JP2016079049A - 単結晶シリコン引上装置、および単結晶シリコン引上方法 - Google Patents

単結晶シリコン引上装置、および単結晶シリコン引上方法 Download PDF

Info

Publication number
JP2016079049A
JP2016079049A JP2014209271A JP2014209271A JP2016079049A JP 2016079049 A JP2016079049 A JP 2016079049A JP 2014209271 A JP2014209271 A JP 2014209271A JP 2014209271 A JP2014209271 A JP 2014209271A JP 2016079049 A JP2016079049 A JP 2016079049A
Authority
JP
Japan
Prior art keywords
control line
single crystal
crystal silicon
temperature control
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209271A
Other languages
English (en)
Other versions
JP6395302B2 (ja
Inventor
鈴木 洋二
Yoji Suzuki
洋二 鈴木
義憲 鈴木
Yoshinori Suzuki
義憲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Techno Corp
Original Assignee
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Techno Corp filed Critical Mitsubishi Materials Techno Corp
Priority to JP2014209271A priority Critical patent/JP6395302B2/ja
Publication of JP2016079049A publication Critical patent/JP2016079049A/ja
Application granted granted Critical
Publication of JP6395302B2 publication Critical patent/JP6395302B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】単結晶シリコンが有転位化した後に、石英ルツボに残ったシリコン融液の残量に応じて、別な単結晶シリコンを引上げる際の温度制御線を容易に生成し、効率的に単結晶シリコンの製造を可能にする。
【解決手段】前記ヒータは、ルツボ温度と単結晶シリコンの引上長との関係を示す第一の温度制御線に沿って制御され、該第一の温度制御線は、単結晶シリコンのショルダー部を形成するための前段部温度制御線と、該ショルダー部に続く直胴部を形成するための直胴部温度制御線とを備え、前記制御部は、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、この有転位化した位置に対応する前記直胴部温度制御線上の位置以降の未実行の温度制御線を、前記前段部温度制御線の終点に接続して、第二の温度制御線を生成する。
【選択図】図4

