JP2016113697A - 金属めっき被覆ステンレス材の製造方法 - Google Patents

金属めっき被覆ステンレス材の製造方法 Download PDF

Info

Publication number
JP2016113697A
JP2016113697A JP2015236703A JP2015236703A JP2016113697A JP 2016113697 A JP2016113697 A JP 2016113697A JP 2015236703 A JP2015236703 A JP 2015236703A JP 2015236703 A JP2015236703 A JP 2015236703A JP 2016113697 A JP2016113697 A JP 2016113697A
Authority
JP
Japan
Prior art keywords
stainless steel
steel material
metal plating
oxide film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015236703A
Other languages
English (en)
Other versions
JP6628585B2 (ja
Inventor
隆広 吉田
Takahiro Yoshida
隆広 吉田
知之 鶴田
Tomoyuki Tsuruta
知之 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Publication of JP2016113697A publication Critical patent/JP2016113697A/ja
Application granted granted Critical
Publication of JP6628585B2 publication Critical patent/JP6628585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ステンレス鋼材の表面に生成した酸化膜の厚みの個体差やばらつきによらず、ステンレス鋼材上に形成する金属めっき層について、密着性に優れ、厚みを薄く且つ均一なものとし、金属めっき層の耐食性、導電性及び平滑性などを向上できる金属めっき被覆ステンレス材の製造方法を提供すること。【解決手段】ステンレス鋼材10の表面に生成した酸化膜11を、エッチング剤により減膜する減膜工程と、前記減膜した酸化膜11を、酸化処理剤により増膜する増膜工程と、前記ステンレス鋼材10の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材1の製造方法を提供する。【選択図】図1

