08-05 Matsushita Electric Industrial Co., Ltd. Light source, optical pickup, and electronic apparatus
JP4839478B2 (ja) * 2005-10-03 2011-12-21 Dowaエレクトロニクス株式会社 垂直共振器型発光ダイオード及びその製造方法
US7858995B2 (en) * 2007-08-03 2010-12-28 Rohm Co., Ltd. Semiconductor light emitting device
JP2013065726A (ja) 2011-09-16 2013-04-11 Toshiba Corp 半導体発光装置及びその製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104555U (ja) * 1980-12-17 1982-06-28
JPS62248283A (ja) * 1986-04-22 1987-10-29 Matsushita Electric Ind Co Ltd 半導体レ−ザ装置
JPS63147388A (ja) * 1986-12-10 1988-06-20 Nec Corp 半導体レ−ザ
JPH01120881A (ja) * 1987-11-04 1989-05-12 Mitsubishi Electric Corp 半導体レーザ装置
JPH02119196A (ja) * 1988-08-09 1990-05-07 General Electric Co (Ge) 出力が結合された表面出射型半導体レーザ装置
JPH06237043A (ja) * 1993-02-08 1994-08-23 Sony Corp 半導体レーザー
JP2004140113A (ja) * 2002-10-16 2004-05-13 Sharp Corp 光学素子および光学センサ
JP2004341128A (ja) * 2003-05-14 2004-12-02 Sharp Corp 発光体とそれを含む照明装置および表示装置
US20090268770A1 (en) * 2008-04-28 2009-10-29 Shih-Yuan Wang Gain Clamped Optical Device For Emitting LED Mode Light
JP2010074008A (ja) * 2008-09-19 2010-04-02 Nichia Corp 半導体発光素子
JP2010087292A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd 発光素子
JP2010093127A (ja) * 2008-10-09 2010-04-22 Sumitomo Electric Ind Ltd 半導体発光装置
US20110294240A1 (en) * 2010-05-28 2011-12-01 Yu-Sik Kim Light-emitting device, light-emitting system including the same, and fabricating method thereof
US20120050694A1 (en) * 2010-08-27 2012-03-01 Industrial Technology Research Institute Light emitting unit array and projection system
JP2014515554A (ja) * 2011-05-19 2014-06-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクス半導体モジュール、および複数のそのようなモジュールを有するディスプレイ
JP2013021213A (ja) * 2011-07-13 2013-01-31 Mitsubishi Electric Corp レーザ素子
JP2013030642A (ja) * 2011-07-29 2013-02-07 Mitsubishi Electric Corp レーザ素子
JP2013084881A (ja) * 2011-10-10 2013-05-09 Lg Innotek Co Ltd 発光素子
JP6282485B2 (ja) * 2014-02-24 2018-02-21 スタンレー電気株式会社 半導体発光素子

Also Published As

Publication number Publication date
US9577167B2 (en) 2017-02-21
US20160181488A1 (en) 2016-06-23
JP6527695B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5801359B2 (ja) オプトエレクトロニクス半導体ボディ
JP4123830B2 (ja) Ledチップ
US9935249B2 (en) Light emitting device and method for manufacturing the same
EP3247008B1 (en) Surface emitting laser device
US20150076529A1 (en) Light-emitting device
JP2016062899A (ja) 半導体発光装置
US8115219B2 (en) LED semiconductor body and use of an LED semiconductor body
JP2006210730A (ja) 発光素子
KR20110069149A (ko) 광전 반도체 몸체
JP7224020B2 (ja) 半導体素子、半導体素子パッケージ、およびこれを含む照明システム
WO2017154975A1 (ja) 半導体発光装置
KR101723330B1 (ko) 반도체 칩, 복수의 반도체 칩을 포함하는 디스플레이, 및 그 제조 방법
US6809345B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP6527695B2 (ja) 半導体発光装置
JP6282485B2 (ja) 半導体発光素子
JP2018056283A (ja) 垂直共振器型発光素子モジュール
JP6188919B2 (ja) オプトエレクトロニクス半導体チップ及びオプトエレクトロニクス半導体部品
JP2012059523A (ja) 車両用灯具
JP2015159203A (ja) 半導体発光装置
JP2017212269A (ja) 面発光レーザ装置
JP2017212270A (ja) 面発光レーザ装置
JP2015002232A (ja) 発光デバイス
JP6918540B2 (ja) 発光装置
JP7285439B2 (ja) 面状光源
KR20170062434A (ko) 반도체 발광소자

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250