Description

本発明は、単結晶シリコン引上装置、および単結晶シリコン引上方法に関し、詳しくは単結晶シリコンの引上温度制御に関するものである。
半導体基板等に用いられる単結晶シリコンは、一般的にチョクラルスキー法(以下、CZ法という)により製造されている。
CZ法は、高耐圧気密チャンバ内に配置した石英製のルツボ内に多結晶シリコン(原料シリコン)を入れて、石英ルツボを囲うように配置されたヒータを加熱することによって多結晶シリコンを加熱、溶融してシリコン融液を形成する。そして、石英ルツボの上方に配置されたシードチャックにシード(種結晶)を取り付けるとともに、このシードを石英ルツボ内のシリコン融液に浸漬し、シード及び石英ルツボを回転させながらシードを引き上げて単結晶シリコンを成長させるようになっている(例えば、特許文献1参照。)。単結晶シリコンの引上げにおいては、引上げる単結晶シリコンの長さ(引上長)と石英ルツボの温度とを対応させた温度制御線に沿って、ヒータを制御している。
このようなCZ法における単結晶シリコンの製造においては、単結晶シリコンの引上中は無転位状態を維持することが重要である。しかし、例えば、大量の原料シリコンを溶融するために石英ルツボの壁面の温度が上昇し、かつシリコン融液の自然対流が強まることによって石英ルツボの融解が進み、不溶物の小さな粒子(クリストバライト)が成長界面に付着することにより、引上中の単結晶シリコンが有転位化することがある。引上中の単結晶シリコンが有転位化した場合、その時点で引上げを中止し、既に引上げられた単結晶シリコンを取り出す。
このような有転位化が、予め計画した単結晶シリコンの引上長さよりも大幅に短い位置で生じた場合、石英ルツボ内にはシリコン融液が大量に残った状態となる。こうしたシリコン融液の残りを冷却、固化して回収し、再びシリコン原料として用いることは大変に手間が掛かり、また、不純物による汚染の懸念もある。このため、石英ルツボ内に残ったシリコン融液を利用して、予め計画した引上長さよりも短い別な単結晶シリコンを引上げることが行われている。
従来、こうした石英ルツボに残ったシリコン融液から、当初予定した引上長よりも短い
単結晶シリコンを引上げる際には、当初予定した引上長に対応した温度制御線を、それよりも短い引上長に対応した温度制御線にするために、石英ルツボに残ったシリコン融液の残量に応じて、作業者がパラメータを入力して、短い引上長に対応した温度制御線を手作業で作製していた。
特開2001−278696号公報
しかしながら、引上中の単結晶シリコンが有転位化するたびに、石英ルツボに残ったシリコン融液の量に応じて、短い引上長に対応した温度制御線を毎回手作業で作製することは大変に手間が掛かり、効率的な単結晶シリコンの引上げの妨げとなっていた。
この発明は前述した事情に鑑みてなされたものであって、単結晶シリコンが有転位化した後に、石英ルツボに残ったシリコン融液の残量に応じて、別な単結晶シリコンを引上げる際の温度制御線を容易に生成し、効率的に単結晶シリコンの製造を可能にする単結晶シリコン引上装置、および単結晶シリコン引上方法を提供することを目的とする。
前述の課題を解決するために、本発明の単結晶シリコン引上装置は、石英ルツボと、 前記石英ルツボを軸線周りに回転させるルツボ駆動手段と、前記石英ルツボを加熱するヒータと、前記ルツボ駆動手段および前記ヒータを制御する制御部と、を少なくとも備えた単結晶シリコン引上装置であって、
前記ヒータは、ルツボ温度と単結晶シリコンの引上長との関係を示す第一の温度制御線に沿って制御され、該第一の温度制御線は、単結晶シリコンのショルダー部を形成するための前段部温度制御線と、該ショルダー部に続く直胴部を形成するための直胴部温度制御線とを備え、前記制御部は、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、この有転位化した位置に対応する前記直胴部温度制御線上の位置以降の未実行の温度制御線を、前記前段部温度制御線の終点に接続して、第二の温度制御線を生成することを特徴とする。
このような本発明の単結晶シリコン引上装置によれば、単結晶シリコンが引上げ途中で有転位化した際に、制御部は、単結晶シリコンの有転位化位置以降の未実行の温度制御線を前段部温度制御線に接続して、第二の温度制御線をプログラムによって生成することによって、手計算による入力ミスや計算ミスを無くして、再引上げにおける石英ルツボの温度制御を容易にすることを可能にする。
なお、第二の温度制御線は、引上げ実行中に適用されている温度制御線に対して、単結晶シリコンが有転位化した際にシリコン融液の残量に応じて生成される温度制御線であり、2回以上の有転位化に対しても、その都度、第二の温度制御線が生成される。
本発明によれば、前記前段部制御線の始点から終点までに対応する引上長は、前記単結晶シリコンの直径に相当する長さと近似することを特徴とする。
これによって、前記前段部制御線の設定を容易にすることができる。
本発明によれば、前記第二の温度制御線は、前記未実行の温度制御線の傾きを維持して、前記前段部制御線の終点に接続させたことを特徴とする。
これによって、シリコン融液の液量が減った状態に対応して、引上長だけを短縮した第二の温度制御線を容易に生成することができる。
本発明によれば、前記石英ルツボの回転数は、該石英ルツボの回転数と単結晶シリコンの引上長との関係を示す第一の回転数制御線に沿って制御され、該第一の回転数制御線は、単結晶シリコンのショルダー部を形成するための前段部回転数制御線と、該ショルダー部に続く直胴部を形成するための直胴部回転数制御線とを備え、前記制御部は、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、この有転位化した位置に対応する前記直胴部回転数制御線上の位置以降の未実行の回転数制御線を、前記前段部回転数制御線の終点に接続して、第二の回転数制御線を生成することを特徴とする。
これによって、結晶シリコンが引上げ途中で有転位化した際に、制御部は、単結晶シリコンの有転位化位置以降の未実行の回転数制御線を前段部回転数制御線に接続して、第二の回転数制御線をプログラムによって自動的に生成することによって、手計算による入力ミスや計算ミスを無くして、再引上げにおける石英ルツボの回転数制御を容易にすることを可能にする。