Description

本発明は、金属めっき被覆ステンレス材の製造方法に関する。
従来、コネクタ、スイッチもしくはプリント配線基板などに用いられる電気接点材料として、ステンレス鋼材の表面に金めっき層等の金属めっき層が被覆された金属めっき被覆ステンレス材や、表面処理したステンレス鋼材が用いられている。
表面に金属めっき層が形成されたステンレス鋼材(以下、金属めっき被覆ステンレス材ともいう)は、表面の金属めっき層の密着性を向上させるために、金属めっき層を形成する前に、ステンレス鋼材上に下地ニッケルめっきを施して下地ニッケルめっき層が形成されるほか、たとえば、特許文献1に記載のように、下地ニッケルめっきを施すことなく、ステンレス鋼材上に、直接、金属めっき層を形成する技術も知られている。また、表面処理したステンレス鋼材としては、たとえば、特許文献2のように、表面に所定の酸化膜を形成したステンレス鋼材が知られている。
特開2008−4498号公報 特開2007−280664号公報
金属めっき被覆ステンレス材では、表面の金属めっき層の厚みを薄くし過ぎると、金属めっき層の被覆率が著しく低下することにより、金属めっき層に要求される特性が得られなくなるとともに、ステンレス鋼材が露出して耐食性が低下する一方で、表面の金属めっき層の厚みを厚くし過ぎると、コスト的に不利になる。そのため、金属めっき被覆ステンレス材においては、これらの問題を解決するために、表面に形成する金属めっき層について、厚みを薄く且つ均一なものとすることが求められている。
しかしながら、上記特許文献1に開示されている技術では、ステンレス鋼材上に形成する金属めっき層の厚みが不均一になり、金属めっき層の密着性及び耐食性が低下するという問題がある。すなわち、ステンレス鋼材の表面は、空気雰囲気に曝されることで自然酸化膜が生成するが、この酸化膜は、ステンレス鋼材の個体ごとに厚みが異なり、さらに一のステンレス鋼材の同一面内でも厚みのばらつきがある。上記特許文献1の技術では、基板として用いるステンレス鋼材の表面に生成した酸化膜のばらつきを考慮していないため、ステンレス鋼材上に形成する金属めっき層は、酸化膜の厚みのばらつきに応じて厚みが不均一になってしまい、めっきが析出しない箇所が発生したり、金属めっき層の剥離が発生したりする。これにより金属めっき層の被覆率が低下して、耐食性、導電性及び平滑性などの金属めっき層に要求される特性が低下するという問題がある。
また、上記特許文献2に開示されている技術では、ステンレス鋼材への表面処理として、ステンレス鋼材に陰極電解処理を施すことで、ステンレス鋼材上に所定の酸化膜を形成し、ステンレス鋼材の防食性などを向上させているが、形状が複雑で均一に通電ができないステンレス鋼材や、基材の電気抵抗が高く通電が困難なステンレス鋼材を用いる場合、ステンレス鋼材への通電が不均一に成り、形成される酸化膜の厚みが不均一になる等の問題がある。
本発明は、ステンレス鋼材の表面に生成した酸化膜の厚みの個体差やばらつきによらず、ステンレス鋼材上に形成する金属めっき層について、密着性に優れ、厚みを薄く且つ均一なものとし、金属めっき層の耐食性、導電性及び平滑性などを向上できる金属めっき被覆ステンレス材の製造方法を提供することを目的とする。
本発明者等は、ステンレス鋼材について、エッチング剤により処理した後、酸化処理剤で処理し、その後、表面を改質する処理を施すことにより、上記目的を達成できることを見出し本発明を完成させるに至った。
すなわち、本発明によれば、ステンレス鋼材の表面に生成した酸化膜を、エッチング剤により減膜する減膜工程と、前記減膜した酸化膜を、酸化処理剤により増膜する増膜工程と、前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材の製造方法が提供される。
本発明の製造方法において、前記エッチング剤として、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いることが好ましい。
本発明の製造方法において、前記酸化処理剤として、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましい。
本発明の製造方法の前記改質工程において、前記ステンレス鋼材を、硫酸濃度が20〜25体積%である硫酸水溶液に、50〜70℃の温度で5〜600秒間浸漬させる処理を行うことが好ましい。
本発明の製造方法において、前記改質工程の後に、前記ステンレス鋼材に金属めっき処理を施す金属めっき工程をさらに有することが好ましい。
本発明によれば、ステンレス鋼材の表面に生成された酸化膜を、エッチング剤により意図的に減膜したのち、当該減膜した酸化膜を、酸化処理剤により意図的に増膜するので、ステンレス鋼材の表面に生成した酸化膜の厚みばらつきによらず、形成する金属めっき層について、結果的に密着性に優れ、厚みを薄く且つ均一なものとすることができる。これにより、耐食性、導電性及び平滑性などの金属めっき層に要求される特性に優れた金属めっき被覆ステンレス材の製造方法を提供することができる。
