JP2016075156A - ハイブリッド車 - Google Patents

ハイブリッド車 Download PDF

Info

Publication number
JP2016075156A
JP2016075156A JP2014203954A JP2014203954A JP2016075156A JP 2016075156 A JP2016075156 A JP 2016075156A JP 2014203954 A JP2014203954 A JP 2014203954A JP 2014203954 A JP2014203954 A JP 2014203954A JP 2016075156 A JP2016075156 A JP 2016075156A
Authority
JP
Japan
Prior art keywords
motor
engine
torque
variable valve
timing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014203954A
Other languages
English (en)
Inventor
充弘 大櫃
Michihiro Obitsu
充弘 大櫃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014203954A priority Critical patent/JP2016075156A/ja
Publication of JP2016075156A publication Critical patent/JP2016075156A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】センサを追加することなく、可変バルブタイミング機構の異常の有無を判定する。
【解決手段】停車中にエンジンが目標回転数Ne*(回転数Neset)で運転されるようにエンジンとモータMG1とを制御した状態で、吸気バルブの開閉タイミングを所定量だけ進角する(S140)。進角後のモータMG1のトルクとしての変更後トルクTm1(2)から進角前の変更前トルクTm1(1)を減じたものが閾値Tref以上のときには可変バルブタイミング機構は正常に機能していると判定し(S180)、変更後トルクTm1(2)から変更前トルクTm1(1)を減じたものが閾値Tref未満のときには可変バルブタイミング機構に異常が生じていると判定する(S190)。センサを追加することなく、カムポジションセンサに故障が生じているときでも可変バルブタイミング機構の異常の有無を判定することができる。
【選択図】図3