本発明によれば、前記未実行の回転数制御線を、前記前段部回転数制御線の終点に接続する際に、前記未実行の回転数制御線の始点と、前記前段部回転数制御線の終点との間に設定回転数の差がある時に、前記未実行の回転数制御線の始点と、前記前段部回転数制御線の終点との間を、傾斜した調整直線を介在させて接続することを特徴とする。
これによって、第二の回転数制御線を生成する際に、未実行の回転数制御線の始点と前段部回転数制御線の終点との間に設定回転数の差があっても、急激な回転数の変動を生じさせることが無い第二の回転数制御線を得ることができる。
本発明の単結晶シリコン引上方法は、前記各項記載の単結晶シリコン引上装置を用いた単結晶シリコン引上方法であって、
所定量のシリコン原料を前記石英ルツボに導入する工程と、前記第一の温度制御線に沿って前記ヒータを加熱し、前記シリコン原料を溶融したシリコン融液から単結晶シリコンを引上げる工程と、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、単結晶シリコンを引上げを停止するとともに、前記第二の温度制御線を形成する工程と、前記第二の温度制御線に沿って前記ヒータを加熱し、前記石英ルツボに残ったシリコン融液から、別な単結晶シリコンを引上げる工程と、を順に備えたことを特徴とする。
本発明の単結晶シリコン引上方法によれば、単結晶シリコンが引上げ途中で有転位化した際に、単結晶シリコンの有転位化位置以降の未実行の温度制御線を前段部温度制御線に接続して、第二の温度制御曲線をプログラムによって生成する工程によって、手計算による入力ミスや計算ミスを無くして、再引上げにおける温度制御を容易にすることを可能にする。
本発明の単結晶シリコン引上装置および単結晶シリコン引上方法によれば、単結晶シリコンが有転位化した後に、石英ルツボに残ったシリコン融液の残量に応じて、別な単結晶シリコンを引上げる際の温度制御線を容易に生成でき、効率的な単結晶シリコンの製造を可能にする。
本発明の単結晶シリコン引上装置を示す断面図である。 本発明の単結晶シリコン引上方法の一例を示すフローチャートである。 単結晶シリコンの引上長と温度制御線とを示す説明図である。 単結晶シリコンの引上長と温度制御線とを示す説明図である。 単結晶シリコンの引上長と回転数制御線とを示す説明図である。 単結晶シリコンの引上長と回転数制御線とを示す説明図である。
以下、図面を参照して、本発明の単結晶シリコン引上装置、単結晶シリコン引上方法について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
本発明の単結晶シリコン引上装置の構成について説明する。
図1は、単結晶シリコン引上装置の一例を示す概略図を示す。
単結晶シリコンの製造装置1は、耐圧気密に構成されたチャンバ10と、石英ルツボ15と、シードチャック17と、ヒータ19と、ルツボ支持台21と、シードチャック駆動機構30とを備え、減圧状態としたチャンバ10内にて、シードチャック17に取り付けたシードSを石英ルツボ15内に貯留したシリコン融液Mに浸漬し、回転させながら引き上げることにより単結晶シリコンTを成長させるようになっている。
チャンバ10は、メインチャンバ11と、メインチャンバ11の上方に接続されたトップチャンバ12と、トップチャンバ12の上方に接続されたプルチャンバ13とを備え、メインチャンバ11は底部11Aと底部11Aに立設する筒状部11Bとから構成され、中心部には石英ルツボ15が配置され、排気孔11Dに図示しない真空ポンプが接続されてチャンバ10内を減圧又は真空状態とすることが可能とされている。
また、メインチャンバ11の底部11Aには、スピルトレイ14が配置されていて、石英ルツボ15が破損してシリコン融液Mが流出することがあった場合に、シリコン融液Mが底部11Aと直接接触してチャンバが破損するのを防止できるようになっている。
プルチャンバ13は、略円筒形状に形成され、引き上げられた単結晶シリコンTを収納する空間を有しており、トップチャンバ12によりメインチャンバ11と接続されている。なお、このプルチャンバ13とトップチャンバ12との間には、プルチャンバ13をメインチャンバ11およびトップチャンバ12から熱的に隔離するシャッタ(図示略)が形成されている。こうしたシャッタによって、石英ルツボ15内にシリコン融液Mが貯留されている状態であっても、このプルチャンバ13から、当初計画の一部だけが引き上げられた状態の単結晶シリコンTを取り出し可能な構造となっている。
石英ルツボ15は、石英ルツボ15の凹部に単結晶シリコンTの原料である塊状の多結晶シリコン(原料シリコン)を保持可能とするとともに、この多結晶シリコンが加熱、溶融されて生成したシリコン融液Mを貯留可能とされており、黒鉛ルツボ16に収納されている。例えば、この石英ルツボ15の温度を制御することによって、シリコン融液Mの温度を所望の温度に保持することができる。
黒鉛ルツボ16は、ルツボ支持台21の上面に配置されたペディスタル21Cに保持されることにより一体に組み合わせて形成され、ルツボ支持台21はその支持部21Aがメインチャンバ11の底部11Aの中心部にて底部11A及びスピルトレイ14を貫通して形成された貫通孔11Hに挿入され、メインチャンバ11に対して相対的に回転及び昇降が可能とされている。
また、黒鉛ルツボ16の周囲には円筒状のヒータ19と、ヒータ19の外方に円筒状の保温筒22と、この保温筒22の外方に放射温度計40とが配置されている。
保温筒22は、円筒状の黒鉛からなる内側保温筒22Aと内側保温筒22Aの外方に配置された円筒状の多孔質黒鉛からなる外側保温筒22Bとを有し、内側保温筒22Aの内径と略同じ内径の孔が形成された円板状のロアリング22Cに載置されるとともに上方には内側保温筒22Aの内径と略同じ内径の孔が形成された円板状のアッパリング22Dが配置されている。
ヒータ19は、下方が電極継手19Aにボルト19Bで固定され、電極継手19Aはスピルトレイ14に形成された貫通孔に配置された黒鉛電極19Cを介して電源装置P1と接続されている。このヒータ19は、例えばシリコン融液Mの温度が所定の温度に保たれるように、電源装置P1から供給される電力が制御される。