図1は、本発明の実施形態に係る金属めっき被覆ステンレス材の断面図である。 図2は、金属めっき被覆ステンレス材を製造するための各工程を説明するための図である。 図3は、実施例及び比較例で得られた金属めっき被覆ステンレス材1の接触抵抗を測定する方法を説明するための図である。
以下、本実施形態の金属めっき被覆ステンレス材1の製造方法について説明する。
本実施形態の金属めっき被覆ステンレス材1は、ステンレス鋼材10に対して、エッチング処理剤で処理することで酸化膜11を減膜する減膜工程、酸化処理剤により処理することで酸化膜11を増膜する増膜工程、酸化膜11を改質する改質工程、及び酸化膜11上に金属めっき層を形成する金属めっき工程の各処理を施すことにより形成され、図1に示すように、ステンレス鋼材10を被覆する酸化膜11上に金属めっき層20が形成されてなる。
<減膜工程>
まず、本実施形態では、金属めっき被覆ステンレス材1の基板となるステンレス鋼材10を準備する。基板としては、特に限定されず、SUS316L、SUS316、SUS304などのステンレス鋼材が挙げられる。また、ステンレス鋼材にはマルテンサイト系、フェライト系、オーステナイト系などが挙げられるが、特にオーステナイト系ステンレス鋼材が好適である。ステンレス鋼材10の形状としては、特に限定されず、使用用途に応じて適宜選択することができるが、たとえば、線形状や板形状に加工された導電性の金属部品、板を凹凸形状に加工してなる導電性部材、ばね形状や筒形状に加工された電子機器の部品などの用途に応じて必要な形状に加工したもの用いることができる。また、ステンレス鋼材10の長さ(幅)、太さ(直径)や厚み(板厚)は、特に限定されず、使用用途に応じて適宜選択することができる。
本実施形態では、このように準備したステンレス鋼材10について、表面に自然に生成した酸化膜11(不動態膜)を、エッチング剤により減膜する減膜工程の処理を所定の条件で管理して行う。具体的には、ステンレス鋼材10をエッチング剤に接触させることで、ステンレス鋼材10の表面の酸化膜11の一部を除去し、図2に示すように、酸化膜11を減膜する。図2は、未処理のステンレス鋼材10が、減膜工程、増膜工程、改質工程及び金属めっき工程を経て金属めっき被覆ステンレス材1が形成される様子の一例を示す図である。なお、図2では、減膜工程を経たステンレス鋼材10、増膜工程を経たステンレス鋼材10、及び改質工程を経たステンレス鋼材10について、それぞれ走査型オージェ電子分光分析装置(AES)により測定し、酸素(O)及び鉄(Fe)の原子濃度(at%)の推移を示したグラフを示した。図2において、縦軸は酸素(O)又は鉄(Fe)の原子濃度を示し、横軸はステンレス鋼材10の表面から走査型オージェ電子分光分析装置(AES)により測定した深さを示す。
本実施形態では、準備したステンレス鋼材10(図2では、「未処理」と記載した)に対して、このようにエッチング剤と接触させる処理を行うことにより、図2に示すように、表面の酸化膜11を減膜することができる。すなわち、図2の例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、未処理の状態では4.6nmであったものが、減膜工程を経ることで4.0nmまで減膜する。本実施形態では、減膜工程により減膜された酸化膜11は、図2に示すように、全体的に厚みが減少する。
減膜工程で用いるエッチング剤としては、酸化膜11を減膜できるものであればよく、特に限定されないが、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、フッ化水素アンモニウムまたは塩酸と硝酸を混ぜた塩酸と硝酸の混酸が特に好ましい。
減膜工程では、上記エッチング剤の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10表面の酸化膜11の一部を除去できるが、水溶液中におけるエッチング剤の濃度としては、好ましくは1〜99wt%であり、酸性溶液の種類によって使用に適した濃度に調整すればよい。特にフッ化水素アンモニウム溶液で処理する場合の濃度は、好ましくは1〜15wt%、より好ましくは3〜5wt%である。エッチング剤の濃度を上記範囲とすることにより、ステンレス鋼材10の酸化膜11を適切に減膜できる。
ステンレス鋼材10をエッチング剤に接触させる方法としては、酸化膜11をできる限り均一な厚みで適切に減膜できる方法であればよく、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる方法、ステンレス鋼材10にエッチング剤の水溶液をスプレーする方法等を用いることができる。
ステンレス鋼材10をエッチング剤の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは20〜60℃、より好ましくは25〜50℃である。さらに、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる時間は、好ましくは5〜600秒、より好ましくは10〜120秒である。