Description

本発明は、ハイブリッド車に関し、詳しくは、可変バルブタイミング機構を有するエンジンと2つのモータと遊星歯車機構とを備えるハイブリッド車に関する。
従来、この種のハイブリッド車としては、吸気バルブの開閉タイミングを可変する可変バルブタイミング機構を有するエンジンと2つのモータジェネレータとプラネタリギヤとが接続されたものが提案されている(例えば、特許文献1参照)。このハイブリッド車では、エンジンの吸気バルブを開閉するためのカムを駆動するカムシャフトの基準角度からの位相角をカム角センサによって検出し、検出した位相角が誤差範囲で目標角に一致しているか否かにより可変バルブタイミング機構に異常が生じているか否かを判定している。
特開2011−064176号公報
しかしながら、上述のハイブリッド車では、カム角センサが故障しているときには、可変バルブタイミング機構に異常が生じているか否かの判定を行なうことができないため、可変バルブタイミング機構に異常が生じていなくても可変バルブタイミング機構の機能を停止しなければならない。こうした問題に対して、カム角センサを2つ備える2重センサ手法を考えることもできるが、センサ数が過剰となり、コストも増加してしまう。
本発明のハイブリッド車は、センサを追加することなく、可変バルブタイミング機構の異常の有無を判定することを主目的とする。
本発明のハイブリッド車は、上述の主目的を達成するために以下の手段を採った。
本発明のハイブリッド車は、
吸気バルブの開閉タイミングを変更可能な可変バルブタイミング機構を有するエンジンと、動力を入出力する第1モータと、前記第1モータの回転軸とエンジンの出力軸と駆動輪に連結された駆動軸との3軸が共線図上でこの順に3つの回転要素に接続された遊星歯車機構と、前記駆動軸に動力を入出力する第2モータと、前記第1モータおよび前記第2モータと電力のやりとりを行なうバッテリと、を備えるハイブリッド車において、
停車中に前記エンジンが目標回転数で運転されるように前記エンジンと前記第1モータとを駆動制御している状態で前記吸気バルブの開閉タイミングが変更されるように前記可変バルブタイミング機構を制御し、該開閉タイミングの変更の前後において計算される前記第1モータの出力トルクの差分が閾値未満のときに前記可変バルブタイミング機構に異常が発生していると判定する異常判定手段、
を備えることを特徴とする。
この本発明のハイブリッド車では、次のように可変バルブタイミング機構に異常が生じているか否かを判定する。まず、停車中にエンジンが目標回転数で運転されるようにエンジンと第1モータとを駆動制御する。この状態で吸気バルブの開閉タイミングが変更されるように可変バルブタイミング機構を制御する。そして、可変バルブタイミング機構による吸気バルブの開閉タイミングの変更の前後において、第1モータの出力トルクを計算し、その差分が閾値未満のときに可変バルブタイミング機構に異常が発生していると判定する。これは以下の理由による。吸入空気量はスロットル開度を変更しなくても吸気バルブの開閉タイミングの変更によって変化する。エンジンは吸入空気量に対して基本的には理論空燃比となるように燃料噴射が行なわれるから、吸入空気量の変化に伴って燃料噴射量も変化し、エンジン出力も変化する。エンジンの回転数は第1モータにより目標回転数に制御されるから、エンジン出力の変化に伴って第1モータの出力トルクも変化する。この変化を差分として計算し、差分と閾値とを比較すれば、可変バルブタイミング機構の異常の有無を判定することができる。このように、本発明のハイブリッド車では、センサを追加することなく、カム角センサに故障が生じているときでも可変バルブタイミング機構の異常の有無を判定することができる。
本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成 図である。 エンジン22の構成の概略を示す構成図である。 HVECU70により実行される異常判定処理ルーチンの一例を示すフローチャートである。 異常判定処理中のプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の燃料噴射制御や点火制御,吸入空気量調節制御などを行なうエンジン用電子制御ユニット(以下、エンジンECUという)24と、を備える。また、実施例のハイブリッド自動車20は、エンジン22の出力軸としてのクランクシャフト26にキャリアが接続されると共に駆動輪63a,63bにデファレンシャルギヤ62を介して連結された駆動軸32にリングギヤが接続されたプラネタリギヤ30を備える。プラネタリギヤ30のサンギヤには、例えば同期発電電動機として構成されたモータMG1の回転子が接続されている。駆動軸32には、例えば同期発電電動機として構成されたモータMG2の回転子が接続されている。モータMG1,MG2は、インバータ41,42により駆動されており、インバータ41,42の図示しないスイッチング素子がモータ用電子制御ユニット(以下、モータECUという)40によってスイッチング制御されることによって駆動制御される。モータMG1,MG2は、インバータ41,42を介して、例えばリチウムイオン二次電池として構成されたバッテリ50と電力のやりとりをする。バッテリ50は、端子間電圧や充放電電流Ib,電池温度Tbなどを用いてバッテリ用電子制御ユニット(以下、バッテリECUという)52により管理される。ハイブリッド自動車20は、更に、エンジンECU24やモータECU40,バッテリECU52と通信して車両全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70を備える。
エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力可能なエンジンとして構成されている。エンジン22は、図2に示すように、エアクリーナ122により清浄された空気をスロットルバルブ124を介して吸入すると共に燃料噴射弁126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ128を介して燃焼室に吸入する。吸入した混合気は、点火プラグ130による電気火花によって爆発燃焼され、エンジン22は、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。エンジン22からの排気は、一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する浄化触媒(三元触媒)を有する浄化装置134を介して外気へ排出される。排気は外気に排出されるだけでなく、排気を吸気に還流する排気再循環装置(以下、「EGR(Exhaust Gas Recirculation)システム」という)160を介して吸気側に供給される。EGRシステム160は、浄化装置134の後段に接続されて排気を吸気側のサージタンクに供給するためのEGR管162と、EGR管162に配置されステッピングモータ163により駆動されるEGRバルブ164とを備え、EGRバルブ164の開度の調節により、不燃焼ガスとしての排気の還流量を調節して吸気側に還流する。エンジン22は、こうして空気と排気とガソリンとの混合気を燃焼室に吸引することができるようになっている。