放射温度計40は、保温筒22の温度を測定するためのものである。本実施形態においては、この放射温度計40の測定データに基づいてヒータ19の電力を調節し、シリコン融液Mの温度を制御している。なお、この放射温度計40によって測定される温度は、石英ルツボ15の温度とほぼ同じとされている。
放射温度計40で測定される温度は、予め設定した温度データとなるようにヒータ19の電力が制御されている。
温度データは、単結晶シリコンTの成長量(シリコン融液Mの液面からの成長長さ)と、単結晶シリコンの成長量に応じて設定した温度傾きからなるものである。本実施形態においては、この成長量は、単結晶シリコンの引上長と対応付けられている。温度データについては、詳細を後述する。
保温筒22の上端にはアッパリング22D、アダプタ23を介してフロー管25が取り付けられている。
フロー管25は、下端開口部より上端開口部が大径とされた逆円錐台形状の中空筒とされ、黒鉛またはSiCにより形成されている。
シードチャック17は、基端側がワイヤWに接続され、ワイヤWがシードチャック駆動機構30を接続されることによりシードSがメインチャンバ11に対して相対的に回転及び昇降自在とされている。
シードチャック駆動機構30は、プルチャンバ13の上部に設けられ、ワイヤWの基端側が接続されるとともに巻回されるプーリ31と、ワイヤWを回転軸線Oとしてプルチャンバ13に対して相対的に回転可能とされる回転駆動部32とを備え、プーリ31がワイヤWを巻き取ることによりシードチャック17が昇降し、回転駆動部32が回転することによりシードチャック17がワイヤWの廻りに旋回するようになっている。
さらに、単結晶シリコンの製造装置1は、制御部50を備えている。制御部50は、ルツボ支持台21の回転と、シードチャック駆動機構30の回転及び昇降を制御可能に構成されており、ルツボ支持台21の回転方向と回転速度及びシードチャック駆動機構30における回転駆動部32によるシードチャック17の回転方向及び回転速度、プーリ31によるシードチャック17の昇降及び引上げ(上昇)速度を制御することができるようになっている。
制御部50は、例えば、第1のインバータ51と、第2のインバータ52と、第3のインバータ53と、第4のインバータ55と演算部54とを備え、第1のインバータ51、第2のインバータ52、第3のインバータ53、第4のインバータ55は、演算部54の指示信号に基づいて駆動信号を送出するように構成されている。
制御部50は、例えば、第1のインバータ51の周波数を変化させて、ルツボ支持台21を回転させるモータM1の回転方向及び回転数を制御することにより石英ルツボの回転方向及び回転速度を制御可能とされ、ルツボ支持台21の回転速度は、例えば、1.0rpmから30rpmに調整することができるようになっている。
第1のインバータ51とモータM1は、ルツボ回転制御手段を構成している。こうしたモータM1による石英ルツボ15の回転制御は後ほど詳述する。
また、制御部50は、第2のインバータ52の周波数を変化させて、シードチャック駆動機構30の回転駆動部32を回転させるモータM2の回転方向及び回転数を制御することによりシードチャック17の回転軸線O廻りの回転方向(右回転、左回転)及び回転速度を調整可能とされており、シードチャック17の回転速度を0.5rpmから15rpmに調整することができるようになっている。
第2のインバータ52とモータM2は、シード回転制御手段を構成している。
また、制御部50は、第3のインバータ53の周波数を変化させて、ワイヤWが巻かれたプーリ31を回転させるモータM3の回転方向及び回転数を制御することによりシードチャック17の昇降向及び引上げ速度を調整可能とされており、シードチャック17の引上げ速度を0.01rpmから10rpmに調整することができるようになっている。
第3のインバータ53とモータM3は、シード引上げ速度制御手段を構成している。
また、制御部50は、第4のインバータ55を介して、電源装置P1から出力される電圧や電流をを制御する。これによって、ヒータ19のパワーを制御し、シリコン融液Mの温度を所定の温度にすることができる。なお、こうした第4のインバータ55は、放射温度計40によって検出された保温筒22の温度に基づいて制御が行われる。ヒータ19は、制御部50に入力される温度制御曲線に従って、温度制御が行われる。こうしたヒータ19の温度制御は後ほど詳述する。
なお、第4のインバータ55は、放射温度計40によって検出された保温筒22の温度に基づいて制御を行う以外にも、例えば、熱電対などを用いて石英ルツボの温度を直接測定する構成であってもよい。
次に、上述した構成の単結晶シリコンの製造装置1の作用、および本発明の単結晶シリコンの製造方法について説明する。
図2は、本発明の単結晶シリコンの製造方法を段階的に示したフローチャートである。本発明のシリコン単結晶の製造方法では、例えば、図1に示す単結晶シリコンの製造装置1を用いる。
まず、原料となる塊状の多結晶シリコン(原料シリコン)を石英ルツボ15に充填する(原料充填工程S1)。そして、ヒータ19で石英ルツボ15を加熱して、多結晶シリコンを溶解して得られるシリコン融液Mを形成し、シードSを浸漬する部分の近傍のシリコン融液Mを過冷却状態とする(原料溶融工程S2)。
次いで、シードSをシードチャック17に挿入して固定する。次に、シードチャック駆動機構30を駆動して、シードチャック17を下降させてシードSをシリコン融液Mに浸漬し、シードSをシリコン融液Mになじませる(シード浸漬工程S3)。
シードSがシリコン融液Mになじんだら、シードチャック17を回転させながら上昇させる。シードSは、シリコン融液Mから単結晶シリコンを成長させるものであり、シードSがシリコン融液Mに接すると、このシードSと同じ原子配列をした単結晶シリコンTが、シードSに連なるように成長し始める(第一の結晶成長工程S4)。