本実施形態では、減膜工程において酸化膜11の一部を除去する際には、ステンレス鋼材10の地鉄(ステンレス鋼材10において、酸化されておらず酸化膜11となっていない基体部分)が露出しないようにすることが望ましい。すなわち、ステンレス鋼材10の地鉄が露出してしまうと、露出した部分が、空気中の酸素や水中の酸素と接触し、新たな酸化膜11が自然に生成してしまうこととなる。このように自然に生成される酸化膜11は、厚みが不均一となり易いため、本実施形態では、減膜工程において、ステンレス鋼材10の地鉄が露出しない程度に酸化膜11を減膜することにより、ステンレス鋼材10に新たな酸化膜11が自然に生成されてしまうことが防止される。
<増膜工程>
次いで、減膜工程により酸化膜11の増膜を行ったステンレス鋼材10に対し、酸化処理剤を接触させることにより、図2に示すように酸化膜11を増膜する増膜工程の処理を行う。
本実施形態では、減膜工程を経たステンレス鋼材10に対して、このように酸化処理剤と接触させる処理を所定の条件で管理して行うことにより、図2に示すように、酸化膜11を増膜することができる。すなわち、図2に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、減膜工程を経た状態では4.0nmであったものが、増膜工程を経ることで6.2nmに増膜する。
本実施形態では、上述したように、酸化処理剤を用いて酸化膜11を増膜することにより、酸化膜11を増膜するとともに、酸化膜11の厚みを均一化することができる。すなわち、未処理のステンレス鋼材10は、図2に示すように、未処理のステンレス鋼材10の酸化膜11を全体的に減膜したステンレス鋼材10(減膜工程後のステンレス鋼材10)は、酸化膜11の厚みが不均一なものとなっており、そのため、酸化膜11が薄い部分はさらに酸化し易い状態となり、酸化膜11が厚い部分は酸化し難い状態となっている。これに対し、酸化処理剤を用いて意図的にステンレス鋼材10の表面を酸化させることで、ステンレス鋼材10のうち、酸化し易い部分(酸化膜11が薄い部分)の酸化膜11の増膜が進行する一方で、酸化し難い部分(酸化膜11が厚い部分)は増膜が抑制される。その結果、ステンレス鋼材10の表面全体が同程度に酸化されることとなり、ステンレス鋼材10上の酸化膜11の厚みが均一化する。
本実施形態では、上述した減膜工程及び増膜工程を行うことにより、ステンレス鋼材10の表面の酸化膜11の厚みを意図的に均一なものとすることができる。これにより、本実施形態によれば、得られる被覆ステンレス材1上に、良好な金属めっき層20を形成できるようになり、金属めっき層20の密着性及び耐食性に優れた金属めっき被覆ステンレス材1を製造可能となる。
増膜工程で用いる酸化処理剤としては、酸化膜11を適切に増膜できるものであればよく、特に限定されないが、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、硝酸が特に好ましい。
増膜工程では、上記酸化処理剤の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10の表面を酸化させることができるが、水溶液中における酸化処理剤の濃度は、好ましくは5〜25wt%、より好ましくは15〜20wt%である。酸化処理剤の濃度を上記範囲とすることにより、ステンレス鋼材10の表面を適切に酸化させることができる。
ステンレス鋼材10を酸化処理剤に接触させる方法としては、酸化膜11の厚みができる限り均一となるように酸化膜11を増膜できる方法であればよく、ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる方法、ステンレス鋼材10に酸化処理剤の水溶液をスプレーする方法等を用いることができる。
ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは20〜60℃、より好ましくは25〜40℃である。さらに、ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる時間は、好ましくは1〜30秒、より好ましくは2〜15秒である。
<改質工程>
次いで、増膜工程により酸化膜11の増膜を行ったステンレス鋼材10について、表面の酸化膜11を、金属めっき処理に適した状態に改質する改質工程の処理を行う。本実施形態では、改質工程の処理を行うことにより、図1,2に示すように酸化膜11で被覆されたステンレス鋼材10が得られる。
金属めっき処理に適した状態としては、酸化膜11の表面におけるオージェ電子分光分析によるCr/O値(Cr/Oのモル比)及びCr/Fe値(Cr/Feのモル比)が、次の範囲に調整された状態が挙げられる。すなわち、Cr/O値が好ましくは0.05〜0.2、より好ましくは0.05〜0.15の範囲である。またCr/Fe値が好ましくは0.5〜0.8、より好ましくは0.5〜0.7の範囲である。
本実施形態においては、ステンレス鋼材10における酸化膜11の表面のオージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲に制御することにより、酸化膜11上に形成される金属めっき層20の被覆率(すなわち、酸化膜11上の金属めっき層20が形成された面における、金属めっき層20によって被覆されている面積の割合)が向上し、密着性及び耐食性に優れたものとなる。