エンジンECU24は、CPU24aを中心とするマイクロプロセッサとして構成されており、CPU24aの他に処理プログラムを記憶するROM24bと、データを一時的に記憶するRAM24cと、図示しない入出力ポートおよび通信ポートとを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号が入力ポートを介して入力されている。種々のセンサからの信号としては、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジション、エンジン22の冷却水の温度を検出する水温センサ142からの冷却水温Tw、燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジション、スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットル開度TH、吸気管に取り付けられたエアフローメータ148からの吸入空気量Qa、吸気管に取り付けられた温度センサ149からの吸気温Ta、吸気管内の圧力を検出する吸気圧センサ158からの吸気圧Pin、浄化装置134に取り付けられた温度センサ134aからの触媒温度Tc、空燃比センサ135aからの空燃比AF、酸素センサ135bからの酸素信号O2、シリンダブロックに取り付けられてノッキングの発生に伴って生じる振動を検出するノックセンサ159からのノック信号Ks、EGRバルブ164の開度を検出するEGRバルブ開度センサ165からのEGRバルブ開度EVなどを挙げることができる。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号が出力ポートを介して出力されている。種々の制御信号としては、燃料噴射弁126への駆動信号、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングを変更可能な可変バルブタイミング機構150への制御信号、EGRバルブ164の開度を調整するステッピングモータ163への駆動信号などを挙げることができる。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。なお、エンジンECU24は、クランクポジションセンサ140からのクランクポジションに基づいてクランクシャフト26の回転数即ちエンジン22の回転数Neを演算したり、エアフローメータ148からの吸入空気量Qaを演算したりしている。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサからの回転位置θm1,θm2や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力ポートを介して入力されている。モータECU40からは、インバータ41,42へのスイッチング制御信号などが出力ポートを介して出力されている。また、モータECU40は、HVECU70と通信しており、HVECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをHVECU70に出力する。なお、モータECU40は、回転位置検出センサからのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧Vbやバッテリ50の出力端子に接続された電力ラインに取り付けられた図示しない電流センサからの充放電電流Ib,バッテリ50に取り付けられた図示しない温度センサからの電池温度Tbなどが入力されている。バッテリECU52からは、必要に応じてバッテリ50の状態に関するデータが通信によりHVECU70に送信されている。また、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流Ibの積算値に基づいてそのときのバッテリ50から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。
HVECU70は、図示しないがCPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,記憶したデータを保持する不揮発性のフラッシュメモリ,入出力ポート,通信ポートを備える。HVECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸32に出力すべき要求トルクを計算し、この要求トルクに対応する要求動力が駆動軸32に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては以下の(1)〜(3)のものがある。(1)のトルク変換運転モードと(2)の充放電運転モードは、いずれもエンジン22の運転を伴って要求動力が駆動軸32に出力されるようエンジン22とモータMG1,MG2とを制御するモードであり、実質的な制御における差異はないため、以下、両者を合わせてエンジン運転モードという。
(1)トルク変換運転モード:要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてがプラネタリギヤ30とモータMG1とモータMG2とによってトルク変換されて駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御する運転モード。
(2)充放電運転モード:要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部がプラネタリギヤ30とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御する運転モード。
(3)モータ運転モード:エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸32に出力するよう運転制御する運転モード。
次に、こうして構成された実施例のハイブリッド自動車20の動作、特にカムポジションセンサ144が故障しているときに可変バルブタイミング機構150に異常が発生しているか否かを判定する際の動作について説明する。図3は、HVECU70により実行される異常判定処理ルーチンの一例を示すフローチャートである。このルーチンは、カムポジションセンサ144に故障が生じているときに実行される。
異常判定処理ルーチンが実行されると、HVECU70は、まず、停車中であるか否かを判定する(ステップS100)。停車中であるか否かの判定は、例えば、車速センサ88からの車速Vが値0であるか否かにより行なったり、モータMG2の回転数Nm2が値0であるか否かにより行なうことができる。停車中ではないと判定したときには、車両の状態が異常判定を行なう状態にないと判断し、本ルーチンを終了する。
ステップS100で停車中であると判定されると、エンジン22の目標回転数Ne*に予め定められた異常判定用回転数Nesetを設定すると共にエンジン22が設定された目標回転数Ne*で運転されるようエンジン22とモータMG1とを駆動制御し(ステップS110)、エンジン22の回転数Neが目標回転数Ne*で安定するのを待つ(ステップS120)。エンジン22とモータMG1の駆動制御は、具体的には、エンジンECU24に対してエンジン22のスロットル開度が予め定められた異常判定用開度となるように制御信号を送信すると共に、モータECU40に次式(1),(2)に示すエンジン22の回転数Neを目標回転数Ne*にするためのフィードバック制御における関係式により計算されるトルク指令Tm1*を送信することにより行なわれる。ここで、式(1)中の「ρ」はプラネタリギヤ30のギヤ比(サンギヤの歯数/リングギヤの歯数)である。また、式(2)中の「前回Tm1*」はトルク指令Tm1*を設定する制御ルーチンにおいて前回に設定されたトルク指令Tm1*であり、「Nm1」はモータMG1の回転数であり、「k1」はフィードバック制御における比例項のゲインであり、「k2」はフィードバック制御における積分項のゲインである。
Nm1*=Ne*・(1+ρ)/ρ (1)