シリコン単結晶Tの引上げ(結晶成長)は、シードチャック17の回転によるシリコン単結晶T自体の回転速度、ルツボ支持台21の回転による、シリコン融液Mを貯留する石英ルツボ15の回転速度、シードチャック17の上昇による引上速度、およびヒータ19による石英ルツボ15の加熱温度(シリコン融液Mの温度とほぼ近似)をそれぞれ制御することによって、所望の性質をもつシリコン単結晶Tを成長させることができる。
このうち、石英ルツボ15の加熱温度は、制御部50によって第4のインバータ55を介してヒータ19に任意の電力を印加することによって制御される。石英ルツボ15の最適な加熱温度は、引上げるシリコン単結晶の部位に応じた放熱特性の変化や、シリコン融液Mの残量の変化によって、常に変動する。このため、引上げるシリコン単結晶Tの引上げ方向に沿った長さ(以下、引上長と称することがある)と、ヒータ19の加熱温度(以下、引上温度と称することがある)との関係を示す温度制御線に沿うように、引上温度を制御する。こうした温度制御線は、一般的に曲線によって示される。
図3(a)は、シリコン単結晶Tの引上長と、引上温度との関係を示す温度制御曲線Q(第一の温度制御線)の一例である。本発明では、制御部50は、こうした温度制御曲線Qに沿ってヒータ19に印加する電力値を制御し、引上温度を変化させる。
シリコン単結晶Tは、一般的に、シードSに連なる細径部分から目的の直径に向けて拡径されるショルダー部Esと、ショルダー部Esに連なり、所定範囲の直径で延びる直胴部Ebと、終端部Etとからなる略円筒形を成す。なお、シードSとショルダー部Esとの間には、結晶欠陥の引き継ぎを断ち切るために直径を絞り込んだネック部(図示略)を形成することが一般的である。
温度制御曲線(第一の温度制御線)Q1は、単結晶シリコンTのショルダー部Esを形成するための前段部温度制御線の区間Q1Aと、直胴部を形成するための直胴部温度制御線の区間Q1Bとの2つの区間からなる。シリコン単結晶Tのショルダー部Esの引上げにおいては、上方向に向いた外面による放熱部分が多いために、前段部温度制御線の区間Q1Aは、比較的高温状態から引上げ始め、シリコン単結晶Tの拡径と共に引上温度を下げる線形を成している。こうした前段部温度制御線の区間Q1Aの始点から終点までに対応する引上長は、例えば、単結晶シリコンの直径に相当する長さと近似した値であればよい。一方、こうした前段部温度制御線の区間Q1Aに続く、直胴部Ebから終端部Etの間の直胴部温度制御線の区間Q1Bは、引上温度を緩やかに上げていく線形を成している。
温度制御曲線Q1に沿うように石英ルツボ15の加熱温度を制御しつつ、当初計画した引上長Lまでの全長に渡って有転位化せずに単結晶シリコンTが成長したら、プルチャンバ13から引上げられた単結晶シリコンTを取り出し、引上長Lの単結晶シリコンTを得る(S5)
一方、温度制御曲線Q1に沿って制御部50が引上温度を制御する途中で、単結晶シリコンが有転位化した場合、その時点で引上げを中止し、既に引上げられた部分の単結晶シリコンを取り出す(S6)。例えば、図3(b)に示すように、単結晶シリコンTの当初計画した引上長Lのうち、例えば、直胴部Ebの途中で有転位化した場合、この有転位化位置Spで引上げを停止する。そして、この有転位化位置Spまでの引上長L1のシリコン単結晶T1を取り出して、シリコンウェーハの生産等に用いる。
一方、石英ルツボ15内には、原料溶融工程S2において、当初計画された引上長Lの単結晶シリコンTが引上げ可能な量のシリコン融液Mが貯留されていたため、有転位化位置Spまでの引上長L1のシリコン単結晶T1を取り出した後も、相当量のシリコン融液Mが残っている。この残りのシリコン融液Mから、更に当初計画された引上長Lよりも短い引上長のシリコン単結晶を引上げる。
制御部50は、残りのシリコン融液Mの量に適合した新たな温度制御曲線Q2を生成する。具体的には、図4(a)に示すように、直胴部温度制御線の区間Q1Bのうち、単結晶シリコンTの有転位化位置Spに対応する位置Q1BP1以降の未実行の温度制御線(図中の点線参照)の区間Q1BXを、前段部温度制御線の区間Q1Aの終点Q1AP1に接続して、第二の温度制御曲線(第二の温度制御線)Q2を生成する(第二の温度制御線生成工程S7)。
なお、この未実行の温度制御線の区間Q1BXを前段部温度制御線の区間Q1Aの終点Q1AP1に接続する際には、未実行の温度制御線の区間Q1BXにおけるグラフ上の傾きを維持したまま接続することが好ましい。
図4(b)に示すように、このようにして得られた第二の温度制御曲線Q2を用いて、第二の温度制御曲線Q2に沿うように石英ルツボ15の加熱温度を制御しつつ、残りのシリコン融液Mから引上長L2の単結晶シリコンT2を引上げる(第二の結晶成長工程S8
)。
以上の工程によって、温度制御曲線Q1に沿って制御部50が引上温度を制御する途中で、単結晶シリコンが有転位化した場合には、引上長L1の単結晶シリコンT1と、引上長L2の単結晶シリコンT2との2つの単結晶シリコンを得ることができる(S9)。
従来は、有転位化後のシリコン融液Mの残量に対応した第二の温度制御曲線を手計算で入力していたが、本発明においては、単結晶シリコンTの有転位化位置以降の未実行の区間Q1BXに対応する温度制御線を前段部温度制御線の区間Q1Aに接続して、第二の温度制御曲線Q2をプログラムによって自動的に生成することにより、入力ミスや計算ミスを無くして、再引上げにおける温度制御を容易にすることを可能にする。
なお、第二の温度制御曲線Q2を生成する際に、前段部温度制御線の区間Q1Aの終点と、未実行の温度制御線の区間Q1BXの始点との間は、単結晶シリコンT1の重量を、目標とする直径の円筒に換算した時の長さに相当するように演算することも好ましい。
また、上述したそれぞれの温度制御線は、曲線(温度制御曲線)としているが、複数の直線を接続した構成であってもよく、曲線に限定されるものでは無い。例示した温度制御線の線形は一例であり、こうした線形に限定されるものではなく、任意の線形の温度制御線を用いることができる。
また、第二の温度制御線Q2は、単結晶シリコンの引上げ実行中に適用されている温度制御線に対して、単結晶シリコンが有転位化した際にシリコン融液Mの残量に応じて、その都度生成される温度制御線であり、2回以上の有転位化に対しても、その都度、第二の温度制御線が生成されるようにすることができる。