なお、本実施形態において、オージェ電子分光分析によるCr/O値及びCr/Fe値は、たとえば、次の方法により測定することができる。すなわち、まず、酸化膜11の表面について、走査型オージェ電子分光分析装置(AES)を用いて測定を行い、酸化膜11の表面のCr、O、及びFeの原子%を算出する。そして、酸化膜11の表面のうち、5箇所について、走査型オージェ電子分光分析装置による測定を行い、得られた結果を平均することにより、Cr/O値(Crの原子%/Oの原子%)及びCr/Fe値(Crの原子%/Feの原子%)を算出することができる。なお、本実施形態においては、走査型オージェ電子分光分析装置を用いた測定により得られたピークのうち、510〜535eVのピークをCrのピークとし、485〜520eVのピークをOのピークとし、570〜600eVのピークをFeのピークとし、これらCr,O,Feの合計を100原子%として、Cr、O、及びFeの原子%を測定する。
本実施形態の改質工程では、ステンレス鋼材10の酸化膜11において、オージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲とする方法としては、たとえば、増膜工程を経たステンレス鋼材10を、硫酸水溶液に浸漬させる方法が挙げられる。
改質工程においてステンレス鋼材10を硫酸水溶液に浸漬させる場合には、硫酸水溶液の硫酸濃度は、好ましくは20〜25体積%である。また、ステンレス鋼材10を浸漬させる際の温度は、好ましくは50〜70℃、より好ましくは60〜70℃である。さらに、ステンレス鋼材10を硫酸水溶液に浸漬させる時間は、好ましくは3〜600秒、より好ましくは5〜300秒である。
本実施形態によれば、改質工程において、ステンレス鋼材10を硫酸水溶液に浸漬させる方法を用いる場合において、硫酸濃度、温度、及び浸漬時間の条件を上記範囲とすることにより、ステンレス鋼材10の表面の酸化膜11の一部が除去されるとともに、ステンレス鋼材10上に、表面のオージェ電子分光分析によるCr/O値及びCr/Fe値が上述した範囲に制御されたステンレス鋼材表面を得ることができる。
なお、本実施形態では、増膜工程により酸化膜11が増膜したステンレス鋼材10は、上述した改質工程を経ることにより、通常、酸化膜11が減膜する。たとえば、図2に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、増膜工程を経た状態では6.2nmであったものが、改質工程を経ることで2.7nmまで減膜する。
<金属めっき工程>
次いで、改質工程により改質を行ったステンレス鋼材10について、金属めっきを施し、表面に金属めっき層20を形成する金属めっき工程の処理を行う。
なお、金属めっき層20を構成する金属としては、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)、錫(Sn)、クロム(Cr)、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、リン(P)、ホウ素(B)のうちいずれか一の金属、又はこれらのうち少なくとも二以上の金属を含む合金が挙げられ、これらのうち、Au、Ag、Pd又はPtが特に好ましい。また、金属めっき層20を形成するめっき方法は特に限定されないが、Au、Ag、Pd、Pt、Rh、Ru、Cu、Sn、Cr、Ni、Co、Fe、P、Bなどの塩を含むめっき浴を用いて、無電解めっきにより形成することが好ましい。
ここで挙げたAu、Ag、Pd、Pt、Rh、Ru、Cu、Sn、Cr、Niは、いずれも、標準電極電位が大きく貴な金属であり、かつ、接触抵抗が低い、という共通の性質を有している。そのため、金属めっき層20を構成する金属として上記のいずれの金属を用いた場合であっても、得られる金属めっき被覆ステンレス材1は、金属めっき層20のめっき性、密着性、耐食性及び導電性に優れるものとなる。
なお、金属めっき層20の被覆率、すなわち、酸化膜11上の金属めっき層20が形成された面における、金属めっき層20によって被覆されている面積の割合としては、好ましくは95%以上である。金属めっき層20の被覆率を95%以上とすることにより、金属めっき層20のピンホールを低減させることができ、これにより、ピンホールをきっかけとした金属めっき層20の剥離を防止することができるとともに、得られる金属めっき被覆ステンレス材1について、耐食性及び導電性をより向上させることができる。
金属めっき層20を構成する主な金属として金を用いる場合には、形成する金属めっき層20の厚みは、好ましくは2〜20nmであり、より好ましくは2〜5nmである。主に金からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、主に金からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
また、金属めっき層20を構成する主な金属として銀を用いる場合には、形成する金属めっき層20の厚みは、好ましくは10〜200nmであり、より好ましくは20〜100nmである。主に銀からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、主に銀からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