Tm1*=前回Tm1*+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
エンジン22の回転数Neが目標回転数Ne*で安定すると、モータMG1の出力トルクとしてそのときのモータMG1のトルク指令Tm1*を変更前トルクTm1(1)として記憶する(ステップS130)。そして、吸気バルブ128の開閉タイミングを異常判定用として予め定められた所定量だけ進角し(ステップS140)、エンジン22の回転数Neが目標回転数Ne*で安定するのを待つ(ステップS150)。吸気バルブ128の開閉タイミングの所定量の進角は、エンジンECU24に異常判定用の制御信号を送信し、エンジンECU24が所定量だけ吸気バルブ128の開閉タイミングを進角するよう可変バルブタイミング機構150を駆動制御することにより行なわれる。
エンジン22の回転数Neが目標回転数Ne*で安定すると、モータMG1の出力トルクとしてそのときのモータMG1のトルク指令Tm1*を変更後トルクTm1(2)として記憶し(ステップS160)、変更後トルクTm1(2)から変更前トルクTm1(1)を減じたもの(差分)と閾値Trefと比較する(ステップS170)。そして、変更後トルクTm1(2)から変更前トルクTm1(1)を減じたもの(差分)が閾値Tref以上のときには、可変バルブタイミング機構150は正常に機能していると判定して本ルーチンを終了し(ステップS180)、変更後トルクTm1(2)から変更前トルクTm1(1)を減じたもの(差分)が閾値Tref未満のときには、可変バルブタイミング機構150に異常が生じていると判定して本ルーチンを終了する(ステップS190)。
スロットル開度と回転数Neを一定に保った状態で吸気バルブ128の開閉タイミングだけを進角すると、吸気バルブ128の開閉タイミングの変更によりエンジン22の吸入空気量が増加する。エンジン22の燃料噴射制御は、吸入空気量に対して基本的には理論空燃比となるように(実際には理論空燃比に補正係数を乗じたものとなるように)行なわれるから、吸入空気量が多くなれば燃料噴射量も多くなり、エンジン22からのトルクが増大する。エンジン22のトルクが増大すると、エンジン22の回転数Neを大きくしようとするから、エンジン22の回転数Neを目標回転数Ne*に保持するためにモータMG1のトルク指令Tm1*が大きくなるように変更される。図4は、吸気バルブ128の開閉タイミングを所定量だけ進角させた前後の状態のプラネタリギヤ30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。図中、左のS軸はサンギヤの回転数Nsであると共にモータMG1の回転数Nm1を示し、C軸はプラネタリキャリアの回転数Ncであると共にエンジン22の回転数Neを示し、R軸はリングギヤの回転数Nrであると共にモータMG2の回転数Nm2および駆動軸32の回転数Ndを示す。C軸に記載された上向き矢印は、吸気バルブ128の開閉タイミングの進角前のエンジン22のトルクTe(1)と、吸気バルブ128の開閉タイミングの進角後のエンジン22のトルクTe(2)を示す。S軸に記載された下向き矢印は、吸気バルブ128の開閉タイミングの進角前のモータMG1のトルクTm1(1)と、吸気バルブ128の開閉タイミングの進角後のモータMG1のトルクTm1(2)を示す。エンジン22のトルクTeおよびモータMG1のトルクTm1は、図示するように、進角前に比して進角後は大きくなっている。実施例の異常判定処理ルーチンのステップS170で用いられた閾値Trefは、可変バルブタイミング機構150が正常に機能しているときに吸気バルブ128の開閉タイミングを所定量だけ進角させた前後におけるエンジン22から出力されるトルクの差分をプラネタリギヤ30のサンギヤ軸に換算した値より小さく値0より大きな値を用いることができる。したがって、進角の前後のモータMG1のトルクTm1(1),Tm1(2)の差分が閾値Tref以上であるか否かにより可変バルブタイミング機構150が正常に機能しているか或いは可変バルブタイミング機構150に異常が生じているかを判定することができる。
以上説明した実施例のハイブリッド自動車20によれば、停車中にエンジン22が予め定められた異常判定用回転数Nesetとして設定された目標回転数Ne*で運転されるようにエンジン22とモータMG1とを駆動制御した状態で、吸気バルブ128の開閉タイミングを所定量だけ進角し、進角後のモータMG1のトルクとしての変更後トルクTm1(2)から進角前のモータMG1のトルクとしての変更前トルクTm1(1)を減じたものと閾値Trefとを比較することにより、可変バルブタイミング機構150が正常に機能しているか或いは可変バルブタイミング機構150に異常が生じているかを判定することができる。このように、実施例のハイブリッド自動車20では、センサを追加することなく、カムポジションセンサ144に故障が生じているときでも可変バルブタイミング機構150の異常の有無を判定することができる。
実施例のハイブリッド自動車20では、進角前のモータMG1のトルク(変更前トルクTm1(1))として進角前のモータMG1のトルク指令Tm1*を用い、進角後のモータMG1のトルク(変更後トルクTm1(2))として進角後のモータMG1のトルク指令Tm1*を用いるものとしたが、モータMG1から出力されている実際のトルクを変更前トルクTm1(1)や変更後トルクTm1(2)に用いるものとしてもよい。
実施例のハイブリッド自動車20では、停車中にエンジン22が予め定められた異常判定用回転数Nesetとして設定された目標回転数Ne*で運転されるようにエンジン22とモータMG1とを駆動制御した状態で、吸気バルブ128の開閉タイミングを所定量だけ進角するものとしたが、吸気バルブ128の開閉タイミングを変更すればよいから、吸気バルブ128の開閉タイミングを所定量だけ遅角するものとしてもよい。この場合、エンジン22のトルクは減少し、モータMG1のトルクも小さくなるから、変更前トルクTm1(1)から変更後トルクTm1(2)を減じたものが閾値以上であるか否かにより可変バルブタイミング機構150の異常の有無を判定すればよい。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、ハイブリッド車の製造産業などに利用可能である。
20 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、24a CPU、24b ROM、24c RAM、26 クランクシャフト、30 プラネタリギヤ、32 駆動軸、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、50 バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、62 デファレンシャルギヤ、63a,63b 駆動輪、70 ハイブリッド用電子制御ユニット、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、122 エアクリーナ、124 スロットルバルブ、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、134 浄化装置、134a 温度センサ、135a 空燃比センサ、135b 酸素センサ、136,スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、158 吸気圧センサ、159 ノックセンサ、160 EGRシステム、162 EGR管、163 ステッピングモータ、164 EGRバルブ、165 EGRバルブ開度センサ、MG1,MG2 モータ。