石英ルツボ15の回転数(回転速度)は、制御部50によって第1のインバータ51を介して制御される。石英ルツボ15の最適な回転数は、引上げるシリコン単結晶の部位に応じて常に変動する。このため、引上げるシリコン単結晶Tの引上長と、石英ルツボ15の回転速度との関係を示す回転数制御線に沿うように、石英ルツボ15の回転数が制御される。
図5(a)は、シリコン単結晶Tの引上長と、石英ルツボの回転数との関係を示す回転数制御線R1(第一の回転数制御線)の一例である。本発明では、制御部50は、こうした回転数制御線R1に沿ってルツボ支持台21を回転させるモータM1を制御し、石英ルツボの回転数を変化させる。
回転数制御線R1は、単結晶シリコンTのショルダー部Esを形成するための前段部回転数制御線の区間R1Aと、直胴部を形成するための直胴部回転数制御線の区間R1Bとの2つの区間を少なくとも備えている。前段部回転数制御線の区間R1Aは、比較的高回転数状態から引上げ始め、シリコン単結晶Tの拡径と共に回転数を下げる線形を成している。こうした前段部回転数制御線の区間R1Aの始点から終点までに対応する引上長は、例えば、単結晶シリコンの直径に相当する長さと近似した値であればよい。一方、こうした前段部回転数制御線の区間R1Aに続く、直胴部Ebから終端部Etの間の直胴部回転数制御線の区間R1Bは、回転数を緩やかに上げていく線形を成している。
回転数制御線R1に沿うように石英ルツボ15の回転数を制御しつつ、当初計画した引上長Lまでの全長に渡って有転位化せずに単結晶シリコンTが成長したら、プルチャンバ13から引上げられた単結晶シリコンTを取り出し、引上長Lの単結晶シリコンTを得る。
一方、回転数制御線R1に沿って制御部50が回転数を制御する途中で、単結晶シリコンが有転位化した場合、その時点で引上げを中止し、既に引上げられた部分の単結晶シリコンを取り出す。例えば、図5(b)に示すように、単結晶シリコンTの当初計画した引上長Lのうち、例えば、直胴部Ebの途中で有転位化した場合、この有転位化位置Spで引上げを停止する。そして、この有転位化位置Spまでの引上長L1のシリコン単結晶T1を取り出して、シリコンウェーハの生産等に用いる。
一方、石英ルツボ15内には、当初計画された引上長Lの単結晶シリコンTが引上げ可能な量のシリコン融液Mが貯留されていたため、有転位化位置Spまでの引上長L1のシリコン単結晶T1を取り出した後も、相当量のシリコン融液Mが残っている。この残りのシリコン融液Mから、更に当初計画された引上長Lよりも短い引上長のシリコン単結晶を引上げる。
制御部50は、残りのシリコン融液Mの量に適合した新たな回転数制御線R2を生成する。具体的には、図6(a)に示すように、直胴部回転数制御線の区間R1Bのうち、単結晶シリコンTの有転位化位置Spに対応する位置R1BP1以降の未実行の回転数制御線(図中の点線参照)の区間R1BXを平行移動させて、前段部回転数制御線の区間R1Aの終点R1AP1に接続する。
その際、未実行の回転数制御線の区間R1BXの始点R1BXP1と、前段部回転数制御線の区間R1Aの終点R1AP1との間に、設定された回転数の差がある時には、回転数制御線の区間R1BXをグラフ上で平行移動させても、前段部回転数制御線の区間R1Aの終点R1AP1には接続できない。この場合、未実行の回転数制御線の区間R1BXの始点R1BP1と、前段部回転数制御線の区間R1Aの終点R1AP1との間を、傾斜した調整直線RLを介在させて接続する。こうした調整直線RLの傾きや長さは、例えば、シリコン融液Mの残量や、この残りのシリコン融液Mから引上げる単結晶シリコンの予定引上長などに応じて、適宜設定されればよい。
図6(b)に示すように、このようにして得られた第二の回転数制御曲線R2を用いて、第二の回転数制御曲線R2に沿うように石英ルツボ15の回転数を制御しつつ、残りのシリコン融液Mから引上長L2の単結晶シリコンT2を引上げる。
以上の工程によって、回転数制御曲線R1に沿って制御部50が石英ルツボ15の回転数を制御する途中で、単結晶シリコンTが有転位化した場合には、引上長L1の単結晶シリコンT1と、引上長L2の単結晶シリコンT2との2つの単結晶シリコンを得ることができる。
従来は、有転位化後のシリコン融液Mの残量に対応した第二の回転数制御線を手計算で入力していたが、本発明においては、単結晶シリコンTの有転位化位置以降の未実行の回転数制御線の区間R1BXを前段部温度制御線の区間R1Aに調整直線RLを介して接続して、第二の回転数制御線R2をプログラムによって自動的に生成することにより、入力ミスや計算ミスを無くして、再引上げにおける石英ルツボ15の回転数を容易にすることを可能にする。
なお、第二の回転数制御線Q2は、単結晶シリコンの引上げ実行中に適用されている回転数制御線に対して、単結晶シリコンが有転位化した際にシリコン融液Mの残量に応じて、その都度生成される回転数制御線であり、2回以上の有転位化に対しても、その都度、第二の回転数制御線が生成されるようにすることができる。
以上、本発明の一実施形態に係る単結晶シリコンの製造装置について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
上記実施形態において示した温度制御線や回転数制御線の形状は一例であり、引上げる単結晶シリコンの形状や特性に応じて、適切な形状の温度制御線や回転数制御線が形成されればよい。
上記実施形態においては、引上げ中の単結晶シリコンが有転位化した際に、継続して別な単結晶シリコンを引上げるための温度制御線および回転数制御線をプログラムによって生成する例を示した。しかしこれ以外にも、同様の手法によって、引上速度、結晶回転数、不活性ガスの流量、チャンバー内の炉内圧などをそれぞれ制御する制御線を、プログラムで自動的に生成させることがより好ましい。
なお、上述したそれぞれの回転数制御線の線形は一例であり、こうした線形に限定されるものではく、任意の線形の回転数制御線を用いることができる。
M シリコン融液
S シード
T 単結晶シリコン
1 単結晶シリコンの製造装置
10 チャンバ
15 石英ルツボ(ルツボ)
19 ヒータ