あるいは、金属めっき層20を構成する主な金属として金及び銀以外の金属を用いる場合には、形成する金属めっき層20の厚みは、好ましくは2〜20nmであり、より好ましくは2〜5nmである。このような金属からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、このような金属からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
以上のようにして、金属めっき工程によりステンレス鋼材10に金属めっき処理を施し、酸化膜11上に金属めっき層20を形成することにより、金属めっき被覆ステンレス材1を得ることができる。
本実施形態によれば、基板として準備したステンレス鋼材10について、表面に自然に生成した酸化膜11の厚みのばらつき(すなわち、ステンレス鋼材の個体差に基づく酸化膜11の厚みばらつきや、一のステンレス鋼材の同一面内における酸化膜11の厚みばらつき)によらず、減膜工程及び増膜工程により、酸化膜11の厚みを均一なものとすることができる。具体的には、未処理の状態のステンレス鋼材10について、酸化膜11の厚みがばらついていたとしても、ステンレス鋼材10の酸化膜11は、減膜工程により減膜した後、増膜工程により増膜することで、ステンレス鋼材10の表面に生成した酸化膜11の厚みの個体差やばらつきによらず、均一な厚みに調整される。
そして、本実施形態では、このように厚みが均一化された酸化膜11に対して、上述した改質工程を行うことで、酸化膜11を金属めっき処理に適した状態とすることができ、その後の金属めっき工程にて、厚みが薄く且つ均一な金属めっき層20を形成できるようになる。
これにより、本実施形態では、ステンレス鋼材10の表面に生成した酸化膜11のばらつきによらず、厚みが均一で金属めっき処理に適した酸化膜11が形成され、このような酸化膜11上に、厚みが薄く且つ均一な金属めっき層20が形成される。その結果、本実施形態によれば、金属めっき層20の密着性及び耐食性に優れた金属めっき被覆ステンレス材1を製造することができる。
また、本実施形態の金属めっき被覆ステンレス材1は、上述したように、コネクタ、スイッチ、もしくはプリント配線基板などに用いられる電気接点材料として用いることができるが、燃料電池用セパレータとして用いることもできる。燃料電池用セパレータは、燃料電池スタックを構成する燃料電池セルの部材として用いられ、ガス流路を通じて電極に燃料ガスや空気を供給する機能、及び電極で発生した電子を集電する機能を有するものである。金属めっき被覆ステンレス材1を、燃料電池用セパレータとして用いる際には、ステンレス鋼材10については、予めその表面に燃料ガスや空気の流路として機能する凹凸(ガス流路)が形成されたものを準備し、このステンレス鋼材10に対して、上述した減膜工程、増膜工程、改質工程及び金属めっき工程の各処理を施すことが好ましい。ガス流路を形成する方法としては、特に限定されないが、たとえば、プレス加工により形成する方法が挙げられる。
なお、通常、表面に金属めっき層が形成されたステンレス鋼材を燃料電池用セパレータとして用いる場合には、燃料電池用セパレータは、燃料電池内における高温かつ酸性雰囲気の環境にさらされるため、表面の金属めっき層の被覆率が低いときには、基板となるステンレス鋼材の腐食が早期に進行してしまい、これにより、ステンレス鋼材表面に生成した腐食生成物により電気抵抗値が増加し、電極で発生した電子を集電する燃料電池用セパレータとしての機能が低下してしまうという問題がある。
これに対し、本実施形態の金属めっき被覆ステンレス材1によれば、上述したように、被覆率及び密着性に優れた金属めっき層20が形成されているため、このような燃料電池用セパレータとしても好適に用いることができる。
以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
なお、実施例及び比較例にて得られた金属めっき被覆ステンレス材1の評価方法は、以下のとおりである。
<接触抵抗値の測定>
金属めっき被覆ステンレス材1について、図3に示す測定系を用いて、接触抵抗値の測定を行った。なお、図3に示す測定系は、2枚の金属めっき被覆ステンレス材1と、金めっき被覆された銅電極2と、電圧計3と、電流計4とから構成される。接触抵抗値の測定は、具体的には、まず、金属めっき被覆ステンレス材1を幅20mm、長さ20mm、厚さ0.1mmの大きさに加工し、図3に示すように、金めっき被覆ステンレス材1を2枚重ね合わせたものを、金めっき被覆された銅電極2によって両側から挟んで固定することで、図3に示す測定系とした。次いで、金めっき被覆された銅電極2に一定の荷重を加えながら、抵抗計(日置電機社製、ミリオームハイテスタ3540)を用いて、試験片の接触抵抗値を測定した。
《実施例1》