Claims (1)

  1. 吸気バルブの開閉タイミングを変更可能な可変バルブタイミング機構を有するエンジンと、動力を入出力する第1モータと、前記第1モータの回転軸とエンジンの出力軸と駆動輪に連結された駆動軸との3軸が共線図上でこの順に3つの回転要素に接続された遊星歯車機構と、前記駆動軸に動力を入出力する第2モータと、前記第1モータおよび前記第2モータと電力のやりとりを行なうバッテリと、を備えるハイブリッド車において、
    停車中に前記エンジンが目標回転数で運転されるように前記エンジンと前記第1モータとを駆動制御している状態で前記吸気バルブの開閉タイミングが変更されるように前記可変バルブタイミング機構を制御し、該開閉タイミングの変更の前後において計算される前記第1モータの出力トルクの差分が閾値未満のときに前記可変バルブタイミング機構に異常が発生していると判定する異常判定手段、
    を備えることを特徴とするハイブリッド車。
JP2014203954A 2014-10-02 2014-10-02 ハイブリッド車 Pending JP2016075156A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203954A JP2016075156A (ja) 2014-10-02 2014-10-02 ハイブリッド車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203954A JP2016075156A (ja) 2014-10-02 2014-10-02 ハイブリッド車

Publications (1)

Publication Number Publication Date
JP2016075156A true JP2016075156A (ja) 2016-05-12

Family

ID=55951037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203954A Pending JP2016075156A (ja) 2014-10-02 2014-10-02 ハイブリッド車

Country Status (1)

Country Link
JP (1) JP2016075156A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583558B2 (en) 2017-01-17 2020-03-10 Fanuc Corporation Robot control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583558B2 (en) 2017-01-17 2020-03-10 Fanuc Corporation Robot control device

Similar Documents

Publication Publication Date Title
JP5929710B2 (ja) 内燃機関装置の制御装置およびハイブリッド車
JP5251559B2 (ja) 内燃機関装置及び自動車並びに排気再循環装置の故障診断方法
JP2013184512A (ja) 車両の異常判定装置
JP5459333B2 (ja) ハイブリッド自動車の制御装置
JP2016144972A (ja) ハイブリッド自動車
JP5716425B2 (ja) ハイブリッド自動車
JP2011219019A (ja) 自動車および内燃機関の運転停止時の制御方法
JP5352539B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2011219025A (ja) ハイブリッド自動車およびその制御方法
JP2010083319A (ja) ハイブリッド車およびその制御方法
JP2007223403A (ja) 動力出力装置およびその制御方法並びに車両
JP2010105626A (ja) 車両およびその制御方法
JP5991145B2 (ja) ハイブリッド自動車
JP2014189081A (ja) ハイブリッド自動車
JP2008126904A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2016075156A (ja) ハイブリッド車
JP5330968B2 (ja) 車両およびその制御方法
JP6277972B2 (ja) ハイブリッド自動車
JP6009978B2 (ja) ハイブリッド自動車
JP6020281B2 (ja) 車両
JP5796440B2 (ja) ハイブリッド車のアイドリング学習装置
JP2012236548A (ja) ハイブリッド車
JP2016205228A (ja) 内燃機関装置
JP5293541B2 (ja) 動力出力装置およびその制御方法並びに車両
JP5040833B2 (ja) ハイブリッド車およびその制御方法