Claims (6)

  1. 石英ルツボと、
    前記石英ルツボを軸線周りに回転させるルツボ駆動手段と、
    前記石英ルツボを加熱するヒータと、
    前記ルツボ駆動手段および前記ヒータを制御する制御部と、を少なくとも備えた単結晶シリコン引上装置であって、
    前記ヒータは、ルツボ温度と単結晶シリコンの引上長との関係を示す第一の温度制御線に沿って制御され、
    該第一の温度制御線は、単結晶シリコンのショルダー部を形成するための前段部温度制御線と、該ショルダー部に続く直胴部を形成するための直胴部温度制御線とを備え、
    前記制御部は、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、この有転位化した位置に対応する前記直胴部温度制御線上の位置以降の未実行の温度制御線を、前記前段部温度制御線の終点に接続して、第二の温度制御線を生成することを特徴とする単結晶シリコン引上装置。
  2. 前記前段部温度制御線の始点から終点までに対応する引上長は、前記単結晶シリコンの直径に相当する長さと近似することを特徴とする請求項1記載の単結晶シリコン引上装置。
  3. 前記第二の温度制御線は、前記未実行の温度制御線の傾きを維持して、前記前段部制御線の終点に接続されたものであることを特徴とする請求項1または2記載の単結晶シリコン引上装置。
  4. 前記石英ルツボの回転数は、該石英ルツボの回転数と単結晶シリコンの引上長との関係を示す第一の回転数制御線に沿って制御され、
    該第一の回転数制御線は、単結晶シリコンのショルダー部を形成するための前段部回転数制御線と、該ショルダー部に続く直胴部を形成するための直胴部回転数制御線とを備え、
    前記制御部は、前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、この有転位化した位置に対応する前記直胴部回転数制御線上の位置以降の未実行の回転数制御線を、前記前段部回転数制御線の終点に接続して、第二の回転数制御線を生成することを特徴とする単結晶シリコン引上装置。
  5. 前記未実行の回転数制御線を、前記前段部回転数制御線の終点に接続する際に、前記未実行の回転数制御線の始点と、前記前段部回転数制御線の終点との間に設定回転数の差がある時に、前記未実行の回転数制御線の始点と、前記前段部回転数制御線の終点との間を、傾斜した調整直線を介在させて接続することを特徴とする請求項4記載の単結晶シリコン引上装置。
  6. 請求項1ないし5いずれか一項記載の単結晶シリコン引上装置を用いた単結晶シリコン引上方法であって、
    所定量のシリコン原料を前記石英ルツボに導入する工程と、
    前記第一の温度制御線に沿って前記ヒータを加熱し、前記シリコン原料を溶融したシリコン融液から単結晶シリコンを引上げる工程と、
    前記単結晶シリコンが予め設定した引上長よりも短い位置で有転位化した際に、単結晶シリコンを引上げを停止するとともに、前記第二の温度制御線を形成する工程と、
    前記第二の温度制御線に沿って前記ヒータを加熱し、前記石英ルツボに残ったシリコン融液から、別な単結晶シリコンを引上げる工程と、を順に備えたことを特徴とする単結晶シリコン引上方法。
JP2014209271A 2014-10-10 2014-10-10 単結晶シリコン引上装置、および単結晶シリコン引上方法 Active JP6395302B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209271A JP6395302B2 (ja) 2014-10-10 2014-10-10 単結晶シリコン引上装置、および単結晶シリコン引上方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209271A JP6395302B2 (ja) 2014-10-10 2014-10-10 単結晶シリコン引上装置、および単結晶シリコン引上方法