まず、ステンレス鋼材10としてSUS316Lを準備した。次いで、準備したステンレス鋼材10について水洗及び脱脂した後、フッ化水素アンモニウム濃度:3wt%のフッ化水素アンモニウム水溶液に、温度:30℃、浸漬時間:60秒の条件で浸漬させる処理(減膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を減膜した。
次いで、酸化膜11を減膜したステンレス鋼材10を水洗した後、硝酸濃度:20wt%の硝酸水溶液に、温度:30℃、浸漬時間:3秒の条件で浸漬させる処理(増膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を増膜した。
その後、酸化膜11を増膜したステンレス鋼材10を水洗した後、硫酸濃度:25体積%の硫酸水溶液に、温度:70℃、浸漬時間:5秒の条件で浸漬させる処理(改質工程の処理)を行うことにより、ステンレス鋼材10の表面の酸化膜11を改質した。
そして、酸化膜11を改質したステンレス鋼材10を水洗した後に、無電解パラジウム合金めっき浴を用いて、pH5.5、38℃、4分間の条件で無電解めっきする処理(金属めっき工程の処理)を行うことにより、酸化膜11上に、厚さ約40nmの金属めっき層20を形成し、金属めっき被覆ステンレス材1を得た。
次いで、得られた金属めっき被覆ステンレス材1について、上述した方法にしたがって、接触抵抗の測定を行った。さらに、金属めっき被覆ステンレス材1を、温度250℃の環境にて1時間保管する熱処理を施し、再度、接触抵抗の測定を行った。結果を表1に示す。
《実施例2》
まず、ステンレス鋼材10としてSUS316Lを準備した。次いで、準備したステンレス鋼材10について水洗及び脱脂した後、塩酸濃度:18wt%と硝酸濃度:1wt%の塩酸と硝酸を混ぜた水溶液に、温度:40℃、浸漬時間:15秒の条件で浸漬させる処理(減膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を減膜した。
次いで、酸化膜11を減膜したステンレス鋼材10を水洗した後、硝酸濃度:20wt%の硝酸水溶液に、温度:30℃、浸漬時間:3秒の条件で浸漬させる処理(増膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を増膜した。
その後、酸化膜11を増膜したステンレス鋼材10を水洗した後、硫酸濃度:25体積%の硫酸水溶液に、温度:70℃、浸漬時間:5秒の条件で浸漬させる処理(改質工程の処理)を行うことにより、ステンレス鋼材10の表面の酸化膜11を改質した。
そして、酸化膜11を改質したステンレス鋼材10を水洗した後に、無電解パラジウム合金めっき浴を用いて、pH5.5、38℃、4分間の条件で無電解めっきする処理(金属めっき工程の処理)を行うことにより、酸化膜11上に、厚さ約40nmの金属めっき層20を形成し、金属めっき被覆ステンレス材1を得た。
次いで、得られた金属めっき被覆ステンレス材1を、温度250℃の環境にて1時間保管する熱処理を施し、上述した方法にしたがって、接触抵抗の測定を行った。結果を表1に示す。
《比較例1》
ステンレス鋼材10をフッ化水素アンモニウム水溶液に浸漬させる処理(減膜工程の処理)を行わなかった以外は、実施例1と同様にして金属めっき被覆ステンレス材を作製し、同様に接触抵抗の測定を行った。結果を表1に示す。
Figure 2016113697
表1の結果より、上述した減膜工程、増膜工程及び改質工程を経て金属めっき被覆ステンレス材1を作製した実施例1においては、熱処理前の接触抵抗値が5.4mΩであるのに対し、熱処理後の接触抵抗値が6.1mΩであり、熱処理を加えても接触抵抗値がほとんど変化しないことが確認された。同様に、表1の結果より、上述した減膜工程、増膜工程及び改質工程を経て金属めっき被覆ステンレス材1を作製した実施例2においては、熱処理後の接触抵抗値が4.0mΩであり、熱処理を加えても接触抵抗値が低いことが確認された。なお、金属めっき被覆ステンレス材1において、金属めっき層20の形成が不十分であり、ステンレス鋼材10の一部が露出している場合には、熱処理により、ステンレス鋼材10の露出部分に、酸化クロムや、酸化鉄が形成され、金属めっき被覆ステンレス材1の接触抵抗値は上昇することとなる。これに対し、実施例1の金属めっき被覆ステンレス材1は、熱処理を加えた場合にも、接触抵抗値が上昇していないため、ステンレス鋼材10が露出することなく、良好に金属めっき層20が形成されていることが確認された。また、実施例2の金属めっき被覆ステンレス材1は、熱処理を加えた場合であっても、低い接触抵抗値を維持することができているため、ステンレス鋼材10が露出することなく、良好に金属めっき層20が形成されていることが確認された。
一方、表1の結果より、減膜工程を経ずに金属めっき被覆ステンレス材を作製した比較例1においては、熱処理前の接触抵抗値が5.8mΩであるのに対し、熱処理後の接触抵抗値が60.1mΩであり、熱処理によって接触抵抗値が増加したことが確認された。これにより、減膜工程を経ずに作製された金属めっき被覆ステンレス材1は、ステンレス鋼材10の露出に起因する接触抵抗値の上昇がみられるため、金属めっき層20の形成が不十分であることが確認された。
1…金属めっき被覆ステンレス材
10…ステンレス鋼材
11…酸化膜
20…金属めっき層

Claims (5)

  1. ステンレス鋼材の表面に生成した酸化膜を、エッチング剤により減膜する減膜工程と、
    前記減膜した酸化膜を、酸化処理剤により増膜する増膜工程と、
    前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材の製造方法。
  2. 前記エッチング剤として、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いる請求項1に記載の金属めっき被覆ステンレス材の製造方法。
  3. 前記酸化処理剤として、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いる請求項1又は2に記載の金属めっき被覆ステンレス材の製造方法。
  4. 前記改質工程において、前記ステンレス鋼材を、硫酸濃度が20〜25体積%である硫酸水溶液に、50〜70℃の温度で5〜600秒間浸漬させる処理を行う請求項1〜3の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
  5. 前記改質工程の後に、前記ステンレス鋼材に金属めっき処理を施す金属めっき工程をさらに有する請求項1〜4の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
JP2015236703A 2014-12-12 2015-12-03 金属めっき被覆ステンレス材の製造方法 Active JP6628585B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014251505 2014-12-12
JP2014251505 2014-12-12

Publications (2)

Publication Number Publication Date
JP2016113697A true JP2016113697A (ja) 2016-06-23
JP6628585B2 JP6628585B2 (ja) 2020-01-08

Family

ID=56141131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236703A Active JP6628585B2 (ja) 2014-12-12 2015-12-03 金属めっき被覆ステンレス材の製造方法

Country Status (1)

Country Link
JP (1) JP6628585B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360903B2 (ja) 2018-11-09 2023-10-13 東洋鋼鈑株式会社 めっき方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974269A (ja) * 1983-09-13 1984-04-26 Zojirushi Vacuum Bottle Co ステンレス鋼への銀メツキ方法
JPS61243193A (ja) * 1985-04-18 1986-10-29 Nisshin Steel Co Ltd ステンレス鋼に純金めつきする方法
JPS63195291A (ja) * 1987-02-06 1988-08-12 Kansai Plant Kogyo:Kk 金めつき容器類、その製造方法及び製造装置
JPH06158384A (ja) * 1992-11-26 1994-06-07 Misuzu Kogyo:Kk ステンレス材の金メッキ方法
US5433839A (en) * 1992-06-12 1995-07-18 Ugine S.A. Process for the manufacture of a coated stainless steel sheet
JP2011102411A (ja) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd 導電性を有するステンレス鋼材とその製造方法
WO2012053431A1 (ja) * 2010-10-20 2012-04-26 株式会社Neomaxマテリアル 燃料電池用セパレータおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974269A (ja) * 1983-09-13 1984-04-26 Zojirushi Vacuum Bottle Co ステンレス鋼への銀メツキ方法
JPS61243193A (ja) * 1985-04-18 1986-10-29 Nisshin Steel Co Ltd ステンレス鋼に純金めつきする方法
JPS63195291A (ja) * 1987-02-06 1988-08-12 Kansai Plant Kogyo:Kk 金めつき容器類、その製造方法及び製造装置
US5433839A (en) * 1992-06-12 1995-07-18 Ugine S.A. Process for the manufacture of a coated stainless steel sheet
JPH06158384A (ja) * 1992-11-26 1994-06-07 Misuzu Kogyo:Kk ステンレス材の金メッキ方法
JP2011102411A (ja) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd 導電性を有するステンレス鋼材とその製造方法
WO2012053431A1 (ja) * 2010-10-20 2012-04-26 株式会社Neomaxマテリアル 燃料電池用セパレータおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360903B2 (ja) 2018-11-09 2023-10-13 東洋鋼鈑株式会社 めっき方法

Also Published As

Publication number Publication date
JP6628585B2 (ja) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6495172B2 (ja) 金属めっき被覆ステンレス材、および金属めっき被覆ステンレス材の製造方法
WO2016093145A1 (ja) 金属めっき被覆ステンレス材の製造方法
JP2013076127A (ja) 銀めっき材およびその製造方法
JP6220393B2 (ja) 金めっき被覆ステンレス材、および金めっき被覆ステンレス材の製造方法
JP6574568B2 (ja) 金属めっき被覆ステンレス材の製造方法
JP5190726B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP6628585B2 (ja) 金属めっき被覆ステンレス材の製造方法
JP6587848B2 (ja) 燃料電池用通電部材、燃料電池セル、燃料電池スタック、及び燃料電池用通電部材の製造方法
JP2011102411A (ja) 導電性を有するステンレス鋼材とその製造方法
JP6848022B2 (ja) 金属めっき被覆ステンレス材の製造方法
JP6199086B2 (ja) パラジウムめっき被覆材料、およびパラジウムめっき被覆材料の製造方法
JP7407615B2 (ja) ステンレス鋼、接点用部材およびステンレス鋼の製造方法
JP5309385B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP5315571B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP2009084590A (ja) 金属めっきステンレス鋼板材の製造方法
JP2014192012A (ja) 接触抵抗の低いステンレス鋼板
JP2008277143A (ja) ステンレス鋼製導電性部材およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6628585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250