Publications (2)

Publication Number Publication Date
JP2016079049A true JP2016079049A (ja) 2016-05-16
JP6395302B2 JP6395302B2 (ja) 2018-09-26

Family

ID=55955841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209271A Active JP6395302B2 (ja) 2014-10-10 2014-10-10 単結晶シリコン引上装置、および単結晶シリコン引上方法

Country Status (1)

Country Link
JP (1) JP6395302B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803519A (zh) * 2016-05-31 2016-07-27 邢台晶龙电子材料有限公司 一种m2型单晶硅快速收尾方法
CN105803520A (zh) * 2016-05-31 2016-07-27 邢台晶龙电子材料有限公司 Cz-80单晶炉自动收尾方法
WO2018216364A1 (ja) * 2017-05-26 2018-11-29 株式会社Sumco シリコン単結晶の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313385A (ja) * 1988-06-09 1989-12-18 Kokusai Electric Co Ltd 半導体単結晶の直径制御方法
JPH0380200A (ja) * 1989-08-24 1991-04-04 Fujitsu Ltd 高強度シリコンウェハの製造方法
JPH10167892A (ja) * 1996-12-13 1998-06-23 Komatsu Electron Metals Co Ltd シリコン単結晶の引き上げ方法
JP2001146496A (ja) * 1999-11-16 2001-05-29 Mitsubishi Materials Silicon Corp 単結晶引上方法
JP2011225408A (ja) * 2010-04-22 2011-11-10 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313385A (ja) * 1988-06-09 1989-12-18 Kokusai Electric Co Ltd 半導体単結晶の直径制御方法
JPH0380200A (ja) * 1989-08-24 1991-04-04 Fujitsu Ltd 高強度シリコンウェハの製造方法
JPH10167892A (ja) * 1996-12-13 1998-06-23 Komatsu Electron Metals Co Ltd シリコン単結晶の引き上げ方法
JP2001146496A (ja) * 1999-11-16 2001-05-29 Mitsubishi Materials Silicon Corp 単結晶引上方法
JP2011225408A (ja) * 2010-04-22 2011-11-10 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803519A (zh) * 2016-05-31 2016-07-27 邢台晶龙电子材料有限公司 一种m2型单晶硅快速收尾方法
CN105803520A (zh) * 2016-05-31 2016-07-27 邢台晶龙电子材料有限公司 Cz-80单晶炉自动收尾方法
WO2018216364A1 (ja) * 2017-05-26 2018-11-29 株式会社Sumco シリコン単結晶の製造方法

Also Published As

Publication number Publication date
JP6395302B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
KR100806001B1 (ko) 실리콘 단결정의 인상 방법
JP2015124127A (ja) 単結晶の引上げ方法
JP6395302B2 (ja) 単結晶シリコン引上装置、および単結晶シリコン引上方法
KR101862157B1 (ko) 단결정 실리콘 잉곳 제조 방법 및 장치
JP2017222551A (ja) シリコン単結晶の製造方法
JP6547839B2 (ja) シリコン単結晶の製造方法
JP5088338B2 (ja) シリコン単結晶の引き上げ方法
KR20100056640A (ko) 단결정 성장장치
JP2010018506A (ja) シリコン単結晶の製造方法
KR101571958B1 (ko) 잉곳성장장치 및 잉곳성장방법
JP2004231474A (ja) シリコン単結晶の製造方法及びこの方法により製造されたシリコン単結晶
KR101186751B1 (ko) 멜트갭 제어장치, 이를 포함하는 단결정 성장장치
JP6425332B2 (ja) 単結晶シリコン引上装置、および単結晶シリコン引上方法
JP5053426B2 (ja) シリコン単結晶製造方法
JP2007284323A (ja) 半導体単結晶の製造装置及び製造方法
JP2015117168A (ja) 単結晶シリコン引上装置及び単結晶シリコンの製造方法
KR101494533B1 (ko) 실리콘 단결정 성장 장치의 인상 속도 제어 시스템 및 그 방법
JP4341379B2 (ja) 単結晶の製造方法
JP5805527B2 (ja) シリコン単結晶の製造方法
JP5819185B2 (ja) シリコン単結晶の製造方法
JP2014227323A (ja) 単結晶シリコンの製造装置
JP2023081004A (ja) 単結晶引上装置及び単結晶の製造方法
JP2009161395A (ja) 化合物半導体単結晶の製造方法
JP2010076947A (ja) シリコン単結晶の製造方法及びこの方法により製造されたシリコン単結晶
JP6249757B2 (ja) 単結晶シリコン引上装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6395302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250